Automatic differentiation, chaos indicators and dynamics

Roberto Barrio

IUMA and GME, Depto. Matemática Aplicada – Universidad de Zaragoza, SPAIN rbarrio@unizar.es, http://gme.unizar.es

In collaboration with: Fernando Blesa, Slawomir Breiter, Sergio Serrano.

Workshop on Stability and Instability in Mechanical Systems: Applications and Numerical Tools Barcelona, December 1 to 5, 2008

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 1 / 57

Taylor's method: Automatic differentiation

- 2 Chaos Indicators
- Open Hamiltonians: Hénon-Heiles Hamiltonian
- 4 Dissipative systems: The Lorenz model

Taylor's method: Automatic differentiation

2 Chaos Indicators

3 Open Hamiltonians: Hénon-Heiles Hamiltonian

4 Dissipative systems: The Lorenz model

Taylor's method: Automatic differentiation

2 Chaos Indicators

3 Open Hamiltonians: Hénon-Heiles Hamiltonian

4 Dissipative systems: The Lorenz model

Taylor's method: Automatic differentiation

2 Chaos Indicators

3 Open Hamiltonians: Hénon-Heiles Hamiltonian

Taylor's method: Automatic differentiation

2 Chaos Indicators

- 3 Open Hamiltonians: Hénon-Heiles Hamiltonian
- 4 Dissipative systems: The Lorenz model

< ∃ >

Periodic orbits, invariant tori \rightarrow Short integration times, sometimes with very high precision and simultaneous solution of the variational equations

Stability of the systems → Medium to large integration times and simultaneous solution of the variational equations

TAYLOR's method: Automatic differentiation

$$\mathbf{y}(t_0) = \mathbf{y}_0, \mathbf{y}(t_i) \simeq \mathbf{y}_i = \mathbf{y}_{i-1} + \frac{d\mathbf{y}(t_{i-1})}{dt} h_i + \frac{1}{2!} \frac{d^2 \mathbf{y}(t_{i-1})}{dt^2} h_i^2 + \ldots + \frac{1}{p!} \frac{d^p \mathbf{y}(t_{i-1})}{dt^p} h_i^p.$$

● Very "new" —→ EULER

In Dynamical Systems — NEW LIFE

- Carles Simó and collaborators A. Jorba and M. Zou
- John Guckenheimer and collaborators
- Willy Goovaerts and collaborators
- GME (Zaragoza)

TAYLOR

MATCONT

ヘロン 人間 とくほ とくほ とう

1

Periodic orbits, invariant tori \rightarrow Short integration times, sometimes with very high precision and simultaneous solution of the variational equations

Stability of the systems → Medium to large integration times and simultaneous solution of the variational equations

TAYLOR's method: Automatic differentiation

$$\mathbf{y}(t_0) = \mathbf{y}_0, \\ \mathbf{y}(t_i) \simeq \mathbf{y}_i = \mathbf{y}_{i-1} + \frac{d\mathbf{y}(t_{i-1})}{dt} h_i + \frac{1}{2!} \frac{d^2 \mathbf{y}(t_{i-1})}{dt^2} h_i^2 + \ldots + \frac{1}{p!} \frac{d^p \mathbf{y}(t_{i-1})}{dt^p} h_i^p.$$

- Very "new" —→ EULER
- In Dynamical Systems NEW LIFE
 - Carles Simó and collaborators
 A. Jorba and M. Zou
 - John Guckenheimer and collaborators
 - Willy Goovaerts and collaborators
 - GME (Zaragoza)

TAYLOR

MATCONT

1

Periodic orbits, invariant tori \rightarrow Short integration times, sometimes with very high precision and simultaneous solution of the variational equations

Stability of the systems → Medium to large integration times and simultaneous solution of the variational equations

TAYLOR's method: Automatic differentiation

$$\mathbf{y}(t_0) = \mathbf{y}_0, \\ \mathbf{y}(t_i) \simeq \mathbf{y}_i = \mathbf{y}_{i-1} + \frac{d\mathbf{y}(t_{i-1})}{dt} h_i + \frac{1}{2!} \frac{d^2 \mathbf{y}(t_{i-1})}{dt^2} h_i^2 + \ldots + \frac{1}{p!} \frac{d^p \mathbf{y}(t_{i-1})}{dt^p} h_i^p.$$

● Very "new" → EULER

In Dynamical Systems — NEW LIFE

- Carles Simó and collaborators
 A Jorba and M Zou
- John Guckenheimer and collaborators
- Willy Goovaerts and collaborators
- GME (Zaragoza)

TAYLOR

MATCONT

ヘロン 人間 とくほ とくほ とう

1

Periodic orbits, invariant tori \rightarrow Short integration times, sometimes with very high precision and simultaneous solution of the variational equations

Stability of the systems → Medium to large integration times and simultaneous solution of the variational equations

TAYLOR's method: Automatic differentiation

$$\mathbf{y}(t_0) = \mathbf{y}_0, \\ \mathbf{y}(t_i) \simeq \mathbf{y}_i = \mathbf{y}_{i-1} + \frac{d\mathbf{y}(t_{i-1})}{dt} h_i + \frac{1}{2!} \frac{d^2 \mathbf{y}(t_{i-1})}{dt^2} h_i^2 + \ldots + \frac{1}{p!} \frac{d^p \mathbf{y}(t_{i-1})}{dt^p} h_i^p.$$

● Very "new" —→ EULER

In Dynamical Systems — NEW LIFE

- Carles Simó and collaborators
 - A. Jorba and M. Zou
- John Guckenheimer and collaborators
- Willy Goovaerts and collaborators
- GME (Zaragoza)

TAYLOR

MATCONT

ヘロン 人間 とくほ とくほ とう

- Periodic orbits, invariant tori → Short integration times, sometimes with very high precision and simultaneous solution of the variational equations
- Stability of the systems → Medium to large integration times and simultaneous solution of the variational equations

► TAYLOR's method: Automatic differentiation

$$\begin{aligned} \mathbf{y}(t_0) &= \mathbf{y}_0, \\ \mathbf{y}(t_i) &\simeq \mathbf{y}_i = \mathbf{y}_{i-1} + \frac{d\mathbf{y}(t_{i-1})}{dt} h_i + \frac{1}{2!} \frac{d^2 \mathbf{y}(t_{i-1})}{dt^2} h_i^2 + \ldots + \frac{1}{p!} \frac{d^p \mathbf{y}(t_{i-1})}{dt^p} h_i^p. \end{aligned}$$

- Very "new" → EULER
- In Dynamical Systems NEW LIFE
 - Carles Simó and collaborators
 - A. Jorba and M. Zou
 - John Guckenheimer and collaborators
 - Willy Goovaerts and collaborators
 - GME (Zaragoza)

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

MATCONT

TAYLOR

• But ... derivatives of the second member of the differential system For ODEs $(\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)))$:

$$\begin{aligned} \mathbf{y}'(t) &= \mathbf{f}(t, \mathbf{y}(t)) \\ \mathbf{y}''(t) &= \mathbf{f}_t(t, \mathbf{y}(t)) + \mathbf{f}_{\mathbf{y}}(t, \mathbf{y}(t)) \cdot \mathbf{y}'(t) \\ \mathbf{y}'''(t) &= \mathbf{f}_{tt}(t, \mathbf{y}(t)) + \dots \end{aligned}$$

- The "drawback" in most classical books
- Symbolic processors
- Numerical differentiation
- Automatic differentiation techniques
 - Exact (up to rounding errors) Taylor coefficients
 - Easy to implement
- Multiple precision libraries
 - mpfun and mpf90 (Prof. D. H. Bailey *et al.*)
 qmp (GNU library in C)
- Interval arithmetic libraries
 - INTLIB, INTLAB,

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NO NO • But ... derivatives of the second member of the differential system For ODEs $(\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)))$:

$$\begin{aligned} \mathbf{y}'(t) &= \mathbf{f}(t, \mathbf{y}(t)) \\ \mathbf{y}''(t) &= \mathbf{f}_t(t, \mathbf{y}(t)) + \mathbf{f}_{\mathbf{y}}(t, \mathbf{y}(t)) \cdot \mathbf{y}'(t) \\ \mathbf{y}'''(t) &= \mathbf{f}_{tt}(t, \mathbf{y}(t)) + \dots \end{aligned}$$

- The "drawback" in most classical books
- Symbolic processors
- Numerical differentiation
- Automatic differentiation techniques
 - Exact (up to rounding errors) Taylor coefficients
 - Easy to implement
- Multiple precision libraries
 - mpfun and mpf90 (Prof. D. H. Bailey et al.)
 - gmp (GNU library in C)
- Interval arithmetic libraries
 - INTLIB, INTLAB, ...

NO NO

Automatic differentiation

Proposition (Moore (1966)): If $f, g, h : t \in \mathbb{R} \mapsto \mathbb{R}$ are functions \mathcal{C}^n and denoting $a^{[j]}(t) = \frac{1}{j!} a^{(j)}(t)$, we have

- If $h(t) = f(t) \pm g(t)$ then $h^{[n]}(t) = f^{[n]}(t) \pm g^{[n]}(t)$
- If $h(t) = f(t) \cdot g(t)$ then $h^{[n]}(t) = \sum_{i=0}^{n} f^{[n-i]}(t) g^{[i]}(t)$
- If h(t) = f(t)/g(t) then $h^{[n]}(t) = \frac{1}{g^{[0]}(t)} \left\{ f^{[n]}(t) \sum_{i=1}^{n} h^{[n-i]}(t) g^{[i]}(t) \right\}$

• If
$$h(t) = f(t)^{\alpha}$$
 then
 $h^{[0]}(t) = (f^{[0]}(t))^{\alpha}, \quad h^{[n]}(t) = \frac{1}{n f^{[0]}(t)} \sum_{i=0}^{n-1} (n \alpha - i(\alpha + 1)) f^{[n-i]}(t) h^{[i]}(t)$

• If
$$h(t) = \exp(f(t))$$
 then
 $h^{[0]}(t) = \exp\left(f^{[0]}(t)\right), \quad h^{[n]}(t) = \frac{1}{n} \sum_{i=0}^{n-1} (n-i) f^{[n-i]}(t) h^{[i]}(t)$

• If $h(t) = \ln(f(t))$ then $h^{[0]}(t) = \ln\left(f^{[0]}(t)\right), \quad h^{[n]}(t) = \frac{1}{f^{[0]}(t)} \left\{ f^{[n]}(t) - \frac{1}{n} \sum_{i=1}^{n-1} (n-i) h^{[n-i]}(t) f^{[i]}(t) \right\}$

• If $g(t) = \cos(f(t))$ and $h(t) = \sin(f(t))$ then

$$\begin{split} g^{[0]}(t) &= \cos\left(f^{[0]}(t)\right)), \quad g^{[n]}(t) = -\frac{1}{n} \sum_{i=1}^{n} i \, h^{[n-i]}(t) \, f^{[i]}(t) \\ h^{[0]}(t) &= \sin\left(f^{[0]}(t)\right)), \quad h^{[n]}(t) = -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \, f^{[i]}(t) \\ &= -\frac{1}{n} \sum_{i=1}^{n} i \, g^{[n-i]}(t) \, f^{[i]}(t) \, f^{[i]}(t)$$

R. Barrio (Universidad of Zaragoza)

Implementation details

- Variable Stepsize¹
 - Combination of estimates of Lagrange remainder and Newton method

$$h = h_0 - rac{h_0^{n-1} \left(A + h_0 \, B
ight) - ext{Tol}}{h_0^n \left((n-1) \, A + h_0 \, n \, B
ight)}.$$

with $\text{Tol} = \min \left\{ \text{TolRel} \cdot \max\{ \| \mathbf{y}^{[0]}(t_i) \|_{\infty}, \| \mathbf{y}^{[1]}(t_i) \|_{\infty} \}, \text{TolAbs} \right\}$ and

$$A = \|\mathbf{y}^{[n-1]}(t_i)\|_{\infty}, \qquad B = n \|\mathbf{y}^{[n]}(t_i)\|_{\infty}$$

Information of last two coefficients (embedded methods)

$$h = \texttt{fac} \cdot \min \left\{ \left(\frac{\texttt{Tol}}{\|\mathbf{y}^{[n-1]}(t_i)\|_{\infty}} \right)^{1/(n-1)}, \left(\frac{\texttt{Tol}}{\|\mathbf{y}^{[n]}(t_i)\|_{\infty}} \right)^{1/n} \right\}$$

• Defect error control (possible rejected stepsizes, no rejected steps)

$$\text{if} \hspace{0.1in} \| \textbf{y}_{i+1}' - \textbf{f}(t_{i+1}, \, \textbf{y}_{i+1}) \|_{\infty} > \texttt{Tol} \hspace{0.1in} \text{then} \hspace{0.1in} \widetilde{h}_{i+1} = \texttt{facr} \cdot h_{i+1},$$

¹R. Barrio, Appl. Math. Comput. 163 (2005) 525–545.

Implementation details

Variable Order²

$$\begin{split} & \text{if } i = \dot{M} \text{ then } \\ & n_{i+1} = n_i \\ & h_{\max} = \max\{h_{i-M}, \dots, h_{i-1}\}, \quad h_{\min} = \min\{h_{i-M}, \dots, h_{i-1}\} \\ & \text{if } \left((h_{i-M} < h_{\min}) \cdot \text{or} \cdot (h_{i-M} = h_{\min} \cdot \text{and} \cdot n_{i-1} > n_i)\right) \text{ then } \\ & h_{est}^- = \text{tol}^{1/(n_i - p + 1)} \cdot \|\mathbf{Y}_{n_i - p}\|_{\infty}^{-1/(n_i - p)} \\ & \text{if } \left(\frac{n_i - p + 1}{n_i + 1}\right)^2 < \text{facl} \cdot \frac{h_{est}^-}{h_i} \text{ then } \\ & n_{i+1} = n_i - p \end{split}$$

end if

else if $((h_{i-M} > h_{\max}) . \text{or.} (h_{i-M} = h_{\max} . \text{and.} n_{i-1} < n_i))$ then

² R. Barrio, F. Blesa and M. Lara, Comput. Math. Appl. 50 (1-2) (2005) 93–111.

R. Barrio (Universidad of Zaragoza)

else

Euler, Dynamics and friends

-

Advantages/Disadvantages

Advantages

- $\bullet~$ Dense output \rightarrow Poincaré Surfaces of Section
- Good stability properties³ (for an explicit method)
- Versatile (ODEs, DAEs, BVPs,...)

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}; \mathbf{p}), \qquad \mathbf{s}'_k = \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \cdot \mathbf{s}_k + \frac{\partial \mathbf{f}}{\partial \mathbf{p}_k}, \qquad \mathbf{s}''_k = \mathbf{s}''_k$$

Interval methods: Berz et al., Zgliczynski and Wilczak

- Methods of any order: arbitrary precision
- Variable stepsize and order⁵
- Basic in Computer Aided Proofs (Lohner's algorithm). see just next talk: Zgliczynski

Disadvantages

Stiff problems

⁵R. Barrio, F. Blesa and M. Lara, Comput. Math. Appl. 50 (1-2) (2005) 93–111. < □ > < □ > < ≣ > < ≡ >

R. Barrio (Universidad of Zaragoza)

³R. Barrio, Appl. Math. Comput. 163 (2005) 525–545.

⁴R. Barrio, SIAM J. Sci. Comput. 27 (6) (2006) 1929–1947.

Advantages/Disadvantages

Advantages

- $\bullet~$ Dense output \rightarrow Poincaré Surfaces of Section
- Good stability properties³ (for an explicit method)
- Versatile (ODEs, DAEs, BVPs,...)

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}; \mathbf{p}), \qquad \mathbf{s}'_k = \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \cdot \mathbf{s}_k + \frac{\partial \mathbf{f}}{\partial \mathbf{p}_k}, \qquad \mathbf{s}''_k = \mathbf{s}''_k$$

Interval methods: Berz et al., Zgliczynski and Wilczak

- Methods of any order: arbitrary precision
- Variable stepsize and order⁵
- Basic in Computer Aided Proofs (Lohner's algorithm). see just next talk: Zgliczynski
- Disadvantages
 - Stiff problems
 - ?
- ³R. Barrio, Appl. Math. Comput. 163 (2005) 525–545.
- ⁴R. Barrio, SIAM J. Sci. Comput. 27 (6) (2006) 1929–1947.
- ⁵R. Barrio, F. Blesa and M. Lara, Comput. Math. Appl. 50 (1-2) (2005) 93–111. <

Proposition

^a If $f(t, \mathbf{y}(t)), g(t, \mathbf{y}(t)) : (t, \mathbf{y}) \in \mathbb{R}^{s+1} \mapsto \mathbb{R}$ functions of class C^n , $\mathbf{i} = (i_1, \dots, i_s) \in \mathbb{N}_0^s$, $\mathbf{i}^* = \mathbf{i} - (0, \dots, 0, 1, 0, \dots, 0) = (i_1, i_2, \dots, i_k - 1, 0, \dots, 0)$ and $\|\mathbf{i}\| = \sum_{j=1}^s i_j$ the total order of derivation, we denote

$$f^{[j,\,\mathbf{i}]} := \frac{1}{j!} \frac{\partial^{||\mathbf{i}||} f^{(j)}(t)}{\partial y_1^{i_1} \partial y_2^{i_2} \cdots \partial y_s^{i_s}}, \qquad f^{[j,\,\mathbf{0}]} := f^{[j]} = \frac{1}{j!} \frac{d^j f(t)}{dt^j},$$

the jth Taylor coefficient of the partial derivative of $f(t, \mathbf{y}(t))$ with respect to i and

$$\widetilde{h}_{n,\,\mathbf{i}}^{[j,\,\mathbf{v}]} = h^{[j,\,\mathbf{v}]}, \quad (j \neq n \text{ or } \mathbf{v} \neq \mathbf{i}), \qquad \widetilde{h}_{n,\,\mathbf{i}}^{[n,\,\mathbf{i}]} = 0.$$

Besides, given $\mathbf{v} = (v_1, \ldots, v_s) \in \mathbb{N}_0^s$ we define the multi-combinatorial number $\begin{pmatrix} i \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} i_1 \\ v_1 \end{pmatrix} \cdot \begin{pmatrix} i_2 \\ v_2 \end{pmatrix} \cdots \begin{pmatrix} i_s \\ v_s \end{pmatrix}$, and we consider the classical partial order in \mathbb{N}_0^s . Then (v) If $h(t) = f(t)^{\alpha}$ with $\alpha \in \mathbb{R}$ then $h^{[0, \mathbf{0}]} = (f^{[0]}(t))^{\alpha}$ and

$$\begin{split} h^{[0, i]} &= \frac{1}{f^{[0]}} \sum_{\mathbf{v} \le i^*} {i^* \choose \mathbf{v}} \left\{ \alpha \, h^{[0, \mathbf{v}]} \cdot f^{[0, i-\mathbf{v}]} - \widetilde{h}^{[0, i-\mathbf{v}]}_{0, i} \cdot f^{[0, \mathbf{v}]} \right\}, \qquad \mathbf{i} > \mathbf{0}, \\ h^{[n, i]} &= \frac{1}{n f^{[0]}} \sum_{j=0}^{n} (n \, \alpha - j(\alpha + 1)) \left\{ \sum_{\mathbf{v} \le i} {i \choose \mathbf{v}} \widetilde{h}^{[j, \mathbf{v}]}_{n, i} \cdot f^{[n-j, i-\mathbf{v}]} \right\}, \quad n > 0, \ \mathbf{i} > \mathbf{0}. \end{split}$$

^aR. Barrio, SIAM J. Sci. Comput. 27 (6) (2006) 1929–1947.

Computational complexity

Proposition

If the evaluation of $f(t, \mathbf{y}(t))$ involves k elementary functions $(\times, /, \ln, \exp, \sin, \cos, ...)$ then the computational complexity of the evaluation of $f^{[0]}, f^{[1]}, ..., f^{[n-1]}$ is $k n^2 + O(n)$. (In the case of linear functions k n + O(1))

Proposition

If the evaluation of $f(t, \mathbf{y}(t))$ involves k elementary functions $(\times, /, \ln, \exp, \sin, \cos, ...)$ and given $\mathbf{i} = (i_1, i_2, ..., i_s) \in \mathbb{N}_0^s$ then the computational complexity of the evaluation of $f^{[0, i]}, f^{[1, i]}, ..., f^{[n-1, i]}$, supposing already known all the derivatives of index $\mathbf{v} < \mathbf{i}$, is

 $\mathcal{O}\left(\prod_{j=1}^{s}\left(i_{j}+1\right)\cdot k\,n^{2}
ight).$

Corollary

The computational complexity of evaluating the Taylor coefficients of a partial derivative of f is twice the complexity of evaluating the Taylor coefficients of f, and the computational complexity of evaluating the Taylor coefficients of a second order partial

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

Computational complexity

Proposition

If the evaluation of $f(t, \mathbf{y}(t))$ involves k elementary functions (×, /, ln, exp, sin, cos, ...) and given $\mathbf{i} = (i_1, i_2, ..., i_s) \in \mathbb{N}_0^s$ then the computational complexity of the evaluation of $f^{[0, i]}$, $f^{[1, i]}$, ..., $f^{[n-1, i]}$, supposing already known all the derivatives of index $\mathbf{v} < \mathbf{i}$, is

$$\mathcal{O}\left(\prod_{j=1}^{s}\left(i_{j}+1\right)\cdot k\,n^{2}
ight).$$

Corollary

The computational complexity of evaluating the Taylor coefficients of a partial derivative of f is twice the complexity of evaluating the Taylor coefficients of f, and the computational complexity of evaluating the Taylor coefficients of a second order partial derivative of f is, once the coefficients of the first order partial derivatives are known, four times the complexity of evaluating the Taylor coefficients of f in the case of $\partial^2 f/\partial y_i \partial y_j$ ($i \neq j$) and three times in the case $\partial^2 f/\partial y_i^2$.

Programming

Two body problem (Kepler)

$$\ddot{x} = -\frac{x}{(x^2 + y^2)^{3/2}}, \qquad \ddot{y} = -\frac{y}{(x^2 + y^2)^{3/2}}$$

KEPLER PROBLEM for m = 0 to n - 2 do c = (1 + m)(2 + m) $s_1^{[m]} = \boxed{x \times x}^{[m]} + \boxed{y \times y}^{[m]}$ $s_2^{[m]} = \boxed{(s_1)^{-3/2}}^{[m]}$ $x^{[m+2]} = -\boxed{x \times s_2}^{[m]}/c$ $y^{[m+2]} = -\boxed{y \times s_2}^{[m]}/c$

end

A (10) A (10)

Programming

Two body problem (Kepler)

$$\ddot{x} = -\frac{x}{(x^2 + y^2)^{3/2}}, \qquad \ddot{y} = -\frac{y}{(x^2 + y^2)^{3/2}}$$

KEPLER PROBLEMKEPLER PROBLEM & SENSITIVITY VALUESfor
$$m = 0$$
 to $n - 2$ do
 $c = (1 + m)(2 + m)$ for $m = 0$ to $n - 2$ do
 $c = (1 + m)(2 + m)$
for $\mathbf{v} = \mathbf{0}$ to \mathbf{i} do
 $s_1^{[m]} = \underline{\mathbf{x} \times \mathbf{x}}^{[m]} + \underline{\mathbf{y} \times \mathbf{y}}^{[m]}$ $s_1^{[m]} = \underline{\mathbf{x} \times \mathbf{x}}^{[m]} + \underline{\mathbf{y} \times \mathbf{y}}^{[m]}$ $s_1^{[m,v]} = \underline{\mathbf{x} \times \mathbf{x}}^{[m,v]} + \underline{\mathbf{y} \times \mathbf{y}}^{[m,v]}$ $s_2^{[m]} = \underline{(s_1)^{-3/2}}^{[m]}$ $s_2^{[m,v]} = \underline{(s_1)^{-3/2}}^{[m,v]}$ $\mathbf{x}^{[m+2]} = -\underline{\mathbf{x} \times \mathbf{s}_2}^{[m]}/c$ $\mathbf{x}^{[m+2,v]} = -\underline{\mathbf{x} \times \mathbf{s}_2}^{[m,v]}/c$ $\mathbf{y}^{[m+2]} = -\underline{\mathbf{y} \times \mathbf{s}_2}^{[m]}/c$ \mathbf{end}

Euler, Dynamics and friends

• Numerical test: Taylor series method vs. DOP853 (Hairer & Wanner)

For high-precision demands Taylor series method seems to be the fastest method for smooth low-dimension problems (non-stiff)

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 13 / 57

2 Chaos Indicators

- 3 Open Hamiltonians: Hénon-Heiles Hamiltonian
- 4 Dissipative systems: The Lorenz model

Chaos indicators

Techniques to detect chaos (not to proof chaos).

Poincaré Surfaces of Section (Deinagré Birkhoff Hénon & Heiles (1)

(Poincaré, Birkhoff, Hénon & Heiles (1964))

- 2DOF
- In some cases it is impossible to obtain a transverse section for the whole flow (Dullin & Wittek '95)

Maximum Lyapunov Exponent (MLE)

$$\begin{aligned} \frac{\partial y}{\partial t} &= f(t, \mathbf{y}), \qquad \mathbf{y}(0) = \mathbf{y}_0, \\ \frac{\partial \delta y}{\partial t} &= \frac{\partial f(t, \mathbf{y})}{\partial y} \, \delta \mathbf{y}, \quad \delta \mathbf{y}(0) = \delta \mathbf{y}_0 \end{aligned}$$

is given by MLE = $\lim_{t \to +\infty} \frac{1}{t} \ln \frac{||\delta y(t)||}{||\delta y(0)||}$ = MLE gives every of measuring the degree of sensitivity to initial conditions

• • • • • • • • • • • •

Chaos indicators

Techniques to *detect* chaos (not to proof chaos).

- Poincaré Surfaces of Section (Poincaré, Birkhoff, Hénon & Heiles (1964))
 - 2DOF
 - In some cases it is impossible to obtain a transverse section for the whole flow (Dullin & Wittek '95)
- Maximum Lyapunov Exponent (MLE)

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(0) = \mathbf{y}_0,$$
$$\frac{d\delta \mathbf{y}}{dt} = \frac{\partial f(t, \mathbf{y})}{\partial \mathbf{y}} \,\delta \mathbf{y}, \quad \delta \mathbf{y}(0) = \delta \mathbf{y}_0$$

is given by MLE = $\lim_{t\to+\infty} \frac{1}{t} \ln \frac{\|\delta y(t)\|}{\|\delta y(0)\|}$

- MLE gives a way of measuring the degree of sensitivity to initial conditions
- A limit in the definition long time integration

Chaos indicators

Techniques to detect chaos (not to proof chaos).

- Poincaré Surfaces of Section (Poincaré, Birkhoff, Hénon & Heiles (1964))
 - 2DOF
 - In some cases it is impossible to obtain a transverse section for the whole flow (Dullin & Wittek '95)
- Maximum Lyapunov Exponent (MLE)

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(0) = \mathbf{y}_0, \\ \frac{d\delta\mathbf{y}}{dt} = \frac{\partial \mathbf{f}(t, \mathbf{y})}{\partial \mathbf{y}} \,\delta\mathbf{y}, \quad \delta\mathbf{y}(0) = \delta\mathbf{y}_0$$

is given by MLE = $\lim_{t\to+\infty} \frac{1}{t} \ln \frac{\|\delta \mathbf{y}(t)\|}{\|\delta \mathbf{y}(0)\|}$

- MLE gives a way of measuring the degree of sensitivity to initial conditions
- A limit in the definition long time integration

Fast Chaos indicators

Fast techniques to detect chaos.

Classification:

Variational methods Use the variational equations:

Heliticity and Twist Angles (Contopoulos & Voglis), Smaller ALigment Index (SALI) (Skokos), Mean Exponential Growth factor of Nearby Orbits (MEGNO) (Cincotta & Simó), Fast Lyapunov Indicator (FLI) (Froeschlé & Lega), OFLI²T or OFLI2 (Barrio).

 Time series methods Analyse the spectrum of some scalar function of a single orbit:

Frequency Map Analysis (Laskar), Spectral Number (SN) (Michtchenko & Ferraz-Mello), Integrated Autocorrelation Function (IAF) (Barrio, Borczyk & Breiter).

イロト イポト イヨト イヨト

Fast Chaos indicators

- Fast techniques to detect chaos.
- Classification:
 - Variational methods Use the variational equations:

Heliticity and Twist Angles (Contopoulos & Voglis), Smaller ALigment Index (SALI) (Skokos), Mean Exponential Growth factor of Nearby Orbits (MEGNO) (Cincotta & Simó), Fast Lyapunov Indicator (FLI) (Froeschlé & Lega), OFLI²_{TT} or OFLI2 (Barrio).

• Time series methods Analyse the spectrum of some scalar function of a single orbit:

Frequency Map Analysis (Laskar), Spectral Number (SN) (Michtchenko & Ferraz-Mello), Integrated Autocorrelation Function (IAF) (Barrio, Borczyk & Breiter).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fast Chaos indicators

- Fast techniques to detect chaos.
- Classification:
 - Variational methods Use the variational equations:

Heliticity and Twist Angles (Contopoulos & Voglis), Smaller ALigment Index (SALI) (Skokos), Mean Exponential Growth factor of Nearby Orbits (MEGNO) (Cincotta & Simó), Fast Lyapunov Indicator (FLI) (Froeschlé & Lega), OFLI²_{TT} or OFLI2 (Barrio).

• Time series methods Analyse the spectrum of some scalar function of a single orbit:

Frequency Map Analysis (Laskar), Spectral Number (SN) (Michtchenko & Ferraz-Mello), Integrated Autocorrelation Function (IAF) (Barrio, Borczyk & Breiter).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Extensible-Pendulum

 $\mathcal{H}(q_1, q_2, p_1, p_2) = \frac{1}{2} (p_1^2 + p_2^2) + \frac{1}{2} ((1-c) q_1^2 + q_2^2 - c q_1^2 q_2),$

Euler, Dynamics and friends

Variational methods

 Mean Exponential Growth factor of Nearby Orbits (MEGNO) (Cincotta & Simó), based on the integral form of the MLE

$$\mathbf{Y}(t) = \frac{2}{t} \int_{t_0}^t \frac{\dot{\delta}(\hat{t})}{\delta(\hat{t})} \hat{t} \, \mathrm{d}\hat{t}, \quad \bar{\mathbf{Y}}(t) = \frac{1}{t} \int_{t_0}^t \mathbf{Y}(\hat{t}) \mathrm{d}\hat{t}, \quad \left(\delta(t) = \|\delta \mathbf{y}(t)\|\right)$$

- $\lim \overline{Y}(t) = 0$ for harmonic oscillations, 2 for ordered motion, asymptotically $\overline{Y}(t) \approx t \cdot \text{MLE}/2$ for chaotic orbits.
- "Absolute" information
- Fast Lyapunov Indicator (FLI) (OFLI) (Froeschlé & Lega)

 $\begin{aligned} & \text{FLI}(\boldsymbol{y}(0), \delta \boldsymbol{y}(0), t_f) &= \sup_{0 < t < t_f} \log \|\delta \boldsymbol{y}(t)\| \\ & \text{OFLI}(\boldsymbol{y}(0), \delta \boldsymbol{y}(0), t_f) &= \sup_{0 < t < t_f} \log \|\delta \boldsymbol{y}^{\perp}(t)\| \end{aligned}$

- OFLI tends to a constant value for the periodic orbits
- behaves linearly for initial conditions on regular orbits
- grows exponentially for chaotic orbits.
- "Relative" information

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variational methods

 Mean Exponential Growth factor of Nearby Orbits (MEGNO) (Cincotta & Simó), based on the integral form of the MLE

$$Y(t) = \frac{2}{t} \int_{t_0}^t \frac{\dot{\delta}(\hat{t})}{\delta(\hat{t})} \hat{t} \, \mathrm{d}\hat{t}, \quad \bar{Y}(t) = \frac{1}{t} \int_{t_0}^t Y(\hat{t}) \mathrm{d}\hat{t}, \quad \left(\delta(t) = \|\delta \mathbf{y}(t)\|\right)$$

- $\lim \overline{Y}(t) = 0$ for harmonic oscillations, 2 for ordered motion, asymptotically $\overline{Y}(t) \approx t \cdot MLE/2$ for chaotic orbits.
- "Absolute" information
- Fast Lyapunov Indicator (FLI) (OFLI) (Froeschlé & Lega)

$$\begin{aligned} & \text{FLI}(\boldsymbol{y}(0), \delta \boldsymbol{y}(0), t_f) &= \sup_{0 < t < t_f} \log \|\delta \boldsymbol{y}(t)\| \\ & \text{OFLI}(\boldsymbol{y}(0), \delta \boldsymbol{y}(0), t_f) &= \sup_{0 < t < t_f} \log \|\delta \boldsymbol{y}^{\perp}(t)\| \end{aligned}$$

- OFLI tends to a constant value for the periodic orbits
- behaves linearly for initial conditions on regular orbits
- grows exponentially for chaotic orbits.
- "Relative" information

R. Barrio (Universidad of Zaragoza)

A (10) > A (10) > A

<ロト <回 > < 回 > < 回 > < 回 >

HYPERION: FLI planar case

HYPERION: FLI non-planar case

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 1
How to choose the initial conditions?

OFLI2⁶ Chaos Indicator

OFLI2 :=
$$\sup_{0 < t < t_f} \log \|\{\delta \mathbf{y}(t) + \frac{1}{2} \delta^2 \mathbf{y}(t)\}^{\perp}\|,$$

where $\delta \mathbf{y}$ and $\delta^2 \mathbf{y}$ are the first and second order sensitivities with respect to carefully chosen initial vectors:

$$\begin{aligned} \frac{d\mathbf{y}}{dt} &= \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(0) = \mathbf{y}_0, \\ \frac{d\,\delta\mathbf{y}}{dt} &= \frac{\partial \mathbf{f}(t, \mathbf{y})}{\partial \mathbf{y}}\,\delta\mathbf{y}, \qquad \delta\mathbf{y}(0) = \frac{\mathbf{f}(0, \mathbf{y}_0)}{\|\mathbf{f}(0, \mathbf{y}_0)\|}, \\ \frac{d\,\delta^2 y_j}{dt} &= \frac{\partial f_j}{\partial \mathbf{y}}\,\delta^2\mathbf{y} + \delta\mathbf{y}^\top \frac{\partial^2 f_j}{\partial \mathbf{y}^2}\,\delta\mathbf{y}, \qquad \delta^2\mathbf{y}(0) = \mathbf{0}. \end{aligned}$$

- Minimize spurious structures
- Using KAM arguments:
 - OFLI2 tends to a constant value for the periodic orbits
 - behaves linearly for initial conditions on a KAM torus
 - grows exponentially for chaotic orbits.
 - ⁶R. Barrio, Chaos Solitons Fractals 25 (3) (2005) 711–726.
 - R. Barrio, Internat. J. Bifur. Chaos 16 (10) (2006) 2777-2798.

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 20 / 57

How to choose the initial conditions?

OFLI2⁶ Chaos Indicator

OFLI2 :=
$$\sup_{0 < t < t_f} \log \|\{\delta \mathbf{y}(t) + \frac{1}{2} \delta^2 \mathbf{y}(t)\}^{\perp}\|,$$

where $\delta \mathbf{y}$ and $\delta^2 \mathbf{y}$ are the first and second order sensitivities with respect to carefully chosen initial vectors:

$$\begin{aligned} \frac{d\mathbf{y}}{dt} &= \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(0) = \mathbf{y}_0, \\ \frac{d\,\delta\mathbf{y}}{dt} &= \frac{\partial \mathbf{f}(t, \mathbf{y})}{\partial \mathbf{y}}\,\delta\mathbf{y}, \qquad \delta\mathbf{y}(0) = \frac{\mathbf{f}(0, \mathbf{y}_0)}{\|\mathbf{f}(0, \mathbf{y}_0)\|}, \\ \frac{d\,\delta^2 y_j}{dt} &= \frac{\partial f_j}{\partial \mathbf{y}}\,\delta^2\mathbf{y} + \delta\mathbf{y}^\top \frac{\partial^2 f_j}{\partial \mathbf{y}^2}\,\delta\mathbf{y}, \qquad \delta^2\mathbf{y}(0) = \mathbf{0}. \end{aligned}$$

- Minimize spurious structures
- Using KAM arguments:
 - OFLI2 tends to a constant value for the periodic orbits
 - behaves linearly for initial conditions on a KAM torus
 - grows exponentially for chaotic orbits.

R. Barrio, Internat. J. Bifur. Chaos 16 (10) (2006) 2777-2798.

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

⁶R. Barrio, Chaos Solitons Fractals 25 (3) (2005) 711–726.

Coupled pendulum: case y = Y = 0.

Test Problem: A coupled pendulum system with two degrees of freedom.

$$\mathcal{H} = \frac{1}{2} \left(X^2 + Y^2 \right) - (1 + ab) \cos x - a \cos y + ab \cos x \cos y.$$

The problem is integrable for all initial conditions when either a or b are equal 0.

• Using the 2DOF formulation and $\delta y(0) = (1, 1, 1, 0)$ MEGNO MEGNO

$$\delta \ddot{\mathbf{x}} = -\cos \mathbf{x} \, \delta \mathbf{x}, \qquad \delta \ddot{\mathbf{y}} = -\mathbf{a} \left(1 - \mathbf{b} \cos \mathbf{x}\right) \, \delta \mathbf{y}.$$

• Suppose that we are in the circulation regime and $\cos x \approx \cos v t$

• New independent variable $u = \nu t$, and a parameter $\omega^2 = a/\nu^2$

Standard form of the Mathieu equation:
$$\frac{d^2(\delta y)}{du^2} = -\omega^2 (1 - b \cos u) \, \delta y$$

known to be unstable if any of the parametric resonances $\omega \approx \frac{k}{2}$, $k \in \mathbb{Z}_+$, occurs. The width of the "Arnold tongues" of instability increases with *b* but decreases with *k*.

A (10) > A (10) > A (10)

Resolving the contradiction: case y = Y = 0.

$$\delta \ddot{x} = -\cos x \, \delta x, \qquad \delta \ddot{y} = -a \left(1 - b \cos x\right) \, \delta y.$$

Suppose that we are in the circulation regime and $\cos x \approx \cos \nu t$

New independent variable $u = \nu t$, and a parameter $\omega^2 = a/\nu^2$ ۲

Standard form of the Mathieu equation:
$$\frac{d^2(\delta y)}{du^2} = -\omega^2 (1 - b \cos u) \,\delta y$$

known to be unstable if any of the parametric resonances $\omega \approx \frac{k}{2}, k \in \mathbb{Z}_+$, occurs. The width of the "Arnold tongues" of instability increases with b but decreases with k.

R. Barrio (Universidad of Zaragoza)

More spurious structures

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 23 / 57

3

Proposición (Haken)

The function $V = \mathbf{f}(t, \boldsymbol{\rho})$ is the solution of the variational equation with initial conditions $\xi_0 = \mathbf{f}(t_0, \rho_0)$. Moreover, if the support of the ergodic measure p does not reduce to a fixed point then these initial conditions in the variational equations generate a zero Lyapunov exponent.

- For any orbit at least one Lyapunov exponent vanishes.
- Hamiltonian systems: At least two Lyapunov exponents are zero.
- Problems appear when all $\lambda_i = 0$. Now, following the ergodic theorem it is not easy to compute for all the orbits the same Lyapunov exponent.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposición (Haken)

The function $V = \mathbf{f}(t, \rho)$ is the solution of the variational equation with initial conditions $\xi_0 = \mathbf{f}(t_0, \rho_0)$. Moreover, if the support of the ergodic measure p does not reduce to a fixed point then these initial conditions in the variational equations generate a zero Lyapunov exponent.

- For any orbit at least one Lyapunov exponent vanishes.
- Hamiltonian systems: At least two Lyapunov exponents are zero.
- Problems appear when all $\lambda_i = 0$. Now, following the ergodic theorem it is not easy to compute for all the orbits the same Lyapunov exponent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1DOF Conservative Hamiltonians both Lyapunov exponents vanish
- The direction tangent to the flow generates a very low value of the variational Chaos Indicators because for periodic orbits the ratio ||*f*(*t*)||/||*f*(*t*₀)|| has only small variations.
- In order to have an initial vector ξ₀ = (δx₀, δy₀)^T for the variational equations tangent to the flow in the pendulum equations for δy₀ ≠ 0,

$$y_0 = -\frac{\delta x_0}{\delta y_0} \sin(x_0).$$

A (10) > A (10) > A (10)

Why?: Hamiltonian systems

- 1DOF Conservative Hamiltonians both Lyapunov exponents vanish
- The direction tangent to the flow generates a very low value of the variational Chaos Indicators because for periodic orbits the ratio ||*f*(*t*)||/||*f*(*t*₀)|| has only small variations.
- In order to have an initial vector ξ₀ = (δx₀, δy₀)^T for the variational equations tangent to the flow in the pendulum equations for δy₀ ≠ 0,

How to avoid the spurious structures?

• It seems reasonable to avoid the tangent direction.

• In 1DOF Hamiltonians: the vector orthogonal to the flow, $\nabla \mathcal{H}$.

- It seems reasonable to avoid the tangent direction.
- In 1DOF Hamiltonians: the vector orthogonal to the flow, $\nabla \mathcal{H}$.

How to avoid the spurious structures?

- It seems reasonable to avoid the tangent direction.
- In 1DOF Hamiltonians: the vector orthogonal to the flow, $\nabla \mathcal{H}$.

How to avoid the spurious structures? HH

 $FLI:\delta y(0)=(1,-1,1,1)/2$ $FLI:\delta y(0)=(-f_4,-f_3,f_2,f_1)/||f||$ 0.4 0.4 0.3 0.3 0.2 0.2 velocity Y 0.1 velocity Y 0,1 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 -0.3 -0.2 0.2 0.3 -0.1 0 0.1 0.4 0.5 -0.3 -0.2 -0.1 0.4 0.5 0.1 $FLI:\delta y(0) = -\nabla H / ||\nabla H||$ OFLI2 0.4 0.4 0.3 0.3 0.2 0.2 velocity Y 0.1 velocity Y 0.1 0 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 1 0 0.1 coordinate y -0.3 -0.2 -0.1 0.2 0.3 0.4 0.5 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 coordinate y

R. Barrio (Universidad of Zaragoza)

- 2 Chaos Indicators
- Open Hamiltonians: Hénon-Heiles Hamiltonian
 - 4 Dissipative systems: The Lorenz model

- 3 →

The Hénon-Heiles Hamiltonian⁷

$$\mathcal{H} = rac{1}{2}(X^2 + Y^2) + rac{1}{2}(x^2 + y^2) + \left(x^2y - rac{1}{3}y^3\right)$$

Symmetries:

- the spatial group is a dihedral group *D*₃
- the complete symmetry group is D₃ × T (T is a Z₂ symmetry, the time reversal symmetry)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

⁷R. Barrio, F. Blesa and S. Serrano, Europhysics Letters, 82, (2008) 10003.

R. Barrio, F. Blesa and S. Serrano, Preprint (2008).

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

Theorem (Weinstein (1973))

If the Hamiltonian $\mathcal{H}(\mathbf{x}, \mathbf{X})$ is of class \mathcal{C}^2 near $(\mathbf{x}, \mathbf{X}) = (0, 0)$, where $\mathbf{x}, \mathbf{X} \in \mathbb{R}^n$, and the Hessian matrix $\mathcal{H}_{**}(0,0)$ is positive definite, then for ε sufficiently small any energy surface $\mathcal{H}(\mathbf{x}, \mathbf{X}) = \mathcal{H}(0, 0) + \varepsilon^2$ contains at least *n* periodic orbits of the corresponding Hamiltonian equations whose periods are close to those of the linear system $\dot{\mathbf{z}} = J\mathcal{H}_{**}(0,0)\mathbf{z}.$

Nonlinear normal modes:

from Weinstein's theorem > 2

• from the symmetries 8: Π_i , i = 1, ..., 8 (Churchill *et al.* (1979))

R. Barrio (Universidad of Zaragoza)

Escape basins: plane (y, E)

- for H < 1/6 all orbits are bounded.
- for 1/6 < H ≤ 0.22 most orbits are escape orbits and some KAM tori persist.
- for 0.22 ≤ H no KAM tori and all orbits are escape orbits (?).

WSIMS'08

31/57

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fractal structures near the critical energy level: Π_1

Below escape energy:

- blue regular
- red chaos.

Above escape energy:

- dark blue escape orbits.
- red escape with transient chaos.
- Π₁ stability varies as
 E approaches the
 critical value.

WSIMS'08 32 / 57

Fractal structures near the critical energy level

 The Π₁ (and Π₂ and Π₃) periodic orbit goes through an infinite sequence of transitions in stability type (Churchill *et al* (1980)) Sequence of isochronous and period-doubling bifurcations. An infinite sequence of decreasing in size fractal regular regions (Barrio, Blesa and Serrano (2008))

Fractal structures near the critical energy level

- The Π₁ (and Π₂ and Π₃) periodic orbit goes through an infinite sequence of transitions in stability type (Churchill *et al* (1980))
- Sequence of isochronous and period-doubling bifurcations. An infinite sequence of decreasing in size fractal regular regions (Barrio, Blesa and Serrano (2008))

Fractal and regular bounded structures In the KAM region

Above the escape energy:

 KAM tori disappear on y-axis around E ≈ 0.2113.

Bounded regions far from the KAM tori?

Symmetric Periodic Orbits

- Periodic orbits.
- OFLI2 chaos indicator.

a

- ✓ Red: unstable p.o.
 - Green: stable p.o.
- ✓ Small zones of stable periodic orbits.

Fractal and regular bounded structures In the escape region

Above the escape energy:

- Small regular region around $E \approx 0.253$.
- Self-similar regions with chains of bifurcations inside.

- Without *D*₃ symmetry.
- Stable and bounded regions far form the KAM tori

WSIMS'08 37 / 57

イロト イヨト イヨト イヨト

- 2 Chaos Indicators
- 3 Open Hamiltonians: Hénon-Heiles Hamiltonian
- 4 Dissipative systems: The Lorenz model

- 3 →

The Lorenz model⁸

The Lorenz model

$$\frac{dx}{dt} = -\sigma x + \sigma y, \quad \frac{dy}{dt} = -xz + r x - y, \quad \frac{dz}{dt} = xy - b z,$$

Three dimensionless control parameters:

 σ Prandtl number, **b** a positive constant, **r** relative Rayleigh number.

The Saltzman values: $\sigma = 10, b = 8/3, r = 28$

• The fixed points:

$$C^0 = (0,0,0), \qquad C^{\pm} = (\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1) \text{ for } r > 1$$

R. Barrio (Universidad of Zaragoza)

⁸R. Barrio and S. Serrano, Physica D, 229, (2007) 43–51.

R. Barrio and S. Serrano, Preprint (2008).

Classical scheme

For r < 1, C^0 is globally attracting.

 $r_{\rm P} = 1$ pitchfork bifurcation.

For $1 < r < r_{\rm H} \approx 24.74$. C^0 unstable and C^{\pm} stable.

For $1 < r < r_{hom} \approx 13.926$ trajectories \rightarrow equilibrium points.

For $r_{\rm hom} < r < r_{\rm het} \approx 24.06$. Unst. limit cycles + transient chaos.

For $r_{het} < r < r_{H}$. Unst. limit cycles + chaotic stable attractor.

 $r = r_{\rm H}$ subcritical Andronov-Hopf bifurcation.

For $r > r_{\rm H} \approx 24.74$. C^0 and C^{\pm} unst. equilibrium points.

Classical scheme

For r < 1, C^0 is globally attracting.

 $r_{\rm P} = 1$ pitchfork bifurcation.

For $1 < r < r_{\rm H} \approx 24.74$. C^0 unstable and C^{\pm} stable.

For $1 < r < r_{hom} \approx 13.926$ trajectories \rightarrow equilibrium points.

For $r_{\rm hom} < r < r_{\rm het} \approx 24.06$. Unst. limit cycles + transient chaos.

For $r_{het} < r < r_{H}$. Unst. limit cycles + chaotic stable attractor.

 $r = r_{\rm H}$ subcritical Andronov-Hopf bifurcation.

For $r > r_{\rm H} \approx 24.74$. C^0 and C^{\pm} unst. equilibrium points.

Up to $r \sim 146$: large chaotic region $r \sim 146$ to $r \sim 166.1$: regular region Up to $r \sim 214$: chaotic region Afterwards: regular region

Classical scheme

For r < 1, C^0 is globally attracting.

 $r_{\rm P} = 1$ pitchfork bifurcation.

For $1 < r < r_{\rm H} \approx 24.74$. C^0 unstable and C^{\pm} stable.

For $1 < r < r_{hom} \approx 13.926$ trajectories \rightarrow equilibrium points.

For $r_{\rm hom} < r < r_{\rm het} \approx 24.06$. Unst. limit cycles + transient chaos.

For $r_{het} < r < r_{H}$. Unst. limit cycles + chaotic stable attractor.

 $r = r_{\rm H}$ subcritical Andronov-Hopf bifurcation.

For $r > r_{\rm H} \approx 24.74$. C^0 and C^{\pm} unst. equilibrium points.

Up to $r \sim 146$: large chaotic region $r \sim 146$ to $r \sim 166.1$: regular region Up to $r \sim 214$: chaotic region

Afterwards: regular region

Biparametric analysis: $\sigma = 10$

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 43 / 57

Biparametric analysis: b = 8/3

Fractral estructures: Fat fractal exponent γ , $\mu(\varepsilon) = \mu_0 + K \varepsilon^{\gamma}$

 $\gamma = 0.3227(\pm 0.1336)$

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

イロト イポト イヨト イヨ

Biparametric analysis: b = 8/3

Fractral estructures: Fat fractal exponent γ , $\mu(\varepsilon) = \mu_0 + K \varepsilon^{\gamma}$

 $\gamma = 0.3227(\pm 0.1336)$

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

- 24

• • • • • • • • • • • •

Biparametric analysis: r fixed

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 45 / 57

Biparametric analysis: r fixed

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 45 / 57

- Software: AUTO and MATCONT
- Period doubling, fold and Andronov-Hopf bifurcations (analytical)
Biparametric analysis: bifurcations

- Software: AUTO and MATCONT
- Period doubling, fold and Andronov-Hopf bifurcations (analytical)

Three-parametric analysis: simplified models

Euler, Dynamics and friends

Theorem

For a given fixed r > 1 the region where chaos is possible is bounded in *b*, and if $b \ge \epsilon > 0$ then the region is bounded in σ too. To be precise, outside a bounded region every positive semiorbit of the Lorenz system converges to an equilibrium.

A D M A A A M M

-∢ ∃ ▶

Theorem

For a given fixed r > 1 the region where chaos is possible is bounded in *b*, and if $b \ge \epsilon > 0$ then the region is bounded in σ too. To be precise, outside a bounded region every positive semiorbit of the Lorenz system converges to an equilibrium.

Conjecture

The boundary of the chaotic region in the (σ, b) plane grows linearly with r.

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 55 / 57

Thank you for your attention :-)

R. Barrio (Universidad of Zaragoza)

Euler, Dynamics and friends

WSIMS'08 57 / 57