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INTRODUCTION TO HOLOMORPHIC ITERATION

f:' S — S holomorphic, S = C or S = C.

ff=fo.".of

Totally invariant partition of S:
Fatou set: Set of stability (normality). Open. F(f).
Julia set: Chaotic set. Closed. J(f) =S ~\ F(f).
Escaping set: points which escape to co. Z(f).

Fatou components: connected components of the Fatou set.
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FATOU COMPONENTS

THEOREM (Fatou-1919)

U simply-connected invariant Fatou component. Possibilities:

1. ﬂ'b —ze U
Attracting basin
|f/(Zo)‘ <1

2. fl’]J — z0 € OU
Parabolic basin

fl(Z()) =1

3. fiu~e™z,0¢Q
Siegel disk

4. f transcendental,
f"b — 00

Baker domain
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DYNAMICS INSIDE A FATOU COMPONENT
T
00

@: D — U (Riemann map) and fjy ~ g, where g: D — D

Tools to study the dynamics of g: D — D
m Denjoy-Wolff Theorem
If g is not a rotation, all orbits converge to the same point p € D.

m Cowen's classification
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1. Q=C

o(z) = Az, |\ < 1.

(elliptic)

2.Q=C
o(z)=z+1.
(doubly-parabolic)

DYNAMICS OF g: D — ID. Cowen'’s classification

Existence of an absorbing domain where g is conjugate to ¢: Q — Q (M®&bius).

3.0=H
o(z) =Xz, A> 1.
(hyperbolic)

4. Q=H
d(z)=z+ 1.
(simply-parabolic)
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DYNAMICS INSIDE A FATOU COMPONENT

(a) Siegel disk (b) Attracting basin (c) Parabolic basin
(irrational rotation) (elliptic) (doubly-parabolic)

For Baker domains, doubly-parabolic, hyperbolic and simply-parabolic
types are possible ~ classification of Baker domains
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QUESTION: Dynamics on 0U?

T

¥ ¥

OO

Intuitive idea: study gjsp.

But g and ¢ may not be defined on 0D...
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INNER FUNCTIONS

DEF: Radial limit

Let g: D — D holomorphic, e’ € OD. The radial limit of g at e’ is:

g () = lim g(re’).
r—1-

THEOREM (Fatou, Riez and Riez)

For Lebesgue-almost every 6, g*(e?) exists.

DEF: Inner function

A holomorphic function g: D — I is an inner function if |g*(e)| = 1,
for Lebesgue-almost all 6.

g™ induces a dynamical system almost everywhere on OD.
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ERGODICITY AND RECURRENCE

Ergodic properties of measurable maps

Let (X,.A, 1) be a measure space and T: X — X measurable. Then we
say that T is:

m ergodic, if for every A € A such that T~1(A) = A, there holds
u(A) =0or u(X < A)=0.

m recurrent, if for every A € A and p-almost every x € A, T"(x) € A
for infinitely many n's.

Ergodicity and recurrence are independent notions.

THEOREM!

If T is ergodic and recurrent with respect to the Lebesgue measure, then
Lebesgue-almost every point has a dense orbit.

!General result in ergodic theory. A proof can be found in Aaronson. Introduction
to Infinite Ergodic Theory.
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QUESTION: Dynamics on 0U?

T

¥ ¥

0—0

Intuitive idea: study gjgp (defined almost everywhere).

But ¢ may not be defined on 9D...
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MEASURE ON oU. THE HARMONIC MEASURE

DEF: Harmonic measure

Let U C C be simply-connected and let ¢: D — U be a Riemann map,
such that ¢(0) = z € U. The harmonic measure w of U with base
point z is the image under ¢ of the normalized Lebesgue measure of OD.

Figure: By Christopher Bishop.

With this measure, we only need to study g*: 0D— 9D.
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ERGODIC PROPERTIES OF INNER FUNCTIONS

INNER FUNCTION | FATOU COMPONENT | Ergodicity | Recurrence
Rational rotation X v
Irrational rotation Siegel disk v v

Elliptic * Attracting basin v v
Doubly-parabolic * Parabolic b./Baker d. v ?
Hyperbolic Baker domain X X
Simply-parabolic Baker domain X X

* In case of degree d < oo, the boundary map is conjugate to x — dx mod 1.

Summary of different results in:
Aaronson. Ergodic theory for inner functions of the upper half plane.
Aaronson. A remark on the exactness of inner functions.

Baranski, Fagella, Jarque, Karpiiska. Escaping points in the boundaries of Baker domains.

Bourdon, Matache, Shapiro. On the convergence to the Denjoy-Wolff point.
Doering, Mafié. The dynamics of inner functions.

Hamilton. Absolutely continuous conjugacies of Blaschke products.

Shub, Sullivan. Expanding endomorphisms of the circle revisited.
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SIMPLY-PARABOLIC INNER FUNCTIONS

With non-singular Denjoy-Wolff point

m Linearization around the D-W point p: g ~z+1

(Fatou coordinates)

m g(0D) C ID (at least in a nbh. of p)
Therefore we have | C 9D with p € I and gy~ x+1

mOn/ (g)"—=p
~» g* is not recurrent

m On R, x + 1 is non-ergodic: | J,c7 (n, n-+ %) is invariant
~ g* is not ergodic

~+ The same works for hyperbolic inner functions with non-singular DW point using

Koenigs' coordinates
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RECURRENCE

A general criterion

AARONSON'S DICHOTOMY

Let g: D — D be an inner function with Denjoy-Wolff point p. Then:
1. 1f 5772 (1 —|g"(2)]) < oo for some z € D, then p € ID and
(g%)"(z) converges to p for almost every z € JD.
2. 1f 3272 ,(1—|g"(2)]) = oo for some z € D, then g* is recurrent.

Key idea of the proof: Relate the dynamics on the boundary with the
dynamics on the disk (where g is holomorphic).

HARMONIC MEASURE
Let A C 9D. The harmonic measure (with base point z € D) of A is:

— |22
wz(A) = w(z,A,D) ;—1/ 1—|z|

T on A]W—z]2

dw.

m wx((g%) 7 (A)) = we(z)(A).
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RECURRENCE

Consequences of Aaronson’s Dichotomy

m (Bourdon-Matache-Shapiro)
If g: D — D is a hyperbolic or simply-parabolic inner function, then
> 2 1(1—18"(z)]) < oo for all z € D and g* is not recurrent.
Moreover, (g*)"(z) — p for almost every z € JD.

m Careful!
This does not imply that for a hyperbolic or simply-parabolic Baker
domain the escaping set has full harmonic measure. ~» The
Riemann map can be highly discontinuous.

m (Baranski-Fagella-Jarque-Karpiriska)
For a hyperbolic or simply-parabolic Baker domain of finite degree
the escaping set has full harmonic measure.
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RECURRENCE

Consequences of Aaronson’s Dichotomy

m If g: D — D is elliptic, g* is recurrent.

m Careful!
There are examples of doubly-parabolic inner functions which are
recurrent and others which are not.

m (Doering-Maié)
If g: D — D is doubly-parabolic inner function, either with
non-singular Denjoy-Wolff point or associated to a parabolic basin,
then "7 (1 —|g"(z)]) = oo for all z € D and g* is recurrent.
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THE EXAMPLE: f(z) = z + e~

Figure: On the left, the dynamical plane of f(z) = z+e™%. On the right, a zoom of it.

Previously studied in:
Baker, Dominguez. Boundaries of unbounded Fatou components of entire functions.
Fagella, Henriksen. Deformation of entire functions with Baker domains.
Baranski, Fagella, Jarque, Karpiiska. Escaping points in the boundaries of Baker domains.
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THE EXAMPLE: f(z) =z + e *

Semiconjugacy to h(w) = we™

w

=

w — h(w) = we™

z+e %
w=e *

w
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THE EXAMPLE: f(z) =z + e *

w

The parabolic basin of h(w) = we™

m 0 is a parabolic fixed point.
m Singular values: 0, %

% converges to 0 under iteration.
m F(h) = A, parabolic basin of 0.

m Ay, immediate parabolic basin.

\ A

THEOREM (Baker-Dominguez, Fagella-Henriksen)

m R, C Ag, so Ag is unbounded.
s R_c J(h).
m The map h has degree two on Ag and h 4, ~ 3—;% (doubly-parabolic).
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THE EXAMPLE: f(z) = z + e~

The dynamical plane of f

\\\\\

AN

m f(z+ 2kmi) = f(z) + 2kmi, for all z € C.

m The lines {Im z = k7},, are invariant.

m In each strip {(2k — 1)7 <Im z < (2k + 1)}y, there is one
preimage of Ap, which is a doubly-parabolic Baker domain Uy.
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THE EXAMPLE: f(z) = z + e~

The dynamical plane of f

mS={z: —n<Imz<n}and UCS, invariant Baker domain.

mf: f1(S)NS — S proper map of degree 2. Each point in C~\ S
has exactly one preimage in S.
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THE EXAMPLE: f(z) =z + e *

The dynamical plane of f

N~
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THE EXAMPLE: f(z) = z+ e~Z

Questions and goals

U c S, doubly-parabolic invariant Baker domain.
flgu is ergodic and recurrent.

w-almost every orbit is dense and Z(f) has zero measure.

Goal: Study the boundary of the Baker domain U and its dynamics.

m Accesses to infinity from U.

~» Complete characterization by means of the inner function.
m Periodic points in OU.

~> Complete characterization of periodic points in JU.

~ All are accessible.
m Escaping points in the boundary?

~+ For a general Baker domain, it is an open question.

~ We construct uncountably many curves of escaping points in JU.
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THE EXAMPLE: f(z) = z+ e~Z

Accesses to infinity

¢ (-1) ©*(1)

Fix ¢ Riemann map such that ¢(0) =0 and (RND) = R.

0 = {€ € ID: p*(e?) = o0}

THEOREM (Baker-Dominguez)

The set © consists precisely of points e/ € 9D such that g"(e'®) = 1.
Equivalently, accesses from U to oo are defined by the preimages of Ry under f.
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THE EXAMPLE: f(z) = z+ e~Z

Accessibility of periodic points

THEOREM

Let zg € QU be periodic under f, i.e. fP(zy) = zp, for some p. Then z is
accessible.

THEOREM

Let e/ € OD be periodic under g, i.e. gP(e?) = e for some p > 1.
Then, go*(e’g) exists and it is a periodic point of period p.

Consequence: Characterization of periodic points in 0U.
A point z € QU satisfies fP(z) = z for some p > 1 if, and only if,

z = ¢*(e'?) for some e’ € OD satisfying gP(e'?) = €.
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THE EXAMPLE: f(z) = z+ e~Z

The escaping set

Goal: Describe the escaping set constructing the Cantor Bouquet of f.
S:={z€S:f"(z) €S, for all n}
Sop:=SNH" S =SNH"
o = {k=1{k};: kj=0or k=1, forall j >0}

To z € 5, we associate a sequence k = {kn}, € X5 (its itinerary) such
that f"(z) € S; if and only if k, = j, with j =0 or 1.

THEOREM

For every sequence k = {kj}j € X5 there exists a curve v, C S whose

points belong to Z(f) N S, with itinerary prescribed by k and ~, C OU.
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THE EXAMPLE: f(z) = z+ e~Z

Further questions

m The studied points have zero measure (periodic points, escaping set)
~ find oscillating points (typical points w.r.t. harmonic measure)

m Periodic points in OU
~~ are accessible periodic points dense in JU??

m Curves of non-accessible escaping points
~~ are all escaping points non-accessible??
~> construction of the Cantor Bouquet

2 Stated as a conjecture in Baranski, Fagella, Jarque, Karpifiska. Escaping points in

the boundaries of Baker domains.
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Thank you for your attention!!!

28/28



