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Hubble classification scheme (1925)



Motivation

NGC 1365 NGC 2665 NGC 2935 NGC 1079
Spiral arms R1 R2 R1R2



Basic characteristics of spiral galaxies - I

◮ Almost all barred galaxies present two spiral arms.

◮ Early-type spiral galaxies are brighter and more tightly-wound
than late-type.

Figure: NGC 1300 - SB(rs)bc



Basic characteristics of spiral galaxies - II

◮ The rotation curve is typically linearly rising in the central part
and flat in the outer region.

◮ The sense of winding of the arms with respect to the sense of
rotation is mainly trailing.

Figure: Rotation curve for NGC 1300; Jörsater, S. and Moorsel, G.A.
(1995)



Why studying barred spiral and ringed galaxies? -I

◮ The origin of spiral structure has been one of the main
problems in astrophysics and current theories are kind of
“slippery”:

◮ Swedish astronomer B. Lindblad proposed that spirals result
from the gravitational interaction between the orbits of the
stars and the disc.

◮ Therefore, we have to study them from the stellar dynamics

point of view.
◮ However, his methods were not appropiate for a quantitative

analysis.

◮ Lin and Shu proposed that spirals results from a density wave.
◮ They can use wave mechanics to explain the properties of the

density waves.



Why studying barred spiral and ringed galaxies? -II

◮ Toomre in the 80s obtains that spirals propagate in the disc
from the centre of the galaxy outwards towards one of the
principal resonances of the disc, where they damp down:

Figure: Toomre (1981)



Obtaining long-lived spirals

Long-lived spirals need replenishment:

◮ Swing amplification feed-back cycles.

◮ Driven by a companion.

◮ Driven by bars.

Figure: Toomre (1981)



Kinematic density waves



Rings - N-body simulations

Some theories propose that rings are related to the principal
resonances of the galaxy:

◮ ILR related to Nuclear
rings

◮ CR related to Inner rings

◮ OLR related to Outer
rings

Figure: Schwarz, M.P. (1981)



Components of a barred galaxy

Bar models consist of the superposition of

◮ Axisymmetric component:
◮ a disc: Miyamoto-Nagai,

Kuzmin/Toomre potentials.
◮ a spheroid or bulge: Plummer,

spherical potentials.
◮ a Halo: spherical potential.

◮ a bar: Ferrers ellipsoids, ad-hoc bar
potentials, logarythmic, analytical
potentials that match observations.

◮ (spiral arms: logarithmic,
superposition of ellipsoids.)
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The disc

◮ Discs are flattened, roughly axisymmetric, disc-like structures.

◮ They have an exponential surface-brightness distribution.

◮ Represented by Miyamoto-Nagai or Kuzmin/Toomre disc
potentials.
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The spheroid/halo

◮ They are roughly spherical distributions of stars.
◮ Represented by a Plummer spheroid or any spheric density

distribution.
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The density and the potential
are related via the Poisson’s
equation: ∇2Φ = 4πGρ.

Figure: Isodensity curves for the spheroid.



Bar characteristics

◮ Bars are non-axisymmetric triaxial features with high
ellipticities. The typical axes have length scales proportional
to 1:2.

◮ Bars are not centrally condensed. The surface brightness is
◮ nearly constant along the semi-major axis.
◮ steep and falls off sharply along the semi-minor axis.

◮ Bars extend up to CR. The ratio RCR/a = 1.2 ± 0.2 and
rotate fast.



Bar component - From observations to the potential



Bar component - Density functions

◮ Ferrer’s ellipsoid: ρ =











ρ0(1 − m2)n m ≤ 1

0 m ≥ 1,

m2 = x2/a2 + y2/b2 + z2/c2.

◮ Superposition of homogeneous ellipsoids
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Ad-hoc bar potentials

These are potentials of “m=2”-type: φ(r , θ) = A(r) cos(2θ).
◮ Dehnen’s bar type:
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◮ Barbanis-Woltjer’s type: Φ(r , θ) = ǫ̂
√

r(r1 − r) cos(2θ)



Spiral component

◮ Superposition of ellipsoids of locus:

φ(R) = −
(

m
N tan i

)

ln [1 + (R/Rs)
N ]

Each spheroid: i) potential given by the analytical, ii) lineal
density law, iii) exponential decay of the central density of
each spheroid.



Combination of bar+spiral component

◮ Bar+spiral: density:

S(r , θ) = A(r)















cos(2θ) , r ≤ a

cos(2θ − φ(r)) , r ≥ a



More then two arms?

We can obtain 4-armed spirals with a potential of the type:
Φ(r , θ) = A2(r) cos(2θ) + A4(r) cos(4θ + φ(r) + θ0).



Equations of motion

◮ The potential: Φ = Φs + Φd + Φb

◮ The equations of motion of a rotating system are described in
vectorial form by:

r̈ = −∇Φeff − 2(Ω × ṙ),

where r = (x , y , z) is the position vector and Ω = (0, 0,Ω) is
the rotation velocity vector around the z-axis, and
Φeff = Φ − 1

2Ω2 (x2 + y2) is the effective potential.

◮ We define the Jacobi constant or Jacobi energy as
EJ = 1

2 |ṙ|
2 + Φeff.

◮ The zero velocity surface of a given energy level is the surface
obtaine when: Φeff(x , y , z) = EJ . We define the zero velocity
curve, its cut with the z = 0 plane.



Equilibrium points

◮ The equilibrium points of the system are located where

∂Φeff

∂x
=
∂Φeff

∂y
=
∂Φeff

∂z
= 0.

They lie on the xy-plane: L1 and L2 along the bar major axis,
L3 on the origin, and L4 and L5 along the bar minor axis.



Nonlinear stable and unstable invariant manifolds

Romero-Gómez et al. (2006)



Transit orbits

Transfer of matter from the interior to the exterior region:

◮ Transit orbits have initial conditions inside the W
s,1
γi

curve in
the y ẏ plane.

◮ Non-transit orbits have initial conditions outside the W
s,1
γi

curve in the y ẏ plane.



Transfer of matter: Homoclinic and heteroclinic orbits

◮ Homoclinic orbits, ψ, s.t. ψ ∈ W u
γi
∩ W s

γi
, i = 1, 2

◮ Heteroclinic orbits, ψ′, s.t. ψ′ ∈ W u
γi
∩ W s

γj
, i 6= j , i , j = 1, 2

Romero-Gómez et al. (2007)

Homoclinic Heteroclinic Transit
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2D parameter study - BW type of bar

Athanassoula, Romero-Gómez & Masdemont (2009)



Simulation - response. Where does all the material on these orbits comes

from? Only from the immediate neighbourhood of the Lagrangian points?

Not necessarily. In fact, most of it can

come from the outer parts of the bar,

driven to the L1/L2 and to the unstable

manifold by the inner branch of the

stable manifold.



Photometrics: Radial profile

The density profile along a cut across the ring and spiral arms has
the same properties as in observations.
Romero-Gómez et al. (2006)



Photometrics: Pitch angle



Is there a quantity, valid for all barred galaxy potentials,

that can predict whether a model/galaxy will be spiral, R1,
R2 or R1R2 ? Yes (?)

◮ qr =

∂Φ2/∂r

∂Φ0/∂r

◮ qt =

(∂Φ/∂θ)max

r∂Φ0/∂r

◮ Φeff = Φ − 1
2Ω2

p (x2 + y2)

◮ RAT=
y2

y1



2D parameter study - prediction tool

Athanassoula, Romero-Gómez & Masdemont (2009)



Pitch angle vs strength parameter

According to observations, the pitch angle of the spiral arm
increases in galaxies with a strong bar.



Ratio of the outer ring diameters vs strength parameter

We find a good correlation between the ratio of the outer ring
diameters with the strength of the bar.



Stabilisation of L1 and L2 - ansae formation? -I

What if material gets concentrated at the ends of the bar?

ansae bars “normal” bars



Stabilisation of L1 and L2 - ansae formation? -II



Summary

◮ Here we propose a new theory on the formation of spiral arms
and rings in barred galaxy, form the dynamical systems point
of view.

◮ We studied the dynamics of the L1 and L2 unstable
Lagrangian points, of the Lyapounov orbits and of the
invariant manifolds.

◮ The manifolds:
◮ They extend far from the unstable Lagrangian points L1 and

L2 and thus can drive global structures
◮ They have the right shapes and reproduce all known types of

spiral and ring shapes (R1, R2, R1R2)
◮ Their photometric radial profiles are in global agreement with

observations (Schweizer 1976)
◮ The loci they outline agrees well with the high density regions

in simulations

◮ The unstable and stable invariant manifolds could be the
building blocks for spiral and rings in barred galaxies.



The Milky Way


