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Poincaré in his book ’Méthodes nouvelles de la mécanique celeste’ defines three types of periodic orbits
(PO) in the RTBP for µ > 0 and small:

• First kind: close to keplerian circles

• Second kind: close to keplerian ellipses

both included in the so called ’First species solutions’ and

• Second species solutions: close to a set of connected arcs of keplerian ellipses, each such arc is
an orbit with consecutive collisions.

• In the 70’s a very complete numerical exploration for 0.1 ≤ µ ≤ 1/2 was perfomed by E.
Strömgren and his associates in Copenhagen. The classification of the families computed is
based on 7 special points of the RTBP: L1, ..., L5 and the points where the primaries are located.

• Study of invariant manifolds of a collinear point Li, i = 1, 2, 3.

Other applications:

• Space dynamics: using the Earth-Moon system as the primaries in the RTBP, space probe
trajectories connecting the two force centers can be established.

• Stellar dynamics: tendency of stars in a cluster to form binaries.

• In general, close approaches, collisions and captures cannot be handled without regularization.

Regularization of the planar RTBP

The equations of motion in synodical coordinates are

{
ẍ− 2ẏ = Ωx

ÿ + 2ẋ = Ωy
⇐⇒ ẍ + iÿ + 2i(ẋ + iẏ) = Ωx + iΩy ⇐⇒ z̈ + 2iż = gradzΩ (1)

where ż =
dz

dt
, z = x + iy and gradzΩ = Ωx + iΩy

Ω =
1

2

[
(1− µ)r2

0 + µr2
1

]
+

1− µ

r0
+

µ

r1

r0 =
√

(x− µ)2 + y2 r1 =
√

(x− µ + 1)2 + y2 .

So, the equations become singular when r0 or r1 → 0 (collision with either of the primaries).
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In order to regularize the eq (1), we consider two transformations

{
z = f(w)
dt

ds
= g(w) = |f ′(w)|2

with w = u + iv.

Then Proposition

(i) The transformed eq becomes

w′′ + 2i|f ′|2w′ = |f ′|2gradwΩ̃ +
|w′|2f ′′

f
′

with Ω(x, y) = Ω(x(u, v), y(u, v)) = Ω̃(u, v) .

(ii) Defining U = Ω̃− C

2
and using the Jacobi integral (2Ω(x, y)− (ẋ2 + ẏ2) = C), we obtain

w′′ + 2i|f ′|2w′ = gradw(U|f ′|2) .

Proof.

ż =
dz

dw

dw

ds

ds

dt
= f ′ · w′ ṡ

z̈ = f ′w′s̈ + f ′′w′ṡw′ṡ + f ′w′′ṡ ṡ = f ′w′s̈ + (f ′′w′2 + f ′w′′)ṡ2

Let us transform gradzΩ.

Lemma 1

f
′

gradzΩ = gradwΩ̃

where gradwΩ̃ = Ω̃u + iΩ̃v.

Proof.

z = x + iy = f(w) = f(u, v) =⇒ df

dw
=

∂f

∂u
= xu + iyu = −i

∂f

∂v
.

From Cauchy-Riemann eqs, xu = yv, xv = −yu we have

gradwΩ̃ = Ω̃u + iΩ̃v = Ωxxu + Ωyyu + i(Ωxxv + Ωyyv) =

= Ωxxu + Ωyyu + i(−Ωxyu + Ωyxu) =

= (xu − iyu)(Ωx + iΩy) = f
′

gradzΩ . �

So, equation (1) reads

f ′w′s̈ + (f ′w′′ + f ′′w′2)ṡ2 + 2if ′w′ṡ =
1

f
′
gradwΩ̃

Dividing by f ′ṡ2,
w′

ṡ2
s̈ + w′′ +

f ′′

f ′
w′2 + 2i

w′

ṡ
=

1

|f ′|2ṡ2
gradwΩ̃

and equivalently

w′′ + w′
s̈

ṡ2
+ i

2w′

ṡ
= −w′2f ′′

f ′
+

1

|f ′|2ṡ2
gradwΩ̃ . (2)
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Let us compute
s̈

ṡ2
:

ṡ =
1

g
=

1

|f ′|2 =
1

f ′f ′
(∗∗)

s̈ = − ġ

g2
= −ġṡ2 ←→ s̈

ṡ2
= −ġ

Lemma 2 ġ =
f
′′

w′

f
′

+
f ′′w′

f ′
.

Proof. ġ = f ′
df

′

dt
+ f

′df ′

dt
=
(∗)

(
f ′f

′′

w′ + f
′

f ′′w′

)
ṡ =

(∗∗)

f
′′

w′

f
′

+
f ′′w′

f ′
�

(∗) :
df ′

dt
=

df ′

dw
· dw

ds
ṡ = f ′′w′ṡ

df
′

dt
=

df ′

dt
=

df ′

dw

dw

ds
ṡ = f

′′

w′ṡ

So, equation (2) becomes

w′′ − w′

[
f
′′

w′

f
′

+
f ′′w′

w′

]
+ 2i|f ′|2w′ = −w′2f ′′

f ′
+ |f ′|2gradwΩ̃

or

w′′ + 2i|f ′|2w′ = |f ′|2gradwΩ̃ +
|w′|2f ′′

f
′

︸ ︷︷ ︸
RT

, (3)

as (i) states.

(ii) Now for the right hand side term, we use U = Ω̃− C

2
, so gradwΩ̃ = gradwU .

From the Jacobi integral

|ż|2 = 2Ω̃− C = 2U ⇐⇒
↑

ż=f ′w′ ṡ

2U = |f ′|2|w′|2ṡ2 =
↑

ṡ2=
1

|f ′|4

|w′|2
|f ′|2 ⇐⇒ |w

′|2 = 2|f ′|2U .

So,

RT = |f ′|2gradwU +
2|f ′|2Uf

′′

f
′

= |f ′|2gradwU + 2f ′f
′′

U

Now we use
Lemma 3 If g1(w), g2(w), are real analytic functions of a complex variable w, then

(i) gradw(g1(w)g2(w)) = g1gradwg2 + g2gradwg1.

(ii) If G(w) is an analytic complex function of a complex variable w, then gradw|G(w)|2 = 2G
dG

dw
.

Proof.

(i) gradw(g1g2) = (g1g2)u + i(g1g2)v =

= g1ug2 + g1g2u + ig1vg2 + ig1g2v

= g1[g2u + ig2v ] + g2[g1u + ig1v ]

= g1gradwg2 + g2gradwg1



4 M. Ollé

(ii) If G = R + iI

|G|2 = R2 + I2

gradw|G|2 = 2RRu + 2IIu + i(2RRv + 2IIv)

2G
dG

dw
= 2(R + iI)(Ru − iIu) = 2[RRu + IIu + i(−RIu + IRu)] =

↑

Ru=Iv, Rv=−Iu (CR)

gradw|G|2 . �

Therefore

gradw(U |f ′|2) (i)
= Ugradw|f ′|2 + |f ′|2gradwU

(ii)
=

= U2f ′f
′′

+ |f ′|2gradwU = RT

So, finally,
w′′ + 2i|f ′|2w′ = gradw(U |f ′|2)

and the proposition is proved. �

Local regularization of the RTBP: Levi-Civita transformation

In order to deal with the regularized equations, we must choose a particular f(w).
Since we have two sungularities: P0(µ, 0), P1(µ − 1, 0) we will consider a transformation for each
singularity

(a) The transformation z = f(w) = µ + w2 regularizes the singularity at P0.

(b) The transformation z = f(w) = µ− 1 + w2 regularizes the singularity at P1.

So both transformations are called ‘local’ since choosing one of them we just eliminate one of both
singularities.

Example 1.

z = f(w) = µ + w2 , z = x + iy w = u + iv
dt

ds
= |f ′(w)|2 = 4(u2 + v2)

See the geometry of the change of variables z, w in [1].
f transforms

z w
P0(µ, 0) −→ (0, 0)

P1(µ− 1, 0) −→ w1,2 = ±i
(0, 0) −→ w1,2 = ±i

√
µ

(x, y) −→ (u, v)

u = ±

√
(x− µ) +

√
(x− µ)2 + y2

2
, v =

y

2n
.

The regularized equation?
w′′ + 2i|f ′|2w′ = gradw(U |f ′|2)

U =
1

2

[
(1− µ)r2

0 + µr2
1

]
+

1− µ

r0
+

µ

r1
− C

2
=

=
1

2

[
(1− µ)|w|4 + µ|1 + w2|2

]
+

1− µ

|w|2 +
µ

|1 + w2| −
C

2
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↑
r0 = |z − µ| = |w2|
r1 = |z − µ + 1| = |1 + w2|

Since |f ′|2 = 4(u2 + v2), we have

u′′ + iv′′ + 8i(u2 + v2)(u′ + iv′) = (4U(u2 + v2))u + i(4U(u2 + v2))v ⇐⇒

⇐⇒
{

u′′ − 8(u2 + v2)v′ = (4U(u2 + v2))u
v′′ + 8(u2 + v2)u′ = (4U(u2 + v2))v

where

4U(u2 + v2) = 2(u2 + v2)


(1− µ) (u4 + v4 + 2u2v2)︸ ︷︷ ︸

(u2+v2)

+µ
{
(1 + u2 − v2)2 + 4u2v2

}

 +

+4(1 − µ) +
4µ(u2 + v2)√

(1 + u2 − v2)2 + 4u2v2
− 2C(u2 + v2)

and (4U(u2 + v2))u, (4U(u2 + v2))v become singular only at P1 : ±i.
In particular, the velocities at P0, P1 are:

• At P0: r0 = 0, z = µ, w = 0

|ż| −→ ∞ (since |ż| = 2U)

|w′| = 2
√

2(1− µ) (since |w′|2 = 2|f ′|2U = 8(1− µ))

• At P1: r1 = 0, z = µ− 1, w = ±i

|ż| −→ ∞
|w′| −→ ∞ (since |w′|2 = 2|f ′|2U −→∞)

Example 2. Similarly for P1.
Comments.

1. Global regularizations: Birkhoff, Thiele-Burran, Lemäıtre. (see [1])

2. In the spatial RTBP, the generalization of the Levi-Civita coordinates was done by Kustaanheimo
and Stiefel, the so called KS coordinates.

3. Reference [1]: “The theory of orbits” (V. Szebehely) and references therein.


