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Abstract

In this paper we focus on the existence of dust clouds moving near the triangular points of the
Earth-Moon system, the so called Kordylewski clouds. The study is based on using some simplified
planar models to find possible locations for these clouds. The validity of these predictions is tested by
means of numerical simulations on a realistic model.

The simplified models are based on the Earth-Moon Restricted Three-Body Problem plus the direct
gravitational effect of the Sun on the particles (this is the so called Bicircular model), the Solar radiation
pressure and the Poynting-Robertson effect. The analysis of these models shows that there are some
stability regions in the Earth-Moon plane, at some distance of the triangular points.

The stability of these regions has been tested numerically in realistic (non planar) models. The
results show that particles in these regions persist for some time (about a century) but it is very
remarkable that many of these particles also escape the Earth-Moon system. If we perform backwards
in time numerical simulations we obtain a similar result: particles also escape the Earth-Moon system
after a similar time. From this point of view, the clouds are not a stable region in the classical sense
of the term, but a region with “slow diffusion” where interplanetary particles stay for some years.
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1. Introduction

The presence of Trojan asteroids near the triangular points of the Sun-Jupiter (S-J) system leads to a
natural question: Are there similar objects in the vicinity of the Earth-Moon (E-M) triangular points?
The first observational work addressing this question appeared in 1961 when the polish astronomer K.
Kordylewski published a paper [Kor61]. He reported the presence of a region populated with small
particles near the triangular point L5 at the Earth-Moon system. That type of dust region in the E-M
system has been called Kordylewski cloud.

During the subsequent years, several authors tried to reproduce the observations of Kordylewski with
positive [Roa75] and negative [FV80, FV82, Win89] results. These ambivalent results put the existence
of Kordylewski clouds under the shadow of doubt. The letter by R. G. Roosen and C. L. Wolf [RW69]
(1969) opened the debate to the scientific community lurching between the existence and non-existence
of Kordylewski clouds. It is clear that their existence cannot be followed by analogy with the existence of
Trojan asteroids. Indeed, the Restricted Three-Body Problem (RTBP) seems to be a reasonable model for
the S-J system as these two bodies represent more than the 99% of the total mass of the solar system and
perturbations due to the gravitational fields of other planets are small. On the other hand, the motion in
the Earth-Moon system is severely affected by the presence of Sun.

The first paper proposing a model for the study of the libration clouds [Poh64] considered, however, a
modified Kepler problem with Earth as central mass. This work, due to Pohle, was published in 1964, 5
years before the letter by Roosen andWolf. The models got more complicated as the controversy increased.
Katz, in 1975 [Kat75], presented a numerical study using a model considering Sun’s gravitational field
together with Earth’s and Moon’s. Sun in this model is frozen at infinity but this suffices to capture
the unstable nature of the E-M triangular points. It is also remarkable that the author considered the
importance of Solar Radiation Pressure (SRP) in the problem. Indeed, as the libration clouds are to be
formed by small particles, SRP should be considered as a relevant force. In 1979, Burns, Lamy and Soter
[BLS79] published a seminal paper on the effect of different kinds of radiation forces on small particles in
the solar system. In this work it is analysed how SRP affects the dynamics of dust. Also the impact of other
radiation forces as the solar wind, the Poynting-Robertson effect and the Yarkowsky effect are analysed.
Other references concerning the relation between SRP and dust are [KOM02, Vin09, Sri99, LC15, LCG16].

In this work we consider several models that include the gravitational effects of Sun, Earth and
Moon on a dust particle with the dissipative PR effect. Although very realistic models have the obvious
advantage of being accurate, they are very complex and difficult to understand: as the model usually
includes different effects, it is non-trivial to find the relevance of each of them on the final properties of
the system. The approach we have used here to deal with these difficulties is to construct an scaffolding
of increasingly accurate (and increasingly complicated) models. In each of these models we will focus
on some dynamical structures and uncover new features that we study in detail. This detailed study of
features of one model (which involves a combination of analytical and numerical methods) can be taken
as the starting point of another study in the next model in our hierarchy of accuracy. At each stage
new phenomena appear. At the end, therefore, we uncover some phenomena present in the most realistic
model but not present (even in a qualitative form) in the most simplified one.

1.1 Organisation

The manuscript starts with a description of the proposed model in Section 2; first describing the Hamilto-
nian part and after the dissipative contribution part. Section 3 describes the dynamical equivalents of the
triangular points in the proposed model and it is followed, in Section 4, by a study of effective stability
regions nearby. Section 5 discusses the same regions in a restricted N -body problem including the solar
radiation pressure and the Poynting-Robertson drag effect. Finally, the paper ends with a conclusion,
Section 6, and some future works. Some technical details can be found on Section 7.
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2. The ABCP model

To study the influence of SRP upon a test particle we first make use of a simplified model; called Aug-
mented Bicircular Problem (ABCP). The ABCP is a modification of the well-known Bicircular Problem
(BCP) to account for Solar Radiation Pressure (SRP) and Poynting-Robertson effect (PR).

In our first simplified setting, it is assumed that the only forces acting on the particle are the gravi-
tational pull of three primaries: the Moon, the Earth and the Sun. As we assume that the dust particle
is spherical, SRP acts as a force which is opposite to Sun’s gravity and PR is a force opposite to the
direction of the motion, see Figure 1 for a depiction of the model.

Further standard considerations on the motion of the primaries are the following: The Earth and the
Moon are assumed to revolve, around its common centre of masses, describing a circular orbit. At the
same time, the centre of masses of the Earth-Moon system revolve together with the Sun, around the
barycentre of the system, describing again a circular orbit. Moreover, we assume that motion of the three
primaries (the Moon, the Earth and the Sun) is contained in a plane. Motion on the orthogonal direction
to this plane will be ignored in the present work.

A synodical frame of reference is taken, so that Earth and Moon are fixed on the horizontal x axis.
The plane px, yq contains the motion of the three primaries. The unit of distance is the one between Earth
and Moon, the unit of mass is the sum of Earth’s and Moon’s masses and the unit of time is taken so that
the period of Earth and Moon around its centre of masses is 2π. In these units the universal gravitation
constant equals one. Hence, we will denote by µ the mass of the Moon, mS the mass of the Sun, ωS the
mean angular velocity of the Sun in these synodic coordinates and aS the distance between the Sun and
the Earth-Moon barycentre.

We notice that the units and the frame of reference are the standard ones for the Earth-Moon circular
Restricted Three Body Problem (RTBP). Sun’s gravity and SRP appear then as periodic-time dependent
perturbations of period TS “ 2π{ωS .

The ABCP equations of motion are discovered in two steps. Firstly, incorporating a SRP to the BCP
which will still keep the Hamiltonian structure, Section 2.1; and secondly adding a dissipation term due
to the PR, Section 2.
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Figure 1: Sketch of the ABCP. Primaries located at M “ p1 ´ µ, 0q, E “ pµ, 0q and S “ pxS , ySq where
xS “ aS cos θ and yS “ ´aS sin θ. Perturbed Lagrangian points Lj for j “ 1, . . . , 5. PR force opposite to
particle motion (whose direction is denoted by the red arrow) and SRP opposite to Sun’s gravity.
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2.1 Hamiltonian part: BCP and SRP

Let H be a 21
2 degrees of freedom Hamiltonian of the form:

Hpx, θ, βq “ HRTBP pxq ` HCSGpx, θq ` HSRP px, θ, βq, (1)

where x “ px, y, px, pyq. The first part HRTBP is the Hamiltonian of the Earth-Moon RTBP describing a
circular orbit; the second part HCSG is a time-periodic perturbation that incorporates the Sun’s gravita-
tional field which also describes a circular orbit w.r.t. the E-M barycentre. These two first parts conform
the so-called BCP Hamiltonian, see [Hua60, CRB68, SGJM95] for more details. Finally, the last term
incorporates the effect of SRP and depends on a parameter β, called lightness number.

Therefore, the equation of motion of a dust particle in positions-momenta coordinates x “ px, y, px, pyq

is described by the Hamiltonian in (1):

H “
1

2
pp2x ` p2yq ` ypx ´ xpy ´

1 ´ µ

rPE
´

µ

rPM
´

mS

a2S
py sin θ ´ x cos θq ´

mSp1 ´ βq

rPS
, (2)

where px “ 9x´ y, py “ 9y ` x are the momenta, θ “ ωSt is the angle of the E-M frame w.r.t. the Sun, the
r’s denotes the distance from the particle to each of the primaries respectively, i.e. r2PE “ px ´ µq2 ` y2,
r2PM “ px ´ µ ` 1q2 ` y2, r2PS “ px ´ xSq2 ` py ´ ySq2 and β is a parameter.

The adimensional parameter β is the ratio between the radiation pressure force and the force due to
solar gravity. This means that when β “ 1 the effects of SRP and Sun’s gravity cancel each other. In
some situations [LC15] (such as the two body problem and the RTBP with the Sun being one of the
primaries) it is frequent to say that the particle feels a reduced gravity, as if the Sun were lighter. This is
not the situation here. Indeed, while it is true that the magnitude of Sun’s gravitational force is reduced
due to the SRP, the centre of mass of the Earth-Moon system keeps moving according to the real mass
of the Sun and therefore, the Coriolis force due to the rotation of the Earth-Moon system around the
Sun is not cancelled out. That is, while the direct gravitational effect of Sun’s gravity on the particle is
cancelled when β “ 1, the indirect effect is not.

In [JCFJ18] it is shown that the Coriolis acceleration due to the motion of the Earth-Moon barycentre,
cancels out the linear term of Sun’s gravitational potential in equation (2). Therefore, the term of lowest
order in the perturbation, once SRP is turned on, is

β
mS

a2S
px sin θ ´ x cos θq.

This means that SRP is the leading effect of the perturbation. For β “ Op1{aSq “ 10´3, the magnitude of
SRP is already comparable to the one of Sun’s gravity. For larger values, the SRP is the most important
term in the perturbation. As β increases, the role of the Coriolis term takes importance. When the SRP
and Sun’s gravity cancel out (at β “ 1), the only remaining term in the perturbation is the Coriolis
acceleration. The parameter β depends on the area, the mass and the reflectivity of the particle. For a
perfectly absorbing spherical body this coefficient can be approximated [BFM94] by 0.2{s, where s is the
radius of the particle in micrometers. Reflectivity increases the values of β. In this work, we focus on
extremely small values of β.

When β “ 0 the model reduces to the well-known BCP: Near the triangular points, the perturbation
due to Sun’s gravity is large enough to produce a bifurcation on L4. It is replaced by three periodic
orbits, one small and mildly unstable and two larger and stable. Due to the presence of the unstable
periodic orbit, the neighbourhood of L4 is no longer stable. This is a feature that BCP shears with the
real System (by real systems we mean the model that takes into account the whole solar system, where
the trajectories of the masses are given by the JPL ephemeris), so it is a more realistic model than the
restricted three body problem (RTBP).

The third term in (1) of the Hamiltonian is a new periodic perturbation with the same period as Sun,
so, if we set β ą 0 and small, the periodic orbits corresponding to the BCP are changed with β.
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Notice that, the most easily detectable particles are the bigger ones. These particles, in principle,
shall have larger mass and lower lightness number. In this regard, it would seem that the inclusion of
SRP could be irrelevant for practical purposes but, as we will show, even small values of the parameter
β play an important role.

2.2 Dissipative part: Poynting–Robertson effect

The Poynting–Robertson (PR) drag [BLS79] is an effect related to the solar radiation pressure, specially
important for small particles, like interstellar or interplanetary dust. This effect is typically studied for
idealised spherical dust orbiting a star. Such that, the dust particle absorbs radiation coming from the
star in the radial direction, and then it re-emits the radiation making the particle to loss momentum and
eventually spiralling into the star. Notice that, the re-emission would be isotropic seen from the reference
frame of the particle, but it is an anisotropic effect seen from the star.

Being (X, Y ) the positions of the particle seen from the star, and ( 9X, 9Y ) its velocities, the Poynting-
Robertson dissipative force is typically written in an inertial system with origin at its centre of masses,
[MD99], as

F⃗PR “ pFPR,x, FPR,yq “ ´
κ

r2

ˆ

9X ´ Y `
X

r2
pX 9X ` Y 9Y q, 9Y ` X `

Y

r2
pX 9X ` Y 9Y q

˙

, (3)

where r is the distance between particle and star, and κ is a parameter that is directly proportional to
the radiation parameter, β, and to the mass of the star, M , and inversely proportional to the semi-major
axis of the orbit of the particle, a, that is,

κ “
βGM

a2
, (4)

being G the universal gravitational constant.
In our case, the reference frame is the Earth-Moon synodic one, with the Sun orbiting their centre

of mass in circular motion. Then, for a particle in this system, the solar radiation pressure is affecting
the particle in the radial direction, and the re-emision of radiation due to the Poynting-Robertson drag
is again anisotropic.

In order to include the drag force (3) in the model, we need to express the magnitudes involved in
the reference frame and units of the model introduced in previous section. Then, the distance between
particle and Sun r “ rPS “

?
X2 ` Y 2, and the positions and velocities with respect to the Sun (that

now is moving) correspond to

X “ x ´ xS , Y “ y ´ yS ; 9X “ 9x ´ 9xS , 9Y “ 9y ´ 9yS . (5)

Assuming that the dust particle is in the neighbourhood of the Earth-Moon system, the semi-major
axis of its orbit with respect to the Sun can be taken as the distance between Earth-Moon barycentre
and Sun, aS . So the parameter κ in our model, where G equals 1, takes the form

κ “
βmS

a2S
. (6)

With all above considered, the equations of motion for the dissipative model involving Earth-Moon Sun-
perturbed Bicircular problem under solar radiation pressure and Poynting-Robertson effect in the planar
case are written as

$

’

’

’

’

’

&

’

’

’

’

’

%

:x “ 2 9y ` x ´
1´µ
r3PE

px ´ µq ´
µ

r3PM
px ´ µ ` 1q ´ p1 ´ βq

mS

r3PS
px ´ xSq ´

mS

a2S
cos θ ` FPR,x,

:y “ ´2 9x ` y ´
1´µ
r3PE

y ´
µ

r3PM
y ´ p1 ´ βq

mS

r3PS
py ´ ySq `

mS

a2S
sin θ ` FPR,y,

9θ “ ωS .

(7)
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Notice that, if we neglect these terms (i.e. formally κ “ 0), the equations of motion in Equation (7)
are the same ones as in the previous model, including only the gravitational effect of the three massive
bodies and the solar radiation pressure.

2.2.1 Discussion on the dissipative terms

The dissipative parameter κ in Equation (6) linearly depends on the adimensional radiation parameter β,
that is the ratio between radiation pressure force and solar gravitational force acting on a dust particle.
Making some analysis and assumptions like the particle being a perfect sphere [MD99], one can express
β in terms of physical quantities:

β “
3L

16πcGM

Qpr

ρs
, (8)

where L and M are the luminosity and the mass of the star, in this case, the Sun, G is again the universal
gravitational constant, c is the speed of light, Qpr is the radiation pressure coefficient, ρ is the density of
the particle and s its radius.

Using the values in centimetre-gram-second system of units (CGS) for the physical known magnitudes

(L, M , G and c), Equation (8) turns into β “ 5.7 ˆ 10´5Qpr

ρs . It is also standard to take Qpr “ 1 and

ρ “ 3 g{cm3, what leads to the relation β « 0.2{s, with s in micrometers, mentioned in previous section.

In spite of the analysis of β is typically made in terms of CGS units in astronomy contributions, it is
important to remind that it is a dimensionless parameter, what means that its value is the same regardless
the model and units we use. Then, β admits values among 0 and 1.

Now, examining Equations (3) and (6), we see that the dissipative force is proportional to the product
β mS , where in our ABCP model mS « 3.289 ˆ 105 and β P r0, 1s. Also, the first terms of the dissipative
force are divided by r2PSa

2
S , being rPS and aS both distances close to one astronomical unit. With

aS « 388.811 in adimensional units of ABCP, and rPS depending on the relative position to the Sun of
the particle, that is in the Earth-Moon system. Then, since these first terms of the PR drag are divided
by large quantities, it is expected that they do not affect much to the motion of the particle when the
dissipative force is introduced in our model. Regarding to the last term of the dissipative force, it is
expected to have even less relevance since it is divided by r4PSa

2
S .

We note that the ABCP model is a Hamiltonian system (that depends on time in a periodic way)
with a very small dissipative perturbation and a single parameter β (from which depend the magnitude
of both the SRP and PR). Hamiltonian systems cannot have attractors and, in regions with dynamics
close to integrable (like the neighbourhood of elliptic points, periodic orbits or invariant tori) they present
a large set of quasi-periodic motions [JV97a, JV97b]. However, any small dissipative perturbation can
destroy these quasi-periodic motions and create attractors. As we will see, the attractors created by the
Poynting-Robertson effect are very small to be relevant in this situation.

3. Dynamical equivalents of the triangular points

The ABCP model can be seen as a perturbative system of an autonomous part corresponding to the
equation of motion of the RTBP with primaries E-M and another perturbative part involving periodic
and dissipative effects.

To introduce dynamical phenomena in such a setting, let us consider a general framework given by an
ODE of the form

#

9x “ fpxq ` εgpt, xq,

xp0q “ x0.
(9)

Here, f and g are assumed to be smooth enough, g to be T periodic with respect to the first component,
that is gpt ` T, xq “ gpt, xq for each pt, xq and some minimal T ą 0 and ε a perturbing parameter.

7



Let us suppose that x̄ is an equilibrium point of the unperturbed system (i.e. ε “ 0, fpx̄q “ 0). If ε is
different from zero, then x̄ is no longer an equilibrium point of (9). However, under generic conditions it
can be continued to a periodic orbit of period T if |ε| is small enough. In this context, continued means
that, there exists a family of periodic orbits Xε (with Xεpt ` T q “ Xεptq), such that Xε Ñ x̄ as ε Ñ 0.
The members of the family Xε are called dynamical equivalents of x̄. This naming is set to denote that
periodic orbits play a similar role as the equilibria in the perturbed system. In particular, periodic orbits
are the simplest invariant objects there exist for ε ‰ 0 and, moreover, provided that ε is close enough to
zero, Xε has the same stability character as x̄.

In the ABCP model, the autonomous part (f) correspond to the equations of motion of the Earth-
Moon RTBP in the synodical frame and the periodic perturbation (g) encapsulates all the effects due to
the Sun (namely, the gravity, SRP and PR). Therefore, in the ABCP, the Lagrangian points existing in
the RTBP are replaced by a family of periodic orbits that depend on the parameters β and κ. Note that,
physical interpretations of the PR and SRP the two parameters β and κ depend on each other.

Systems such as the ABCP or, in general, (9), i.e, non-autonomous with periodic time dependence,
are better handled by means of the so called stroboscopic map Pε. This map is defined for any initial
condition within the definition domain of the ODE and is obtained by evaluating the solution of the
equation at this initial condition at time T (the period of the perturbation). By definition, an initial
condition on a periodic orbit is a fixed point of Pε, i.e. PεpXεp0qq “ Xεp0q. The stability of a periodic
orbit, therefore, is studied as the stability of a fixed point of the stroboscopic map Pε (this fact can be
recovered from Floquet Theory). The linear normal behaviour around a fixed point Xεp0q is obtained by
studying the spectrum of the Jacobian at the fixed point,

M def
“ DxPεpXεp0qq,

which is usually called monodromy matrix of the orbit Xε. An eigendirection of M is said to be stable
if its related eigenvalue has modulus less or equal than one. If all the eigenvalues of M are less or equal
than one, then the periodic orbit Xε is said to be stable. Otherwise, is unstable.

When the ODE (9) is Hamiltonian (in our case when PR is not included), the stroboscopic map has
symplectic structure and the eigenvalues of the monodromy matrix are constrained to certain form. In
particular, the eigenvalues are split in pairs of opposite by the product, namely, pλi, λ

´1
i q. These pairs are

further classified according to their modulus. An eigendirection with eigenvalue λ is labelled as: Elliptic
(or centre) if λ “ exppiαq; Hyperbolic (or saddle) if λ is real with |λ| ą 1 and Complex Hyperbolic (or
complex saddle) if λ “ ρ exppiαq with ρ ą 1. In this case, the complex conjugate ρ expp´iαq is also an
eigenvalue and therefore complex saddles are determined by a quartet of eigenvalues. The linear normal
behaviour of fixed point for a symplectic stroboscopic map can be classified by these pairs of eigenvalues.
In the case of a 4-dimensional map, there are, generically, four types of fixed points according its stability
type: CentreˆCentre, CentreˆSaddle, SaddleˆSaddle and Complex Saddle.

The dynamics of the stroboscopic map near the fixed points is determined by its stability character.
In particular, unstable directions (Saddles and Complex Saddles) have some unstable direction attached
to the fixed point.

The effect of Sun’s gravitational effect on the triangular points is a well studied problem. Indeed, if
we set β “ 0 in the ABCP, we obtain the standard BCP formulated in [Hua60]. It is common knowledge
that Sun’s gravity destabilises the triangular points in the Earth-Moon system [GLMS87, DJS91]. In
Figure 2 we display how L4 is affected by Sun’s gravity in the context of the BCP. Panel (a) displays the
characteristic curve of fixed points that replace L4. The vertical axis displays ε, an artificial parameter
that multiplies mS in equation (7) (we remind that β “ 0). So that the model reduces to the RTBP
for ε “ 0 and to the BCP for ε “ 1. Notice that the curve crosses one time with ε “ 0. This crossing
point corresponds to L4. The three crossing points with ε “ 1 (the top of the figure) corresponds to
the three periodic orbits that replace L4 in the BCP. There are three dynamical replacements of L4 due
to a broken pitchfork bifurcation. The points of the characteristic curve are coloured after its stability
character. Points in purple are totally elliptic and points in green are CentreˆSaddle. In Figure 2, panel
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Figure 2: Numerical continuation of the Earth-Moon L4 with respect to ε, an artificial parameter mul-
tiplying mS , so that, when ε “ 0, the model is reduced to the RTBP and, when ε “ 1, the model is the
standard BCP. Panel (a) displays the x coordinate of the fixed point replacing L4 as ε changes. The
bottom of the plot corresponds to the RTBP and the top to the BCP. The points are coloured according
to its stability character. Purple means centreˆcentre and green CentreˆSaddle. Panel (b) shows the
periodic orbits of the BCP that corresponds to the three crossing points of the curve in (a) at ε “ 1.
Notice the small periodic orbit close to the coordinates of L4 is CentreˆSaddle and, hence, unstable.

(b), we display the projection of the thee orbits onto the configuration space x ´ y. The colour of the
trajectories, again, correspond to their stability character.

As we have already pointed out, the effect of Sun’s gravity is well-known but, in this work, we are
interested also on the effect of SRP. In [JCFJ20], it is shown that SRP has a remarkable impact on
the stability and the location of the dynamical equivalents of the triangular points. Notice that these
two aspects are crucial when looking for regions of effective stability in the Earth-moon system. Indeed,
these regions are expected to exist around totally elliptic periodic orbits. Therefore, how the dynamical
equivalents change with respect to β provides a way to discard large portions of the phase space for each
value of β.

In Figure 3 panels (a) and (b) we show the evolution of the three dynamical equivalents of L4

(described before, for the standard BCP) as they change with respect to the parameter β. The vertical
axis displays the y-component of the orbits as fixed points of the stroboscopic map and the horizontal
axis shows β. Panel (a) focuses on small values of β. Notice that the characteristic curve crosses the
vertical line β “ 0 three times, which corresponds to the three periodic orbits shown in Figure 2. The
purple points indicate totally elliptic character while green colour is used to display fixed points with a
of character saddleˆcentre. A number of bifurcations take place as the value of β changes. Those values
are located in Figure 3 with labels βi.

The characteristic curve undergoes to saddle-centre bifurcations at β1 « 6.3 ˆ 10´6 and β2 « ´5.4 ˆ

10´5, those are the values for which the curve turns from purple to green and vice-versa. The negative
values of β are physically meaningless but mathematically significant as they allow us to understand that
the three periodic orbits of the BCP are connected by continuation with respect to β. For β3 « 2.7ˆ10´3,
the curve of fixed points undergoes a period-doubling bifurcation. This type of bifurcation occurs when a
pair of eigenvalues collide at ´1. A family of totally elliptic 2-periodic fixed points branches out. The main
family becomes partially hyperbolic and, therefore, unstable. Although the main family loses its stability,
the period-doubled family is stable. At β4 « 4.3 ˆ 10´3, both families merge again in a period halving
bifurcation and the main family recovers its stability character. The stable, period-doubled, family is the
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Figure 3: Behaviour of the dynamical equivalents of L4 with respect to β. Panels (a) and (b) display the
y-component of the fixed point as a function of β. Panel (c) display the normal frequencies (in purple) α1

and α2 as a function of β. Panel (d) displays the ratio between the two normal frequencies as a function
of β. See text for more details.

purple loop appearing in Figure 3 (panels (a) and (b)) between the values β3 and β4.

In Figure 3, panel (b), it is provided a wider perspective on the behaviour of the characteristic curve.
The value of the y-component decreases from its initial value for β “ 0 (near 1) until it reaches the value
y “ 0. Before reaching the horizontal axis, the characteristic curve in Figure 3, panel (b), changes its
colour from purple to magenta at a value of β labelled as β9 “ 2.1 ˆ 10´2. This indicates a Hamiltonian-
Hopf bifurcation of the family. In this type of bifurcation two non-conjugate eigenvalues collide at some
point of the unit circle (a Krein collision) and get expelled from it. The aftermath of this collision is
the fixed point becoming complex saddle. Similarly to the case of the period-doubling bifurcation, the
characteristic curve recovers its totally elliptic character in another Krein collision at β10 « 3.4 ˆ 10´2.

The characteristic curve reaches, as said before, the horizontal axis at β11 « 3.7 ˆ 10´2. Notice
that, due to the symmetries of the vector field, the characteristic curve corresponding to the dynamical
equivalents of L5 meets with the one of L4 at y “ 0. Moreover, the curve corresponding to L3 also meets
with them. At β11, therefore, the dynamical equivalents corresponding to L3, L4 and L5 merge in a a
single dynamical equivalent, similarly to a pitchfork bifurcation. However, the bifurcation orbit (the orbit
corresponding to β11) is an orbit that collides with the Earth.
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Figure 4: Lyapunov families of invariant tori related to the dynamical equivalent of L4 for β “ 4.05492ˆ

10´1. The quasi-periodic motion is displayed for the stroboscopic map Pβ and each invariant torus is seen
as a curve surrounding the fixed point that corresponds to the dynamical equivalent.

The stability type of the dynamical equivalents is key to the existence of stability regions. Indeed,
totally elliptic points are generically surrounded by quasi-periodic motion (see [JV97a, JV97b]). This
behaviour is illustrated in Figure 4. The word generically means that quasi-periodic behaviour surround
the totally elliptic fixed points for almost all the cases. However, when an elliptic eigenvalue has the
form exppi2πp{qq with p{q a rational number, the motion is resonant and, therefore, the quasi-periodic
motion is destroyed. As β changes, the eigenvalues of the dynamical equivalents do so and, hence, their
arguments take infinitely many rational values. In Figure 3 panel (c) we display the arguments of the
eigenvalues of the dynamical equivalents of L4 as a function of β. Notice that there are two curves (one for
each pair of eigenvalue). The merging of the curves correspond to the first Krein collision at β9 described
before. The two curves split at β10. The coloured horizontal lines correspond to low order resonances.
Low order resonances have a remarkable impact on the phase space near a fixed point. In fact, low
order resonances are, sometimes, called strong resonances. The two crossing points green line (the 1 : 2
resonance) corresponds to β3 (period doubling) and β4 (period halving) which have also been described.
Notice that there are three coloured lines corresponding to the 1 : 3 resonance (which takes place at
β5 « 1.2 ˆ 10´2), the 1 : 4 resonance (at β7 « 1.79 ˆ 10´2) and a 1 : 5 resonance (at β9 « 2 ˆ 10´2). The
dashed line corresponds an inner resonance (also displayed in Figure 3, panel (d)) where α1 “ 2α2 and
labelled as β6.

In Table 1 we have included a summary of bifurcation the characteristic curves undergoes with respect
to β and their respective labels.

On the Poynting-Robertson effect: The influence of the PR effect on the dynamical equivalents is
extremely small. The characteristic curve remain close to the one shown in Figure 3. The dissipation
due to PR turns elliptic fixed points into attractors. However, this attracting character is remarkably
mild. The attracting eigenvalues (i.e. eigenvalues whose modulus is smaller than one) differ from one by
a quantity (depending on β) that is at most 10´6. This means that a particle attracted by the periodic
orbit needs about fifty thousand years to half the distance to it. On the other hand, the PR breaks the
symmetry along the horizontal axis. Therefore, the Pitchfork bifurcation that takes place at β11 breaks
when the PR drag is included.
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Figure 5: Dynamical equivalents of L4 for some values of β. See text for more details. Horizontal axis:
x. Vertical axis: y. The values of β ranging from close to the original coordinates of L4 to far away are:
5.31986 ˆ 10´5, 3.36271 ˆ 10´6, 3.35428 ˆ 10´5, 3.14309 ˆ 10´4, 3.02795 ˆ 10´3 and 3.05909 ˆ 10´2.

Bifurcation Type Label

Saddle-Centre β1
Saddle-Centre β2
Period doubling β3
Period Halving β4

1:3 β5
Internal β6

1:4 β7
1:5 β8

Krein Collision β9
Krein Collision β10

Pitchfork β11

Table 1: Labels of the bifurcations of the dynamical equivalents of L4 with respect to β. See text for
more details.

4. Stability regions in the ABCP

This section is devoted to analyse effective stability regions around the dynamical equivalent of L4 in the
Bicircular Problem under solar radiation pressure for different values of β, with and without dissipative
forces due to Poynting–Robertson effect.

In a first analysis, Section 4.1, Poynting–Robertson drag is not included. Later we will discuss its
effect on the stability regions in Section 4.2. To finish the discussion about effective stability regions in
the ABCP, we compare the dynamics found around triangular points L4 and L5.
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4.1 Stability regions in the BCP with SRP

For a given value of β, the dynamical equivalent of L4 is seen as a point in the stroboscopic map Pβ (of
integration time 2π{ωS). Then, we define a mesh of initial conditions centred at the position of that point,
varying x and y coordinates, in order to study their fate for a long period of time. This mesh constitute
a cloud of test particles in the neighbourhood of L4 that aims to reproduce the dynamics of a cloud of
dust, like Kordylewski dust clouds, in said a region.

The procedure for defining the mesh is as follows. We vary the positions of L4 in Pβ keeping its
momenta, such that the initial conditions for, a priori, 106 test particles are generated, equispaced by
a distance of 10´4 and centered at the point occupied by L4 in Pβ. Since these points belong to Pβ we
proceed with the integration of each test particle during 1300 applications of the stroboscopic map, that
corresponds to a time close to a century. Notice that longer integration times in a simple model like this,
would no affect much to the qualitative results.

At each integration step we check whether the particle collides with one of the primaries or if it escapes
the Earth-Moon system. Since the primaries are point masses in our model, the collision with them is
defined as being at a distance to those points lower than their radius. The escape is set as being at more
than 10 Earth-Moon length units from their barycentre, since at this distance a particle would get free
of the Earth-Moon gravity and would begin to describe a heliocentric orbit. In the fate colourmaps we
have assigned purple colour to the collision with the Earth, red to the collision with the Moon, yellow
to the escape and black otherwise. Therefore, black regions in our maps correspond to effective stability
regions. Figures 6, 7 and 8 show some of the colourmaps for the fate of a cloud of particles around L4 in
Pβ for different values of β obtained in the ABCP without PR effect.

We recall that for β “ 0, the model corresponds to the Earth-Moon Bicircular Problem, where
the existence of effective stability regions around triangular points is already known, [CJ00]. Then, as
expected, for β close to zero, β “ 5.3987 ˆ 10´10, first map in Figure 6, we find an effective stability
region. Surrounding this region we find purple, red and yellow colours, what means that there are particle
trajectories, close to the stable ones, colliding with the Earth, Moon or leaving the Earth-Moon system.

As β grows, this region gets pretty vast and enlarged. For this reason, the meshes needed to be wider
for values of β among 10´4 and 3.5 ˆ 10´3 so that the regions are contained in the maps. Following the
discussion of Section 2.2.1, if we consider valid the expression relating magnitude of the SRP to the size
of the particles, β « 0.2{s with s in µm units, then this big stability region in Figure 6 for the given range
of values of β will correspond to cloud of dust particles of radius approximated among 60 and 2000 µm,
or among 0.06 and 2 mm.

If we continue increasing β, the effective stability region gets smaller up to a values close to 1.2ˆ10´2

for which it has almost disappeared, see second map in Figure 7. If we look at the continuation of L4 in
Figure 3 (b), we check that L4 is elliptic for these values of β, then the disappearance of the stability
region can not be related to a loss of stability character of the periodic orbit. It must be related to a
resonance. Observing Figure 3 (c), we can relate resonances to the values of β. In this case, the resonance
affecting the stability region is 1 : 3 denoted by β5 in Table 1. Moreover, at these values of β we appreciate
that the number of trajectories colliding with the Earth increases. This is easily understood looking at
Figure 5, since for these values, the periodic orbits start approaching the Earth position.

After the closeness to disappearance of the effective stability region, it gains size again, with shape
more or less rounded and enlarged, until it separates in three small regions for β “ 1.58510 ˆ 10´2.
We observe these three separated regions for β up to 1.60558 ˆ 10´2. This behaviour can be explained
studying the ratio between the two normal frequencies of the periodic orbit. Observing Figure 3 (d) we
see that for β6 « 1.6 ˆ 10´2, the ratio of the normal frequencies is 2.

After this division of the stability region, the three parts join again, resulting in one rounded black area.
For a value of β7 « 1.7 ˆ 10´2, the dynamical equivalent of L4 crosses resonance 1 : 4, see Figure 3 (c),
that corresponds to the second colour map in Figure 8. And for β8 « 2 ˆ 10´2 the resonance 1 : 5 is
crossed, making the stability region getting small and star-shaped, fourth map in the figure. After this
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resonance, at β9 « 2.1 ˆ 10´2 a Krein Collision is crossed and the dynamical equivalent of L4 becomes a
complex saddle, see Figure 3 (b). Consequently, no effective stability region is found until for β larger
than 3.4ˆ10´2, corresponding to β10, another Krein Collision is crossed. Then, the dynamical equivalent

Figure 6: Fate colourmaps for a cloud of particles around the position of L4 in Pβ without Poynting-
Robertson effect for values of β: 5.39867 ˆ 10´10, 8.10371 ˆ 10´5, 4.05492 ˆ 10´4, 2.03987 ˆ 10´3,
4.01334 ˆ 10´3, 7.76812 ˆ 10´3. Horizontal: x coordinate. Vertical: y coordinate. Colour: purple to
collision with the Earth, red to collision with the Moon, yellow to escape and black otherwise.
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is elliptic again and a small stability region is found, surrounded by many trajectories colliding with the
Earth (purple colour). Again, this is explained due to the closeness of the dynamical equivalent of L4 to
the Earth for high values of β, as shown in Figure 5.

Figure 7: Fate colourmaps for a cloud of particles around the position of L4 in Pβ without Poynting-
Robertson effect for values of β: 9.30647ˆ10´3, 1.18087ˆ10´2, 1.28465ˆ10´2, 1.45941ˆ10´2, 1.58510ˆ

10´2, 1.60150 ˆ 10´2. Horizontal: x coordinate. Vertical: y coordinate. Colour: purple to collision with
the Earth, red to collision with the Moon, yellow to escape and black otherwise.
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Figure 8: Fate colourmaps for a cloud of particles around the position of L4 in Pβ without Poynting-
Robertson effect for values of β: 1.64210ˆ10´2, 1.76828ˆ10´2, 1.97527ˆ10´2, 2.08566ˆ10´2, 2.37762ˆ

10´2 and 3.40342 ˆ 10´2. Horizontal: x coordinate. Vertical: y coordinate. Colour: purple to collision
with the Earth, red to collision with the Moon, yellow to escape and black otherwise.
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4.2 Effect of Poynting–Robertson drag

Now we analyse the same initial conditions for different intensities of the radiation parameter in the
ABCP including the Poynting–Robertson drag. In Figure 9, six colourmaps are shown for some of the
same β values as in previous section.

As expected and discussed in Section 2.2.1, adding this dissipative force does not have a significant
impact on the results. Indeed, the present initial conditions are integrated at most 100 years and recall
for the drag to half the distance of the periodic orbit requires more than 50000 years (See comments on
PR drag at the end of Section 3).

In the analysis of the colourmaps including the Poynting-Robertson, the only effect that we observe
now is a stretching of the structures in the maps. Regardless this small difference, as β increases we observe
the same evolution of effective stability regions than the one observed without this effect, including the
disappearance or split of the effective stability region when a resonance is crossed or when the stability
character of the dynamical substitute changes.

4.3 Comparatives between L4 and L5

A similar study done for L4 can be reproduced for L5. In this case, we perform colourmaps corresponding
to initial conditions taken around the dynamical substitute of L5 in Pβ. To better compare the regions
nearby L4 and L5, we consider the ACBP without the PR since, as discussed, the PR produces stretching
in the effective stability regions.

In order to study the neighbourhood of L5, we have performed parameter continuation of the dynamical
substitute of L5 for different values of β as described in Section 3 for L4. We found the same resonances
and bifurcations as the ones shown in Figure 3 and Table 1 for L4. The meshes of initial conditions around
L5 were generated as in Section 4.1. Hence, Figure 10 shows some colourmaps of the neighbourhood of
L5, for almost the same values of β as in previous section. The difference in some decimals is due to the
continuation of the dynamical equivalent.

Notice that there is a symmetry between the triangular points in the ABCP: the dynamics forward
in time for L4 is equal to the dynamics backward in time for L5. Then, as one can expect, the effective
stability regions found in the neighbourhood of L5 are the same ones as the ones of L4 for the same value
of β. But, there are differences in the trajectories surrounding the stability regions. Indeed, we observe a
higher density of purple and red colours in the maps. What means that a large quantity of the trajectories
around the stability regions end up colliding with the Earth and with the Moon respectively. Since these
maps are generated forward in time in the vicinity of L5, this means that backward in time we would
observe several trajectories coming from the Earth and the Moon vicinities to the neighbourhood of L4.

5. Stability regions in a restricted N-body problem with SRP and PR

In previous section we analysed effective stability regions in the neighbourhood of triangular points for
different intensities of the solar radiation pressure in the ABCP with and without Poynting-Robertson
effect. Now, we aim to reproduce the colourmaps for a restrictedN -body problem including solar radiation
pressure with and without PR effect, where the initial conditions of the massive bodies involved in the
integrations are taken from the JPL ephemeris file DE405 with origin at the barycentre of the Solar
system, at the corresponding time.

Since we want to translate positions and velocities from an adimensional synodic reference frame,
with origin at the Earth-Moon barycentre, to a dimensional inertial reference frame, with origin at the
barycentre of the solar system, we need to apply a meticulous non-autonomous change of coordinates. This
change, from adimensional coordinates (a) to ecliptical ones (e) is based in a rotation plus a translation,
as the one in [GLMS85],

e “ kCa ` b, (10)
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where k is a scale factor corresponding to the instantaneous distance between Earth and Moon in astro-
nomical units (AU), b is the distance to the Earth-Moon barycentre taken from the origin of the ecliptical

Figure 9: Fate colourmaps for a cloud of particles around the position of L4 in Pβ including Poynting-
Robertson effect for values of β: 8.10371ˆ10´5, 7.76812ˆ10´3, 1.18087ˆ10´2, 1.60150ˆ10´2, 1.76828ˆ

10´2 and 3.40342 ˆ 10´2. Horizontal: x coordinate. Vertical: y coordinate. Colour: purple to collision
with the Earth, red to collision with the Moon, yellow to escape and black otherwise.
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system, also measured in AU , and C is a rotation matrix with columns

c1 “
´R

k
, c3 “

R ^ V

}R ^ V }
, c2 “ c3 ^ c1.

Figure 10: Fate maps for a cloud of particles around the position of L5 in Pβ without Poynting-Robertson
effect for values of β: 8.25156 ˆ 10´5, 7.80816 ˆ 10´3, 1.18966 ˆ 10´2, 1.60216 ˆ 10´2, 1.76884 ˆ 10´2

and 3.40368 ˆ 10´2. Horizontal: x coordinate. Vertical: y coordinate. Colour: purple to collision with
the Earth, red to collision with the Moon, yellow to escape and black otherwise.
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where R “ RM ´ RE and V “ VM ´ VE , are the position and the velocity of the Moon (RM and VM )
with respect to the Earth (RE and VE).

It is worth to mention that, for translating velocities, we need to derive Equation (10) with respect to
dimensional time, taken in days.

Then we apply this change of coordinates, for positions and velocities, to each initial condition of the
maps in Section 4. Since these maps are defined at the temporal Poincaré section Pβ, and at this time, the
configuration of the BCP corresponds to a lunar eclipse, we use the first lunar eclipse of year 2000, which
corresponds to the modified Julian day 20.1978749133, for taking the ephemeris of the massive bodies,
that are used in the change of coordinates and as starting conditions for their propagation in time.

Once we have initial conditions of both, test particles and massive bodies, we propagate them in time
in a restricted N -body problem that accounts for the gravitation interaction among massive bodies and
their effect on the massless particle, and also includes the solar radiation pressure and Poynting-Robertson
drag on the latter.

The force due to solar radiation pressure in this spatial ecliptical model is written as:

F⃗SRP “ ´β
GM

r3{2
prS,x ´ ex, rS,y ´ ey, rS,z ´ ezq (11)

where M is the mass of the Sun, now in kilograms, rS its position, in AU and r “ rS ´ e the distance
between particle and Sun in the ecliptical system. Subscripts x, y and z denote the component of position
vectors rS and e.

Also, we need to write spatial drag force due to Poynting-Robertson for this model that we shortly
discussed in Section 2 for the planar case. Following [LZJ95] we write the spatial force as:

F⃗PR “ ´
κ

r2

ˆ

9X ´ Y `
X

r2
pX 9X ` Y 9Y ` Z 9Zq,

9Y ` X `
Y

r2
pX 9X ` Y 9Y ` Z 9Zq, 9Z `

Z

r2
pX 9X ` Y 9Y ` Z 9Zq

˙

,

(12)

being (X, Y , Z) the positions of the particle seen from the Sun, ( 9X, 9Y , 9Z) its velocities, r is again the
distance between particle and Sun,

r “
a

X2 ` Y 2 ` Z2,

κ is the same as in Equation (4), κ “
βGM
a2

and a is de semi-major axis of the particle with respect to the
Sun. Note that in ABCP we took this parameter as aS , that in this model is 0.999 AU , then, very close
to 1.

In the vicinity of triangular points of the Earth-Moon system, the massive bodies playing the most
important roles are the Earth, Moon and Sun, and in a fourth place, Jupiter. Then, our N -body problem
is defined for these four bodies.

The presence of effective stability regions in a realistic model as the one we treat in present section, is
very sensitive. The stability regions tend to disappear or dissipate for long integration times. Therefore,
we decided to reduce the time span for this first analysis to 20 years to later study longer periods of time.
Under all these considerations, we have found some effective stability regions. Even so, they are only
found for low values of β, as seen in Figures 11 and 12. For β larger than, approximately, 1.2 ˆ 10´3 no
trace of stable regions is found. Note that for convenience, the horizontal and vertical axes correspond to
x and y coordinates in ABCP units. Colours are assigned again as purple (collision with the Earth), red
(collision with the Moon), yellow (escape) and black (otherwise).

The Figures 11 and 12 include the colourmaps obtained for different values of the radiation parameter
at each row. The three columns correspond, from left to right, to the propagations in time performed in
the neighbourhood of L4 without including the Poynting-Robertson drag, the second column to the same
initial conditions including this dissipative effect due to PR, and the third one to the neighbourhood of
L5 without this effect. They are shown together for easier comparisons.
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Figure 11: Fate colourmaps for a cloud of test particles around position of L4 using realistic model not
including Poynting-Robertson drag, including this effect, and around L5 without PR, for β « 4.0ˆ 10´5,
1.2 ˆ 10´4, 2.0 ˆ 10´4, 2.9 ˆ 10´4 and 3.3 ˆ 10´4. See text for more details.
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Figure 12: Fate colourmaps for a cloud of test particles around position of L4 using realistic model not
including Poynting-Robertson drag, including this effect, and around L5 without PR, for β « 3.7ˆ 10´4,
4.0 ˆ 10´4, 8.1 ˆ 10´4, 1.2 ˆ 10´3, 1.6 ˆ 10´3. See text for more details.
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In these maps we observe that in spite of the fact that these regions are more sensitive to be dissipated
in the realistic model than they were in the ABCP, the area they cover is pretty large. In fact, it was
necessary to enlarge the meshes.

Regarding to the Poynting-Robertson drag, looking at the first two columns of maps in the figures,
we appreciate no effect on the dynamics when this dissipative force is included. We do appreciate some
differences in the comparison of the maps in the neighbourhood of L4 and L5, first and third columns.
The size of the effective stability regions is more or less the same, however, the ones around L5 seem to
be more dense than the ones around L4. Again, we also find more red colour, trajectories colliding with
the Moon, in the case of L5 than in the case of L4.

A remarkable difference among the results obtained in ABCP and in realistic models, is almost absence
of trajectories colliding with the Earth (purple colour) in the latter, whereas in the former, their presence
were important. It is worth to mention that these same maps of fate give the same qualitative results be
Jupiter included or not.

5.1 Time analysis

In previous section, some effective stability regions in the neighbourhoods of triangular points composed
by test particles that remain in the Earth-Moon system for 20 years were shown.

Now, we aim to analyse the fate of these trajectories in the neighbourhoods of both L4 and L5, for
longer periods of time, 30 and 100 years, in order to understand what could be happening to the dust that
is accumulated in these regions. In addition, propagations backward in time of the same initial conditions
are included for the same reasons.

Figures 13 and 15 show some colourmaps for values of β of 2.084ˆ10´4 and 8.049ˆ10´4, respectively.
Now, only SPR is included since PR was shown not to have relevance. The three rows in the figures corre-
spond to integration time of 20, 30 and 100 years. The first two columns correspond to the neighbourhood
of L4 for propagations forward and backward in time, and the third column to the neighbourhood of L5

for propagations forward in time.

Examining rows from up to down, we observe that as time evolves, be it forwards or backwards,
the black regions, composed by stable trajectories, blurs. This does not mean that there are no stable
trajectories left for time spans of 100 years. If we only plot the trajectories that have not collided with
a massive body nor have left the E-M system, Figure 14, we can observe that there are still stable
trajectories after 100 years of time propagation. However, it is clear that their presence has diminished.

Table 2 includes the percentages of the stable trajectories for the colourmaps after 20, 30 and 100
years of time propagation, both around L4 and L5, forward and backward in time, for different values
of β. Meanwhile the presence of stable trajectories in the maps after 20 years of propagation is around
1.5 ´ 2%, it is reduced up to lower than 0.1% after 100 years.

So it is clear that most of trajectories that were stable after 20 years end up colliding or leaving the
system as time evolves. In the same table, last four columns, are devoted to understand what happened
to those trajectories for a propagation of 100 years. In general, we observe that a low percentage of those
trajectories remain stable. Around 6% of them collide with the Earth. A higher percentage is found for
collisions with the Moon. But what is remarkable is that the vast majority of them, around a 80% of
the trajectories that were stable for 20 years of propagation, end up leaving the Earth-Moon system. If
we think about the propagation performed backward in time, this means that the vast majority of the
particles that formed the effective stability region 20 years before come from the outside E-M system.

All this information allows us to conclude that, the effective stability regions seem to be mainly
conformed by particles that enter our Earth-Moon system, remain in it for some decades, and then leaves
it again. This could give an explanation for the presence of Kordylewski dust clouds as an accumulation
of dust in slow passage close to triangular points. That is, they would not be conformed by the same
particles trapped in those vicinities, but by particles that are in a continuous renewal.
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Figure 13: Fate colourmaps obtained in a N -body model including SPR for β “ 2.084 ˆ 10´4. Columns:
L4 forward in time, L4 backward in time, L5 forward in time. Rows: for 20 years, 30 years, 100 years.

Figure 14: Stable trajectories for the analysis of the neighbourhood of L4 backward in time during 100
years, obtained in a N -Body model including SRP for β “ 2.084 ˆ 10´4. Horizontal: x coordinate.
Vertical: y coordinate.
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Figure 15: Fate colourmaps obtained in a N -body model including SPR for β “ 8.049 ˆ 10´4. Columns:
L4 forward in time, L4 backward in time, L5 forward in time. Rows: for 20 years, 30 years, 100 years.
See text for more details.
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Forward in time Integration time Fate of stable trajectories at 20 years at 100y

β 20y 30y 100y Stable Earth-crash Moon-crash Escape

L4
2.06635 ˆ 10´4 1.61% 0.57% 0.06% 6.16% 6.00% 7.41% 80.43%
8.11840 ˆ 10´4 1.68% 0.55% 0.05% 4.55% 5.57% 6.20% 83.68%

L5
2.08456 ˆ 10´4 1.29% 0.61% 0.08% 3.70% 4.75% 12.59% 78.95%
8.04950 ˆ 10´4 1.76% 0.79% 0.08% 2.10% 4.24% 10.83% 82.83%

Backward in time Integration time Fate of stable trajectories at 20 years at 100y

β 20y 30y 100y Stable Earth-crash Moon-crash Escape

L4
2.06635 ˆ 10´4 1.66% 0.81% 0.10% 6.07% 5.23% 11.87% 76.83%
8.11840 ˆ 10´4 1.83% 0.84% 0.08% 4.61% 5.41% 10.18% 79.80%

L5
2.08456 ˆ 10´4 1.15% 0.51% 0.05% 4.78% 5.80% 6.83% 82.58%
8.04950 ˆ 10´4 1.93% 0.80% 0.06% 3.17% 4.90% 6.87% 85.07%

Table 2: Statistics about stable trajectories forward and backward in time, around L4 and L5 for two
different values of β. Columns encompassed under “Integration time” indicate the percentages of stable
trajectories in the maps after 20, 30 or 100 years of time propagation. Last four columns give the fate
percentages after 100 years of propagation for those trajectories that were stable at 20 years.

6. Conclusions and Future work

In this work we have used a simplified model to look for possible locations of Kordylewski clouds. The
model is based on adding the solar radiation pressure and the Poynting-Robertson effects to the classical
Bicircular planar model. The found regions are, therefore, on the Earth-Moon plane. Finally, we have
tested these regions in a realistic (non-planar) model.

The solar radiation pressure effect makes the triangular points L4 and L5 move from their typical
locations as β gets different from zero. This affects the locations in which we look for effective stability
regions. The results show that particles in these regions persist for some time, about a century, but
it is very remarkable that many of these particles also escape the Earth-Moon system. If we perform
backwards in time numerical simulations we obtain a similar result: particles also escape the Earth-Moon
system after a similar time. Therefore, it seems that there are many trajectories that enter the Earth-
Moon system, stay for some decades in these regions, and then escape the Earth-Moon system. From
this point of view, the clouds are not a stable region in the classical sense of the term, but a region with
“slow diffusion” where interplanetary particles stay for some years. The robustness of the results has been
checked by adding Jupiter to this last model, with no significant changes.

The next step in this study is to use a spatial simplified model (the same ABCP model used here but
in 3D) and to look for out-of-plane stable regions in a similar way as it was done in [Jor00]. The goal is
to know if out-of-plane oscillation allow for the existence of regions with better stability properties than
the ones found here. This is actually work in progress.

7. Technical details

We have use the Taylor [JZ05, GJZ22] package to integrate with a local threshold error of 10´16 in double-
precision arithmetic. In all the experiments we have used the gcc compiler, version 12.2.0, on a Linux
computer with two Intel(R) Xeon(R) CPU E5-2680 @2.70GHz processors, which give a total of 24 cores.
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