Advanced Course on Long Time Integrations

G. Gómez,¹ J.M. Mondelo²

¹Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona

²Departament de Matemàtiques, Universitat Autònoma de Barcelona

Universitat de Barcelona, Institut de Matemàtica (IMUB) Barcelona, September 3-7, 2007

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

Bibliography

Fundamental tools
 Numerical solution of non-linear systems of equations

Outline

Fundamental tools

Numerical solution of non-linear systems of equations

Continuation methods Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Newton's method

The numerical methods to be presented for the computation of invariant objects end up solving a non-linear system of equations:

$$G(\mathbf{x}) = 0, \qquad G: \mathbb{R}^n \to \mathbb{R}^n.$$

 Given a good initial seed (which we will always have), a good (quadratically convergent) general strategy to solve it is Newton's method:

> \mathbf{x}_0 initial approximation $\forall n \ge 0$ $\mathbf{x}_{n+1} = \mathbf{x}_n - D\mathbf{G}(\mathbf{x}_n)^{-1}\mathbf{G}(\mathbf{x}_n)$

► DG(x_n), is never inverted. Instead, the following linear system is solved:

$$D\boldsymbol{G}(\boldsymbol{x}_n)(\boldsymbol{x}_{n+1}-\boldsymbol{x}_n)=-\boldsymbol{G}(\boldsymbol{x}_n).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Newton's method

An algorithm:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Newton's method

- In what follows, it will be convenient to be able to solve non-square linear systems.
- A way to handle non-square systems in Newton's method is to find the least-squares minimum-norm solution of the linear system for the correction.
- Assuming that
 - the system of equations has solution (may be non unique), and
 - the initial guess is close to a solution

this strategy will converge to a nearby solution using minimum-norm corrections.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Solving non-square linear systems

- Assume $A \ m \times n$ matrix, with arbitrary m, $n \operatorname{rank} A =: r \le \min(m, n)$.
- For arbitrary m, n, a least-squares solution of Ax = b,

$$\boldsymbol{x}^*: \quad \|\boldsymbol{b} - A \boldsymbol{x}^*\|_2 = \min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{b} - A \boldsymbol{x}\|_2.$$

always exists.

- If rank A = n, there is an unique least–squares solution.
- ► If rank A < n, there is a (n rank A)-dimensional space of least-squares solutions.</p>
- We want to find the **minimum-norm least-squares solution**, that is

$$\mathbf{x}_{LS}$$
: $\|\mathbf{x}_{LS}\| = \min\{\|\mathbf{x}^*\|_2 : \|\mathbf{b} - A\mathbf{x}^*\|_2 = \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{b} - A\mathbf{x}\|_2\}$

▲ロト▲圖ト▲ヨト▲ヨト ヨーのへで

Solving non-square linear systems

By applying Householder transformations with column pivoting[5], we obtain a decomposition

$$Q^{\top}AP = \begin{pmatrix} r & n-r \\ R_{11} & R_{12} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r \\ m-r \end{pmatrix}$$

with R_{11} an $r \times r$ upper-triangular matrix with non-zero diagonal elements. If we denote

$$P^{\top} \mathbf{x} = \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix} \stackrel{r}{\underset{n-r}{r}}, \qquad Q^{\top} \mathbf{b} = \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix} \stackrel{r}{\underset{m-r}{r}},$$

then the least-squares solutions are

$$P^{\top}x = \left\{ \left(\begin{array}{c} R_{11}^{-1}c\\ 0 \end{array}\right) + \left(\begin{array}{c} -R_{11}^{-1}R_{12}\\ I_{n-r} \end{array}\right)z \right\}_{z \in \mathbb{R}^{n-r}}$$

To find the minimum–norm element of the previous set is an **standard full–rank least–squares problem**.

Solving non-square linear systems

We can write a routine that, for a general $m \times n$ linear system of equations, finds

- the minimum-norm least-squares solution, and
- optionally, a basis of the kernel.

$$\left\{\begin{array}{c}r\\ r\\n-r\end{array} P\left(\begin{array}{c}-R_{11}^{-1}R_{12}\\I_{n-r}\end{array}\right)z\right\}_{z\in\mathbb{R}^{n-r}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

We can do this by using LAPACK[2] routines:

- ► DGEQPF: *QR* factorization with columnn pivoting,
- ► DGEQRF: standard *QR* factorization,
- DORMQR: to apply Householder transformations.
- > DTRTRS: to solve upper-triangular linear systems.

Outline

Fundamental tools

Numerical solution of non-linear systems of equations

Continuation methods

Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Continuation methods[1]

In order to go from {F(x) = 0} to {G(x) = 0}, we can consider a one-parametric family of intermediate problems $H(\lambda, x)$, such that

$$\boldsymbol{H}(0,\boldsymbol{x}) = \boldsymbol{F}(\boldsymbol{x}), \qquad \boldsymbol{H}(1,\boldsymbol{x}) = \boldsymbol{G}(\boldsymbol{x}).$$

For instance,

$$\boldsymbol{H}(\lambda, \boldsymbol{x}) = (1 - \lambda)\boldsymbol{F}(\boldsymbol{x}) + \lambda \boldsymbol{G}(\boldsymbol{x}),$$

We can try to continue a solution x_0 of F(x) = 0 to a solution of G(x) = 0 as

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

$$\begin{array}{ll} \text{input:} & \boldsymbol{x}_0 \in \mathbb{R}^n \text{ such that } \boldsymbol{H}(0, \boldsymbol{x}_0) = 0 \\ \text{do:} & \Delta \lambda := 1/m \\ & \forall i = 1 \div m \\ & \lambda := i \Delta \lambda \\ & \text{ solve } \boldsymbol{H}(\lambda, \boldsymbol{y}) = 0 \text{ iteratively for } \boldsymbol{y} \text{ taking } \boldsymbol{x} \text{ as } \\ & \text{ starting value} \\ & \boldsymbol{x} := \boldsymbol{y} \end{array}$$

output: x

This procedure breaks down in the case of a turning point.

Long Time Integrations
- Fundamental tools
Continuation methods

The predictor-corrector or pseudo-arclength method

 $H(\mathbf{y}) := H(\lambda, \mathbf{x})$ defines implicitly a curve in \mathbb{R}^{n+1} . We can continue this curve as follows: input: $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{H}(\mathbf{y}) = 0$ do: while $(\lambda = \Pi_0 \mathbf{y} < 1)$ let $v \in \ker DH(y)$, $||v||_2 = 1$, pointing in the right direction take $z := y + \gamma v$, for suitable γ if $(\Pi_0 \mathbf{v} < 1)$ solve H(z) = 0 iteratively for z by Newton's method taking minimum-norm corrections else $\gamma := (1 - \Pi_0 \mathbf{v}) / \Pi_0 \mathbf{v}$ $z := y + \gamma v$ solve H(z) = 0 by Newton keeping $\Pi_0 z$ constant $\mathbf{v} := \mathbf{z}$ output: v

The predictor-corrector or pseudo-arclength method

In this algorithm, γ should be chosen in order to keep (more or less) constant the number of Newton iterates in the refinement phase.

A simple rule to do that is to assume that the number of Newton iterates is a linear function of the steplength chosen:

$$\gamma = \frac{n_{des}}{n_{old}} \gamma_{old}.$$

- ▶ Note that in the pseudo-arclength method there is no distinguished coordinate to be thought as a parameter. We can therefore apply it to any system of non-linear equations H(y) = 0, as long as its solution is a curve.
- Note that the method works as long as dim ker H(y) = 1 on the solution curve. It is not necessary that H : ℝⁿ → ℝ^m with m = n + 1.

The predictor-corrector or pseudo-arclength method

► The condition dim ker H(y) = 1 fails at bifurcation points (where dim ker H(y) = 2).

Since it is difficult to exactly "fall over" a bifurcation point, the method usually "jumps over" them.

► A way to avoid "jumping" into bifurcated branches is to control the angle between successive iterates y_{n-1}, y_n, y_{n+1}, that is, reduce steplength if

$$\langle \mathbf{y}_n - \mathbf{y}_{n-1}, \mathbf{y}_{n+1} - \mathbf{y}_n \rangle \leq 1 - \text{tol.}$$

(日)

This last strategy is also useful to plot nice continuation curves.

Bifurcation points

- If dim ker $DG(y) \ge 2$, y is a bifurcation point.
- Rigorous analysis of a bifurcation point requires the evaluation of the second derivatives of G at y, that is

$$D^2 \boldsymbol{G}(\boldsymbol{y}) = \left(\partial_{y_i} \partial_{y_j} \boldsymbol{G}(\boldsymbol{y})\right)_{i,j=0 \div n},$$

where the matrix is symmetric and each of its components is an n-dimensional vector.

- They can be computed from the second variational equations.
- Often one can find what happens in a bifurcation point in terms of the dynamics around it, whithout the need of a rigorous analysis of bifurcations (for a rigorous analysis see e.g. [13])

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods

Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Continuous Dynamical Systems

Defined by a system of autonomous (i.e. time-independent) ODE.

$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2, \dots, x_n), \\ \dot{x}_2 = f_2(x_1, x_2, \dots, x_n), \\ \vdots \\ \dot{x}_n = f_n(x_1, x_2, \dots, x_n), \end{cases}$$

In short,

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}), \quad \text{for} \quad \boldsymbol{x} \in \mathbb{R}^n, \quad \boldsymbol{f} : \mathbb{R}^n \to \mathbb{R}^n.$$

with

$$oldsymbol{x} = \left(egin{array}{c} x_1 \ dots \ x_n \end{array}
ight) \in \mathbb{R}^n, \quad oldsymbol{f}(oldsymbol{x}) = \left(egin{array}{c} f_1(oldsymbol{x}) \ dots \ f_n(oldsymbol{x}) \end{array}
ight) \in \mathbb{R}^n$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Continuous Dynamical Systems

An autonomous system of ODE

 $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}), \quad ext{for} \quad \boldsymbol{x} \in \mathbb{R}^n, \quad \boldsymbol{f} : \mathbb{R}^n \to \mathbb{R}^n.$

allows to define the flow,

$$\phi_t(\boldsymbol{x}), \quad t \in \mathbb{R}, \quad \boldsymbol{x} \in \mathbb{R}^n,$$

that satisfies

$$\left\{ egin{array}{ccc} rac{d}{dt} oldsymbol{\phi}_t(oldsymbol{x}) &=& oldsymbol{f}ig(oldsymbol{\phi}_t(oldsymbol{x})ig), \ oldsymbol{\phi}_0(oldsymbol{x}) &=& oldsymbol{x}, \end{array}
ight.$$

and

$$\boldsymbol{\phi}_{s+t}(\boldsymbol{x}) = \boldsymbol{\phi}_s(\boldsymbol{\phi}_t(\boldsymbol{x})).$$

• Examples: RTBP, Hill's problem (Gerard's session).

<

• We will always assume a Hamiltonian dynamical system:

$$H: \mathbb{R}^n \longrightarrow \mathbb{R}^n \quad (n \text{ even})$$

$$\dot{x} = J \nabla H(x), \qquad J = \left(\frac{0 \mid I}{-I \mid 0}\right)$$

Poincaré maps

Let Σ be a hypersurface of ℝⁿ, and assume it is transversal to the vectorfield, that is, the vectorfield is not tangent Σ in any point of Σ,

$$\forall \boldsymbol{x} \in \Sigma \quad \boldsymbol{f}(\boldsymbol{x}) \notin T_{\boldsymbol{x}}(\Sigma).$$

- Let \mathbf{x}_0 be such that $\phi_{T_0} \in \Sigma$ for some $T_0 > 0$, and assume that T_0 is minimum with this property.
- Under suitable hypothesis, there exists a neighborhood U ∋ x₀ and a map τ : U → ℝⁿ, known as time-return map, such that

$$\phi_{\tau(\mathbf{x})}(\mathbf{x}) \in \Sigma \qquad \forall \mathbf{x} \in U.$$

► The map

$$\boldsymbol{P}(\boldsymbol{x}) = \boldsymbol{\phi}_{\tau(\boldsymbol{x})}(\boldsymbol{x})$$

is called **Poincaré map** or **first–return map** corresponding to Σ .

• The restriction of **P** to $V := \Sigma \cap U$ defines a discrete dynamical system.

Poincaré maps: numerical computation

We are given:

- A Poincaré map, $\boldsymbol{P}(x) = \boldsymbol{\phi}_{\tau(x)}(\boldsymbol{x}).$
- A surface of section, $\Sigma = \{g(\mathbf{x}) = 0\}$, to be traversed from $\{g(\mathbf{x}) < 0\}$ to $\{g(\mathbf{x}) > 0\}$

We can numerically evaluate P(x) by the following algorithm:

Poincaré maps: differential

In order to differentiate P(x), we need

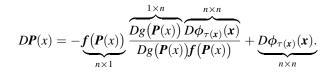
- $D\phi_{\tau(\mathbf{x})}(\mathbf{x})$, from variational equations.
- ► $D\tau(\mathbf{x})$.

The last quantity can be obtained by implicit differentiation:

$$0 \equiv g(\mathbf{P}(\mathbf{x}))$$

$$\Longrightarrow D\tau(\mathbf{x}) = -\frac{Dg(\mathbf{P}(x))D\phi_{\tau(\mathbf{x})}(x)}{Dg(\mathbf{P}(x))f(\mathbf{P}(x))}.$$

From the chain rule,



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・

It can be avoided in some situations, as we will see.

Computation of fixed points

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of objects and its manifolds Computation of fixed points

Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

Bibliography

Computation of fixed points

Computation of fixed points

A fixed point of

$$\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}),$$

is a point $p \in \mathbb{R}^n$ such that f(p) = 0.

- ► For simple models, fixed points can be found analitically.
- Wen it is not possible, Newton's method can be used in order to find a zero of

$$egin{array}{cccc} m{G}:\mathbb{R}^n&\longrightarrow&\mathbb{R}^n\ m{x}&\longmapsto&m{f}(m{x}) \end{array}$$

Long Time Integrations

Computation of objects and its manifolds

Computation of fixed points

Linear behavior around a fixed point

Interesting in order to:

- Understand the dynamics around a fixed point.
- Obtain good initial guesses for the objects that originate around a fixed point.

Computation of fixed points

Linear behavior around a fixed point: flows

Consider a flow

$$\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}),$$

with a fixed point *p*,

$$\boldsymbol{f}(\boldsymbol{p})=0,$$

The Taylor expansion of f around p up to order one is

$$f(\mathbf{x}) = \underbrace{f(\mathbf{p})}_{=0} + \underbrace{Df(\mathbf{p})}_{=:A} (\mathbf{x} - \mathbf{p}) + O(\|\mathbf{x} - \mathbf{p}\|^2),$$

so that the linearized flow around *p* is

$$\dot{\boldsymbol{x}} = A(\boldsymbol{x} - \boldsymbol{p}).$$

The eigenvalues of *A* are known as the **exponents** of the fixed point *p*. For Hamiltonian systems,

$$\lambda \in \operatorname{Spec} A \Longrightarrow -\lambda \in \operatorname{Spec} A.$$

Computation of fixed points

Linear behavior around a fixed point: flows

Assume $\lambda \in \operatorname{Spec} A$, $\lambda \neq 0$, $Av = \lambda v$, $v \neq 0$.

- If $\lambda \in \mathbb{R}$, consider $\varphi(t) = \mathbf{p} + e^{\lambda t} \mathbf{v}$. Then:
 - $\varphi(t)$ satisfies the system of ODE of the linearized flow,

$$\varphi'(t) = \lambda e^{\lambda t} \mathbf{v} = e^{\lambda t} (\lambda \mathbf{v}) = e^{\lambda t} (A\mathbf{v}) = A(e^{\lambda t} \mathbf{v})$$
$$= A(\varphi(t) - \mathbf{p}).$$

- If λ > 0, φ(t) ^{t→+∞} p, so that it gives a stable manifold of the linearized flow.
- If λ < 0, φ(t) ^{t→-∞} p, so that it gives an unstable manifold of the linearized flow.

The extistence of a stable or unstable manifold of the full (nonlinear) dynamical system is ensured by the **stable manifold theorem** for flows.

Computation of fixed points

Linear behavior around a fixed point: flows

Assume $\lambda \in \operatorname{Spec} A$, $\lambda \neq 0$, $A\mathbf{v} = \lambda \mathbf{v}$, $\mathbf{v} \neq 0$.

• If $\lambda = i\omega$, for $\omega \in \mathbb{R}$, let $v_1 + iv_2$ be a corresponding eigenvector, with $v_1, v_2 \in \mathbb{R}^n$. Then

$$A\mathbf{v}_1 + iA\mathbf{v}_2 = A(\mathbf{v}_1 + i\mathbf{v}_2) = -\omega\mathbf{v}_2 + i\omega\mathbf{v}_1.$$

Therefore, if we define

$$\boldsymbol{\varphi}_{\gamma}(t) = \boldsymbol{p} + \gamma \big((\cos \omega t) \boldsymbol{v}_1 - (\sin \omega t) \boldsymbol{v}_2 \big),$$

we have

$$\varphi_{\gamma}'(t) = A\big(\varphi(t) - p\big),$$

so that $\varphi_{\gamma}(t)$ satifies the linearized system of ODE Under non-resonance conditions with respect to the remaining eigenvalues, the existence of a family of periodic orbits for the full nonlinear system, with limiting period $2\pi/\omega$, is ensured by **Liapunov's** center theorem.

・ロト・「聞・・」 単・ 「聞・・」 目・

Computation of fixed points

Linear behavior around a fixed point: flows

Assume $\lambda \in \operatorname{Spec} A$, $\lambda \neq 0$, $Av = \lambda v$, $v \neq 0$.

The case λ = a + iω for a, ω ∈ ℝ, a, ω ≠ 0 corresponds to a sink or a source, depending on wether Re λ < 0 or Re λ > 0, respectively.

▲□▶▲□▶▲□▶▲□▶ □ のQで

• It is an impossible case in a Hamiltonian system, and will not be considered here.

Computation of periodic orbits

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits

Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

Bibliography

Computation of p.o.: autonomous case

Consider an autonomous system of ODE,

 $\dot{x} = \boldsymbol{f}(\boldsymbol{x}),$

Assume we look for an o.p. as a fixed point of

 $\boldsymbol{F}(\boldsymbol{x}) = \boldsymbol{\phi}_T(\boldsymbol{x}).$

Then we would look for a zero of

$$\boldsymbol{G}(\boldsymbol{x}) := \boldsymbol{F}(\boldsymbol{x}) - \boldsymbol{x} = \boldsymbol{\phi}_T(\boldsymbol{x}) - \boldsymbol{x}.$$

by Newton's method.

But, for x_0 in the o.p., $DG(x_0)$ is singular, because $\{G(x) = 0\}$ has the whole o.p. as solution.

Computation of p.o.: autonomous case

We look for a fixed point of a Poincaré map corresponding to a section that intersects transversally the p.o. at x₀.

$$\boldsymbol{P}(\boldsymbol{x}) = \boldsymbol{\phi}_{\tau(\boldsymbol{x})}(\boldsymbol{x}),$$

Then x_0 is the only point of the p.o. that is also a fixed point of the Poincaré map.

We look for a zero of

$$\boldsymbol{G}(\boldsymbol{x}) := \boldsymbol{P}(\boldsymbol{x}) - \boldsymbol{x} = D\boldsymbol{P}(\boldsymbol{x}) - \boldsymbol{x},$$

by Newton's method. Its differential is

$$DG(\mathbf{x}) = DP(\mathbf{x}) - I_n.$$

► Alternatively, we can consider *T* an additional unknown and solve

$$\begin{array}{rcl} g(\mathbf{x}) &=& 0 \\ \phi_T(\mathbf{x}) &=& \mathbf{x} \end{array} \right\} \, .$$

Computation of p.o.: autonomous case

The previous approach works in oder to find an isolated p.o., but

- In autonomous Hamiltonian systems (like the RTBP or Hill's problem), periodic orbits are not isolated but embedded in families.
- ► This gives a curve of fixed points in the Poincaré section.
- ► This curve is solution G(x) = 0, so DG(x) is singular at any of this points.

The solution to this problem is to add an additional constraint in order to have an unique o.p. as solution.

▲□▶▲□▶▲□▶▲□▶ □ のQで

It can be, either

- To prescribe a certain period.
- To prescribe an energy level.

Computation of periodic orbits

Practical implementation

Consider the RTBP (or any autonomous Hamiltonian system).

We can consider the following system of equations:

$$\left. \begin{array}{lll} H({\bf x})-h &= 0 \\ \tau({\bf x})-T &= 0 \\ \phi_{\tau({\bf x})}({\bf x})-{\bf x} &= 0 \end{array} \right\},$$

with unknowns $(h, T, \mathbf{x}) = (h, T, x, y, z, p_x, p_y, p_z).$

This system, as is, does not need to be compatible, because both the energy and the period (locally) determine a unique p.o. in the family.

What we can do is to eliminate equations and unknows in the previous system in order to obtain que equations for a particular approach:

- By "eliminating" an equation, we mean exactly this.
- By "eliminating" an unknown, we mean to keep it constant in Newton's method, as if it were a parameter.

Computation of periodic orbits

Practical implementation

Consider the RTBP (or any autonomous Hamiltonian system).

We can consider the following system of equations:

$$\left. \begin{array}{lll} H({\bm x}) - h &= 0 \\ \tau({\bm x}) - T &= 0 \\ \phi_{\tau({\bm x})}({\bm x}) - {\bm x} &= 0 \end{array} \right\},$$

with unknowns $(h, T, \mathbf{x}) = (h, T, x, y, z, p_x, p_y, p_z)$. In this way, for instance:

- ► To compute a p.o. of a given energy level, we eliminate equation 2 and unknowns *h*, *T*.
- ► To compute a p.o. of a given period, we eliminate equation 1 and unknowns *h*, *T*.
- ► To compute a p.o. of a given energy level an a prescribed value of a coordinate, we eliminate the second equation and the unknowns *h* and the prescribed coordinate.

Computation of periodic orbits

Practical implementation

Consider the RTBP (or any autonomous Hamiltonian system).

We can consider the following system of equations:

$$\left. \begin{array}{lll} H({\bf x}) - h &= 0 \\ \tau({\bf x}) - T &= 0 \\ \phi_{\tau({\bf x})}({\bf x}) - {\bf x} &= 0 \end{array} \right\},$$

with unknowns $(h, T, \mathbf{x}) = (h, T, x, y, z, p_x, p_y, p_z).$

With any of the previous choices, we end up with an $(n + 2) \times (n + 1)$ (nonlinear) system with unique solution.

Multiple shooting

The neighborhood of the collinear libration points of the RTBP is highly unstable.

- The monodromy matrices of p.o. have eigenvalues as large as 2000, or even more.
- This means that any error in the initial condition is amplified by this factor.
- ► This is also true for the numerical truncation error.

We can reduce these amplification factors by making use of **multiple shooting**.

Idea: introduce additional objects and matching conditions in order to reduce integratin time.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of periodic orbits

Multiple shooting

The neighborhood of the collinear libration points of the RTBP is highly unstable.

Instead of loking for

h, T, x,

we look for

$$h, T, \mathbf{x}_0, \ldots, \mathbf{x}_{m-1},$$

for m > 1, satisfying

$$\left.\begin{array}{cccc}H(\boldsymbol{x}_{0})-h &=& 0\\\tau(\boldsymbol{x}_{m-1})-\frac{T}{m} &=& 0\\\phi_{T/m}(\boldsymbol{x}_{i})-\boldsymbol{x}_{i+1} &=& 0, \quad i=0\div m-2\\\phi_{\tau(\boldsymbol{x}_{m-1})}(\boldsymbol{x}_{m-1})-\boldsymbol{x}_{0} &=& 0\end{array}\right\}$$

Whis this approach, one obtains amplification factors that are, tipically, the *m*-th root of the starting ones.

Computation of periodic orbits

Linear behavior around a p.o.

Consider an autonomous Hamiltonian system.

- An initial condition \mathbf{x}_0 of a *T*-periodic orbit is also a fixed point of ϕ_T .
- Consider the RTBP (or any autonomous Hamiltonian system), and let x₀ be an initial condition of a *T*-periodic orbit. Then, its monodromy matrix,

$$M := D\phi_T(\boldsymbol{x}_0)$$

has 1 as double eigenvalue.

Moreover, M := Dφ_T(x₀) is a symplectic matrix, which implies: if λ is an eigenvalue of M, then 1/λ is also eigenvalue. Then,

Spec
$$M = \{1, 1, \lambda_1, \lambda_1^{-1}, \lambda_2, \lambda_2^{-1}\},\$$

and we will assume that $|\lambda_i| \leq |\lambda_i^{-1}|$.

Computation of periodic orbits

Linear behavior around a p.o.

Consider an autonomous Hamiltonian system. Let \mathbf{x}_0 s.t. $\phi_T(\mathbf{x}_0) = \mathbf{x}_0, M := D\phi_T(\mathbf{x}_0)$. Spec $M = \{1, 1, \lambda_1, \lambda_1^{-1}, \lambda_2, \lambda_2^{-1}\}$.

The linear behaviour around a p.o. is better studied in terms of its **stability parameters**, s_1 and s_2 , which are defined as

$$s_1 = \lambda_1 + 1/\lambda_1, \quad s_2 = \lambda_2 + 1/\lambda_2.$$

It is easy to check that

$$\begin{split} s_i \in \mathbb{R}, & |s_i| > 2 \iff \lambda_i \in \mathbb{R} \setminus \{\pm 1\}, \\ s_i \in \mathbb{R}, & |s_i| \le 2 \iff \lambda_i \in \mathbb{C}, \quad |\lambda_i| = 1, \\ s_i \in \mathbb{C} \setminus \mathbb{R} \iff \lambda_i \in \mathbb{C} \setminus \mathbb{R}, \quad |\lambda_i| \neq 1. \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of periodic orbits

Linear behavior around a p.o.

Consider an autonomous Hamiltonian system.

Let
$$\mathbf{x}_0$$
 s.t. $\phi_T(\mathbf{x}_0) = \mathbf{x}_0, M := D\phi_T(\mathbf{x}_0)$.
Spec $M = \{1, 1, \lambda_1, \lambda_1^{-1}, \lambda_2, \lambda_2^{-1}\}$.
 $s_1 = \lambda_1 + 1/\lambda_1, s_2 = \lambda_2 + 1/\lambda_2$.

- If $s_i \in \mathbb{R}$, $|s_i| > 2$ (hyperbolic case) $\Rightarrow \lambda_i \in \mathbb{R} \setminus \{\pm 1\}$.
 - There is a stable manifold of the fixed point of ϕ_T , tangent to the λ_i -eigendirection at x_0 .
 - There is an unstable manifold of the fixed point ϕ_T , tangent to the λ_i^{-1} -eigendirection at x_0 .

In terms of the p.o.:

- There is a stable manifold of the p.o. whose section through the $\lambda_i, \lambda_i^{-1}$ -eigenplane is tangent to the λ_i -eigendirection.
- ► There is an unstable manifold of teh p.o. whose section through the $\lambda_i, \lambda_i^{-1}$ -eigenplane is tangent to the λ_i^{-1} -eigendirection.

Computation of periodic orbits

Linear behavior around a p.o.

Consider an autonomous Hamiltonian system.

Let \mathbf{x}_0 s.t. $\phi_T(\mathbf{x}_0) = \mathbf{x}_0, M := D\phi_T(\mathbf{x}_0)$. Spec $M = \{1, 1, \lambda_1, \lambda_1^{-1}, \lambda_2, \lambda_2^{-1}\}$. $s_1 = \lambda_1 + 1/\lambda_1, s_2 = \lambda_2 + 1/\lambda_2$.

- If $s_i \in \mathbb{R}$, $|s_i| \le 2$ (elliptic case), let $\lambda_i = \cos \rho + i \sin \rho$ ($\Rightarrow s_i = 2 \cos \rho$), and let \mathbf{v} be s.t. $M\mathbf{v} = \lambda_i \mathbf{v}, \mathbf{v} \ne 0, \mathbf{v} = \mathbf{v}_1 + i\mathbf{v}_2$.
 - There is a continuous, one–parametric family of closed curves invariant by the linearization of ϕ_T around \mathbf{x}_0 in the $\{\mathbf{x}_0 + \alpha_1 \operatorname{Re} \mathbf{v}_1 + \alpha_2 \operatorname{Im} \mathbf{v}_2\}_{\alpha_1, \alpha_2 \in \mathbb{R}}$ plane, with rotation number ρ .
 - Under generic non-degeneracy conditions, there is a Cantorian family of invariant curves around x₀, with limiting rotation number ρ. When transported by the flow, these invariant curves generate two-dimensional invariant tori.
 - Rational values (times 2π) for ρ also give rise to bifurcated p.o., with period $2\pi/\rho$. The particular values $\rho = 2\pi$ ($s_i = 2$) and $\rho = \pi$ ($s_i = -2$), are known as the **parabolic case**.

Continuation of families of periodic orbits

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

Bibliography

Continuation of families of periodic orbits

Strategy

We will consider two cases:

 Continuation with respect to the energy with multiple shooting. The equations to continue are

$$\begin{cases} H(\boldsymbol{x}_0) - h &= 0, \\ \phi_{T/m}(\boldsymbol{x}_i) - \boldsymbol{x}_{i+1} &= 0, \quad i = 0 \div m - 2, \\ \phi_{\tau(\boldsymbol{x}_{m-1})}(\boldsymbol{x}_{m-1}) - \boldsymbol{x}_0 &= 0, \end{cases}$$

with unknowns $h, \mathbf{x}_0, \ldots, \mathbf{x}_{m-1}$.

Note this in this case *T* is a parameter, but should be close to the period of the p.o. It is convenient to set $T := \tau(\mathbf{x}_0)$ at every continuation step, and recompute $\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}$, in order to have them equally spaced in time along the p.o.

Continuation of families of periodic orbits

Strategy

We will consider two cases:

 Continuation with respect to the period with multiple shooting. The equations to consider are

$$\begin{cases} \tau(\boldsymbol{x}_{m-1}) - \frac{T}{m} = 0 \\ \phi_{T/m}(\boldsymbol{x}_i) - \boldsymbol{x}_{i+1} = 0, \quad i = 0 \div m - 2, \\ \phi_{\tau(\boldsymbol{x}_{m-1})}(\boldsymbol{x}_{m-1}) - \boldsymbol{x}_0 = 0, \end{cases}$$

with unknows $T, \mathbf{x}_0, \ldots, \mathbf{x}_{m-1}$.

Note that the two systems of equations just considered can be evaluated by the same routine by eliminating suitable equations and unknowns.

Example: the Lyapunov families around L_1 in the RTBP Linear behavior around L_1

Denote the system of ODE of the RTBP for the Earth–Moon mass parameter as

 $\dot{x} = f(x).$

Then

$$\operatorname{Spec}(Df(L_1)) = \{\lambda, -\lambda, i\omega_{\nu}, -i\omega_{\nu}, i\omega_{p}, -i\omega_{p}\},\$$

with $\lambda, \omega_p, \omega_v > 0$. Then,

- the eigenvalues $\pm \lambda$ give rise to stable and unstable manifolds.
- the eigenvalues $\pm i\omega_p$, $\pm i\omega_v$ give rise to a center manifold, on which
 - the eigenvalues $\pm i\omega_p$ give rise to the Lyapunov planar family of p.o.,
 - the eigenvalues $\pm i\omega_v$ give rise to the Lypaunov vertical family of p.o.

Continuation of families of periodic orbits

Example: the Lyapunov families around L_1 in the RTBP

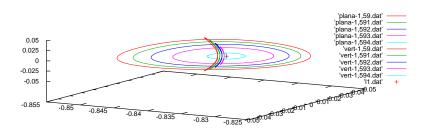
Linear behavior around L_1

Denote the system of ODE of the RTBP for the Earth–Moon mass parameter as

$$\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}).$$

Then

$$\operatorname{Spec}(Df(L_1)) = \{\lambda, -\lambda, i\omega_{\nu}, -i\omega_{\nu}, i\omega_p, -i\omega_p\},\$$

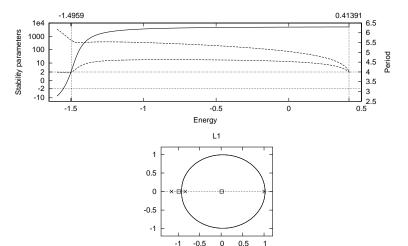


with $\lambda, \omega_p, \omega_v > 0$.

Continuation of families of periodic orbits

Example: the Lyapunov families around L_1 in the RTBP

Liapunov vertical family

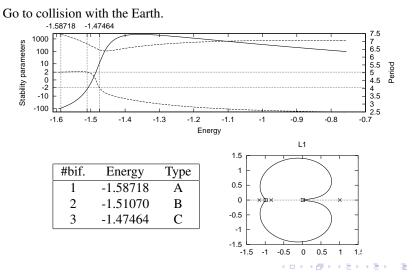


▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Continuation of families of periodic orbits

Example: the Lyapunov families around L_1 in the RTBP

Liapunov planar family



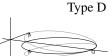
Continuation of families of periodic orbits

Example: the Lyapunov families around L_1 in the RTBP

Liapunov planar family

#bif.	Energy	Туре	
1	-1.58718	А	Halo family
2	-1.51070	В	Bridge to the vertical family
3	-1.47464	С	Not continuated





Computation of invariant 2D tori

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits **Computation of invariant 2D tori** Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

Bibliography

Computation of invariant 2D tori

Numerical computation of invariant 2D tori

We develop the methodology [9, 12] for an autonomous Hamiltonian system.

• We could look for a parametrization of a 2D torus,

$$egin{array}{rcl} oldsymbol{\psi}: \ \mathbb{R}^2 & \longrightarrow & \mathbb{R}^6 \ (heta_1, heta_2) & \mapsto & oldsymbol{\psi}(heta_1, heta_2) \end{array}$$

with $\psi 2\pi$ -periodic function in θ_1, θ_2 , by solving

$$\boldsymbol{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2) = \boldsymbol{\phi}_t (\boldsymbol{\psi}(\theta_1, \theta_2)), \quad \forall t \in \mathbb{R}, \quad \forall \theta_1, \theta_2 \in [0, 2\pi],$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where ω_1, ω_2 are the frequencies of the torus.

Numerical computation of invariant 2D tori

We could look for a parametrization of a 2D torus by solving

 $\boldsymbol{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2) = \boldsymbol{\phi}_t \big(\boldsymbol{\psi}(\theta_1, \theta_2) \big), \quad \forall t \in \mathbb{R}, \quad \forall \theta_1, \theta_2 \in [0, 2\pi],$

where ω_1, ω_2 are the frequencies of the torus.

• In order to reduce the dimension of the problem, we observe that $\varphi(\xi) = \psi(\xi, 0)$ is a curve invariant by $\phi_{2\pi/\omega_2}$, and satisfies

$$\boldsymbol{\varphi}(\boldsymbol{\xi}+\boldsymbol{\rho})=\boldsymbol{\phi}_{T_2}\big(\boldsymbol{\varphi}(\boldsymbol{\xi})\big),$$

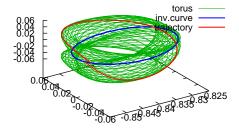
for $\rho = 2\pi\omega_1/\omega_2$ and $T_2 = 2\pi/\omega_2$.

• Once we have φ , we can recover ψ by

$$\boldsymbol{\psi}(\theta_1,\theta_2) = \boldsymbol{\phi}_{rac{\theta_2}{2\pi}T_2}\Big(\boldsymbol{\varphi}(\theta_1-rac{\theta_2}{2\pi}
ho)\Big)$$

Computation of invariant 2D tori

Numerical computation of invariant 2D tori



 $\phi_{T_2}(\varphi(\xi)) = \varphi(\xi + \rho)$

Discretization

► Note that

$$\varphi(\xi+\rho)=\phi_{T_2}(\varphi(\xi)),$$

is a functional equation: we have "infinite equations" (one for each value of $\xi \in [0, 2\pi)$) and "infinite unknowns" (we cannot describe a general function φ by a finite number of parameters).

We discretize function space by looking for φ as a truncated Fourier series,

$$\varphi(\xi) = \boldsymbol{A}_0 + \sum_{k=1}^{N_f} \Big(\boldsymbol{A}_k \cos(k\xi) + \boldsymbol{B}_k \sin(k\xi) \Big).$$

• We will discretize parameter space by looking for φ satisfying

$$\boldsymbol{\varphi}(\xi+
ho)-\boldsymbol{\phi}_{T_2}\big(\boldsymbol{\varphi}(\xi_i)\big), \qquad i=0\div 2N_f,$$

for $\xi_i = i2\pi/(1+2N_f)$.

Indeterminations

We have two indeterminations to cope with.

 (Invariant curve indetermination) Assuming there exists a parametrization of a 2D torus,

$$\varphi(\theta_1 + t\omega_1, \theta_2 + t\omega_2) = \phi_t(\psi(\theta_1, \theta_2)),$$

not only $\boldsymbol{\varphi}(\xi) = \boldsymbol{\psi}(\xi, 0)$ satisfies

$$\varphi(\xi+\rho)=\phi_{T_2}(\varphi(\xi)),$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

but any $\varphi(\xi) := \psi(\xi, \eta_0)$ for $\eta_0 \in [0, 2\pi)$ also does.

- This indetermination can be avoided by fixing a curve on the torus.
- This can be done by prescribing a value for a coordinate of A_0 .
- It must be chosen by geometrical considerations.

Computation of invariant 2D tori

Indeterminations

We have two indeterminations to cope with.

- (*Phase shift indetermination*) If $\varphi(\xi)$ satisifies $\varphi(\xi + \rho) = \phi_{T_2}(\varphi(\xi))$, then, for any $\xi_0 \in \mathbb{R}$, $\varphi_{\xi_0}(\xi) = \varphi(\xi \xi_0)$ also does.
 - ► This indetermination can be avoided by prescribing a coordinate of A₁ to be zero.
 - Assume that $A_1 = (A_1^1, \dots, A_1^6)$, $B_1 = (B_1^1, \dots, B_1^6)$. If $(A_1^k, B_1^k) \neq (0, 0)$, since

$$\begin{aligned} A_1^k \cos(k(\xi - \xi_0)) + B_1^k \sin(k(\xi - \xi_0)) \\ &= (A_1^k \cos k\xi_0 - B_1^k \sin k\xi_0) \cos k\xi \\ &+ (A_1^k \sin k\xi_0 + B_1^k \cos k\xi_0) \sin k\xi \\ &=: \widetilde{A}_1^k \cos k\xi + \widetilde{B}_1^k \sin k\xi. \end{aligned}$$

we can always choose ξ_0 such that $\widetilde{A}_1^k = 0$.

Computation of invariant 2D tori

The system of equations

We want to design a system of equations such that

- We are to prescribe values for the energy. For that, we add an additional equation.
- We want to overcome high instability. For that, we implement multiple shooting.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of invariant 2D tori

The system of equations

We will, therefore, look for $\varphi_0, \ldots, \varphi_{m-1}$ satysfying

$$\begin{cases} H(\varphi_0(0)) - h &= 0\\ \varphi_{j+1}(\xi_i) - \phi_{T_2/m}(\varphi_j(\xi_i)) &= 0, \quad j = 0 \div m - 2, \quad i = 0, \dots, 2N_f,\\ \varphi_0(\xi_i + \rho) - \phi_{T_2/m}(\varphi_{m-1}(\xi_i)) &= 0, \quad i = 0 \div 2N_f, \end{cases}$$

where $\xi_i = i(2\pi)/(1+2N_f)$, $i = 0 \div 2N_f$, and the unknowns are

$$h, T_2, \rho, A_0^0, A_1^0, B_1^0, \dots, A_{N_f}^0, B_{N_f}^0, \dots, A_0^{m-1}, A_1^{m-1}, B_1^{m-1}, \dots, A_{N_f}^{m-1}, B_{N_f}^{m-1}$$

with $h, T_2, \rho \in \mathbb{R}, A_i^j, B_i^j \in \mathbb{R}^6$ and

$$arphi_j(\xi) = oldsymbol{A}_0^j + \sum_{l=0}^{N_f} \Big(oldsymbol{A}_l^j \cos(l\xi) + oldsymbol{B}_l^j \sin(l\xi) \Big).$$

This system is $(1 + 6m(1 + 2N_f)) \times (3 + 6m(1 + 2N_f)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Computation of invariant 2D tori

Computation of a torus

The tori we are looking for are embedded in 2–parametric families, which can be paramtrized by 2 parameters among h, ρ, T_2 . Therefore, in order to compute a torus, we

- eliminate one coordinate of A_0^0 , in order to fix a curve on the torus,
- ► set a coordinate of A⁰₁ equal to zero and eliminate it, in order to get rid of the phase shift indetermination.
- eliminate two unknonws among h, T_2 , ρ , in order to fixate a particular torus.

When applying Newton's method, we end up with a

$$(1+6m(1+2N_f)) \times (3+6m(1+2N_f)-4)$$

system of linear equations, with unique solution but which has more equations than uknowns.

This is not a problem, as long as we use the general rutine we have described, specifying the kernel dimension to be zero.

Error estimation

In order to estimate the error of the computed torus, we can consider a refinement of the discretization of the parameter space, that is,

$$\widetilde{\xi}_j = j \frac{2\pi}{M}$$

for $M \gg 1 + 2N_f$, and use as error estimate

$$\max_{\substack{j=0 \div M}} \left\| \left(\begin{array}{c} \left(\varphi_{l+1}(\widetilde{\xi}_j) - \phi_{T_2/m}(\varphi_l(\widetilde{\xi}_j)) \right)_{l=0}^{m-2} \\ \varphi_0(\widetilde{\xi}_j + \rho) - \phi_{T_2/m}(\varphi_{m-1}(\widetilde{\xi}_j)) \end{array} \right) \right\|$$

for some norm.

We can reduce this estimate by increasing N_f , but this increases the size of the linear system we need to solve, and this is the bottleneck of the procedure.

Computation of invariant 2D tori

Globalization of a torus from an invariant curve

Assume we have φ satisfying $\varphi(\xi + \rho) = \phi_{T_2}(\varphi(\xi))$.

Then a calculation shows that

$$oldsymbol{\psi}(heta_1, heta_2) := oldsymbol{\phi}_{rac{ heta_2}{2\pi}T_2}\Big(oldsymbol{arphi}ig(heta_1-rac{ heta_2}{2\pi}
hoig)\Big)$$

describes an invariant torus with frequency vector $(\rho/T_2, 2\pi/T_2)$, that is,

$$\phi_t(\psi(\theta_1,\theta_2)) = \psi(\theta_1 + t\omega_1,\theta_2 + t\omega_2).$$

with $\omega_1 = \rho/T_2, \, \omega_2 = 2\pi/T_2.$

If we need to integrate a trajectory on the computed torus for a long time, we just have to numerically integrate it from invariant curve to invariant curve.

Computation of invariant 2D tori

Starting from a periodic orbit

• Let
$$\mathbf{x}_0$$
 be s.t. $\boldsymbol{\phi}_T(\mathbf{x}_0) = \mathbf{x}_0$.

• Let $s_1, s_2, s_i = \lambda_i + \lambda_i^{-1}$ be the corresponding stability parameters.

• Assume
$$|s_1| < 1$$
, $s_1 = 2 \cos \nu$ (i.e., $\lambda_1 = \cos \nu + i \sin \nu$).

A calculation shows that, for

$$\begin{aligned} \varphi(\xi) &= x_0 + \gamma \Big(\cos(\xi - \xi_0) v_1 - \sin(\xi - \xi_0) v_2 \Big) \\ &= x_0 + \gamma \Big((v_1 \cos \xi_0 - v_2 \sin \xi_0) \cos \xi + (v_1 \sin \xi_0 + v_2 \cos \xi_0) \sin \xi \Big) \end{aligned}$$

we have

$$L^{\mathbf{x}_0}_{\boldsymbol{\phi}_T}(\boldsymbol{\varphi}(\xi)) = \boldsymbol{\varphi}(\xi + \nu).$$

where $L_{\phi_T}^{\mathbf{x}_0}$ is the linear approximation of ϕ_T around \mathbf{x}_0 .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Computation of invariant 2D tori

Starting from a periodic orbit

• Let
$$\boldsymbol{x}_0$$
 be s.t. $\boldsymbol{\phi}_T(\boldsymbol{x}_0) = \boldsymbol{x}_0$.

• Let $s_1, s_2, s_i = \lambda_i + \lambda_i^{-1}$ be the corresponding stability parameters.

• Assume
$$|s_1| < 1$$
, $s_1 = 2 \cos \nu$ (i.e., $\lambda_1 = \cos \nu + i \sin \nu$).

Recall that we have shown that,

$$L^{\mathbf{x}_0}_{\boldsymbol{\phi}_T}(\boldsymbol{\varphi}(\xi)) = \boldsymbol{\varphi}(\xi + \nu).$$

Therefore, as initial seed to get a torus around the o.p., we can take

$$\begin{array}{rcl} h & = & H(\mathbf{x}_0), & \mathbf{A}_0 & = & \mathbf{x}_0, \\ T_2 & = & T, & \mathbf{A}_1 & = & (\mathbf{v}_1 \cos \xi_0 - \mathbf{v}_2 \sin \xi_0), \\ \rho & = & \nu, & \mathbf{B}_1 & = & (\mathbf{v}_1 \sin \xi_0 + \mathbf{v}_2 \cos \xi_0), \\ \mathbf{A}_j & = & \mathbf{B}_j = 0, & j \ge 2. \end{array}$$

▲□▶▲圖▶★≣▶★≣▶ ≣ のへで

Computation of invariant 2D tori

Starting from a periodic orbit

$$\begin{array}{rcl} h & = & H(\mathbf{x}_0), & A_0 & = & \mathbf{x}_0, \\ T_2 & = & T, & A_1 & = & (\mathbf{v}_1 \cos \xi_0 - \mathbf{v}_2 \sin \xi_0), \\ \rho & = & \nu, & \mathbf{B}_1 & = & (\mathbf{v}_1 \sin \xi_0 + \mathbf{v}_2 \cos \xi_0), \\ A_j & = & \mathbf{B}_j & = 0, & j \geq 2. \end{array}$$

Note that:

- We can use ξ₀ to get one coordinate of A₁ equal to zero and, in this way, avoid the phase shift indetermination.
- For the nonlinear system ρ ≠ ν, but we don't know if either ρ > ν or ρ < ν. The same happens with T₂ and h.
- ► The o.p. itselfs satisfies the equations of an invariant torus, and has a large basin of attraction as a zero of these equations.

We can avoid the problems of the last two points above at once by keeping constant one coordinate of A_1 or B_1 which is different from zero in the initial seed.

Computation of invariant 2D tori

Starting from a p.o.: second method We have seen that

$$L_{\varphi}(\xi) = \mathbf{x}_0 + \gamma \Big((\mathbf{v}_1 \cos \xi_0 - \mathbf{v}_2 \sin \xi_0) \cos \xi + (\mathbf{v}_1 \sin \xi_0 + \mathbf{v}_2 \cos \xi_0) \cos \xi \Big)$$

parametrizes a closed curve invariant by the linarized time–T flow. We can globalize this invariant curve to a 2D torus invariant by the linearized flow as

$$L_{\boldsymbol{\psi}}(\theta_1,\theta_2) = L_{\boldsymbol{\phi}_{(\theta_2/2\pi)T_2}}^{\mathbf{x}_0} \left(L_{\boldsymbol{\varphi}}(\theta_1 - \frac{\theta_2}{2\pi}\nu) \right)$$

where we denote, for an arbitrary function G and an arbitrary point y_0 , the linearization of G around y_0 as

$$L_{\boldsymbol{G}}^{\boldsymbol{y}_0}(\boldsymbol{y}) = \boldsymbol{y}_0 + D\boldsymbol{G}(\boldsymbol{y}_0)(\boldsymbol{y} - \boldsymbol{y}_0).$$

Then, a calculation shows that

$$L_{\phi_t}^{\phi_{(\theta_2/2\pi)T}(\mathbf{x}_0)}\left(L_{\psi}(\theta_1,\theta_2)\right) = L_{\psi}\left(\theta_1 + t\frac{\nu}{T}, \theta_2 + t\frac{2\pi}{T}\right).$$

Computation of invariant 2D tori

Starting from a p.o.: second method

$$L_{\phi_t}^{\phi_{\frac{\theta_2}{2\pi}T}(\mathbf{x}_0)}\left(L_{\psi}(\theta_1,\theta_2)\right) = L_{\psi}\left(\theta_1 + t\frac{\nu}{T},\theta_2 + t\frac{2\pi}{T}\right).$$

- ► The previous way to obtain an initial seed to compute a torus corresponds to take T₂ close to the period of the backbone periodic orbit (second period of thelinear torus).
- ▶ In some situations, we will want to get an initial seed for a torus with *T*₂ close to a normal period of the backbone p.o. (first period of the linear torus).
- ▶ For that, we can take as initial seed

$$h = H(\mathbf{x}_0), \quad T_2 = \frac{2\pi}{\nu}T, \quad \rho = T_2\frac{2\pi}{T},$$

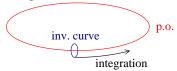
and A_i , B_j the Fourier coefficients (easily obtained by a DFT) of $\{L_{\psi}(0, j\frac{2\pi}{N})\}_{j=0}^{N-1}$.

・ロト・(部・・目下・(日下・))

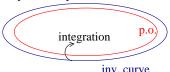
Starting longitudinally and transversally

In a somewhat sloopy/informal/unfortunate fashion,

The first method of starting from a p.o. will be referred to as "starting longitudinally from a p.o.".



The second method of starting from a p.o. will be referred to as "starting transversally from a p.o.".



▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

▲□▶▲□▶▲□▶▲□▶ □ のQで

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

Bibliography

Continuation of families of 2D tori

Computation of a family of tori in the RTBP

Remember that the corresponding equations are

$$\begin{cases} H(\varphi_0(0)) - h &= 0\\ \varphi_{j+1}(\xi_i) - \phi_{\delta/m}(\varphi_j(\xi_i)) &= 0, \quad j = 0 \div m - 2, \quad i = 0, \dots, 2N_f,\\ \varphi_0(\xi_i + \rho) - \phi_{\delta/m}(\varphi_{m-1}(\xi_i)) &= 0, \quad i = 0 \div 2N_f, \end{cases}$$

with unknowns

$$h, T_2, \rho, A_0^0, A_1^0, B_1^0, \dots, A_{N_f}^0, B_{N_f}^0, \dots, A_0^{m-1}, A_1^{m-1}, B_1^{m-1}, \dots, A_{N_f}^{m-1}, B_{N_f}^{m-1}$$

Assume $A_0^{k_1}, A_1^{k_2} = 0$ are fixed in order to eliminate indeterminations, so that each value of the remaining coordinates corresponds at most to a torus.

The tori we are looking for are embedded in two-parametric families, so we have to fix one more parameter in order to use the pseudo-arclength method.

Continuation of families of 2D tori

Computation of a family of tori in the RTBP

Remember that the corresponding equations are

$$\begin{cases} H(\varphi_0(0)) - h &= 0\\ \varphi_{j+1}(\xi_i) - \phi_{\delta/m}(\varphi_j(\xi_i)) &= 0, \quad j = 0 \div m - 2, \quad i = 0, \dots, 2N_f,\\ \varphi_0(\xi_i + \rho) - \phi_{\delta/m}(\varphi_{m-1}(\xi_i)) &= 0, \quad i = 0 \div 2N_f, \end{cases}$$

with unknowns

$$h, T_2, \rho, A_0^0, A_1^0, B_1^0, \dots, A_{N_f}^0, B_{N_f}^0, \dots, A_0^{m-1}, A_1^{m-1}, B_1^{m-1}, \dots, A_{N_f}^{m-1}, B_{N_f}^{m-1}$$

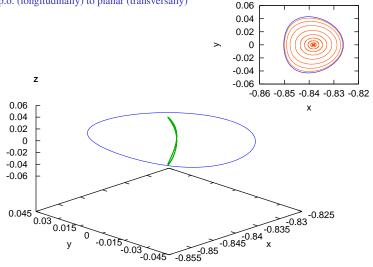
Assume $A_0^{k_1}, A_1^{k_2} = 0$ are fixed in order to eliminate indeterminations, so that each value of the remaining coordinates corresponds at most to a torus. Interesting cases are

- to fix ρ to a number with good Diophantine properties,
- ▶ to fix *h*, in order to follow an iso–energetic family.

Continuation of families of 2D tori

Example: 2D tori containing Lissajous orbits around L_1

From vertical p.o. (longitudinally) to planar (transversally)

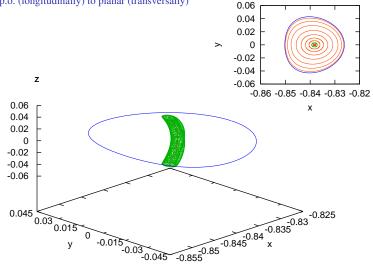


▲□▶ ▲□▶ ▲ □▶ ★ □ ▶ □ ● の < @

Continuation of families of 2D tori

Example: 2D tori containing Lissajous orbits around L_1

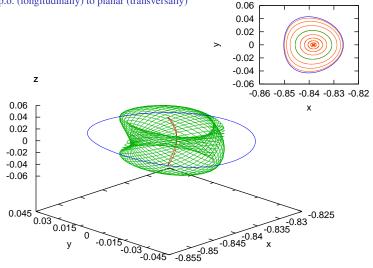
From vertical p.o. (longitudinally) to planar (transversally)



Continuation of families of 2D tori

Example: 2D tori containing Lissajous orbits around L_1

From vertical p.o. (longitudinally) to planar (transversally)

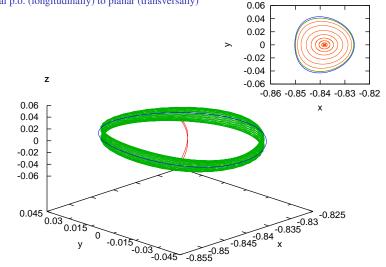


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Continuation of families of 2D tori

Example: 2D tori containing Lissajous orbits around L_1

From vertical p.o. (longitudinally) to planar (transversally)

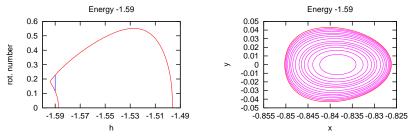


▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Continuation of families of 2D tori

Example: 2D tori containing Lissajous orbits around L_1

Full family of 2D tori[8]



Variables:

- ► *h* : energy (Hamiltonian)
- ρ : (horizontal) **rotation number**:

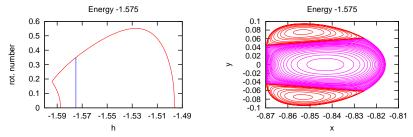
$$\rho = 2\pi \left(\frac{\omega_{\text{horiz}}}{\omega_{\text{vert}}} - 1\right) = 2\pi \left(\begin{array}{c}\text{num. of horiz. turns}\\\text{per vertical period}\end{array}\right) - 2\pi$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Continuation of families of 2D tori

Example: 2D tori containing Lissajous orbits around L_1

Full family of 2D tori[8]



Variables:

- ► *h* : energy (Hamiltonian)
- ρ : (horizontal) **rotation number**:

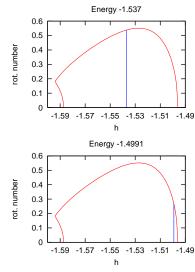
$$\rho = 2\pi \left(\frac{\omega_{\text{horiz}}}{\omega_{\text{vert}}} - 1\right) = 2\pi \left(\begin{array}{c}\text{num. of horiz. turns}\\\text{per vertical period}\end{array}\right) - 2\pi$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

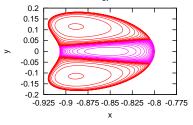
Continuation of families of 2D tori

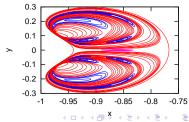
Example: 2D tori containing Lissajous orbits around L_1

Full family of 2D tori[8]



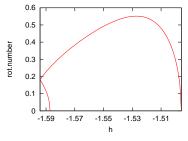
Energy -1.537





Global parametrization of families using interpolation

- ▶ In order to globally describe families or tori[10], we can
 - Compute a fine grid of tori covering the whole family we are interested in.
 - Interpolate between computed tori in order to obtain the ones not in the grid.
- ▶ For instance, for invariant tori containing Lissajous orbits around *L*₁:
 - The interpolation is done in the $h-\rho$ representation (2D Lagrange iterated).
 - Final product: a routine that returns Fourier series for φ from h, ρ .



Global parametrization of families using interpolation Some data

Number of tori on the grid:

25433.

Total processor time for tori:

836.88 hours (34.8 days).

(When using a cluster, divide by the number of processes).

Sizes of binary files storing all the Fourier coefficients of the grid:

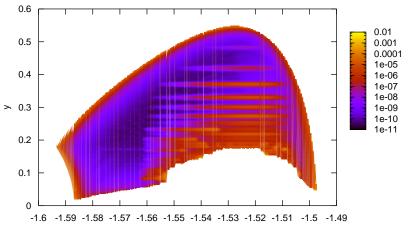
180 MB.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Continuation of families of 2D tori

Global parametrization of families using interpolation

Interpolation error for tori



▲□▶▲□▶▲□▶▲□▶ □ のQで

Invariant manifolds of p.o.

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena Invariant manifolds of p.o.

Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Invariant manifolds of p.o.

Computation

- Let \mathbf{x}_0 be an i.e. of a *T*-periodic orbit: $\phi_T(\mathbf{x}_0) = \mathbf{x}_0$.
- $\varphi(\theta) = \phi_{\frac{\theta}{2\pi}T}(x_0)$ parametrizes the p.o.
- Let Λ ∈ Spec Dφ_T(x₀), v ∈ V_Λ(Dφ_T(x₀)), (Λ > 1 unst. mani, Λ < 1 stb. one).
 Then v(θ) = Λ^{-θ/2π}Dφ_{θ/2πT}(x₀)v parametrizes the tangent vectors to the manifold.
- $\overline{\psi}(\theta,\xi) = \varphi(\theta) + \xi v(\theta)$ parametrizes the linear approximation of the manifold.

(Can be evaluated for small ξ only).

Satisfies

$$\phi_t(\overline{\psi}(\theta,\xi)) = \overline{\psi}(\theta + t\omega, e^{t\lambda}\xi) + O(\xi^2)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

for $\omega = \frac{2\pi}{T}$, $\lambda = \frac{\omega \ln \Lambda}{2\pi}$.

Invariant manifolds of p.o.

Globalistaion

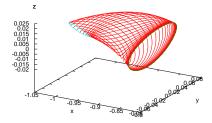
The manifold can be globalised by numerical integration: for each ξ , take *m* such that $\Lambda^{-m}\xi$ small and compute

$$\Psi(\theta,\xi) = \phi_{mT}(\theta,\Lambda^{-m}\xi).$$

 Ψ satisfies

$$\phi_t(\Psi(\theta,\xi)) = \Psi(\theta + t\omega, e^{t\lambda}\xi) + O((\Lambda^{-m}\xi)^2).$$

Example: 2D unstable manifold associated to a Halo orbit (Moon branch).



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Invariant manifolds of tori

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori

Computation of homoclinic connections Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Manifolds of tori[9]

• Assume $\theta \rightarrow \varphi(\theta)$ parametrizes an invariant curve:

$$\phi_{T_2}(\varphi(\theta)) = \varphi(\theta + \rho)$$

We want to find $\Lambda \in \mathbb{C}$ and $\boldsymbol{u} : \mathbb{R} \to \mathbb{R}^6$, 2π -periodic, s.t.

$$D\phi_{T_2}(\varphi(\theta-\rho))\boldsymbol{u}(\theta-\rho)=\Lambda\boldsymbol{u}(\theta),$$

which can be compactly written as

$$\mathcal{C}\boldsymbol{u}=\Lambda\boldsymbol{u},$$

with

$$(\mathcal{C}\boldsymbol{u})(\theta) = \boldsymbol{D}\boldsymbol{\phi}_{T_2} \big(\boldsymbol{\varphi}(\theta-\rho)\big)\boldsymbol{u}(\theta-\rho),$$

and u is expanded as a (truncated) Fourier series.

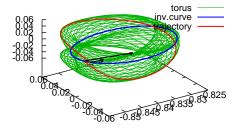
• We an discretize the previous equation using FFT.

Long Time Integrations

Homoclinic and heteroclinic phenomena

Invariant manifolds of tori

Manifolds of tori



$$D\phi_{T_2}(\varphi(\theta-\rho))\boldsymbol{u}(\theta-\rho) = \Lambda \boldsymbol{u}(\theta)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Long Time Integrations

Homoclinic and heteroclinic phenomena

Invariant manifolds of tori

Manifolds of tori

Notations for the DFT Given data $\{f_j\}_{j=0}^{N-1}$, we denote

$$F_{\{f_j\}_{j=0}^{N-1}}(k) = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-i2\pi \frac{k}{N}j}, \qquad k = 0, \dots, N-1,$$

$$A_{\{f_j\}_{j=0}^{N-1}}(k) = \frac{o_k}{N} \sum_{j=0}^{N-1} f_j \cos(2\pi \frac{\kappa}{N} j), \qquad k = 0 \div N/2,$$

$$B_{\{f_j\}_{j=0}^{N-1}}(k) = \frac{2}{N} \sum_{j=0}^{N-1} f_j \sin(2\pi \frac{k}{N}j), \qquad k = 1 \div N/2 - 1,$$

 $\begin{array}{ll} (\delta_0 = \delta_{\frac{N}{2}} = 1, \, \delta_k = 2 \text{ for } k = 0, \frac{N}{2}). \text{ If } f_j = f(\theta_j) \text{ for } \theta_j = j2\pi/N \text{ and } f \text{ is } \\ 2\pi - \text{periodic,} & & \\ f(\theta) & \approx & A_{\{f_j\}_{j=0}^{N-1}}(0) + \sum_{k=0}^{N/2} \left(A_{\{f_j\}_{j=0}^{N-1}}(k) \cos(k\theta) + B_{\{f_j\}_{j=0}^{N-1}}(k) \sin(k\theta) \right) \\ & & + A_{\{f_j\}_{i=0}^{N-1}}(N/2) \cos((N/2)\theta). \end{array}$

(ロト・個ト・モト・モト・モーのQの)

Invariant manifolds of tori

Manifolds of tori

Discretization of the C operator

To discretize Cu, we approximate the Fourier coeff. of Cu by the DFT

$$(\mathcal{C}\boldsymbol{u})(\theta) \approx \overline{\boldsymbol{A}}_0 + \sum_{k=1}^{N/2-1} \left(\overline{\boldsymbol{A}}_k \cos(k\theta) + \overline{\boldsymbol{B}}_k \sin(k\theta) \right) + \overline{\boldsymbol{A}}_{N/2} \cos((N/2)\theta)$$

If we take *u* of the form

$$\boldsymbol{u}(\theta) = \boldsymbol{A}_0 + \sum_{k=1}^{N/2-1} \left(\boldsymbol{A}_k \cos(k\theta) + \boldsymbol{B}_k \sin(k\theta) \right) + \boldsymbol{A}_{N/2} \cos((N/2)\theta),$$

and denote

$$\begin{aligned} \boldsymbol{X} &= (\boldsymbol{A}_0, \boldsymbol{A}_1, \boldsymbol{B}_1, \dots, \boldsymbol{A}_{N/2-1}, \boldsymbol{B}_{N/2-1}, \boldsymbol{A}_{N/2}), \\ \overline{\boldsymbol{X}} &= (\overline{\boldsymbol{A}}_0, \overline{\boldsymbol{A}}_1, \boldsymbol{B}_1, \dots, \overline{\boldsymbol{A}}_{N/2-1}, \overline{\boldsymbol{B}}_{N/2-1}, \overline{\boldsymbol{A}}_{N/2}), \end{aligned}$$

then, for a suitable (finite-dim.) matrix C,

$$\overline{X} = CX.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Long Time Integrations

Homoclinic and heteroclinic phenomena

Invariant manifolds of tori

Manifolds of tori

Discretization of the \mathcal{C} operator

The discrete version of $C\boldsymbol{u} = \Lambda \boldsymbol{u}$ is

$$CX = \Lambda X$$

Recall:

$$(\mathcal{C}\boldsymbol{u})(\theta) = D\boldsymbol{\phi}_{T_2}(\boldsymbol{\varphi}(\theta-\rho))\boldsymbol{u}(\theta-\rho).$$

Denote: $\boldsymbol{w}_k = (0, \dots, \stackrel{(k)}{1}, \dots, 0), k = 1 \div 6.$ The coefficients of the *C* matrix can be computed from

where the latter term can be computed in a single FFT.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q ()

Structure of the spectrum

- ► The eigenvalues of the discretized equation appear grouped in circles.
- ► If the torus is reducible, there are as many circles as eigenvalues of the reduced matrix ("monodromy matrix"), and each circle contains one of them.
- Apart from unit circles, there will be 2 cicles containing Λ, Λ⁻¹, for some Λ > 0. We are interested in the latter. The corresponding eigenvectors, u_Λ(θ), u_{Λ⁻¹}(θ), give the vectors tangent to the manifolds we look for.
- There are some additional issues on the accuracy of the computed eigenvalues. See (Jorba, 2001) for details.

Manifolds of tori

Globalisation of an inv. curve to the whole torus

Once we have the (linear approximation of the) inv. manifolds corresponding to an inv. curve inside the torus, we globalize them to the whole torus as usual:

$$\mathbf{v}(\theta_1,\theta_2) = \Lambda^{-\theta_2/2\pi} D\phi_{\frac{\theta_2 T_2}{2\pi}} \left(\varphi(\theta_1 - \frac{\theta_2}{2\pi} \rho) \right) \mathbf{u}(\theta_1 - \frac{\theta_2}{2\pi} \rho)$$

satisfies

$$D\phi_t(\varphi(\theta_1,\theta_2))\mathbf{v}(\theta_1,\theta_2) = e^{\lambda t}\mathbf{v}(\theta_1 + t\omega_1,\theta_2 + t\omega_2),$$

being

$$\begin{aligned} \lambda &= \ln(\Lambda)/T_2, \\ \omega_1 &= \rho/T_2, \\ \omega_2 &= 2\pi/T_2. \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Invariant manifolds of tori

Globalisation of the manifold

- φ param. inv. curve $(\phi_{T_2}(\varphi(\xi)) = \varphi(\xi + \rho))$ $\implies \psi(\theta_1, \theta_2) = \phi_{\frac{\theta_2}{2\pi}T_2}(\varphi(\theta_1 - \frac{\theta_2}{2\pi}\rho))$ param whole 2D torus. Satisfies: $\phi_t(\psi(\theta_1, \theta_2)) = \psi(\theta_1 + t\omega_1, \theta_2 + t\omega_2),$ with $\omega_1 = \frac{\rho}{T_2}, \omega_2 = \frac{2\pi}{T_2}.$
- ► *u* param. vec. tg. mani. inv. curve $(D\phi_{T_2}(\varphi(\xi))u(\xi) = \Lambda u(\xi + \rho))$ $\implies v(\theta_1, \theta_2) = \Lambda^{-\frac{\theta_2}{2\pi}} D\phi_{\frac{\theta_2}{2\pi}T_2} \Big(\varphi(\theta_1 - \frac{\theta_2}{2\pi}\rho)\Big)u(\theta_1 - \frac{\theta_2}{2\pi}\rho).$ Satisfies: $D\phi_t(\psi(\theta_1, \theta_2))v(\theta_1, \theta_2) = \Lambda^{-\frac{i\omega_2}{2\pi}}v(\theta_1 + t\omega_1, \theta_2 + t\omega_2).$ ► Linear approximation to the manifold:

$$\overline{\psi}(\theta_1,\theta_2,\xi) = \psi(\theta_1,\theta_2) + \xi v(\theta_1,\theta_2)$$

Satisfies: $\phi_t(\overline{\psi}(\theta_1, \theta_2, \xi)) = \overline{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2, e^{t\lambda}\xi) + O(\xi^2)$, with $\lambda = \frac{\omega_2 \ln \Lambda}{2\pi}$. Can be evaluated **for small** ξ **only**.

Invariant manifolds of tori

Globalisation of the manifold

- φ param. inv. curve $(\phi_{T_2}(\varphi(\xi)) = \varphi(\xi + \rho))$ $\implies \psi(\theta_1, \theta_2) = \phi_{\frac{\theta_2}{2\pi}T_2}(\varphi(\theta_1 - \frac{\theta_2}{2\pi}\rho))$ param whole 2D torus. Satisfies: $\phi_t(\psi(\theta_1, \theta_2)) = \psi(\theta_1 + t\omega_1, \theta_2 + t\omega_2),$ with $\omega_1 = \frac{\rho}{T_2}, \omega_2 = \frac{2\pi}{T_2}.$
- ► **u** param. vec. tg. mani. inv. curve $(D\phi_{T_2}(\varphi(\xi))u(\xi) = \Lambda u(\xi + \rho))$ $\implies \mathbf{v}(\theta_1, \theta_2) = \Lambda^{-\frac{\theta_2}{2\pi}} D\phi_{\frac{\theta_2}{2\pi}T_2} \Big(\varphi(\theta_1 - \frac{\theta_2}{2\pi}\rho)\Big)u(\theta_1 - \frac{\theta_2}{2\pi}\rho).$ Satisfies: $D\phi_t(\psi(\theta_1, \theta_2))\mathbf{v}(\theta_1, \theta_2) = \Lambda^{-\frac{t\omega_2}{2\pi}}\mathbf{v}(\theta_1 + t\omega_1, \theta_2 + t\omega_2).$ ► Linear approximation to the manifold:

$$\overline{\psi}(\theta_1,\theta_2,\xi) = \psi(\theta_1,\theta_2) + \xi v(\theta_1,\theta_2)$$

Satisfies: $\phi_t(\overline{\psi}(\theta_1, \theta_2, \xi)) = \overline{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2, e^{t\lambda}\xi) + O(\xi^2)$, with $\lambda = \frac{\omega_2 \ln \Lambda}{2\pi}$. Can be evaluated **for small** ξ **only**.

Invariant manifolds of tori

Globalisation of the manifold

- φ param. inv. curve $(\phi_{T_2}(\varphi(\xi)) = \varphi(\xi + \rho))$ $\implies \psi(\theta_1, \theta_2) = \phi_{\frac{\theta_2}{2\pi}T_2}(\varphi(\theta_1 - \frac{\theta_2}{2\pi}\rho))$ param whole 2D torus. Satisfies: $\phi_t(\psi(\theta_1, \theta_2)) = \psi(\theta_1 + t\omega_1, \theta_2 + t\omega_2),$ with $\omega_1 = \frac{\rho}{T_2}, \omega_2 = \frac{2\pi}{T_2}.$
- *u* param. vec. tg. mani. inv. curve $(D\phi_{T_2}(\varphi(\xi))u(\xi) = \Lambda u(\xi + \rho))$ $\implies v(\theta_1, \theta_2) = \Lambda^{-\frac{\theta_2}{2\pi}} D\phi_{\frac{\theta_2}{2\pi}T_2} \Big(\varphi(\theta_1 - \frac{\theta_2}{2\pi}\rho)\Big)u(\theta_1 - \frac{\theta_2}{2\pi}\rho).$ Satisfies: $D\phi_t(\psi(\theta_1, \theta_2))v(\theta_1, \theta_2) = \Lambda^{-\frac{t\omega_2}{2\pi}}v(\theta_1 + t\omega_1, \theta_2 + t\omega_2).$
- Linear approximation to the manifold:

$$\overline{\psi}(\theta_1,\theta_2,\xi) = \psi(\theta_1,\theta_2) + \xi \boldsymbol{\nu}(\theta_1,\theta_2)$$

Satisfies: $\phi_t(\overline{\psi}(\theta_1, \theta_2, \xi)) = \overline{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2, e^{t\lambda}\xi) + O(\xi^2)$, with $\lambda = \frac{\omega_2 \ln \Lambda}{2\pi}$. Can be evaluated **for small** ξ **only**.

Invariant manifolds of tori

Globalisation of the manifold

Linear approximation to the manifold:

 $\overline{\psi}(\theta_1,\theta_2,\xi) = \psi(\theta_1,\theta_2) + \xi v(\theta_1,\theta_2)$

Satisfies: $\phi_t(\overline{\psi}(\theta_1, \theta_2, \xi)) = \overline{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2, e^{t\lambda}\xi) + O(\xi^2)$, with $\lambda = \frac{\omega_2 \ln \Lambda}{2\pi}$. Can be evaluated for small ξ only.

Globalization of the manifold: for each ξ, take m such that Λ^{-m}ξ small and compute

$$\Psi(\theta_1, \theta_2, \xi) = \phi_{mT_2} \Big(\overline{\psi}(\theta_1 - m\rho, \theta_2, \Lambda^{-m}\xi) \Big)$$

(m > 0 for unst. manifold, m < 0 for stb. manifold) Ψ satisfies

$$\phi(\Psi(\theta_1,\theta_2,\xi)) = \Psi(\theta_1 + t\omega_1,\theta_2 + t\omega_2,e^{t\lambda}\xi) + O((\Lambda^{-m}\xi)^2)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

LINVARIANT MANIFOLDS OF TORI

Globalisation of the manifold

Linear approximation to the manifold:

 $\overline{\psi}(\theta_1,\theta_2,\xi) = \psi(\theta_1,\theta_2) + \xi v(\theta_1,\theta_2)$

Satisfies: $\phi_t(\overline{\psi}(\theta_1, \theta_2, \xi)) = \overline{\psi}(\theta_1 + t\omega_1, \theta_2 + t\omega_2, e^{t\lambda}\xi) + O(\xi^2)$, with $\lambda = \frac{\omega_2 \ln \Lambda}{2\pi}$. Can be evaluated for small ξ only.

 Globalization of the manifold: for each ξ, take m such that Λ^{-m}ξ small and compute

$$\Psi(\theta_1,\theta_2,\xi) = \phi_{mT_2} \Big(\overline{\psi}(\theta_1 - m\rho,\theta_2,\Lambda^{-m}\xi)\Big)$$

(m > 0 for unst. manifold, m < 0 for stb. manifold) Ψ satisfies

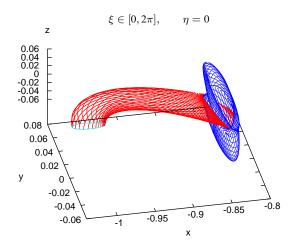
$$\phi\big(\Psi(\theta_1,\theta_2,\xi)\big) = \Psi(\theta_1 + t\omega_1,\theta_2 + t\omega_2,e^{t\lambda}\xi) + O\big((\Lambda^{-m}\xi)^2\big)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Invariant manifolds of tori

An example

3D unstable manifold associated to a Lissajous orbit



Invariant manifolds of tori

An example

3D unstable manifold associated to a Lissajous orbit

 $\xi \in [0, 2\pi], \qquad \eta = 0, \pi$ z 0.06 0.04 0.02 0.02 -0.02 -0.04 -0.06 0.08 I I I I 0.06 0.04 0.02 у -0.02 -0.8 -0.04 -0.85 -0.9 -0.95 -0.06 -1 х

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Invariant manifolds of tori

An example

3D unstable manifold associated to a Lissajous orbit

 $\xi \in [0, 2\pi], \qquad \eta \in [0, 2\pi]$ z 0.06 0.04 0.02 0.02 -0.02 -0.04 -0.06 0.08 0.06 0.04 0.02 у -0.02 -0.8 -0.04 -0.85 -0.9 -0.95 -0.06 -1 х

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Invariant manifolds of tori

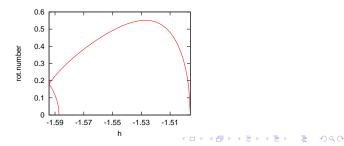
Global parametrization of families using interpolation

- In order to globally describe families or tori, we can
 - Compute a fine grid of tori covering the whole family we are interested in.
 - Interpolate between computed tori in order to obtain the ones not in the grid.

The same can be done for their manifolds.

► For instance, for invariant tori containing Lissajous orbits around *L*₁:

- The interpolation is done in the $h-\rho$ representation (2D Lagrange iterated).
- Final product: a routine that returns Fourier series for φ , u^u , u^s from h, ρ .



Global parametrization of families using interpolation Some data

Number of tori on the grid:

25433.

Total processor time for tori:

836.88 hours (34.8 days).

(When using a cluster, divide by the number of processes).

• Total processor time for manifolds (unstable+stable):

79.19 hours.

Sizes of binary files storing all the Fourier coefficients of the grid:

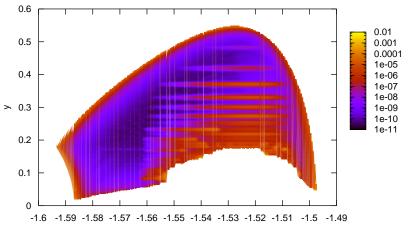
180 MB.

- File for tori: 180 MB.
- ► Files for unst. and stb. manifolds: 128 MB each.

Invariant manifolds of tori

Global parametrization of families using interpolation

Interpolation error for tori

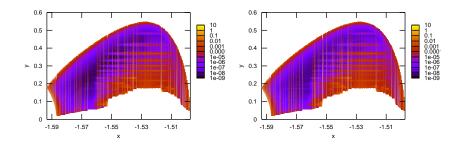


▲□▶▲□▶▲□▶▲□▶ □ のQで

Invariant manifolds of tori

Global parametrization of families using interpolation

Interpolation error for unstable and stable manifolds



Computation of homoclinic connections

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori

Computation of homoclinic connections

Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Computation of homoclinic connections

Finding connections

General setting

Some references: [7, 6, 4, 3]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Computation of homoclinic connections

Finding connections

General setting

- ► Let
 - ► $\overline{\psi}^{u}(\theta,\xi)$ param. of lin. app. of unst. mani. of departure object. ($\theta \in \mathbb{T}^{1}$ for p.o., $\theta \in \mathbb{T}^{2}$ for tori).
 - $\overline{\psi}^{s}(\theta,\xi)$ param. of lin. app. of stb. mani. of arrival object.
- Let Σ = {g(x) = 0} a hypersurface of section that the manifolds are known to intersect.
- Consider two associated Poincaré maps:
 - P_{Σ}^+ : integrating forward,
 - P_{Σ}^- : integrating backwards.
- Choose ξ_{small} small enough so that the linear approximation is valid.
- Look for a zero of

where $F(\theta^u, \theta^s) = P_{\Sigma}^+(\overline{\psi}^u(\theta^u, \xi_{\text{small}})) - P_{\Sigma}^-(\overline{\psi}^u(\theta^s, \xi_{\text{small}}))$

- $\blacktriangleright \ \theta^u, \theta^s \in \mathbb{T}^1 \text{ for p.o.,}$
- $\theta^u, \theta^s \in \mathbb{T}^2$ for tori.

Finding connections

General setting

- ► Let
 - ► $\overline{\psi}^{u}(\theta, \xi)$ param. of lin. app. of unst. mani. of departure object. $(\theta \in \mathbb{T}^{1} \text{ for p.o., } \theta \in \mathbb{T}^{2} \text{ for tori}).$
 - $\overline{\psi}^{s}(\theta,\xi)$ param. of lin. app. of stb. mani. of arrival object.
- Let Σ = {g(x) = 0} a hypersurface of section that the manifolds are known to intersect.
- Consider two associated Poincaré maps:
 - P_{Σ}^+ : integrating forward,
 - P_{Σ}^- : integrating backwards.
- Choose ξ_{small} small enough so that the linear approximation is valid.
- Look for a zero of

where $F(\theta^u, \theta^s) = P_{\Sigma}^+(\overline{\psi}^u(\theta^u, \xi_{\text{small}})) - P_{\Sigma}^-(\overline{\psi}^u(\theta^s, \xi_{\text{small}}))$

- $\blacktriangleright \ \theta^u, \theta^s \in \mathbb{T}^1 \text{ for p.o.,}$
- $\theta^u, \theta^s \in \mathbb{T}^2$ for tori.

Finding connections

General setting

- ► Let
 - ► $\overline{\psi}^{u}(\theta,\xi)$ param. of lin. app. of unst. mani. of departure object. $(\theta \in \mathbb{T}^{1} \text{ for p.o., } \theta \in \mathbb{T}^{2} \text{ for tori}).$
 - $\overline{\psi}^{s}(\theta,\xi)$ param. of lin. app. of stb. mani. of arrival object.
- Let Σ = {g(x) = 0} a hypersurface of section that the manifolds are known to intersect.
- Consider two associated Poincaré maps:
 - P_{Σ}^+ : integrating forward,
 - P_{Σ}^- : integrating backwards.

• Choose ξ_{small} small enough so that the linear approximation is valid.

Look for a zero of

where $F(\theta^{u}, \theta^{s}) = P_{\Sigma}^{+}(\overline{\psi}^{u}(\theta^{u}, \xi_{\text{small}})) - P_{\Sigma}^{-}(\overline{\psi}^{u}(\theta^{s}, \xi_{\text{small}}))$

- $\blacktriangleright \ \theta^u, \theta^s \in \mathbb{T}^1 \text{ for p.o.,}$
- $\theta^u, \theta^s \in \mathbb{T}^2$ for tori.

Finding connections

General setting

- ► Let
 - ► $\overline{\psi}^{u}(\theta,\xi)$ param. of lin. app. of unst. mani. of departure object. $(\theta \in \mathbb{T}^{1} \text{ for p.o., } \theta \in \mathbb{T}^{2} \text{ for tori}).$
 - $\overline{\psi}^{s}(\theta,\xi)$ param. of lin. app. of stb. mani. of arrival object.
- Let Σ = {g(x) = 0} a hypersurface of section that the manifolds are known to intersect.
- Consider two associated Poincaré maps:
 - P_{Σ}^+ : integrating forward,
 - P_{Σ}^{-} : integrating backwards.

• Choose ξ_{small} small enough so that the linear approximation is valid.

Look for a zero of

where $F(\theta^u, \theta^s) = P_{\Sigma}^+(\overline{\psi}^u(\theta^u, \xi_{\text{small}})) - P_{\Sigma}^-(\overline{\psi}^u(\theta^s, \xi_{\text{small}}))$

- $\blacktriangleright \ \theta^u, \theta^s \in \mathbb{T}^1 \text{ for p.o.,}$
- $\theta^u, \theta^s \in \mathbb{T}^2$ for tori.

Finding connections

General setting

- ► Let
 - ► $\overline{\psi}^{u}(\theta,\xi)$ param. of lin. app. of unst. mani. of departure object. $(\theta \in \mathbb{T}^{1} \text{ for p.o., } \theta \in \mathbb{T}^{2} \text{ for tori}).$
 - $\overline{\psi}^{s}(\theta,\xi)$ param. of lin. app. of stb. mani. of arrival object.
- Let Σ = {g(x) = 0} a hypersurface of section that the manifolds are known to intersect.
- Consider two associated Poincaré maps:
 - P_{Σ}^+ : integrating forward,
 - P_{Σ}^{-} : integrating backwards.
- Choose ξ_{small} small enough so that the linear approximation is valid.
- Look for a zero of

where $F(\theta^u, \theta^s) = P_{\Sigma}^+(\overline{\psi}^u(\theta^u, \xi_{\text{small}})) - P_{\Sigma}^-(\overline{\psi}^u(\theta^s, \xi_{\text{small}}))$

•
$$\theta^u, \theta^s \in \mathbb{T}^1$$
 for p.o.,

• $\theta^u, \theta^s \in \mathbb{T}^2$ for tori.

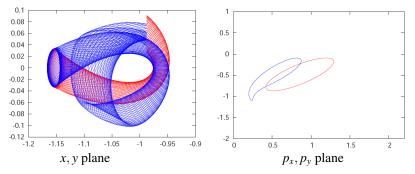
Computation of homoclinic connections

Finding connections

The case of p.o.

In the case of p.o., the unstable and stable manifolds are 2D tubes, so $\{P_{\Sigma}^{+}(\overline{\psi}^{u}(\theta, \xi_{\text{small}}))\}_{\theta \in \mathbb{T}^{1}}$ and $\{P_{\Sigma}^{-}(\overline{\psi}^{s}(\theta, \xi_{\text{small}}))\}_{\theta \in \mathbb{T}^{1}}$ are S^{1} -like closed curves.

The number of cuts may be an issue.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

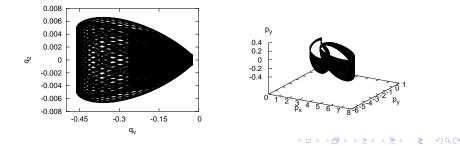
Computation of homoclinic connections

Invariant tori

For 2D tori, $\{P_{\Sigma}^{+}(\overline{\psi}^{u}(\theta, \xi_{\text{small}}))\}_{\theta \in \mathbb{T}^{2}}$ and $\{P_{\Sigma}^{-}(\overline{\psi}^{s}(\theta, \xi_{\text{small}}))\}_{\theta \in \mathbb{T}^{2}}$ are again 2D tori, so their intersections are not easy to visualize. The representation of "clouds of points"

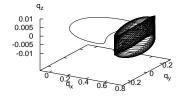
$$P_{\Sigma}^{+}(\overline{\psi}^{u}(\theta_{1},\theta_{2},\xi_{\mathrm{small}}))), \qquad P_{\Sigma}^{-}(\overline{\psi}^{s}(\theta_{1},\theta_{2},\xi_{\mathrm{small}})))$$

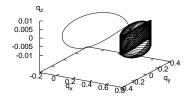
for a grid of values of (θ_1, θ_2) , may help to locate possible connections, which then can be refined by looking for a zero of $F(\theta^u, \theta^s)$.

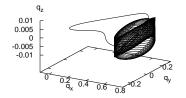


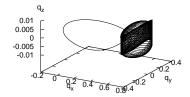
Computation of homoclinic connections

Invariant tori









▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Continuation of homoclinic connections

Outline

Fundamental tools

Numerical solution of non-linear systems of equations Continuation methods Dynamical systems

Computation of objects and its manifolds

Computation of fixed points Computation of periodic orbits Continuation of families of periodic orbits Computation of invariant 2D tori Continuation of families of 2D tori

Homoclinic and heteroclinic phenomena

Invariant manifolds of p.o. Invariant manifolds of tori Computation of homoclinic connections Continuation of homoclinic connections

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bibliography

Continuation of homoclinic connections

Homoclinics of periodic orbits

Consider:

- ▶ $h \in \mathbb{R}$ an energy level,
- $g_1: \mathbb{R}^n \longrightarrow \mathbb{R}$ a function defining a section for a periodic orbit,
- ▶ $x \in \mathbb{R}^n$ an i.c. of a p.o. with period *T*.
- $\Lambda^{u} \in \operatorname{Spec} D\phi_{T}(\boldsymbol{x}), \Lambda^{u} > 1, \boldsymbol{v}^{u} \in V_{\Lambda^{u}}(D\phi_{T}(\boldsymbol{x})),$
- $\blacktriangleright \Lambda^{s} \in \operatorname{Spec} D\phi_{T}(\boldsymbol{x}), 0 < \Lambda^{s} < 1, \boldsymbol{v}^{s} \in V_{\Lambda^{s}}(D\phi_{T}(\boldsymbol{x})),$
- ▶ $g_2 : \mathbb{R}^n \longrightarrow \mathbb{R}$ a function defining a section to match the manifolds,
- *θ^u, θ^s* ∈ T starting phases on the linear appr. of the unstable and stable manifolds, respectively,
- ► $T^u, T^s \in \mathbb{R}$ time to intersect the g_2 section from the unstable and stable manifolds, respectively

▲□▶▲□▶▲□▶▲□▶ □ のQで

Homoclinics of periodic orbits

To find or to continuate[11] an homoclinic connection of a p.o., we can solve

$$\begin{cases} H(\mathbf{x}) - h = 0 \\ g_1(\mathbf{x}) = 0 \\ \phi_T(\mathbf{x}) - \mathbf{x} = 0 \end{cases}$$
$$\|\mathbf{v}^u\|^2 - 1 = 0 \\ D\phi_T(\mathbf{x})\mathbf{v}^u - \Lambda^u \mathbf{v}^u = 0 \end{bmatrix} \|\mathbf{v}^s\|^2 - 1 = 0 \\ D\phi_T(\mathbf{x})\mathbf{v}^u - \Lambda^u \mathbf{v}^u = 0 \end{bmatrix} \begin{bmatrix} \|\mathbf{v}^s\|^2 - 1 = 0 \\ D\phi_T(\mathbf{x})\mathbf{v}^s - \Lambda^s \mathbf{v}^s = 0 \end{bmatrix}$$
$$g_2 \Big(\phi_{T^u}(\overline{\psi}^u(\theta^u, \xi_{\text{small}})) \Big) = 0 \\ g_2 \Big(\phi_{-T^s}(\overline{\psi}^s(\theta^s, \xi_{\text{small}})) \Big) = 0 \\ \phi_{T^u}(\overline{\psi}^u(\theta^u, \xi_{\text{small}})) - \phi_{-T^s}(\overline{\psi}^s(\theta^s, \xi_{\text{small}})) = 0 \end{cases}$$

If ambient space is 6-dimensional, we have

- ▶ 30 equations,
- ► 26 unknowns: $h, x, T, \Lambda^{u}, v^{u}, \Lambda^{s}, v^{s}, \theta^{u}, T^{u}, \theta^{s}, T^{s}_{\bullet}$

Continuation of homoclinic connections

Homoclinics of periodic orbits

$$\begin{cases} H(\boldsymbol{x}) - h = 0 \\ g_1(\boldsymbol{x}) = 0 \\ \phi_T(\boldsymbol{x}) - \boldsymbol{x} = 0 \end{cases}$$
$$\|\boldsymbol{v}^u\|^2 - 1 = 0 \quad \|\boldsymbol{v}^s\|^2 - 1 = 0 \\ D\phi_T(\boldsymbol{x})\boldsymbol{v}^u - \Lambda^u \boldsymbol{v}^u = 0 \quad D\phi_T(\boldsymbol{x})\boldsymbol{v}^s - \Lambda^s \boldsymbol{v}^s = 0 \\ g_2\Big(\phi_{T^u}\big(\overline{\psi}^u(\theta^u, \xi_{\text{small}})\big)\Big) = 0 \\ g_2\Big(\phi_{-T^s}\big(\overline{\psi}^s(\theta^s, \xi_{\text{small}})\big)\Big) = 0 \\ \phi_{T^u}\big(\overline{\psi}^u(\theta^u, \xi_{\text{small}})\big) - \phi_{-T^s}\big(\overline{\psi}^s(\theta^s, \xi_{\text{small}})\big) = 0 \end{cases}$$

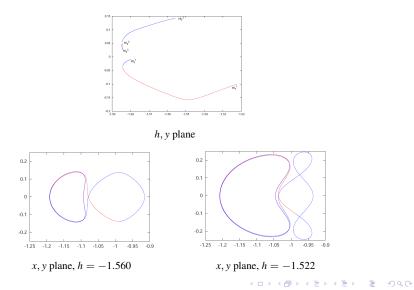
To find an homoclinic connection: fix h, x, T, Λ^u, ν^u, Λ^s, ν^s,
To continuate it: let everything free.

Long Time Integrations

Homoclinic and heteroclinic phenomena

Continuation of homoclinic connections

Examples



- E. L. Allgower and K. Georg. *Numerical continuation methods*, volume 13 of *Springer Series in Computational Mathematics*. Springer-Verlag, Berlin, 1990. An introduction.
- [2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen.
 LAPACK Users' Guide.
 SIAM, second edition, 1995.
- [3] E. Canalias.

Contribution to Libration Orbit Mission Design using Hyperbolic Invariant Manifolds.

PhD thesis, Universitat Politécnica de Catalunya, 2007.

[4] E. Canalias and J. J. Masdemont.

Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems. *Discrete Contin. Dyn. Syst.*, 14(2):261–279, 2006.

- [5] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore and London, 3rd edition, 1996.
- [6] G. Gómez, M. Marcote, and J. M. Mondelo. The invariant manifold structure of the spatial Hill's problem. *Dynamical Systems. An International Journal*, 20(1):115–147, 2005.
- [7] G. Gómez and J. J. Masdemont.
 Some zero cost transfers between halo orbits.
 Advances in the Astronautical Sciences, 105:1199–1216, 2000.
- [8] G. Gómez and J. M. Mondelo. The dynamics around the collinear equilibrium points of the RTBP. *Phys. D*, 157(4):283–321, 2001.
- [9] À. Jorba.

Numerical computation of the normal behaviour of invariant curves of *n*-dimensional maps.

Nonlinearity, 14(5):943–976, 2001.

 J. Mondelo, E. Barrabés, G. Gómez, and M. Ollé. Numerical parametrisations of libration point trajectories and their invariant manifolds.
 2007 AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, Michigan, August 19-23.

 J. Mondelo, E. Barrabés, and M. Ollé.
 Numerical continuation of homoclinic connections of periodic orbits. In preparation.

[12] E. Olmedo.

On the parallel computation of invariant tori. PhD thesis, Universitat de Barcelona, 2007.

[13] C. Simó.

On the analytical and numerical approximation of invariant manifolds. In D. Benest and C. Froeshlé, editors, *Modern methods in Celestial Mechanics*, pages 285–330. Editions Frontières, 1990.

▲□▶▲□▶▲□▶▲□▶ □ のQで