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Abstract

Solar sails are a concept of spacecraft propulsion where one takes advantage of the solar radiation pressure to
propel a spacecraft. A first approach to model the dynamics of a solar sail in the Earth - Sun system is to consider
the Circular Restricted Three Body Problem (CRTBP) adding the solar radiation pressure. In this framework,
the effect of the solar sail creates a family of “artificial” equilibria parametrised by the orientation of the sail.

These equilibria offer interesting mission applications such as GeoStorm Warning Mission or Polar Observer,
where a solar sail must remain close to a fixed location. In previous works4,5 we have derived station keeping
strategies for a solar sail close to equilibria using information on the dynamics of the systems. The main idea is
to obtain the dynamical properties of the phase space close to an equilibrium point for a fixed sail orientation,
and understand how these properties vary when we change the sail orientation. Then we can find a sequence of
changes in the sail orientation so that the system acts in our favour, managing to maintain the trajectory of the
sail close to the equilibrium point.

In this paper we study the performance of these strategies for a more realistic model, including the gravitational
effect of other planets. More concretely, we will discuss how to extend these ideas when we consider that Sun -
Earth move around their centre of mass in an elliptic way and include the gravitational attraction of Jupiter. This
is the first step of a more challenging project where we want to check the robustness of the algorithms in a realistic
setting.

1 Introduction

One of the main advantages of solar sails is that they
open a wide range of challenging mission applications
that cannot be achieved by a traditional spacecraft.
Robert L. Forward in 1990 proposed to use a solar sail
to hover one of the Earth’s poles.9 He would place
a solar sail high above the ecliptic plane in such a
way that the solar radiation pressure would counter-
act the Earth’s gravitational attraction. He called it
“Statite”: the spacecraft that does not move. Nowa-
days, these ideas are being consider in the proposed
Polar Observer and PolarSitter missions.2,16 These
mission concepts would enable to have constant mon-
itoring of the Polar regions of the Earth for climato-
logical studies.

Another interesting proposal is the so called GeoStorm
mission.16,21 Here the idea is to place a solar sail at
an equilibrium point closer to the Sun than the La-
grangian point L1 and displaced about 5◦ from the
Earth-Sun line, enabling observations of the Sun’s
magnetic field having a constant communication with
the Earth. This would enable to alert of Geomagnetic
storms, doubling the actual alert time of the ACE13

spacecraft (that is now orbiting on a Halo orbit around
L1).

All these missions require to maintain a solar sail in
a fixed location. Nevertheless, most of these equilib-
ria are unstable, hence a station keeping strategy is
needed to maintain a solar sail close to equilibria for
a long time.
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In previous works3,4, 8 we used dynamical systems
tools to develop a station keeping strategy for this
situation in the Circular and Elliptical RTBP model.
The key point was to know the position of the sta-
ble and unstable manifolds for a fixed sail orientation,
and see now this one varied when the sail orientation
is changed. This information was used to derive a se-
quence of changes on the sail orientation that kept the
trajectory of the sail close to equilibria. We have al-
ready tested these algorithms with the GeoStorm and
Polar Observer missions.3,4, 8 During our simulations
we considered the RTBP with the effect of the solar
radiation pressure as a model. We also included ran-
dom errors on the position and velocity determination
as well as on the sail orientation to test the robustness
of these algorithms. We found that the most relevant
sources of errors (the ones with more impact on the
dynamics) are the errors on the sail orientation.

Now we want to test the robustness of these strate-
gies when other perturbations are included into the
system. To have a more realistic model one should in-
clude at least the gravitational attraction of the main
bodies in the solar system. Another improvement can
be introduced by considering a more realistic approx-
imation to the sail performance, taking into account
its shape and intrinsic properties.

In this paper we have included the gravitational effect
of Jupiter, the most massive body in the solar system
after the Sun. We will discuss how to extend the ideas
of our previous works3,4, 8 when we consider a more
complex model.

We have organised this paper as follows: In Section 2
we introduce the model used for the forces acting on
the sail and explain the dynamical model for the mo-
tion of the sail. In Section 3 we will describe the
main tools to derive these strategies in a more real-
istic model. We will first discuss how to find an ap-
propriate nominal orbit (section 3.1) and how to find
an appropriate reference system along the orbit that
will help us to give an easy description of the sys-
tems dynamics (section 3.2). Then we will see how to
put all these things together to derive a station keep-
ing strategy (section 3.3). Finally, in Section 4 we will
test the performance of this strategy on the GeoStorm
mission.

2 Equations of Motion

2.1 The Solar Sail

The acceleration given by the sail depends on its orien-
tation and its efficiency. As a first approach, one can
consider that the force due to the radiation pressure
is produced by the reflection of the photons emitted
by the Sun on the surface of the sail.17 For a more
realistic model, one should include the force produced
by the absorption of photons by the sail.1,19 The force
produced by reflection is directed along the normal di-
rection to the surface of the sail, while the absorption
is strictly in the opposite direction of the Sun. This
means that the direction of the resultant force should
be tilted from the normal direction to the surface of
the sail.

In this paper we consider the simplest model for the
sail, that is, a flat and perfectly reflecting sail. The
force produced by the sail is,17

~Fsail = β
G ms

r2
ps

〈~rs, ~n〉2~n, (1)

where β is a constant defined as the sail lightness num-
ber, that accounts for the efficiency of the sail, G is
the universal gravitational constant, ms is the mass of
the Sun and rps is the Sun - sail distance. The vectors
~rs and ~n are unit vectors representing the Sun - sail
direction and the normal direction to the surface of
the sail respectively.

The sail orientation is parametrised by two angles, α
and δ, which can be defined in many ways.15,17,20 Here
we define them as follows: (i) α is the angle between
the projection of the Sun-sail line, ~rs, and the nor-
mal vector to the sail, ~n, on the ecliptic plane; (ii) δ
is the angle between the projection of the Sun - sail
line, ~rs, and the normal vector to the sail, ~n, on the
y = 0 plane (see Fig. 1). These angles are related to
the horizontal (α) and vertical (δ) displacement of the
normal direction, ~n, with respect to the Sun - line, rs,
in a given reference system.

If we consider (xs, ys, zs) to be the position of
the sail and (x0, y0, z0) the one of the Sun, then
it is obvious that ~rs = (xs − x0, ys − y0, zs −
z0)/r0s. Take spherical coordinates we have that
rs = (cosφ(x, y) cosψ(x, y, z), sinφ(x, y) cosψ(x, y, z),
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Figure 1: Graphic representation of the two angles
(α, δ) that define the sail orientation

sinψ(x, y, z)), where

φ(x, y) = arctan

(
ys − y0
xs − x0

)
,

ψ(x, y, z) = arctan

(
zs − z0√

(xs − x0)2 + (ys − y0)2

)
.

Notice that following the definitions given for α and δ
we have that ~n = (nx, ny, nz) can be expressed as:

nx = cos(φ(x, y) + α) cos(ψ(x, y, z) + δ),
ny = sin(φ(x, y) + α) cos(ψ(x, y, z) + δ),
nz = sin(ψ(x, y, z) + δ).

2.2 N - Body Problem + Solar Sail

A solar sail in space is affected by the gravitational
attraction of the main bodies. Hence, according to
Newton’s laws, the acceleration of the sail in the solar
system will be given by:

d2

dt2
~rsail = G

9∑
i=0

mi
~ri − ~rsail
||~ri − ~rsail||3

+ ~Fsail, (2)

where G = 6.67428 · 10−11m3kg−1s−2 is the Universal
gravitational constant, mi is the mass of each of the
bodies, ~ri is their position.

We can consider the planets to be ordered by their
distance to the Sun, where i = 0 corresponds to the
Sun and i = 1, . . . , 9 to the planets from Mercury to
Neptune and the Moon. All the bodies from the Solar
system will then evolve following their mutual gravita-
tional attraction. If one wishes to have a more realistic
model, their positions and velocities along time can be
taken from the JPL ephemerides.

2.3 Sun - Earth - Jupiter - Sail model

If a solar sail is in the vicinity of the Earth, a good
first approximation, is to considering only the gravita-
tional effects of the Earth and Sun as well as the solar
radiation pressure. If we fix the two bodies to evolve
in a circular way around their mutual centre of mass,
we have the Restricted Three Body Problem with So-
lar Sail (RTBPS), and has served us as a model in the
past.

In this paper we will consider a more realistic model,
which includes the gravitational effect of Jupiter and
the eccentricity of the Earth’s orbit. Jupiter is by far
the largest planet in the solar system, with a mass
more than twice the mass of all the other planet com-
bined together. Hence, it is the most important per-
turbations to the trajectory of the sail.

The equations of motion are,

ẍs =

2∑
i=0

Gmi
xi − xs
r3is

+ β
Gm0

r20s
〈~rs, ~n〉2nx,

ÿs =

2∑
i=0

Gmi
yi − ys
r3is

+ β
Gm0

r20s
〈~rs, ~n〉2ny,

z̈s =

2∑
i=0

Gmi
zi − zs
r3is

+ β
Gm0

r20s
〈~rs, ~n〉2nz,

(3)

where (xs, ys, zs) and (xi, yi, zi) are the position of the
solar sail and the planets respectively, where i = 0, 1, 2
stands for the Sun, Earth and Jupiter respectively.
The constants Gmi are their normalised masses and
ris =

√
(xi − xs)2 + (yi − ys)2 + (zi − zs)2 are the

planet - sail distances. Finally, ~n = (nx, ny, nz) is
the normal direction to the surface of the sail, and
~rs = ~r0s/||r0s|| is the normalised Sun - sail direction.

Sun, Earth and Jupiter will evolve following their mu-
tual gravitational interaction. Hence,

ẍi =

i−1∑
j=0

Gmj
xi − xj
r3ij

+

2∑
j=i+1

Gmj
xj − xi
r3ij

,

ÿi =

i−1∑
j=0

Gmj
yi − yj
r3ij

+

2∑
j=i+1

Gmj
yj − yi
r3ij

,

z̈i =

i−1∑
j=0

Gmj
zi − zj
r3ij

+

2∑
j=i+1

Gmj
zj − zi
r3ij

,

(4)

for i = 0, 1, 2.

The initial conditions for these bodies have been taken
so that initially: the Sun - Earth couple orbits around
their mutual centre of mass in an elliptic way with
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e = 0.0167 and Jupiter orbits around this centre of
mass on the same orbital plane in a circular way in the
same orbital plane. This is a close first approximation
to the real motion of these planets. So,

(x0, y0, z0) = ( m1(1− e2), 0, 0 ),

(ẋ0, ẏ0, ż0) = ( 0, m1

√
1+e
1−e , 0 ),

(x1, y1, z1) = ( −m0(1− e2), 0, 0 ),

(ẋ1, ẏ1, ż1) = ( 0, −m0

√
1+e
1−e , 0 ),

(x2, y2, z2) = ( −rJ cos(φ0), rJ sin(φ0), 0 ),
(ẋ2, ẏ2, ż2) = ( rJωJ sin(φ0), rJωJ cos(φ0), 0 ),

where rJ = 5.2 AU, ωJ = 2π/11.86 and φ0 = π/6.

We will use an inertial reference system. To be able to
relate this model with the RTBPS, we have normalised
the units of distance, mass and time so that: the Sun-
Earth distance is 1, the mass of the Sun - Earth system
is also 1 (i.e. Gm0+Gm1 = 1), and their orbital period
is 2π (i.e. 2π = 1 year). Hence,

Gm0 = 9.999969965194 · 10−1,
Gm1 = 3.003480575402 · 10−6,
Gm2 = 9.547890707253 · 10−4.

3 Station Keeping Strategy

As it has been discussed in previous works by McInnes
et. al,16,18 the artificial equilibria that appear on the
CRTBP when the solar radiation pressure is added are
in an interesting location for practical mission appli-
cations, such as the GeoStorm or the Polar Observer.
Nevertheless, they are unstable and a station keeping
strategy must be used to maintain the sail close to
equilibria.

In previous papers,4,5, 7 we already discussed how
to derive station keeping strategies around unstable
equilibria the Circular RTBP using dynamical system
tools. We also tested them and discussed their robust-
ness when different sources of errors were included in
the simulations (both on the position and velocity de-
termination and the sail orientation).

Now we want to check the robustness of these strate-
gies when other perturbations are added to the sys-
tem, such as the fact that the two primaries (Sun
and Earth) actually orbit around their centre of mass
in an elliptic way, and the gravitational attraction of
Jupiter, the largest body in the Solar system after the
Sun.

It is clear that when we include these perturbing ef-
fects to RTBPS the artificial equilibria no longer exist,
but if the perturbations are small enough, there still
exist natural trajectories that remain close to them
and that share the same linear behaviour.14 In Sec-
tion 3.1 we will discuss how to compute these nominal
orbits. Our goal will be to remain close to these nat-
ural trajectories.

We recall that the key point of the strategies used in
our work4,5 was to understand the geometry of the
phase space and how it is affected by variations on the
sail orientation. In Section 3.2 we will describe the
linear dynamics around these objects and how to find
an appropriate reference system.

The main idea is to keep the sail orientation fixed for
a certain time, letting the dynamics of the system act.
When the sail is escaping from the nominal orbit we
chose a new sail orientation that brings these trajec-
tory back. In Section 3.3 we will see how to find this
appropriate new sail orientation and how to put all
these ideas together to derive the station keeping al-
gorithms.

We must mention that some of the ideas behind our
approach are based on the previous works by Gomez
et al.10,12 on the station keeping around Halo orbits
with a “traditional” thruster.

3.1 Nominal Orbit

Our goal is to maintain the trajectory of a solar sail
close to one of the artificial equilibrium point that ap-
pear in the Circular RTBP when the solar radiation
pressure is included. As discussed in,8 if we consider
the Elliptic RTBPS (i.e. for the moment we neglect
Jupiter) we no longer have artificial equilibria, these
ones have been replaced by 2π-periodic orbits. This
is because the Elliptic RTBPS can be seen as a 2π-
periodic perturbation of the Circular RTBP. Neverthe-
less, these periodic orbits remain close to the equilib-
rium point in the Circular RTBP and share the same
qualitative behaviour. In our previous paper8 we used
them as nominal orbits for station keeping.

When we include other perturbations to the system,
for example, the gravitational effect of Jupiter in our
model. The system is no longer a periodic perturba-
tion of the Circular RTBP, hence these periodic or-
bits will no longer exist. Nevertheless, there still exist
natural trajectories of the system that remain close
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to these ones.14 We will use them as nominal orbits
for our station keeping. Moreover, the qualitative be-
haviour around these orbits is similar to the behaviour
around the 2π-periodic in the Elliptic RTBP. Hence
the ideas behind our station keeping strategies still
apply.

To find a good nominal orbit we have implemented a
parallel shooting method11 to get a solution in the Sun
- Earth - Jupiter model very similar to the one in the
Elliptic RTBP Sun - Earth model.

Let us give some detail on it. First we split the time
span [0, Tend] in which we want to find the nominal
orbit into several pieces [ti, ti+1], i = 0, . . . n− 1, veri-
fying t0 = 0, tn = Tend and τ = ti+1 − ti = Tend/n. In
our examples we have considered Tend = 20 years (the
maximum duration of our mission) and τ = 0.5 years
(half the period of the periodic orbits in the ERTBP),
hence n = 40.

If xi for i = 0, . . . , n are n + 1 points in the phase
space and we define φτ (ti, xi) as the solution given by
the initial condition (ti, xi) at time ti+1 = ti+τ . These
points will belong to the nominal orbit if they satisfy,

φτ (ti, xi) = xi+1 for i = 0, . . . , n− 1.

This leads to having to solve a non-linear equation
with 6n equations and 6n + 6 unknowns. To do this,
we have used a Newton method taking as initial guess
the values provided by the periodic orbit in the Elliptic
RTBP. Due to the fact that we have more unknowns
than equations we have added six more conditions: we
have fixed the initial positions (the first three compo-
nents of x0) and the final ones (the first three compo-
nents of xn).

3.2 Linear Dynamics

The study of the linear dynamics is very similar to
the done by Gomez et al.10,12 where they described
the linear dynamics close to Halo orbits in the RTBP.
Here we will discuss the main details.

The first step to study the behaviour close to the nom-
inal orbit is done throughout the first order variational
equations. If we write the equations of motion in Eq. 3
as ẋ = F (x, t), then the first variational equations are

Ȧ = DF (x(t), t)A, A ∈ L(R6,R6), (5)

with the initial condition A(0) = Id.

If φ denotes the flow associated to Eq. (3) and
φτ (t0, x0) the image of the point x0 ∈ R6 after τ units
of time. The solution A(τ) of Eq. (5) is the differ-
ential flow, Dφτ (t0, x0), of φτ (t0, x0) with respect to
the initial condition x0. For h ∈ R6 (with ‖h‖ small
enough), we have

φτ (t0, x0 + h) = φτ (t0, x0) +Dφτ (t0, x0) · h+O(|h|2).

Therefore, φτ (t0, x0) + A(τ) · h gives a good approxi-
mation of φτ (t0, x0 + h) provided that h is small.

The variational flow of the nominal orbit, A(τ), gives
information on the dynamics close to it. The linear
behaviour around this piece of the orbit will be deter-
mined by the matrix M = A(Tend).

To avoid problems in the integration due to the high
instability of the system, we have split the nominal or-
bit into N pieces. Each piece corresponds to one rev-
olution of the Earth around the Sun, this is way from
now on we will refer to each piece as revolution of the
nominal orbit. Associated to each revolution we have
the variational matrix Ak in normalised coordinates.
It is easy to check that M = AN ×AN−1 × · · · ×A1.

Due to the large values of the unstable eigenvalues of
each one of the matrices Ak (roughly 396) it is not
possible to perform a direct computation of the eigen-
values of M because of the possible overflow during
the computation of M . We must take into account
that the dominant eigenvalue of M is of the order of
396N . There exist procedures10 that can be done to
deal with this problem and find all the eigenvalues and
eigenvectors of M .

In our case, we will use each of the individual matrices
Ak and find their eigenvectors. In this way we can
describe the local local dynamics for each revolution.
It is true that this implies a certain discontinuity every
time we change from one revolution to another, but it
has given good results in the past.12

We can consider each revolution to be 1 year and that
the linear dynamics of the nominal orbit during n the
kth revolution is described by Ak. We note that there
is not many differences in the qualitative and quan-
titative dynamics after 1 revolution. Hence, this is a
good first approach for the global dynamics. We can
understand the dynamics at each revolution by finding
the eigenvalues and eigenvectors of Ak.

For each revolution, the eigenvalues (λ1,...,6) of the Ak,
are very similar and are as follows: λ1,2 are real with
λ1 > 1, λ2 < 1, the others λ3,4,5,6 are complex pairs of
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conjugate eigenvalues, λ3 = λ̄4 and λ5 = λ̄6.

The previous three pairs of eigenvalues have the fol-
lowing geometrical meaning:

• The first pair (λ1, λ2) are related to the (strong)
hyperbolic character of the orbit. The value λ1

is the largest in absolute value, and is related to
the eigenvector e1(0), which gives the most ex-
panding direction. Using Dφτ we can get the
image of this vector under the variational flow:
e1(τ) = Dφτe1(0). At each point of the orbit,
the vector e1(τ) together with the vector tangent
to the orbit, span a plane that is tangent to the
local unstable manifold (W u

loc). In the same way
λ2 and its related eigenvector e2(0) are related to
the stable manifold and e2(τ) = Dφτe2(0).

• The other two couples (λ3, λ4 = λ̄3) and (λ5, λ6 =
λ̄5) are complex conjugate and their modulus is
close to 1. The matrix M , restricted to the plane
spanned by the real and imaginary parts of the
eigenvectors associated to λ3, λ4 (and λ5, λ6) is
a rotation with a small dissipation or expansion,
so that the trajectories on these planes spiral in-
wards or outwards. Ak restricted to these planes
has the form,(

∆i cos Γi −∆i sin Γi

∆i sin Γi ∆i cos Γi

)
,

where ∆1,2 denotes the modulus of λ3 and λ5 re-
spectively, and are the rate of contraction. Γ1,2

denotes the argument of λ3 and λ5 respectively,
and they account for the rotation rate around the
orbit.

• We have that |λ3,4,5,6| � |λ1|, hence the most
expanding direction (by far) is given by e1(τ).

To sum up, in a suitable basis the variational flow,
Ak, associated to the nominal orbit can be written as,
Bk =

λk1
λk2

0

∆k
1 cos Γk1 −∆k

1 sin Γk1
∆k

1 sin Γk1 ∆k
1 cos Γk1

0
∆k

2 cos Γk2 −∆k
2 sin Γk2

∆k
2 sin Γk2 ∆k

2 cos Γk2

 .

The functions ei(τ) = Dφτ · ei(0), i = 1, . . . , 6, give
an idea of the variation of the phase space properties
in a small neighbourhood of the periodic orbit. We

will use a modification of them, the so called the Flo-
quet modes6,8, 12 ēi(τ) to track a trajectory close to
the nominal orbit and give a simple description of its
dynamics.

3.2.1 The Floquet modes

We recall that, without the effect of Jupiter, the nom-
inal orbit would be a periodic orbit with a period of 1
year. Due to the presence of Jupiter, this orbit is no
longer periodic, but it almost closes after one year. For
this reason, we will use ideas from the classical Flo-
quet theory to represent the linear dynamics around
it.

The Floquet modes provide us a local reference system
for each revolution of the orbit, which is very useful
to track the relative position between the spacecraft
trajectory invariant manifolds of the nominal orbit.

The Floquet modes ēi(τ) (i = 1, . . . , 6) are six 2π-
periodic time-dependent vectors such that, if we call
P (t) to the matrix that has the vectors ēi(τ) as
columns, then the change of variables x = P (t)z, takes
the linearised equation around the 2π-slice of the nom-
inal orbit, ẋ = Ak(τ)x, to an equation with constant
coefficients ż = Bkz.

One of the main advantages of using the Floquet bases,
is the fact that it is periodic. The after one revolu-
tion, when we change from one piece of orbit to an-
other, there will be a small discontinuity between the
two reference systems. This essentially translates on a
small jump in the phase space made by the sail every
revolution.

Following12 we define the first and second Floquet
mode taking into account that the rate of escape and
approach, after one revolution, along the unstable and
stable manifolds is exponential:

ē1(t) = e1(τ) exp
(
− τ
T

lnλ1

)
,

ē2(t) = e2(τ) exp
(
− τ
T

lnλ2

)
.

The other pairs are computed by taking into account
that, after one revolution, the plane generated by the
real and imaginary parts of the eigenvectors associated
to (λ3, λ4) and (λ5, λ6) is a rotation of angle Γ1,2 and
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a dissipation/expansion by a factor of ∆1,2:

ē3(t) = [cos
(
−Γ1

τ
T

)
e3(τ) − sin

(
−Γ1

τ
T

)
e4(τ)]ε1,

ē4(t) = [sin
(
−Γ1

τ
T

)
e3(τ) + cos

(
−Γ1

τ
T

)
e4(τ)]ε1,

ē5(t) = [cos
(
−Γ2

τ
T

)
e5(τ) − sin

(
−Γ2

τ
T

)
e6(τ)]ε2,

ē6(t) = [sin
(
−Γ2

τ
T

)
e5(τ) + cos

(
−Γ2

τ
T

)
e6(τ)]ε2.

Where εi = exp(− τ
T ln ∆i), τ = t − k · T is a nor-

malised time so that all the Floquet modes are taken
between [0, 2π]. Here k stands for the revolutions we
are considering and T = 2π the time it takes to do one
revolution.

3.2.2 Reference System

To build our reference frame, we split the time interval
of the mission duration [0, Tend] into N revolutions,
having N time intervals Ii = [ti, ti+1], i = 0, . . . , N−1,
where t0 = 0, ti = ti−1 + h and h = Tend/N . In all
of our examples we have considered Tend = 20 years
(the maximum duration of our mission) and N = 20
(1 revolution = 1 year).

For each time interval Ii we have computed the Flo-
quet modes associated to the variational flow Ai and
stored them so that we can easily be recompute. Now
we define our reference system as:

{ N0(t); ~v1(t), ~v2(t), ~v3(t), ~v4(t), ~v5(t), ~v6(t) }, (6)

where N0(t) is position and velocities of the nominal
orbit at time t, and ~v1,...,6(t) corresponds to the Flo-
quet modes of the time interval Ii into which t falls,
formally defined as:

~vi(t) =

N∑
k=0

χ(Ik)ē
k
i (t),

where χ(t) = {1 if t ∈ Tk, 1 if t /∈ Tk} and ēki (t) is the
Floquet mode associated to the kth revolution.

Notice that the directions in this reference frame are
discontinuous at each revolution. This means that at
each revolution there will be a small jump of the tra-
jectory in the phase space. Nevertheless the difference
between the different eigenvectors of Ak is very small
and these jumps will be almost negligible.

Now the dynamics around the nominal orbit is quite
simple. If N0(τ) denotes the point on the nominal or-
bit at time τ , then ~v1(τ) is the direction of the unstable
manifold. When this base point follows the nominal

orbit, the vector ~v1(τ) moves along the orbit follow-
ing the (two-dimensional) unstable manifold. In the
same way, the vector ~v2(τ) follows the stable manifold
along the orbit. Moreover, these two directions gener-
ate a plane that moves along the orbit, on which the
dynamics is a saddle.

For each point of the nominal orbit, the couple ~v3(τ),
~v4(τ) spans a plane that is tangent to another invari-
ant manifold of the orbit. This plane spans a three-
dimensional manifold when the base point moves along
the orbit. The dynamics on this manifold can be visu-
alised as a spiral motion (towards the nominal orbit)
on the plane (~v3(τ), ~v4(τ)) at the same time that the
plane moves along the orbit. In a similar way, the cou-
ple ~v5(τ), ~v6(τ) spans another three-dimensional man-
ifold, on which the dynamics is again a spiral motion
(but now escaping from the nominal orbit) composed
with the motion along the orbit.

The growing (or compression) of these spiral motions
is due to the real part of λ3,4 and λ5,6, which is nonzero
but very small. For this reason the spiralling motion is
very small (almost circular) and, to compute the con-
trol strategy, we will assume that this motions is not
an spiral but a rotation. Of course, the simulations of
the control strategy are done without this assumption,
and the control is good enough to compensate for the
spiralling components (similar ideas were used in4).

3.3 Control Strategy

We have just shown that using an appropriate refer-
ence system, the dynamics around the nominal orbit
can be seen as the cross product of a saddle and two
centres. This means that for a fixed sail orientation
(α0, δ0) a trajectory that starts close to the nominal
orbit will escape along the unstable directions while
rotating around the centre projections.

If we change the sail orientation (α0 + ∆α, δ0 + ∆δ),
the qualitative phase space behaviour will be the same,
but the position of the nominal orbit, stable and unsta-
ble manifolds that rule the dynamics will be shifted.
Hence, the the trajectory will now escape along the
new unstable invariant manifold.3,4

In order to control the sail’s trajectory we want to
find a new sail orientation such that the new unstable
manifold will bring the trajectory close to the stable
manifold of our nominal orbit. Once the trajectory
is close to this stable manifold we will restore the sail
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orientation to (α0, δ0) and repeat this process over and
over to control the instability due to the saddle dur-
ing the mission lifetime. Nevertheless, we must also
take into account the centre projection of the sail’s
trajectory. A sequence of changes in the sail orienta-
tion derive in a sequence of rotations around different
nominal orbits, and this can result unbounded.

Now that we understand how the linear dynamics
around the nominal orbit works, and how changes in
the sail orientation affect the sail’s trajectory, we can
derive an efficient algorithm to maintain the sail close
to the desired nominal orbit. The key point of this
strategy is how to find the appropriate changes in the
sail’s orientation so the phase space acts in our favour.
For this we will use the first order variational equations
w.r.t. the sail orientation.

3.3.1 First order variational flow

The first order variational flow gives us the informa-
tion on how small variations in the initial conditions
affect the final trajectory. In the same way the first
order variational w.r.t. the two angles gives us the
information on how small variations on the sail orien-
tation will affect the final trajectory.

Let φh(t0, x0, α0, δ0) be the flow at time t1 = t0 + h
of our vector field starting at time t0 for (x0, α0, δ0),
then

φh(t0, x0, α0 + ∆α, δ0 + ∆δ) = φh(t0, x0, α0, δ0) +

∂φh
∂α

(t0, x0, α0, δ0) · ∆α+
∂φh
∂δ

(t0, x0, α0, δ0) · ∆δ,
(7)

is a first order approximation of the final state if a
change ∆α,∆δ is made at time t = t0. With this
we have an explicit function of the final states of the
trajectory as a function of the two angles.

3.3.2 The algorithm

We start with a solar sail close to the nominal orbit N0

with a fixed sail orientation α0, δ0. We take the ref-
erence system {N0(t);~vi(t)}i=1,...,6, where ~v1(t), ~v2(t)
are the stable and unstable directions at each time
and the other two pairs define the two centre planes.

We will use this reference system to track the trajec-
tory and make decisions on when and how to change
the sail orientation. To fix notation, if ϕ(t0) is the
position and velocity of the solar sail at time t0, then

in this reference system,

ϕ(t0) = N0(t0) +

6∑
i=1

si(t0)~vi(t0).

For each mission we must define 3 parameters which
will depend on the mission requirements and the dy-
namics of the system around the nominal orbit. These
are: εmax, the maximum distance to the stable direc-
tion allowed, used to decide when to change the sail
orientation; dtmin and dtmax the minimum and maxi-
mum time between manoeuvres allowed.

We will proceed as follows, when we are close to N0(t0)
we set the sail orientation α = α0, δ = δ0. Due to
the saddle, the trajectory will escape along the un-
stable direction. When |s1(t1)| > εmax, we consider
that the sail is about to escape and we need to change
the sail orientation. We use the first order variational
flow to find a new sail orientation α1, δ1 and time
dt1 ∈ [dtmin, dtmax] so that by changing the sail orien-
tation now, t = t1, then at a certain time t = t1 + dt1
the sail trajectory will be close to the nominal orbit,
N0(t1 +dt1). Finally, at t1 +dt1 we will restore the sail
orientation to α0, δ0 and repeat these process during
the mission lifetime.

3.3.3 Finding α1, δ1 and dt1

Let us assume that we have |s1(t1)| > εmax at time
t = t1 and we need to chose a new sail orientation.
Eq. 7 gives us a map of how a small change in the
sail orientation ∆α,∆δ at t = t1 will affect the sail
trajectory at time t = t1 + h.

We want to find ∆α1,∆δ1 and dt1 so that the flow
at time t = t1 + dt1 is close to the stable manifold,
|s1(t1+dt1)| small, and the centre projections, (s3(t1+
dt1), s4(t1 +dt1)) and (s5(t1 +dt1), s6(t1 +dt1)), do not
grow .

We will proceed as follows:

1. Let us take t̃i for i = 0, . . . , n in the time interval
[t1 + dtmin, t1 + dtmax] where t̃i = t1 + dtmin +
i · dt and dt = (dtmax − dtmin)/n. For each t̃i we
compute the variational map given by Eq. 7.

2. For each t̃i we find ∆αi,∆δi such that, s1(t̃i) =
s5(t̃i) = s6(t̃i) = 0. Notice that this reduces to
solving a linear system with 2 unknowns and 3
equations, which we solve using the least square
method.
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At the end we have a set of {t̃i,∆αi,∆δi} such
that, ||(s1(t̃i), s5(t̃i), s6(t̃i))|| is small.

3. From the set of {t̃i,∆αi,∆δi} found in step 2 we
choose the j so that ||(s3(t̃j), s4(t̃j))|| is the small-
est.

The desired parameters to bring the sail back to the
nominal orbit are:

α1 = α0 + ∆αj , δ1 = δ0 + ∆δj , dt1 = t̃j − t1. (8)

We must mention that all the strategies described here
use information from the linear dynamics of the sys-
tem to make decisions on the changes of the sail ori-
entation. Nevertheless, the complete set of equations
is taken into account during the simulations.

4 Mission Application

We have taken the GeoStorm Warning Mission16,21 as
an example to test our strategies. The main goal of
the mission is to provide enhanced warning of geomag-
netic storms to allow operation teams to take preven-
tive actions to protect vulnerable systems. Currently
predictions of future activity are made by the National
Oceanic Atmospheric Administration (NOAA) Space
Environment Centre in Colorado using terrestrial and
real-time solar wind data obtained from the Advanced
Compositions Explorer (ACE) spacecraft. The ACE
spacecraft is stationed on a halo orbit near L1, at
about 0.01 AU from the Earth. From this position the
spacecraft has continuous view of the Sun and commu-
nication with the Earth.

The enhanced storm warning provided by ACE is lim-
ited by the need to orbit the L1 point and can only
provide predictions of 1 hour in advance. However,
since solar sails add an extra force to the dynamics
of the orbit, the location of L1 can be artificially dis-
placed. The goal of GeoStorm is to station a solar sail
twice as far from the Earth than L1 while remaining
close to the Sun - Earth line as can be seen in Fig. 2.
This will enable us to at least double the time of alert
that we have close to L1.

If we want to displace a solar sail at a double distance
from the classical Sun - Earth L1 point, we need a sail
lightness number β = 0.051689 (which corresponds to
a0 ≈ 0.3 mm/s2).16,17,21 Moreover, as we need con-
stant communication with the Earth, its position must

Sun
Earth

x

y

z

0.01 AU

0.02 AU

L1

ACE

Sail

CME

Figure 2: Schematic representation of the position
of the GeoStorm Mission (not to scale).

be displaced approximately 5o from the Sun - Earth
line. The equilibrium point that we find within this
constraints in the Circular RTBP is unstable, hence a
station keeping strategy is required.

In our previous papers4,8 we discussed the robustness
of our strategy in the Circular and Elliptical RTBP
for this mission, now we want to study its behaviour
when we include the gravitational effect of the other
planets. In this study only Jupiter is included.

4.1 Mission Parameters

Taking the RTBPS as a model, to find a fixed point
that matches the GeoStorm Mission requirements we
need: β = 0.051689, α0 = 0.7897◦ and δ = 0◦.

We have the the periodic orbit replacing the fixed
point in the Elliptic RTBP as an initial seed to find
the nominal orbit for the model that also include the
effect of Jupiter, and computed it over 20 years us-
ing the a parallel shooting method and its piecewise
reference system, as explained in Sections 3.1 and 3.2.

Finally, as mission parameters, we have taken εmax =
5 · 10−5AU (the escape distance), dtmin = 2 days and
dtmax = 169 days (the minimum and maximum time
between manoeuvres).

4.2 Mission Results

We have taken several random initial conditions close
to the nominal orbit at t = 0, and applied to each
of them the station keeping strategies up to 20 years.
During each mission we have measured the average
time between manoeuvre and the variation of the sail
orientation (α, δ) along time.

In Figure 3 we see the variation on the two angles
that define the sail orientation. We can see that the
average variation of α is of 1◦ and δ remains almost
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fixed through time. The trajectory takes, in average,
about 100 days to escape, and two quick manoeuvres
every 2 days are done each time we want to bring back
the trajectory. Notice that during the two days while
we are bringing the sail back, the sail need to moves
only about 1◦, which seems reasonable.

In Figure 4 we can see the trajectory of a particular
initial condition after applying the control strategy.
This trajectory is being plotted using a rotating refer-
ence system that keeps the Sun - Earth line fixed. As
we can see the trajectory remains close to equilibria.

In Figure 5 we show the same trajectory but in the
reference system used by the station keeping to make
decisions. Notice that the trajectory on the saddle
projection is a sequence of saddle connections that
remains bounded. While in the centre projections
we have a sequence of rotations that remain bounded
through time.

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20

α
 (

d
e

g
)

t (years)

traj

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0  5  10  15  20

δ
 (

d
e

g
)

t (years)

traj

Figure 3: Variation of the sail orientation α (top)
and δ (bottom) along time.

5 Conclusions and Future Work

In this work we have considered a solar sail near SL1

point of the Sun - Earth system and describe a station
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Figure 4: Trajectory of the solar sail for 20 years in
a rotating reference system so that the Sun - Earth
line is fixed.

keeping strategy to keep the trajectory of the solar sail
close to it. As a concrete example, we have focused on
the GeoStorm mission. The original part of this work
is that, instead of using the RTBP as a model we have
included the effect of the eccentricity of the Earth’s
orbit as well as the gravitational effect of Jupiter.

For the Sun-Earth-Jupiter model we show how to com-
puted a nominal orbit that is close to the fixed point
in the Circular RTBP and studied the local dynamics
around it. Then we have used this information to de-
rive a station keeping algorithm. The techniques used
here are not based on classical control theory but on
strongly rely on dynamical system tools. We already
used these tools in the Circular RTBP4 and the Ellip-
tic RTBP.8 Here we show how the same ideas extend
naturally to a more complex model.

Finally, we have tested this algorithm for the particu-
lar case: the GeoStorm mission. Where we have man-
aged to maintain the solar sail close to the nominal
orbit over 20 years.

For a more complete study we still need to test its
performance when different sources of errors that can
occurs during a mission are taken into account. For
example, errors on the position and velocity determi-
nation, as well as errors on the sail orientation. We
have already tested these in the past when the RTBP
with a solar sail was used as a model. Hence, we be-
lieve that these strategies should be robust enough.

Moreover, we are currently working on using these
same ideas when gravitational perturbation of the
complete Solar System is taken into account.
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