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Abstract

In this paper we focus on the computation of periodic solutions
of Delay Differential Equations (DDEs) with constant delays. The
method is based on defining a Poincaré section in a suitable func-
tional space and looking for a fixed point of the flow in this section.
This is done by applying a Newton method on a suitable discretiza-
tion of the section. To avoid computing and storing large matrices we
use a GMRES method to solve the linear system because in this case
GMRES converges very fast due to the compactness of the flow of the
DDE. The derivatives of the Poincaré map are obtained in a simple
way, by applying Automatic Differentiation to the numerical integra-
tion. The stability of the periodic orbit is also obtained in a very
efficient way by means of Arnoldi methods. The examples considered
include temporal and spatial Poincaré sections.
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(MCIU/AEI/FEDER, UE) and the Catalan grant 2017 SGR 1374. The project lead-
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2.2 Poincaré sections . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Spatial section . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Temporal section . . . . . . . . . . . . . . . . . . . . . 8

3 Periodic orbits 8
3.1 The Newton method . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Using GMRES . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Computer implementation . . . . . . . . . . . . . . . . . . . . 10

4 Numerical examples 11
4.1 A first example with temporal Poincaré section . . . . . . . . 11
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1 Introduction

Delay Differential Equations (DDEs) theory have been studied in the math-
ematical literature by many authors, such as [Hal77, HMN91] and many
others. However, many mathematical models with constant time delays or
with state delays require complicated mathematical analysis to be treated
only partially. As a result, such models require numerical methods to anal-
yse the dynamical features; steady-state points, periodic orbits, bifurcation
behaviours, etc. The development of these methods is, in general, difficult
due to the properties of a delay dynamical system and it may be much more
complicated than the non-delay case. Consequently, research on numerical
techniques for DDEs has been mainly focused not only on time integration
but also in the computation of invariant objects ([SEL+15]).

The existence of periodic solutions is an important topic of interest in
many applications of DDEs. There are many results and methods to study
their existence, stability and dependence on parameters of certain classes
of DDEs, [SW06]. However, many of these results and the corresponding
methods are essentially theoretical and they cannot be easily applied to a
general nonlinear system with several delays.

In this paper we focus on the computation of periodic orbits and their
stability. The main idea is to compute the periodic orbit as a fixed point of a
suitable Poincaré map by means of the Newton method. The main novelty is
that the linear system that appears at each Newton iteration is solved by a
GMRES method, which do not require the computation of the full Jacobian
matrix, but only its action on given vectors (directional derivatives). These
derivatives are computed by means of Automatic Differentiation (AD), a
technique that is very suitable to propagate derivatives along a computer
code, since it is very simple to implement [GC91, Gri00, Nau12].

We recall that the periodicity problem for DDEs is an infinite-dimensional
problem because such a problem is defined in an infinite-dimensional space.
Indeed, while only an initial point is required to characterise periodic solu-
tions of an Ordinary Differential Equation (ODE), computing a delay peri-
odic orbit requires an initial function to be found. Such computation will
be done using a shooting approach [LELR97] discretizing an initial function
on the delay interval and using a discrete version of the Poincaré operator
whose eigenvalues will be approximations of the Floquet multipliers of the
periodic solution of a likely large system. They will be clustered to zero and
usually only a few of them have large modulus [Hal77].
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1.1 Delay Differential Equations

A Delay Differential Equation (DDE) is a functional equation of the form

ẋ(t) = g(t, xt) (1.1)

where g is a suitable function defined on a domain contained in R×C to Rn,
where C denotes the vector space of continuous functions from the closed
interval [−1, 0] to Rn which, endowed with the sup norm, is a Banach space.
As usual, the function xt ∈ C is defined as

xt(s) = x(t+ s), −1 ≤ s ≤ 0.

For instance, if g(t, ϕ) = f(t, ϕ(0), ϕ(−1)), one obtains a DDE with constant
delay 1, that is,

ẋ(t) = f(t, x(t), x(t− 1)). (1.2)

It is well known ([Hal77]) that, if g is Lipschitz, then for any initial condition
xt0 ≡ u ∈ C there exists tf > t0 and a unique solution of (1.1), xu, defined
on [t0 − 1, tf ) verifying this initial condition.

It is also well known the lack of smoothness of the solution, no matter
how smooth the initial data is. For instance, (1.2) can have discontinuities
in the derivatives at t0 + k being k a positive integer. However, it becomes
smoother in such points when k becomes larger. More precisely, if f is of
class Cp and xu is of class Cq (q < p) at t0 + k, it will be of class Cq+1 at
t0 + k+ 1. Finally, notice that if xu is periodic, then such lack of smoothness
will not appear and the periodic orbit is as smooth as f .

2 Numerical methods

There are several well-known methods for the numerical integration of DDEs
(see, for instance, [BZ13]), and some are available as public domain codes.
In this section we explain how to modify an existing numerical integrator
(explicit or implicit) of DDEs such that it also propagates efficiently the
derivatives of the flow. As an example, we have applied it to two algorithms.

The first numerical integrator has been developed by ourselves, as a mod-
ification of the standard Runge-Kutta-Fehlberg (7)8, to deal with DDEs with
a single constant delay that it can be assumed to be 1. We have used Barycen-
tric Rational Interpolation (based on the use of Chebyshev points) for the
interpolation of the solution on the interval of delay. This interpolation
scheme provides convergence on the whole delay interval ([BBN99]) which
makes it very suitable in this situation. See Appendix A.2 for more details.
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The second numerical integrator is the well known retard code ex-
plained in [HNW00] and provided in E. Hairer’s website. It is based on
a Runge-Kutta pair of orders 4 and 5 with step size control and dense out-
put, in such a way that, after every successful integration step the computed
solution is stored in a convenient way such that it is available in the next
steps. Let us remark that this code can handle DDEs with several delays.

We have modified both codes to use Automatic Differentiation to propa-
gate the derivatives of the flow, as discussed in the next section.

2.1 Automatic differentiation

Automatic Differentiation (AD) is a computational tool to obtain derivatives
of the output of an algorithm w.r.t. initial data and/or parameters [GC91,
Gri00, Nau12]. In this paper we are only interested in the computation of
first order derivatives so we focus on this case (an extended discussion of the
applications of AD with higher derivatives can be found in [JZ05, GJJC+20]).

To summarize AD technique for first derivatives, assume that we have a
computer program that, given a data x ∈ Rn, produces a result y ∈ Rm,

y = Ψ(x).

Here, Ψ denotes the implemented algorithm. Of course, we are assuming
that Ψ is of class C1. Then, given a set of data x0 = (x01, . . . , x

0
n) we replace

x0 by x0 + s = (x01 + s1, . . . , x
0
n + sn), where s is a vector of symbols. The

coefficient of the symbol sj is the partial derivative of the actual value w.r.t
x0j so it is 1 at the beginning. Then, we modify the arithmetic operations in
Ψ such that every operation is also performed on the first derivatives. The
result of the evaluation of Ψ on x0 is

x0 7→ Ψ(x0) +DΨ(x0)s,

so we have also produced the Jacobian of the function. This technique is
easily implemented in C++ since this language allows for the replacement
of the basic arithmetic types and operations by user defined ones. For this
reason we have translated the original FORTRAN version of retard into
C++ in order to work with our AD library.

As it has been mentioned in the Introduction, we plan to use a GMRES
iterative solver. A characteristic of this method is that it requires from the
user a function that, given a vector v, returns the vector Av (here A is the
matrix of the linear system to be solved). In our case, this implies that we
will need to compute the directional derivative of the flow (in the direction
v). To do this, we will use a single symbol, say s1, and replace the initial
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condition x0 by x0 + s1v. Using the same notation as before, and assuming
that Ψ denotes the flow at a time, say, tf , we have

x0 + s1v 7→ Ψ(x0) + us1,

where u is the directional derivative of the flow in the direction v (in other
words, u = DΨ(x0)v). As it has been mentioned before, we could also
produce the complete Jacobian by using as many symbols as the dimension
of x0.

2.2 Poincaré sections

Given a dynamical system, a Poincaré section is defined as a codimension 1
smooth manifold transversal to the flow. In many cases, Poincaré sections are
not global, in the sense that not all the trajectories of the system must cross
the section. They are a standard tool to study the dynamics in regions of the
space where the orbits have some kind of recurrence. In our case (the flow
of a DDE), the Poincaré section is a functional space of “initial conditions”
for the DDE.

In this paper we use Poincaré sections to decrease the complexity of the
computations: instead of applying the Newton method to a discretization
of the full periodic orbit, we apply it to the piece of trajectory contained in
the section. This reduces significantly the amount of computations, specially
when the period is large. To simplify the presentation, let us discuss the two
kind of sections we have used.

2.2.1 Spatial section

We will focus first on the most common kind of section: the one defined by
a codimension one hyperplane. They are enough for most situations and,
at the same time, very easy to work with. In this paper, a Cp-section is a
hyperplane

S = {x ∈ Cp([−1, 0],Rn) such that σ(x) = 0},

where σ : Cp([−1, 0],Rn) → R is a continuous affine mapping, say σ(x) =
l(x) + α such that l is a bounded linear operator and α ∈ R. The degree
of smoothness p depends on the example at hand. As we are looking for
periodic orbits, we can use the same smoothness as the DDE. Moreover, we
need the flow of the DDE to be transversal to the section, at least locally.
A usual transversality condition is l(ẋ) > 0. For a more detailed discussion
on Poincaré sections for DDEs see, for instance, [SZ17]. To compute the



J. Gimeno, À. Jorba 7

Poincaré map P , we start from some initial data in the section, we propagate
the corresponding orbit till it crosses the section in the right direction and we
compute the intersection point with the section. Under generic conditions, it
is possible to see that the map P is continuous and compact in Cp ([SZ17]).

As it is usual in numerical methods, the elements of the Poincaré section S
have to be discretized. Here we have used Barycentric Rational Interpolation,
based on Chebyshev points. Its main advantage is that it converges on the
whole interval of interpolation. See Appendix A.1 for more details. So, if
these functions are discretised as a table of values (ti, ui) ∈ [−1, 0] × Rn,
i = 0, . . . , N , the section is given by an expression σ(u0, . . . , uN) = 0, where

σ(u0, . . . , uN) = a+
N∑
i=0

〈ai, ui〉 ,

being a and ai fixed vectors in Rn defining the desired section. As usual,
the integration starts from an initial condition in the section and, during the
integration, the condition σ(u0, . . . , uN) = 0 is checked. When σ changes
sign in the right direction, the equation σ(u0(t), . . . , uN(t)) = 0 is solved (by
means of a Newton or a secant method) to find the return time to the section,
t?, and the image of the initial condition by the Poincaré map.

We note that the return time t? is not a multiple of the delay. This means
that we have to interpolate the trajectory on the time interval [t?−1, t?] which
contains a point on which some derivatives of the orbit are not smooth (see
Section 1.1). This implies that the interpolating function does not need to be
as accurate as we would expect. However, note that our goal is to compute
periodic orbits, which are known to be as smooth as the DDE. In all examples
considered, the DDE is C∞ (or even analytic) so, although we may have some
relevant interpolation error at the beginning of the iterations to compute the
periodic orbits, this error will disappear when the iterations converge to the
fixed point corresponding to a periodic orbit.

Let us comment on the computation of the differential of the Poincaré
map. As it has been mentioned before, we plan to use GMRES to solve the
linear systems that appear at each step of a suitable Newton method, so let
us discuss first the computation of a directional derivative. In Section 2.1
we have discussed the propagation along the flow of a directional derivative
by means of AD. Once the integration is finished because is has arrived to
the Poincaré section at a time t = t? (see above), the directional derivative
is not contained in the tangent space of the section (in this case, as the
section is an hyperplane, the tangent space is the section itself). As it is
usual in this situation, the directional derivative has to be projected onto
the section following the direction of the vector field of the orbit at t = t?
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(the intersection point with the section). If the complete Jacobian is needed,
it can be computed in the same way, applying the projection to each column.

2.2.2 Temporal section

This is the standard section used for a system that depends periodically
on time, with a known period ρ. Then, generally speaking, periodic orbits
have a period t∗ which is a multiple of ρ. Hence, it is natural to use the
Poincaré section given by the time (t = 0 mod ρ) and the Poincaré map
is the time-ρ flow. The differential of this Poincaré map is computed by
Automatic Differentiation, as explained in Section 2.1. The computations
are done in the same way as in the previous section, but note that here they
are simpler: there is no need to solve an equation to arrive to the section,
and the directional derivative of the flow is already the directional derivative
of the map (without the need of any projection).

3 Periodic orbits

We assume that we have a DDE with a periodic orbit, with a period larger
than the delay. We also assume that we have a suitable Poincaré section in
the sense that the periodic orbit is transversal to it. We look for the periodic
orbit as a fixed point of this Poincaré section. This means that we have to
solve a nonlinear equation of the form G(u) = Φ(u)−u = 0, where Φ denotes
the Poincaré map. This equation is solved by Newton iteration.

3.1 The Newton method

There are two relevant ingredients in a Newton’s method. The first one is
to choose a suitable initial condition and the second one is to provide the
differential of the function that one wants to obtain the zero. The former is
usually obtained using a priory information on the model. The computation
of the differential strongly depends on each situation. Clearly, the differential
computation has been reduced to the computation of DuΦ. As in the ODE
approach, this computation could be done by using variational equations.
Here we have chosen to use Automatic Differentiation.

As we have mentioned before, the initial condition u of a DDE is discre-
tised as a table of values, let us say (si, ui), ui = u(si), for i = 0, . . . , N .
After some integration steps, we obtain a new point, namely v = xut∗+s∗ .
This numerical integration can be seen as a sequence of elementary opera-
tions that, given an initial table of values (si, ui), produces another table of
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x(t)
u̇

v̇

d
dxs(xtS )

d
dtxtS

Figure 3.1. Space Poincaré section σ(x) starting with initial symbols u′. Af-
ter tS units of time the solution is crossing the section again with
directional derivatives v′ but it may not be in the section, so a
projection to it can be done with the tangent vector d

dt
xtS and

the normal to the section d
dx
s(xtS).

values (si, vi). Then Automatic Differentiation (AD) can be used to compute
the derivatives of the result w.r.t. the initial data, by simply overloading the
arithmetic used during the numerical integration. To produce the Jacobian
matrix, we add a different symbol to each component of the vectors ui, and
we propagate it (to first order) along all the operations of the numerical in-
tegration. With this, we obtain the final results vi plus linear polynomials in
the initial symbols. The coefficients of these polynomials give the Jacobian
of the map.

Note that we can use the same ideas to compute a directional derivative:
given the initial direction, we add to the initial data a single symbol times
the direction. Then, we propagate this symbol to obtain the final result plus
the symbol times a vector. This vector is the directional derivative. Note
that the computation of a directional derivative requires much less operations
than to compute a full Jacobian.

3.1.1 Using GMRES

In some cases, the dimension of this Jacobian matrix can be large (several
state variables with several delays, for instance). An option to deal with
very large linear systems is to use an iterative solver like GMRES [Saa03].
These solvers do not require to obtain the full matrix of the system, they
only require to compute the product of this matrix by a vector. Note that
this product is the directional derivative of the Poincaré map w.r.t. this
vector. Hence, instead of computing the matrix, we perform a numerical
integration to compute the required directional derivatives. If the spectrum
of the matrix is clustered, methods such as GMRES have a fast convergence
[Bai00, DTM12]. We note that the differential of the flow of the DDEs
considered here is given by a compact operator, which guarantees that the
spectrum of this differential is clustered.
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3.2 Stability

Once a delay periodic orbit, with initial condition u∗ and period t∗, has been
found by the single-shooting method explained before, its stability is deter-
mined by the spectrum of the linearised monodromy operator. According to
[Hal77], if the DDE is smooth, autonomous and t∗ ≥ 1, then this linearised
operator is a compact operator whose spectrum has zero as its only cluster
point.

Since only a few eigenvalues are important, the computation of the re-
spective eigenvalues and eigenfunctions should be done for some of the avail-
able methods for solving large-scale eigenvalue problems in an iterative way,
in a similar way as the GMRES method. In this direction, the ARnoldi
PACKage, also called ARPACK [LSY98], is capable of solving large-scale
Hermitian, non-Hermitian, standard or generalised eigenvalue problems. It
is designed to compute a few, say k, eigenvalues with user-specified features
using M ·O(k) +O(k2) storage and no auxiliary extra storage required. This
software is quite standard in numerical computation and it is also well-known
that it is based upon an algorithmic variant of the Arnoldi process called the
Implicitly Restarted Arnoldi Method (IRAM) [Sor97, LSY98].

3.3 Computer implementation

As we have already explained, Automatic Differentiation requires the use
of a new arithmetic. Numerically, it can be expressed as a new data type,
that is, we consider a pair (x, x′) instead of just the value x where here x′

denotes the derivative that is being propagated. Hence in our approach if
the initial condition u of a DDE is discretised as a table of values, let us
say u = (u0, . . . , uN) with si the abscissae and ui = u(si) for i = 0, . . . , N .
To each ui we associate a collection of symbols u′. Thus, the initial data
is (u,u′) with u′ = (u′0, . . . , u

′
N). After some integration steps, we obtain a

new point, namely v = xut∗+s∗ which is discretised in v at the same abscissae
and the propagated values v′ w.r.t. the initial data (u,u′). This numerical
integration can be seen as a sequence of elementary operations that, given
an initial condition (u,u′), produces another value (v,v′). The size of our
execution is larger because of this data type. Indeed, ui is an n-dimensional
vector and u′i has either dimension n in the directional case or n(N + 1)
in the Jacobian case. It is clear that this technique does not depend on
the integrator of the DDE as long as it accepts the new data type and its
arithmetic. Notice that, in fact, we are computing the derivative of the
algorithm that computes (at the same the execution) the Poincaré map and
one must be aware that if a spatial section is used, v′ must be projected to
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the section.

4 Numerical examples

As first test, we use the model studied in [LELR97]. The equation is defined
by

ẋ(t) = g(x(t− 1), α) = −αx(t− 1)
1 + x(t− 1)2

1 + x(t− 1)4
. (4.1)

Clearly, x ≡ 0 is an equilibrium solution. We are going to illustrate the
computation of two different cases. The first one consists in a temporal
section and the second one in a spatial section.

4.1 A first example with temporal Poincaré section

Let us consider a periodic perturbation of period 2π, such as,

ẋ(t) = g(x(t− τ), α) + ε(sin(t) + cos(t)), τ = 1. (4.2)

The Implicit Function Theorem in Banach spaces tells us that there is a
periodic orbit of period 2π close to ε = 0 and x ≡ 0. Thus, a temporal
section of time 2π leads to a delayed stroboscopic mapping. The solution
is continued using a pseudo-arc-parameter method with respect to the three
parameters in (4.2), the parameter α and ε and the delay τ . In this last case,
the (4.2) is modified by a change of t, that is,

τ ẋ(t) = g(x(t− 1), α) + ε(sin(τt) + cos(τt)). (4.3)

Because of the change of time, the temporal section is also suitably modified
with the value of 2π/τ .

The initial values of these parameters has been α = 1.5, ε = 10−4 and
τ = 1 with a discretisation size N = 32. Figure 4.1 show the results, the
stability and the different bifurcations. Notice that in the continuation of ε
a symmetry with respect to the y-axis holds.

4.2 An example with a spatial Poincaré section

Studying the stability of the equilibrium point of the system (4.1) with re-
spect to the parameter, one shows a family of periodic solutions bifurcates at
α = π

2
because of a Hopf bifurcation. These periodic orbits have an unknown

period and a spatial section will allow us to compute one of them. If the
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Figure 4.1. Continuation of periodic orbits of (4.3) with respect to parame-
ters; (a) has ε = 10−4 and τ = 1, (b) has α = 1.5 and τ = 1, and
(c) has α = 1.5 and ε = 10−4. Black colour means stable.
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Figure 4.2. Periodic orbit of the equation (4.1). In the left hand side, the
orbit is displayed with the initial condition in −1 ≤ t ≤ 0 and
final lag-segment once the second has been crossed two times.
The phase space of the periodic orbit is shown in the right hand
side.

initial condition is discretised by a table of values (si, ui), i = 0, . . . , N . The
section is given by an affine hyperplane, let us say,

σ(x0, . . . , xN) = a+
N∑
i=0

aixi.

The values a and ai must be fixed at each step of the continuation in such
a way that the section must be transverse to the flow. We have selected
the easiest one σ(x0, . . . , xN) = x0 and α close to the bifurcation point, e.g.
α = 1.57. Figure 4.2 shows the periodic orbit around the solution x ≡ 0 and
α = 1.57. Such a computation has been done with a Newton tolerance of
10−12, a Section tolerance 10−14 and an integrator tolerance of 10−15. Once
an initial periodic orbit has been computed for α = 1.57 a pseudo-arc-length
method ([Sim90]) can be done to perform a continuation with respect to
the parameter α, see Figure 4.3. Now the propagated derivatives must be
modified in such a way that they are also in the spatial section. But the
row corresponding to the new equation must not. Additionally, one can also
show how the periodic orbits evolve with respect to the parameter, Figure 4.4.
Notice that each of those periodic orbits have period 4 in the main branch.
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Figure 4.5. Same continuation as in Figure 4.3, left, now showing the evolu-
tion of the spectral radius. We have added a horizontal straight
line at 1 to visualise the changes of stability.

4.2.1 Computing the eigenvalues

Once a delay periodic orbit has been found, the eigenpairs of the delay dis-
crete Poincaré map may show information of its stability. Indeed, Figure 4.5
displays the modulus of the largest eigenvalue over the continuation of the
periodic orbit through the parameter α in (4.1). Notice that the continuation
done in the Figure 4.3 reaches values of α higher than 5, but for α > 5 the
spectral radius remains bigger than 1. The “corner” close to α = 3.5 in Fig-
ure 4.5 arises because the second eigenvalue with largest modulus becomes
the first one.

As a final comment, the CPU time so as to compute Figures from 4.2
to 4.5 has been around 11 minutes counting the I/O functions (i.e. prints,
read/write by stream, . . . ).

4.3 An example with several delays

The next example illustrates that our method is independent of the model
whenever one has a suitable integrator. In particular, it can be applied for
several delays, such as, the equation

ẋ(t) = −(λ1x(t− τ1) + λ2x(t− τ2) + λ3x(t− τ3))(1 + x(t)). (4.4)

It has been studied extensively [Nus78, KL12] and existence of periodic orbits
has been proved for some values of the parameters. We take concrete values:
λ1 = λ2 = 2.5, λ3 = 0.25, τ1 = 1.65, τ2 = 0.35 and τ3 = 1 such that the
existence of a periodic orbit is guaranteed. The initial condition u at time
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Figure 4.6. Periodic orbit of (4.4) with parameters λ1 = λ2 = 2.5, λ3 = 0.25,
τ1 = 1.65, τ2 = 0.35 and τ3 = 1. The final period is almost 3.5894
units of time.

t0 = 0 is the integration of the orbit through cos(t) at t0 = 0 until a final
time of 4. This initial condition u is discretised with N = 64, i.e. 65 points,
and (si, ui) with si Chebyshev abscissae of second type and ui = u(si). We
have applied the spatial section xN = uN to detect a periodic orbit after 4
crosses using the Hairer’s integrator [HNW00] with a tolerance 10−14. In this
case, we have executed the two approaches of AD, that is, a full Jacobian
implementation, that uses an LU solver, and a Jacobian-free implementation
that uses a GMRES solver. The maximum dimension of the Krylov subspace
has been 5 for each of the six different linear systems to be solved during the
Newton’s method with a tolerance of 10−12. The use of the iterative solver
allows us to consider 10−3‖b‖2 as stopping criterion of the GMRES of the
linear system Ax = b. The CPU time to compute the periodic orbit is 4
seconds in the case of the full Jacobian while the Jacobian-free only needs
0.73 seconds. The Figure 4.6 shows the orbit which is stable after computing
the three first eigenvalues.

5 Conclusions and future work

This paper illustrates, in essence, that the same techniques applied in or-
dinary differential equations to compute a periodic orbit and to perform a
continuation with respect to parameters can be done in a delay differential
equation context. Although these techniques are almost the same, the main
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contribution is how the differential required by the Newton’s method is com-
puted. This is done by changing (enlarging) the standard double precision
type to a new data type that also contains derivatives (which are also double
precision types). The computer arithmetic is then enlarged to operate on
this new data type so that it propagates not only values but also derivatives
along the algorithms (this is done quite easily in languages like C++). The
advantage of this point of view is that these techniques can be applied very
easily to any numerical integrator.

We note that, to compute a periodic orbit, we only need to discretise a
segment of the orbit (of the size of the delay), which implies that the number
of unknowns of the linear system is smaller than the number of unknowns ob-
tained when discretising the full orbit. Moreover, when the problem becomes
more complex and the Newton method leads to high dimensional systems,
we have shown that iterative methods such as GMRES work very effectively
(see Section 4.3). Finally, we have seen that the stability of the orbits can
also be studied efficiently by means of iterative methods such as those based
on Arnoldi’s schemes.

To illustrate these methods, we have considered several DDEs models
with families of periodic orbits and Hopf bifurcations. We have continued
these families and computed their stability. In the near future we expect
to extend the methods being used for quasi-periodic solutions in ODEs to
DDEs by means of similar techniques.

A Another delay time integrator

Let us assume a Delay Differential Equation (DDE) with constant delay. It
can be seen as a chain of Ordinary Differential Equations (ODEs). Therefore
a reasonable first approach is to consider a standard integrator and whenever
an unknown value was required, it would be interpolated. However, such an
interpolation should be as far accurate as the integrator is. We propose a
Runge-Kutta-Fehlberg as ODE integrator and barycentric rational interpo-
lation.
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A.1 Barycentric Rational Approximation

Let ϕ : [a, b]→ C be a function, φ be the affinity defined by

φ : [−1, 1] −→ [a, b]

x 7−→ a− b
2

x+
a+ b

2
2y − a− b
a− b

←− [ y.

(A.1)

and x0, . . . , xN be distinct points in [−1, 1]. The Barycentric Rational Inter-
polation with weights w0, . . . , wN approximates ϕ via the formula

R[ϕ;xk](y) =

N∑
k=0

wk
x− xk

ϕk

N∑
k=0

wk
x− xk

, φ(x) = y (A.2)

with ϕk = (ϕ ◦ φ)(xk). Clearly, the computational and space complexities of
(A.2) are linear on N .

If xk are the Chebyshev points of first type defined by

Ik = INk := cos

(
π(k + 1

2
)

N

)
, 0 ≤ k < N

N.B.: I0 > · · · > IN−1 and Ik = −IN−1−k for any 0 ≤ k < dN
2
e.

and N is even, (A.2) becomes

R[ϕ; I](y) =

∑
0≤k<N

2

(−1)k
IN/2−1−k

x− Ik
ϕk +

∑
N
2
≤k<N

(−1)k
Ik−N/2

x+ IN−1−k
ϕk

∑
0≤k<N

2

(−1)k
IN/2−1−k

x− Ik
+

∑
N
2
≤k<N

(−1)k
Ik−N/2

x+ IN−1−k

.

Therefore it is enough to store the first N
2

Chebyshev points and the N
function values.

On the other hand, if xk are the Chebyshev points of second type defined
by

IIk = IINk := cos

(
πk

N

)
, 0 ≤ k ≤ N,

N.B.: II0 > · · · > IIN and IIk = −IIN−k for any 0 ≤ k < dN
2
e.



J. Gimeno, À. Jorba 19

(A.2) becomes

R[ϕ; II](y) =

1
2
ϕ0

x− II0
+
∑

1≤k≤N
2

(−1)kϕk
x− IIk

+
∑

N
2
<k<N

(−1)kϕk
x+ IIN−k

+
(−1)N 1

2
ϕN

x+ II0

1
2

x− II0
+
∑

1≤k≤N
2

(−1)k

x− IIk
+

∑
N
2
<k<N

(−1)k

x+ IIN−k
+

(−1)N 1
2

x+ II0

.

So it is enough to store the first N
2

+ 1 Chebyshev points and the N + 1
function values. In both cases, R[ϕ; I] and R[ϕ; II] does not have any pole
in [−1, 1]. Furthermore, under analytic hypothesis one proves that the error
with respect to the exact value is O(ρ−N) for some ρ > 0, [BBN99]. The error
behaviour of each of them are really similar although R[ϕ; I] has an error
more similar to that computed by the classical Chebyshev approximation.
Hence, one may think that it does not matter whether I or II are used but
each of them have their advantages. For instance,

• I does not contain the values −1 and 1.

• II contains the values −1 and 1.

• IIaNak = IINk for any 0 ≤ k ≤ N and positive integer a.

• If N is even, then IIN/2 = 0.

Notice also that if ϕ gives values on an n-dimensional space, one can apply the
same scheme in each of the n coordinates so the complexity will be Θ(nN).

A.2 Delay-Runge-Kutta-Fehlberg

The scheme stores the values at the Chebyshev points in the lag interval Ik =
[t0+k, t0+(k+1)], it computes and stores the values at the Chebyshev points
of the next lag interval Ik+1 = [t0+(k+1), t0+(k+2)] and the evaluation of the
DDE is done by the Chebyshev approximation or the Barycentric Rational
Approximation on Ik. Let us assume that the integration step is performed
by a Runge-Kutta-Fehlberg method, namely rkf. The Algorithm 1 sketches
the method. Note that the main idea is that the step h, which is modified
during the integration, must be bounded with a maximum step whose value
is just the difference between Chebyshev points, the last point of the interval
or the final time.
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Input: t0, u initial condition, final time tf and initial step h.
Output: The solution value at the final time.

1: a← t0 − τ b← t0 α← 1
2
(a− b) β ← 1

2
(a+ b)

2: for k = 0 to N − 1 do
3: pk ← u(αIk + β)
4: hmin ← 10−9

5: t← t0
6: while t < tf do
7: b← b+ τ
8: β ← β + τ
9: for k = 0 to N − 1 do

10: γ ← min{αIk + β, tf}
11: hmax ← γ − t
12: h← h

|h| min{|h|, hmax}
13: rkf(γ, t, h, x, p, τ)
14: if t = tf then
15: return
16: ck ← x
17: γ ← min{b, tf}
18: hmax ← γ − t
19: h← h

|h| min{|h|, hmax}
20: rkf(γ, t, h, x, p, τ)
21: p↔ c

Algorithm 1. Delay-Runge-Kutta-Fehlberg integrator scheme.
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vergence of a linear rational interpolant between transformed
Chebyshev points. Math. Comp., 68(227):1109–1120, 1999.

[BZ13] A. Bellen and M. Zennaro. Numerical methods for delay differ-
ential equations. Numerical Mathematics and Scientific Compu-
tation. Oxford University Press, Oxford, 2013. First paperback
reprint of the 2003 original [MR1997488].

[DTM12] J. Duintjer Tebbens and G. Meurant. Any Ritz value behavior
is possible for Arnoldi and for GMRES. SIAM J. Matrix Anal.
Appl., 33(3):958–978, 2012.

[GC91] A. Griewank and G.F. Corliss, editors. Automatic Differentiation
of Algorithms: Theory, Implementation, and Application. SIAM,
Philadelphia, Penn., 1991.
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