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The problem

To study the integrability of a Hamiltonian H(q, p) real analytic on some
domain Ω of R

2n. We consider the extension to a complex domain Ω̂ of C
2n.

If x = {q, p} ∈ C
2n we consider solutions x(t) with t ∈ D̂ ⊂ C. The image

of D̂ by x is a Riemann surface Γ. We shall complete Γ adding fixed
points, singularities and points at infinity to obtain Γ̄.

We shall consider integrability in the Liouville-Arnol’d sense:

There exist n first integrals f1, f2, . . . , fn independent almost everywhere
and in involution. Usually it is taken f1 = H. In general the functions
f1, f2, . . . , fn will be considered meromorphic in a neighbourhood
of a given solution x(t).

Typically Hamiltonian systems are non-integrable.

The problem is how to detect/prove the non-integrability.



Theoretical results: using first order variational equations

We present results based of differential Galois theory because:

1) They do not require to be in the perturbative setting H = H0+εH1,

2) They can be extended to variational equations of higher order.

Consider the ODE ẋ = f (x(t)), x(t0) = x0 a regular point of f , x ∈ C
m.

Let x(t) be a solution.

The first VE along x(t) is d
dtA = Df (x(t))A, A(t0) = Id.

Consider closed paths, γ, on Γ with base point x0. One can associate
to each γ the corresponding monodromy matrix M

γ
1 . The set of all these

matrices form the monodromy group M1.

In general let
d

dt
A = B(t)A(t),

with the entries of B in a suitable field of functions K, the meromor-
phic functions on Γ̄, and let ξi,j be the elements of a fundamental
matrix. Consider the extension L = K(ξ1,1, ξ2,1, ..., ξm,m).
G =Gal(L | K) denotes the Galois group of the extension.



The closure of the monodromy group is the Galois group.

Theorem 1 (Morales–Ramis Meth. & Appl. of Analysis 8, 2001)
Under the assumptions above if a Hamiltonian is integrable in a neighbour-
hood of Γ then the identity component G0 of the Galois group of the
first order VE along Γ is commutative.

G0 commutative =⇒ nothing against integrability.

This can happen, typically, for families of Hamiltonian systems depending
on parameters, for some exceptional sets of parameters.

This suggests to try to detect non-integrability using higher order
variational equations, methods introduced recently.



Recalling some concepts

Galois group G =Gal(L | K): automorphisms of L which leave K invariant.

It is an algebraic group: The elements satisfy some algebraic conditions
(polynomials in an ideal in C[X1, ..., Xm]) and the group operation and
passing to the inverse are algebraic.

Whenever we refer to some topological concept (closure, component,...) one
should understand that the Zariski’s topology is used.
The closed sets are the zeros of an ideal. Note that any two open sets are
not disjoint. In particular it is not Hausdorff.



Using higher order variational equations

Let ϕ(t, x0) be the solution of ẋ = f (x(t)) with ϕ(0, x0) = x0.

We consider as fundamental solutions of the k-th order VE, VEk
based on x0, the string

(ϕ(1)(t), ϕ(2)(t), . . . , ϕ(k)(t))

such that

ϕ(t, y0) = ϕ(t, x0) + ϕ(1)(t)(y0 − x0) + . . . + ϕ(k)(t)(y0 − x0)
k + . . . ,

i.e., the coefficients of the k-jet.

ϕ(k)(t) satisfy linear non-homogeneous ODE.
d
dtϕ

(k), k > 1 depends on ϕ(j) for j < k in a nonlinear way. It can be
made linear by adding additional variables.

Then one can introduce the k-th order Galois group Gk. Loosely we
can talk about the k-th order monodromy M

γ
k along a path γ.

The composition of elements in M
γ
k as a group is equivalent to the com-

position of jets.



Theorem 2 (Morales–Ramis–S Ann. Scient. Éc. Norm. Sup. 4e

série 40, 2007)
Under the assumptions above if a Hamiltonian is integrable in a neighbour-
hood of Γ then for any k ≥ 1 the identity component (Gk)

0 of Gk is
commutative.

This result gives rise to non-integrability criteria to all orders. Note
that these criteria can depend strongly on the reference solution x(t) and on
the paths taken on it.



A degenerate Hénon-Heiles problem

Hénon-Heiles family (HHF) (classical b = −1):

H =
1

2
(x2

3 + x2
4 + x2

1 + x2
2) +

1

3
x3

1 + bx1x
2
2,

non-integrable for all b except four values. For 3 of them integrability
is proved. Remaining case: b = 1/2, degenerate Hénon-Heiles DHH. Fixed
points Pee = (0, 0, 0, 0), Php = (−1, 0, 0, 0).
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Separatrix Γ0 on the invariant plane {x2 = x4 = 0} and H = h0 = 1/6:

x1(t)=
3/2

cosh2(t/2)
− 1, x3(t)=

−(3/2) sinh(t/2)

cosh3(t/2)
, singularity t∗ = πi .

Double-periodic solutions for h < h0: ψ1, ψ2 paths along real, imaginary
periods. Then

[M
ψ1
k ,M

ψ2
k ] = M

ψ−1
2

k ◦Mψ−1
1

k ◦Mψ2
k ◦Mψ1

k

should be trivial. Path can be deformed to loop γ around t∗.
Reduces to local checks: M

γ
2 trivial, but some components of ϕ(3) are

different from zero. E.g. x2;2,2,2 = 72
5 2πi .

In general we can have solutions with several singularities and we can
have also new singularities in the coeficients of the variational equations.
If (G1)

0 or (M1)
0 is commutative we have to go to higher order varia-

tional equations.

A monodromy matrix M is in (G1)
0 if, for instance, M =

(

1 a
0 1

)

.

Solutions of VEk, k > 1 are obtained from solutions of VE1 by quadrature.



Problems in checking the necessary conditions

To apply Theorem 2 to concrete systems several difficulties are found:

• To apply these methods one needs to use an explicitly known solution
x(t).

• They require the choice of a suitable path for the complex time.

• In general it is not possible to integrate analytically first and
higher order variational equations in a simple and efficient way.

The need of higher order VE to prove non-integrability can be indepen-
dent of the existence of large chaotic regions in numerical simulations.
Simple enough solutions can be more degenerate than a generic one.

Ergo =⇒ numerical check of the necessary conditions for inte-
grability along arbitrary paths γ of t ∈ C.

A method with a wide range of applications, based on Taylor expansions
both in time and in nearby initial conditions, is presented. The
integration of arbitrary higher order VE along arbitrary paths is
easily automatized.



The Taylor method for the numerical integration of ODE

Problem: to integrate ẋ = f (t, x), x(t0) = x0,.
f analytic in a neighbourhood of (t0, x0) ∈ Ω ⊂ R × R

n or Ω ⊂ C × C
n.

From x(t0 + h) =
∑

j≥0 cjh
j and f (t0 + h, x(t0 + h)) =

∑

j≥0 djh
j it

follows cj = dj−1/j. It remains to compute the dj.

This is done in a recurrent way. Assume to evaluate f can be split in
simple expressions:

e1 = g1(t, x),
e2 = g2(t, x, e1),

...
ej = gj(t, x, e1, . . . , ej−1),

...
em = gm(t, x, e1, . . . , em−1),

f1(t, x) = ek1
,

...
fn(t, x) = ekn,



where each of the ej contains a sum of arguments, a product or quotient of
two arguments or an elementary function (like sin, cos, log, exp,√, . . .)
of a single argument.

Inserting c0 = x0 in the ej we obtain d0 and then c1. Putting x(t0) = c0+c1h
all the ei can be obtained to order 1 in h. Then we have d1 and hence c2.
Iterate to the desired order. All the gj can be seen as operations
with (truncated) power series.

Examples: If a(h) =
∑

k≥0 akh
k, b(h) =

∑

k≥0 bkh
k

c = a× b : cn =
∑n
k=0 akbn−k

c = aα, α ∈ R, a0 6= 0, c0 = aα0 ,

cn = − 1
na0

∑n−1
k=0 ckan−k[k − α(n− k)], n > 0

c = exp(a), c0 = exp(a0), cn = 1
n

∑n−1
k=0 ckan−k(n− k), n > 0

Suitable for analytic (or regular enough) f , non-stiff.



Some interesting properties

• Under simple conditions optimal stepsize (concerning efficiency for
fixed truncation error) ≈ independent of the number of digits. hopt close

to ρ(t)/ exp(2), where ρ(t) = local radius of convergece around t.

• optimal order Nopt ≈ linear in the number of digits.

• The computational cost to integrate from t0 to tf (measured in num-
ber of elementary operations) ≈ quadratic in the number of digits.

• It is elementary to produce dense output.

• Very simple application to obtain Poincaré sections.

• Domain of absolute stability ≈ |z| < N/e, Re(z)< 0.

• Easy to reduce errors to the propagation of round off.

See paper and software by À. Jorba, M. Zou, Experimental Mathematics

14 (2005) 99–117.
Also: C. Simó, Taylor method for the integration of ODE, Lecture notes,
available at http://www.maia.ub.es/dsg/2007/.
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Example of use of Taylor method: RTBP Sun-Jupiter-Trojan with initial
z = 0.8. Worst case. Integration time=109 Jupiter revolutions ≈ 2.6 times
the age of the Solar System.



Jet transport

Problem: Given initial conditions x0 + ξ to obtain ϕ(t; t0, x0 + ξ) =
ϕ(t; t0, x0) + Q(t; t0, x0, ξ) = P (t; t0, x0, ξ) =

∑

m am(t)ξm, where P is a
polynomial truncated at the desired order.

Example: in R
4 integrate to degree 3 in ξ. Using variational equations

requires 4+16+64+256 = 320 equations, which reduce to 140 by symmetry.

A simpler method: Integrate using any method (e.g.Taylor) but
replacing operations with numbers by operations with polynomi-
als truncated at the desired order.

Strongly related to the Taylor models largely used by M. Berz, K. Makino
and collaborators, see, e.g. http://bt.pa.msu.edu/berz.

If P (ξ), Q(ξ) are polynomials up to (total) order k the recurrences men-
tioned in Taylor method can be used to obtain, to order k, the polynomials
corresponding to P ×Q, Pα, exp(P ), . . ..

Remark: in the selection of the optimal step size one has to take into
account all the am coefficients.



Some systems requiring order k variational equations

As an extension of DHH consider, form ≥ 2, the generalised degenerate
HH problem, GDHH, with Hamiltonian

H =
1

2
(x2

3 + x2
4) +

1

2
x2

1 +
1

3
x3

1 + (1 + x1)
1

n!
xn2 .

For n = 2 gives DHH. Consider now n ≥ 3. As proved in Mart́ınez-S (2008a)
these systems require to go to order n − 1 to detect non-integrability
close to a separatrix like in the DHH case.

Singularities located at t = (2k + 1)πi ; a suitable path is OABCDO,
where: O= (0, 0), A= (2, 0), B= (2, 6), C= (−2, 6), D= (−2, 0). Initial
point: close to symmetric point on the separatrix, i.e., (r, 0, 0, 0), r ≈ 1/2.

Notation: ai;k1,...,kn(t) = coefficient of ξ
k1
1 . . . ξknn in the i-th component

of P (t; t0, x0, ξ). Simply ai;k1,...,kn at the end of path γ.

Results
If 1 < |k| < n− 1 only round off errors (e.g., < 10−8 if n < 12).
If n = 7 only non-zero for i ∈ {2, 4}, k1 = k3 = 0, k2 + k4 = 6.



a2;0600 -0.52359878E-01 i
a2;0501 0.19739209E+01 a4;0501 0.31415927E+00 i
a2;0402 0.23254708E+02 i a4;0402 -0.49348022E+01
a2;0303 -0.12987879E+03 a4;0303 -0.31006277E+02 i
a2;0204 -0.38252461E+03 i a4;0204 0.97409091E+02
a2;0105 0.57683352E+03 a4;0105 0.15300984E+03 i
a2;0006 0.35236754E+03 i a4;0006 -0.96138919E+02

which coincide with theoretical values to all digits displayed.
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Values of four non-zero coefficients of the jet at order 4 after a loop around
the singularity for the GDHH problem with n = 5, as a function of the
initial point x0 = (r, 0, 0, 0). The other two non-zero coefficients do not
change with r.
Other systems with x2

1/2 +x3
1/3 replaced by higher order polynomials

(up to degree 12) give similar results. Separatrix not available analyti-
cally.



A nonlinear spring-pendulum problem

The Hamiltonian

H =
1

2

(

x2
3 +

x2
4

x2
1

)

− x1 cos(x2) +
k

2
(x1 − 1)2 − a

3
(x1 − 1)3, k > 0

Known results (Maciejewski-Przybylska-Weil, J. Phys. A 37, 2004):

If k + a 6= 0, k > 0 the system is non-integrable.

A simple solution for a = −k
x1(t) = ρ +

α

cosh2(βt)
, x3(t) = ẋ1(t) x2 = x4 = 0,

with ρ, α, β depending on k. It has a singularity at t∗ = πi
2β .

MPW checked that for a = −k no obstruction appears up to order 7.

But other singularities appear for the VE at ±t̂, where x1(±t̂) = 0.

±t̂ = ±1

β
log

(√

−α
ρ

+

√

−α
ρ
− 1

)
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Path to study of the nonlinear spring pendulum around the three singular-
ities of the variational equations. Equivalent to a commutator path.
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Left: Sample of paths used for the jet transport and location of singularities.
γ+ around t+ is OABCDO, γ± around t+ and t− is OABCEFAO, and γ∗
around t∗ is OGHIJKO. Right: Computed sums of the norms of all terms in
the jets at order n (upper curve) and value normalized by the maximum for
every order, along γ∗. Vertical variable in log10 scale.



Next step is to check the jet transport along γ±. First we do it along
γ+. The results obtained are of the form

Tγ+(ξ) =









ξ1
ξ2 + ai ξ3

2 − ci ξ2
2ξ4 + 3di ξ2ξ

2
4 − ei ξ3

4
ξ3
ξ4 + bi ξ3

2 − 3ai ξ2
2ξ4 + ci ξ2ξ

2
4 − di ξ3

4









+ O(|ξ|4),

with a, b, c, d, e > 0. Symplectic character is checked. Similar for γ−. For
γ± only 0, 2b, 0, 2d, 0 subsist. Theoretical results (Mart́ınez-S, 2008a) agree
qualitatively (no explicit values could be computed theoretically).
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Left: Values of a2;0300 (upper curve) and −a4;0003 (lower curve) as a function
of k at the end of γ±. Right: magnification in log10 scale for a2;0300− 3 and
−a4;0003.



The Swinging Atwood’s Machine

A classical mechanical device. If we include pulleys the Hamiltonian is

H(r, θ, pr, pθ)=
1

2

[

p2
r

Mt
+

(pθ+Rpr)
2

mr2

]

+gr(M−m cos θ)+gR(m sin θ−Mθ),

where Mt = M +m + 2
Ip
R2.

Theorem (PPSRMWS, Swinging Atwood’s machine: experimental and
theoretical studies, preprint 2008):
For every physically consistent value of the parameters, the SAM with pulleys
is meromorphically non-integrable.

This can be already detected using Theorem 1.

Without pulleys and normalising constants

H = (x2
3/(1 + µ) + x2

4x
−2
1 )/2 + x1(µ− cos(x2)),

where µ is a mass ratio, µ > 1 in the domain of interest.

Known to be non-integrable if µ 6= µp where µp = 1 +
4

p2+p−4
, p ∈ N,

p>2 and integrable if µ=µ2=3. (Casasayas- Nunes-Tufillaro, J. Physique

51, 1990).



It remains to study the exceptional cases, which can not be decided using
Theorem 1. Non-integrability proved in Mart́ınez-S, 2008b.
A simple solution

x1(t) =
1

a

(

1 − t2
)

, x2(t) = 0, x3(t) = (1 − µp)t, x4(t) = 0,

where a = p2 + p− 2. Note that r(t±) = r(±1) = 0.
Several paths have been taken for the tests. We recall that the path as-
sociated to the commutator must travel around t+ and t− and then
again around them reversing orientation: γ−1

− ◦ γ−1
+ ◦ γ− ◦ γ+.

Let g(s) =
∑4
i=1
∑

n∈4,|n|=s |ai;n1,n2,n3,n4
| a norm of the terms of or-

der s and define a relative error ε(s) = g(s)(t = tfinal)/maxt∈γ∗{g(s)(t)}.
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One of the paths, OABCDAOEFGHEOADCBAOEHGFEO, used for tests.
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Left: The norms g(s), of the terms of order 1,2 and 3 for SAM as a
function of µ. The lower (resp. upper) curve corresponds to s = 1 (resp.
s = 3). For s = 1 we show the change with respect to the identity matrix. In

the horizontal axis we display log(µ−1) while in the vertical one arcsinh(g(s))
is shown.

Right: For p = 2 we consider the values of g(s) at the end of Γ (lower

curve) and of γ+ (upper curve) divided by the maximal value of g(s) along
the full path, as a function of s. For both curves in the vertical axis the log10
scale has been used.
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Plots similar to the previous one for p = 3 (left) and p = 4 (right). Now,
in contrast with the case p = 2, the lower upper (lower curve), at least for

large s, corresponds to the log10 of the quotient of g(s) at the end of γ+ (at

the end of Γ) by the maximal value of g(s) along the full path. Note that
now the final value (except for the known cases s = 1, 2) is only one or two
orders of magnitude smaller than the maximal value.
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Histograms of the number of elements ai;n1,n2,n3,n4
, n ∈ N

4, |n| = s
such that the log10 of its maximum value along Γ is in a given range.
On the top left (resp. right, bottom) appear the results for p = 2 (resp.
p = 3, p = 4). In each plot the values for s = 5, 10, 15, 20 are shown.



Final considerations

We have used the check of Theorem 2 as an application of jet trans-
port.

a) One can convert the computation into a rigorous proof, CAP, by
using interval arithmetic and estimates of remainder in Taylor using
Cauchy bounds.

b) A difficulty shows up to extend this to unbounded ranges of param-
eters. Analytical proofs can not be avoided in general.

c) Jet transport is even efficient!. On the plot for a range of µ in the
SAM, the average computing time per value of µ is 24 ms. In that
time one can compute only one hundred of Poincaré iterates!



Some further applications of jet transport:

1) Transport of a box of initial data under the flow, assuming that the
image is not too large. Otherwise, add the use of subdivision methods.

2) Transport of probability distributions under the same assumptions.

3) Computation of high order approximations of return maps as-
sociated to any type of connection.

4) Computation of normal forms around arbitrary orbits. Application to
obtain local expansions of Wu,s,c, to study higher order codi-
mension bifurcations, check assumptions for validity of KAM the-
orems, etc.


