Part I: Numerical Fourier analysis of quasi–periodic functions

I.1 The procedure

$$f(t) \sim Q_f(t; A, \omega)$$
$$\mathsf{DFT}(f) = \mathsf{DFT}(Q_f)$$

I.2 Error estimation

• Applying the above procedure, the system to be solved can be written as

$$g(y + \Delta y) = b + \Delta b.$$

- The exact frequencies and amplitudes would be obtained if $\Delta b = 0$.
- A bound for the error is given by

 $\|\Delta y\| \le \|Dg(y)^{-1}\| \|\Delta b\|.$

• We will bound $||Dg(y)^{-1}||$ and $||\Delta b||$.

I.3 Applications

- Academic example, to show the procedure and the accuracy of the error estimation
- Solar System models:

SS = RTBP + Perturbations

 \Downarrow (Fourier analysis)

 $SS = RTBP + Perturbations(\omega_1, \omega_2, ...)$

Part II: The neighborhood of the collinear equilibrium points in the RTBP

Final goal: To get Poincaré section representations of the flow around $L_{1,2,3,.}$

Tools: Parallel algorithms for the computation of different kinds of families of periodic orbits and invariant tori.

I.1 Refined Fourier analysis procedure

Given a real analytic quasi-periodic function, f(t), at N equally-spaced points on an interval [0,T],

$${f(t_l)}_{l=0}^{N-1}, \quad t_l = l \frac{T}{N},$$

the goal is to compute a trigonometric approximation

$$Q_f(t) = A_0^c + \sum_{l=1}^{N_f} (A_l^c \cos(2\pi \frac{\nu_l}{T} t) + A_l^s \sin(2\pi \frac{\nu_l}{T} t))$$

The Discrete Fourier Transform (DFT) of f is defined through

$$f(t_l) = \frac{1}{2} (c_{f,T,N}(0) + c_{f,T,N}(\frac{N}{2}) \cos(\frac{2\pi \frac{N}{2}t_l}{T})) + \sum_{j=1}^{N/2-1} (c_{f,T,N}(j) \cos(\frac{2\pi j t_l}{T}) + s_{f,T,N}(j) \sin(\frac{2\pi j t_l}{T})).$$

where

$$c_{f,T,N}(j) = \frac{2}{N} \sum_{l=0}^{N-1} f(t_l) \cos(2\pi \frac{j}{N} l), \quad j = 0, ..., \frac{N}{2},$$

$$s_{f,T,N}(j) = \frac{2}{N} \sum_{l=0}^{N-1} f(t_l) \sin(2\pi \frac{j}{N} l), \quad j = 1, ..., \frac{N}{2} - 1.$$

5

Algorithm

- 1. Set an starting **thresold** for collecting **peaks of the modulus of the DFT** of f(t).
- 2. Find initial **approximations of the frequencies**, starting from the peaks of the DFT greater than the thresold.
- 3. Find the **amplitudes** of the frequencies found in the previous step $(DFT(Q_f) = DFT(f))$.
- 4. Simultaneously refine ALL the frequencies and amplitudes of the current quasi-periodic approximation of f.
- 5. Perform a **DFT of the input signal minus the current quasi-periodic approximation** obtained in step 4, **decrease** the **thresold** and go **back to step 2**.

Equations of step 3

We ask $DFT(Q_f) = DFT(f)$, being

$$Q_f(t) = A_0^c + \sum_{l=1}^{N_f} (A_l^c \cos(2\pi \frac{\nu_l}{T} t) + A_l^s \sin(2\pi \frac{\nu_l}{T} t)).$$

The system of equations to be solved is linear and $(1 + 2N_f) \times (1 + 2N_f)$:

$$\begin{aligned} A_{0}^{c}c_{1,T,N}^{n_{h}}(0) + \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{c}_{\nu_{l},N}^{n_{h}}(0) + A_{l}^{s}\widehat{c}_{\nu_{l},N}^{n_{h}}(0)) &= c_{f,T,N}^{n_{h}}(0) \\ A_{0}^{c}c_{1,T,N}^{n_{h}}(j) + \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{c}_{\nu_{l},N}^{n_{h}}(j) + A_{l}^{s}\widetilde{c}_{\nu_{l},N}^{n_{h}}(j)) &= c_{f,T,N}^{n_{h}}(j) \\ \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{s}_{\nu_{l},T}^{n_{h}}(j) + A_{l}^{c}\widehat{s}_{\nu_{l},T}^{n_{h}}(j)) &= s_{f,T,N}^{n_{h}}(j) \end{aligned}$$

where $j = [\nu_l + 0.5]$, $l = 1 \div N_f$, and

$$egin{array}{rll} c_1^{n_h}(j) &= c_{1,T,N}^{n_h}(j), \ \overline{c}_{
u_l,N}^{n_h}(j) &= c_{\cos(rac{2\pi
u_l}{T}),T,N}^{n_h}(j), & \overline{s}_{
u_l,N}^{n_h}(j) &= s_{\cos(rac{2\pi
u_l}{T}),T,N}^{n_h}(j), \ \widetilde{c}_{
u_l,N}^{n_h}(j) &= c_{\sin(rac{2\pi
u_l}{T}),T,N}^{n_h}(j), & \widetilde{s}_{
u_l,N}^{n_h}(j) &= s_{\sin(rac{2\pi
u_l}{T}),T,N}^{n_h}(j). \end{array}$$

6-b

Equations for step 4

The system of equations is a $(1 + 3N_f) \times (1 + 3N_f)$ non–linear system which is solved by Newton's method:

$$\begin{aligned} A_{0}^{c}c_{1,T,N}^{n_{h}}(0) + \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{c}_{\nu_{l},N}^{n_{h}}(0) + A_{l}^{s}\widetilde{c}_{\nu_{l},N}^{n_{h}}(0)) &= c_{f,T,N}^{n_{h}}(0) \\ A_{0}^{c}c_{1,T,N}^{n_{h}}(j_{i}) + \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{c}_{\nu_{l},N}^{n_{h}}(j_{i}) + A_{l}^{s}\widetilde{c}_{\nu_{l},N}^{n_{h}}(j_{i})) &= c_{f,T,N}^{n_{h}}(j_{i}) \\ \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{s}_{\nu_{l},N}^{n_{h}}(j_{i}) + A_{l}^{s}\widetilde{s}_{\nu_{l},N}^{n_{h}}(j_{i})) &= s_{f,T,N}^{n_{h}}(j_{i}) \\ A_{0}^{c}cs_{1,T,N}^{n_{h}}(j_{i}^{+}) + \sum_{l=1}^{N_{f}} (A_{l}^{c}\overline{cs}_{\nu_{l},N}^{n_{h}}(j_{i}^{+}) + A_{l}^{s}\widetilde{cs}_{\nu_{l},N}^{n_{h}}(j_{i}^{+})) &= cs_{f,T,N}^{n_{h}}(j_{i}^{+}) \end{aligned}$$

being $j_i = [\nu_i + 0.5], \ j_i^+ \neq j_i, |j_i^+ - j_i| = 1.$

An example:

$$f(t) = \cos(2\pi 0.23t) - \frac{1}{2}\sin(2\pi 0.27t) + \sin(2\pi 0.37t).$$

1. Starting thresold: 0.8 modulus of the DFT of the input data:

 \Rightarrow peaks j = 61, j = 189.

2. Approximation of frequencies (Laskar's method):

peak 61 \Rightarrow frequency 0.11999948789 peak 189 \Rightarrow frequency 0.36999965075

3. Computation of amplitudes from known frequencies:

Frequency	Cosine amplitude	Sine amplitude
0.119999487888	0.999907666367	-0.000823654552
0.369999650752	0.000561727398	0.999937098420

modulus of the DFT of the residual

4. Iterative refinement:

Frequency	Cosine amplitude	Sine amplitude
0.12000000003	1.00000000686	0.00000005106
0.369999999995	0.00000006660	1.00000000297

7-a

5. modulus of the DFT of input signal minus step 4:

New threshold: 0.2

2. Approximation of frequencies (Laskar's method):

peak 138 \Rightarrow frequency 0.269999999988849

3. Amplitudes from known frequencies:

Frequency	Cosine amplitude	Sine amplitude
0.12000000003	1.00000000586	0.00000005245
0.369999999995	0.00000007480	0.999999999164
0.269999999999	-0.00000000897	-0.499999999946

4. Iterative refinement:

Frequency	Cosine amplitude	Sine amplitude
0.1200000000000	0.9999999999999999	-0.0000000000008
0.3700000000000	-0.00000000000001	1.00000000000000
0.2700000000000	0.00000000000000	-0.50000000000000

modulus of the DFT of the residual:

7-b

I.2 Error estimation

We assume

• f is real analytic and quasi-periodic,

$$f(t) = A_0^c + \sum_{\substack{k \in \mathbb{Z}^m \\ k\omega > 0}} (A_k^c \cos(2\pi k\omega t) + A_k^s \sin(2\pi k\omega t)),$$

and its Fourier coefficients a_k satisfy the **Cauchy** estimates

$$\sqrt{(A_k^c)^2 + (A_k^s)^2} \le Ce^{-\delta|k|} \quad \forall k \in \mathbb{Z}^m$$

• The frequency vector $\omega = (\omega_1, \dots, \omega_m)$ satisfies a **Diophantine condition**

$$|k\omega| \ge \frac{D}{|k|^{\tau}},$$

with $D, \tau > 0$.

• We determine the frequencies $\{\nu_l\}_{l=1}^{N_f}$ of order $\leq r_0 - 1$ ($\nu_l \approx Tk\omega$, $1 \leq |k| \leq r_0 - 1$) and the corresponding amplitudes $\{A_l^c\}_{l=0}^{N_f}$, $\{A_l^s\}_{l=1}^{N_f}$.

Strategy

Let us denote,

$$f_{r_0}(t) = A_0^c + \sum_{\substack{|k| \le r_0 - 1 \\ k\omega > 0}} (A_k^c \cos(2\pi k\omega t) + A_k^s \sin(2\pi k\omega t)).$$

The system of equations used for simultaneous improvement of frequencies and amplitudes can be written as

$$A_{0}^{c} + \sum_{l=1}^{N_{f}} (A_{l}^{c} \overline{c}_{\nu_{l},N}^{n_{h}}(0) + A_{l}^{s} \widetilde{c}_{\nu_{l},N}^{n_{h}}(0)) = c_{f_{r_{0},T,N}}^{n_{h}}(0) + c_{f-f_{r_{0},T,N}}^{n_{h}}(0)$$

$$A_{0}^{c} c_{1}^{n_{h}}(j_{i}) + \sum_{l=1}^{l=1} (A_{l}^{c} \overline{c}_{\nu_{l},N}^{n_{h}}(j_{i}) + A_{l}^{s} \widetilde{c}_{\nu_{l},N}^{n_{h}}(j_{i})) = c_{f_{r_{0},T,N}}^{n_{h}}(j_{i}) + c_{f-f_{r_{0},T,N}}^{n_{h}}(j_{i})$$

$$\sum_{l=1}^{l=1} (A_{l}^{c} \overline{s}_{\nu_{l},N}^{n_{h}}(j_{i}) + A_{l}^{s} \widetilde{s}_{\nu_{l},N}^{n_{h}}(j_{i})) = s_{f_{r_{0},T,N}}^{n_{h}}(j_{i}) + s_{f-f_{r_{0},T,N}}^{n_{h}}(j_{i})$$

$$\underbrace{A_{0}^{c} cs_{1}^{n_{h}}(j_{i}^{+}) + \sum_{l=1}^{N_{f}} (A_{l}^{c} \overline{cs}_{\nu_{l},N}^{n_{h}}(j_{i}^{+}) + A_{l}^{s} \widetilde{cs}_{\nu_{l},N}^{n_{h}}(j_{i}^{+})) = c_{f_{r_{0},T,N}}^{n_{h}}(j_{i}^{+}) + cs_{f-f_{r_{0},T,N}}^{n_{h}}(j_{i}^{+}).$$

$$\underbrace{M_{0}^{c} cs_{1}^{n_{h}}(j_{i}^{+}) + \sum_{l=1}^{N_{f}} (A_{l}^{c} \overline{cs}_{\nu_{l},N}^{n_{h}}(j_{i}^{+}) + A_{l}^{s} \widetilde{cs}_{\nu_{l},N}^{n_{h}}(j_{i}^{+})) = c_{f_{r_{0},T,N}}^{n_{h}}(j_{i}^{+}) + cs_{f-f_{r_{0},T,N}}^{n_{h}}(j_{i}^{+}).$$

We would get the **exact** frequencies and amplitudes if $\Delta b = 0$.

The error in frequencies and amplitudes is given, in the first order approximation, by

$$\|\Delta y\|_{\infty} \lesssim \|Dg(y)^{-1}\|_{\infty} \|\Delta b\|_{\infty}.$$

We will obtain bounds for $||Dg(y)^{-1}||_{\infty}$ and $||\Delta b||_{\infty}$.

Bound for $||Dg(y)^{-1}||_{\infty}$ Preliminaries

We can write

$$Dg(y) =: M = \begin{pmatrix} 2 & B_{0,1} & \dots & B_{0,N_f} \\ 0 & B_{1,1} & \dots & B_{1,N_f} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & B_{N_f,1} & \dots & B_{N_f,N_f} \end{pmatrix}$$

We split $M = M_D + M_O$,

$$M = \begin{pmatrix} 2 & 0 & \dots & 0 \\ 0 & B_{1,1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & B_{N_f,N_f} \end{pmatrix} + \begin{pmatrix} 0 & B_{0,1} & \dots & B_{0,N_f} \\ 0 & 0 & \dots & B_{1,N_f} \\ 0 & \vdots & \ddots & \vdots \\ 0 & B_{N_f,1} & \dots & 0 \end{pmatrix}.$$

The idea is to obtain **bounds for** $\|M_D^{-1}\|$, $\|M_O\|$ and use

$$\|(M_D + M_O)^{-1}\| \le \frac{\|M_D^{-1}\|}{1 - \|M_D^{-1}\|\|M_O\|}.$$

The components $B_{i,l}$ of M ($i \neq 0$) have the following general aspect

$$\begin{pmatrix} A_l^c \partial \overline{c}_{\nu_l,N}^{n_h}(j_i) + A_l^s \partial \widetilde{c}_{\nu_l,N}^{n_h}(j_i) & \overline{c}_{\nu_l,N}^{n_h}(j_i) & \widetilde{c}_{\nu_l,N}^{n_h}(j_i) \\ A_l^c \partial \overline{s}_{\nu_l,N}^{n_h}(j_i) + A_l^s \partial \widetilde{s}_{\nu_l,N}^{n_h}(j_i) & \overline{s}_{\nu_l,N}^{n_h}(j_i) & \widetilde{s}_{\nu_l,N}^{n_h}(j_i) \\ A_l^c \partial \overline{cs}_{\nu_l,N}^{n_h}(j_i^+) + A_l^s \partial \widetilde{cs}_{\nu_l,N}^{n_h}(j_i^+) & \overline{cs}_{\nu_l,N}^{n_h}(j_i^+) & \widetilde{cs}_{\nu_l,N}^{n_h}(j_i^+) \end{pmatrix}$$

First simplification: $M \to \mathcal{M}$

The first simplification consists in the use of the **Trun**cated Continuous Fourier Tansform $(\mathcal{C}, \mathcal{S})$,

$$rac{1}{T}\int_{0}^{T}H^{n_{h}}_{T}(t)f(t)e^{-i2\pirac{j}{T}t}=:rac{1}{2}(\mathcal{C}^{n_{h}}_{f,T}(j)+i\mathcal{S}^{n_{h}}_{f,T}(j))$$

instead of the DFT (c, s).

We define $\widetilde{\overline{\mathcal{CS}}}_{\nu}^{n_h}(j)$ as in the discrete case.

In this way,

$$M = M_D + M_O$$

$$\downarrow \text{(substitute DFT by TCFT)}$$

$$\mathcal{M} = \mathcal{M}_D + \mathcal{M}_O$$

Remark 1: The difference between \widetilde{cs} and \widetilde{CS} can be bounded from a **discrete** version of **Poisson's summation formula**:

$$c_{f,T,N}^{n_h}(j) = \sum_{l=-\infty}^{\infty} \mathcal{C}_{f,T}^{n_h}(\frac{j+lN}{T}), \dots$$

Remark 2: Explicit formulae for the components of \mathcal{M} can be obtained.

Formulae for the components of $\ensuremath{\mathcal{M}}$

The components of the matrix ${\mathcal M}$ are given by

$$\overline{\mathcal{C}}_{\nu}^{n_{h}}(j) = K_{n_{h}} \Big(\begin{array}{cc} \frac{\sin\left(2\pi(\nu-j)\right)}{\psi_{n_{h}}(\nu-j)} & + & \frac{\sin\left(2\pi(-\nu-j)\right)}{\psi_{n_{h}}(-\nu-j)} \\ \vdots \\ \partial \overline{\mathcal{C}}_{\nu}^{n_{h}}(j) = K_{n_{h}} \Big(& \frac{h_{r}(\nu-j)}{\psi_{n_{h}}(\nu-j)} & - & \frac{h_{r}(-\nu-j)}{\psi_{n_{h}}(-\nu-j)} \\ \vdots \\ \vdots \\ \end{array} \Big),$$

where

$$egin{aligned} K_{n_h} &= rac{(-1)^{n_h}(n_h!)^2}{2\pi} \ \psi_{n_h}(x) &= \prod_{l=-n_h}^{n_h} (x+l) \ h_r(x) &= 2\pi \cos(2\pi x) - r_{n_h}(x) \sin(2\pi x), \ h_i(x) &= 2\pi \sin(2\pi x) - r_{n_h}(x)(1-\cos(2\pi x)), \ r_{n_h}(x) &= \sum_{l=-n_h}^{n_h} rac{1}{x+l} = rac{\psi_{n_h}'(x)}{\psi_{n_h}(x)}. \end{aligned}$$

Second simplification: $\mathcal{M} \to \mathfrak{M}$

The second simplification consist in **eliminating the second summands** of the expressions of the components of \mathcal{M} as given in the previous lemma.

In this way,

 $\mathcal{M} = \mathcal{M}_D + \mathcal{M}_O$ $\downarrow \text{ (remove the second summands)}$ $\mathfrak{M} = \mathfrak{M}_D + \mathfrak{M}_O$

Remark 1: The difference between the components of \mathcal{M} and \mathfrak{M} ($\widetilde{\overline{CS}}$ and $\widetilde{\overline{\mathfrak{cs}}}$) can be bounded.

Remark 2: the expression for $\tilde{\overline{\mathfrak{cs}}}$ only depends on the difference $\nu - j$.

Bound for $\|\mathfrak{M}_D^{-1}\|_{\infty}$

Since \mathfrak{M}_D is diagonal, to compute \mathfrak{M}_D^{-1} we only need to invert its diagonal blocks $\mathfrak{B}_{i,i}$

$$\begin{pmatrix} A_i^c \partial \overline{\mathfrak{c}}_{\nu_i,N}^{n_h}(j_i) + A_i^s \partial \widetilde{\mathfrak{c}}_{\nu_i,N}^{n_h}(j_i) & \overline{\mathfrak{c}}_{\nu_i,N}^{n_h}(j_i) & \widetilde{\mathfrak{c}}_{\nu_i,N}^{n_h}(j_i) \\ A_i^c \partial \overline{\mathfrak{s}}_{\nu_i,N}^{n_h}(j_i) + A_i^s \partial \widetilde{\mathfrak{s}}_{\nu_i,N}^{n_h}(j_i) & \overline{\mathfrak{s}}_{\nu_i,N}^{n_h}(j_i) & \widetilde{\mathfrak{s}}_{\nu_i,N}^{n_h}(j_i) \\ A_i^c \partial \overline{\mathfrak{cs}}_{\nu_{\nu_i,N}}^{n_h}(j_i^+) + A_i^s \partial \widetilde{\mathfrak{cs}}_{\nu_i,N}^{n_h}(j_i^+) & \overline{\mathfrak{cs}}_{\nu_i,N}^{n_h}(j_i^+) & \widetilde{\mathfrak{cs}}_{\nu_i,N}^{n_h}(j_i^+) \end{pmatrix}.$$

For that, we first show that, if $(A_i^c, A_i^s) \neq (0, 0)$, $\mathfrak{B}_{i,i}$ is invertible either setting $\mathfrak{c}s = \mathfrak{c}$ or $\mathfrak{c}s = \mathfrak{s}$.

The actual bounds of $\mathfrak{B}_{i,i}$ are computed **numerically** for each n_h , by first minimizing w.r.t. $\mathfrak{c}s = \mathfrak{c}, \mathfrak{s}$ and maximizing w.r.t. $\theta \in [0, 2\pi], |\nu - j| \leq 1/2$ the supremum norm of

 $\begin{pmatrix} \partial \overline{\mathfrak{c}}_{\nu_{i},N}^{n_{h}}(j_{i})\cos\theta + \partial \widetilde{\mathfrak{c}}_{\nu_{i},N}^{n_{h}}(j_{i})\sin\theta & \overline{\mathfrak{c}}_{\nu_{i},N}^{n_{h}}(j_{i}) & \widetilde{\mathfrak{c}}_{\nu_{i},N}^{n_{h}}(j_{i}) \\ \partial \overline{\mathfrak{s}}_{\nu_{i},N}^{n_{h}}(j_{i})\cos\theta + \partial \widetilde{\mathfrak{s}}_{\nu_{i},N}^{n_{h}}(j_{i})\sin\theta & \overline{\mathfrak{s}}_{\nu_{i},N}^{n_{h}}(j_{i}) & \widetilde{\mathfrak{s}}_{\nu_{i},N}^{n_{h}}(j_{i}) \\ \partial \overline{\mathfrak{cs}}_{\nu_{i},N}^{n_{h}}(j_{i}^{+})\cos\theta + \partial \widetilde{\mathfrak{cs}}_{\nu_{i},N}^{n_{h}}(j_{i}^{+})\sin\theta & \overline{\mathfrak{cs}}_{\nu_{i},N}^{n_{h}}(j_{i}^{+}) & \widetilde{\mathfrak{cs}}_{\nu_{i},N}^{n_{h}}(j_{i}^{+}) \end{pmatrix}^{-1}.$

We call G_{n_h} the obtained quantity. Some values are

n_h	0	1	2	3
G_{n_h}	4.84	8.83	13.3	17.7

In this way, we get

$$\|(\mathfrak{M}_D)^{-1}\| \leq \max(A_{\min}^{-1}, 1)G_{n_h},$$

being

$$A_i = ((A_i^c)^2 + (A_i^s)^2)^{1/2} A_{min} = \min_{i=1 \div N_f} \{A_1, \dots, A_{N_f}\}$$

14

Bounds for $||M^{-1}||_{\infty}$

The computation of the bound for $||Dg(y)^{-1}||$ is completed by following the following scheme:

$$\begin{split} \|\mathfrak{M}_{D}^{-1}\| &\leq \max(A_{\min}^{-1}, 1)G_{n_{h}} \\ &\downarrow \\ \|\mathcal{M}_{D}^{-1}\| &\leq \frac{\|\mathfrak{M}_{D}^{-1}\|}{1 - \|\mathfrak{M}_{D}^{-1}\| \|\mathfrak{M}_{D} - \mathcal{M}_{D}\|} \\ &\downarrow \\ \|M_{D}^{-1}\| &\leq \frac{\|\mathcal{M}_{D}^{-1}\|}{1 - \|\mathcal{M}_{D}^{-1}\| \|\mathcal{M}_{D} - M_{D}\|} \end{split}$$

 $\Downarrow \|M_O\| \le \|\mathfrak{M}_O\| + \|\mathfrak{M}_O - \mathcal{M}_O\| + \|\mathcal{M}_O - M_O\|$

$$||M^{-1}|| \leq \frac{||M_D^{-1}||}{1 - ||M_D^{-1}|| ||M_O||}$$

15

Bound for $\|\Delta b\|_{\infty}$

We have

$$\|\Delta b\| \leq 2C \max_{j\in J} \sum_{|k|=r_0}^\infty e^{-\delta|k|} |\widetilde{h}_N^{n_h}(Tk\omega-j)|,$$

where $|\tilde{h}_N^{n_h}|$ is the envelope displayed below (N= 16, $n_h=$ 0).

The **Diophantine condition** gives a **lower bound for** $|Tk\omega - j|$:

$$|Tk\omega-j| \hspace{0.1in} \geq \hspace{0.1in} rac{TD}{(|k|+|k_j|)^{ au}}-1.$$

For |k| small, $|\widetilde{h}_N^{n_h}(Tk\omega-j)|\ll 1.$

After some order r_* , $|\widetilde{h}_N^{n_h}(Tk\omega-j)|$ may approach 1.

Therefore,

$$\|\Delta b\| \leq 2C(\max_{j\in J}\sum_{|k|=r_0}^{r_*-1}e^{-\delta|k|}|\widetilde{h}_N^{n_h}(Tk\omega-j)|+\max_{j\in J}\sum_{|k|=r_*}^{\infty}e^{-\delta|k|}),$$

where:

- The first term is bounded by **replacing the DFT by the TCFT**. This introduces an additional error term due to this approximation.
- All the sums are reduced to sums of the form $\sum_j j^{\alpha} e^{-\delta j}$, which are bounded by incomplete Gamma functions.

Final theorem

Under the stated hypothesis, the error in frequencies and amplitudes can be bounded as

 $\|\Delta y\| \lesssim \|M^{-1}\| \|\Delta b\|,$

where

$$||M^{-1}|| \le \frac{||M_D^{-1}||}{1 - ||M_D^{-1}|| ||M_O||}$$

and

$$\begin{split} \|M_{0}\| &\leq \frac{(n_{h}!)^{2}}{\pi} \bigg(\\ & \frac{\sqrt{2} (\sum_{l=1}^{N_{f}} A_{l}) (\pi + \ln(\frac{TD}{(2r_{0}-2)^{\tau}} - 1 + n_{h}) - \ln(\frac{TD}{(2r_{0}-2)^{\tau}} - 2 - n_{h})) + 2N_{f}}{(\frac{TD}{(2r_{0}-2)^{\tau}} - 1 - n_{h})^{1+2n_{h}}} \\ & + \frac{\sqrt{2} (\sum_{l=1}^{N_{f}} A_{l}) (\pi + \ln([\nu_{min}] + n_{h}) - \ln([\nu_{min}] - 1 - n_{h})) + 2N_{f}}{([\nu_{min}] - n_{h})^{1+2n_{h}}} \\ & + \frac{4 \Big(\sqrt{2} (\sum_{l=1}^{N_{f}} A_{l}) (\pi + \ln(N - \Omega_{0} + n_{h}) - \ln(N - \Omega_{0} - 1 - n_{h})) + 2N_{f} \Big) (1 + \frac{1}{2n_{h}})}{(N - \Omega_{0} - n_{h})^{1+2n_{h}}} \Big) \end{split}$$

and

$$\|M_D^{-1}\| \le \frac{\|\mathcal{M}_D^{-1}\|}{1 - \|\mathcal{M}_D^{-1}\|\varepsilon_1}, \quad \|\mathcal{M}_D^{-1}\| \le \frac{\|\mathfrak{M}_D^{-1}\|}{1 - \|\mathfrak{M}_D^{-1}\|\varepsilon_2}, \quad \|\mathfrak{M}_D^{-1}\| \le \frac{G_{n_h}}{\min(1, A_{\min})},$$

being

$$\varepsilon_{1} = \frac{4(n_{h}!)^{2} \left(\sqrt{2}A_{max}(\pi + \ln(N - \Omega_{0} + n_{h}) - \ln(N - \Omega_{0} - 1 - n_{h})) + 2\right)(1 + \frac{1}{2n_{h}})}{\pi(N - \Omega_{0} - n_{h})^{1 + 2n_{h}}},$$

$$\varepsilon_{2} = \frac{(n_{h}!)^{2} \left(\sqrt{2}A_{max}(\pi + \ln(2[\nu_{min}] + n_{h}) - \ln(2[\nu_{min}] - n_{h} - 1)) + 2\right)}{\pi(2[\nu_{min}] - n_{h})^{1 + 2n_{h}}},$$

$$\Omega_{0} = T(2r_{0} - 2) \|\omega\|_{\infty} + 1,$$

17

Error estimates: Final theorem (cont.)

As for
$$\|\Delta b\|$$
,
 $\|\Delta b\| \leq \frac{2^{m+1}C}{(m-1)!} \Big(\frac{(n_h!)^2 e^{\delta(r_0-1)} \sum_{l=0}^{m-1} {\binom{m-1}{l}} (\frac{m}{2} - r_0 + 1)^{m-1-l} G_f(2r_0 - 1, r_0 + r_* - 2, l + \tau(1 + 2n_h), \delta)}{E_* \pi (TD)^{1+2n_h}} + \chi_{\{r_* > r_0\}} \frac{2(n_h!)^2 e^{\delta \frac{m}{2}} (1 + \frac{1}{2n_h}) G_f(r_0 + \frac{m}{2}, r_* - 1 + \frac{m}{2}, m - 1, \delta)}{\pi (N - \Omega - n_h)^{1+2n_h}} + e^{\delta \frac{m}{2}} G_{\infty}(r_* + \frac{m}{2}, m - 1, \delta) \Big),$

where

$$\Omega = T(r_* + r_0 - 2) \|\omega\|_{\infty} + 1$$

$$r_* = \max\left(r_0, \min\left(\left[\left(\frac{TD}{\max((\frac{(n_h!)^2}{\pi})^{\frac{1}{1+2n_h}} + 1 + n_h, 2(1+n_h)}\right)^{\frac{1}{\tau}} - r_0 + 2\right], \left[\frac{N - 1 - n_h}{T\|\omega\|_{\infty}} - r_0 + 1\right]\right)\right)$$

$$E_* = \frac{(z_* - 1 - n_h)^{1+2n_h}}{z_*^{1+2n_h}},$$

$$z_* = \frac{TD}{(r_* + r_0 - 2)^{\tau}},$$

In the above formulas, $\chi_{\{condition\}}$ equals 1 if *condition* is true and 0 otherwise.

I.3 Applications "Academic" example

We consider the quasi-periodic function

$$f_{0.9}(t) = \frac{\sin(2\pi\omega_1 t + \varphi_1)}{1 - 0.9\cos(2\pi\omega_1 t + \varphi_1)} \cdot \frac{\sin(2\pi\omega_2 t + \varphi_2)}{1 - 0.9\cos(2\pi\omega_2 t + \varphi_2)}.$$

Explicit formulae for frequencies and amplitudes can be obtained, as well as the **Cauchy estimates** and the **Diophantine condition**.

We have performed **Fourier analysis** of this function for **several** T, N.

Solid line: actual error. Dashed line: estimated error.

Numerical test of the bounds obtained: actual error vs. predicted error

In the preceding slide, the difference between the **error predicted** and the **actual error** is big because of the **Diophantine condition**, which is reached for for **very few orders** |k|.

The points in the plot below represent $\min_{|k|=\text{const.}} |k\omega|$ for $|k| = 1 \div 1000$. The curve represents the values of the Diophantine condition 0.85355/|k|.

If we substitute the first term of $\|\Delta b\|$ by what is obtained just before the use of the Diophantine condition, the following figure is obtained.

Solid line: actual error. Dashed line: estimated error.