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Abstract

In this paper we construct a measure on pairs of Brownian motions starting at the same
point conditioned so their paths do not intersect. The construction of this measure is a start
towards the rigorous understanding of nonintersecting Brownian motions as a conformal field.
Let B!, B? be independent Brownian motions in R? starting at distinct points on the unit circle.
Let 7Y be the first time that the jth Brownian motion reaches distance r and let D, be the
event

D, = {B'[0,T}]n B*[0,T%] = 0}.

We construct the measure by considering the limit of the measure induced by Brownian motions
conditioned on the event D,.
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1 Introduction

Nonintersecting Brownian paths give an easily described interacting field with nontrivial behavior.
They have been studied from a purely mathematical perspective [4, 5], but there is also significant
interest to mathematical physicists because certain techniques, such as remomalization group [2]
and conformal field theory [11] can be applied to this model. Conformal field theory, in fact, has
been used by Duplantier and Kwon [11] to make a nonrigorous prediction for a certain quantity,
the two-dimensional intersection exponent. The starting point for their analysis is the ansatz that
there exists a conformal field whose two point function is given by a Green’s function for pairs of
planar Brownian motions starting at one point, ending at another point, and conditioned so that
their paths do not intersect. In this paper we show that this Green’s function is well-defined by
defining an appropriate measure on pairs of Brownian motions conditioned not to intersect.

Let B}, B? be independent Brownian motions taking values in R?, which we also consider as
the complex numbers C, starting at zy,z9. For r > 0, let

Ti =inf{t : |B| = r},
and let D, = D,(z1,23) be the event
D, = {B'[0,T5]n B*[0,T2] = 0}.

For r > 1, let
q(r) = sup{P[Dy(z1, 23)] : 21| = |wa| = 1}.

By the strong Markov property and Brownian scaling, it is easy to see that

q(r+s) < q(r)q(s),

and hence, using the the subadditivity of log ¢ (see [16]), there exists a ( > 0, sometimes called the

intersection exponent, such that

2(r
9

q(r)y~ e~ r — 00, (1)

where ~ indicates that the logarithms of both sides are asymptotic. Moreover, ¢(r) > e~ %7 The
value of ( is not known rigorously. It has been conjectured [11] using a nonrigorous conformal field
theory argument that ( = 5/8, and simulations [11, 6, 19] are consistent with this conjecture. The

best rigorous bounds on ( are [5]
1 1 3

3 + . <(< T
The probability of intersection of mean zero, finite variance random walks can also be estimated in
terms of ¢ [4, 9].

In this paper we consider the measure on Brownian paths induced by pairs of paths that do
not intersect. We show that a limiting measure exists which we can call “nonintersecting Brownian
motion”. From the construction it will be clear that this can also be considered as the distribution
of a single Brownian motion at a “typical” cut point. We call ¢ € (0,1) a cut time and B(f) a
cut point for a Brownian motion B on [0,1]if B[0,¢) N B(¢,1] = (. Although each ¢ is a cut time
with probability zero, two dimensional Brownian motions do have cut points [3]; in fact [17], the
Hausdorff dimension of the set of cut times is 1 — (. The local distribution of a Brownian motion



near a cut point is the same as the local distribution of two Brownian motions (the “past” and the
“future”) starting at a point conditioned not to intersect.

As a corollary of the work we improve the estimate in (1) by showing there is a constant ¢ > 0
such that

g(r) ~ ce” 7, (2)
where ~ means asymptotic. (Throughout this paper ¢,c¢q,cq,... denote positive constants. The
values of ¢, ¢1, c; may change from place to place, but the values of ¢3, ¢4, ... do not.) A somewhat

different argument was given in [17] to show that e=2¢" < ¢(r) < c2e72¢", That argument had the

advantage that it works for three dimensions as well as two. We will not use the results from that
paper, however, because they consider only the case of two random walks. The methods in this
paper can be used to estimate the nonintersection or disconnection probability for any number of
walks (see Section 7). The methods here apply only to two dimensions, however.

Let us describe the main result. For 0 < e < 1 and b > 0, let X denote the set of continuous
functions v : [0,b] — C satisfying: |7(0)| = € |7(b)| = 1; and |y(¥)| < 1,¢ < b. We let X, = U AP
and for 7 € X, we write b(y) or b, for the unique b with v € X*. We will let d denote the metric
on continuous functions that says that

d(v,m) < u,
if and only if there exists an increasing, bijective time change o : [0,b,] — [0, b,] such that for all
t€0,0,],

1= o(t)] < u,

and

(1) = n(a ()] < .
Let A, denote the set of ordered pairs ¥ = (y!,7?) with v!,7? € X.. We will write X and A for Xy
and Ay, respectively. If § < ¢ there is a function

o, X — AL,
defined as follows. Let v € Xé’. Then set
p=inf{t: [y(1)] = e},
b(®ey) =b—p,

b y(t)=7(t+p), 0<t<b—p.

Similarly, ®. : As — A, is defined component-wise. Note that ®. is a projection in the sense that
if ¢1 < €9, ¢52¢51 = Qeg-

Wiener measure, W, on A is the measure obtained by starting independent Brownian motions
B}, B? at the origin; letting T} be as defined above; and setting

Y(t)=Bi(t), 0<t<Ty.

Wiener measure, W, on A, is obtained by projecting W on A, by the mapping ®.. Equivalently, we
can choose 1, z2 independently from the uniform distribution on {z : |z| = €}; start independent
Brownian motions B}, B? at x1,x,, respectively; and set

V()= B(t), 0<t<T.



Let D = Dq be the set of (y1,72) € A such that

710,y N 7*(0,b(7%)] = 0.

Similarly, for € > 0, let D, C A, be the set of ordered pairs ¥ = (y!,y?) such that

7'0,5(yH] N %[0, b(*)] = 0.

It is well known [14] that W(D) = 0, although W,(D.) > 0 for each ¢ > 0. For any ¢ > 0 let f,
denote the density with respect to W, of the probability measure on A, induced by conditioning
on D, i.e.,

fe = aI(DE)a

where I denotes indicator function and the constant ¢ has been chosen so that

/ £ dW, = 1.
Ae

For 6 < €, let f.s be the density, with respect to W, of the measure induced by projecting fs dWs
on A, by ®.. We will prove the following theorem.

Theorem 1.1 There exist c3,cq such that for every € > 0 there is a function f. > 0 on A, such
that for every & < e satisfying |log 8| > (log €)?,

/A |fes — fe| AW, < czexp{—cqy/|logé|}.

In particular, the measures f, s dW, converge to the measure u, = f.dW, as § — 0. Since ®, is
a projection, it is easy to check that the measures {u.} must be consistent, i.e., for each § < € the
projection of us on A, by &, is u.. We will also show that there exists an M < oo such that for all
€>0,
[, 166N + b e < . 3)

€

Hence, by standard arguments, we see that the measures {y.} induce a probability measure p on
A which is supported on D. [The Kolmogorov construction (see, e.g., [10, 2.1.10]) is used to show
that their is a measure p with the appropriate finite dimensional distributions, and then (3) is used
to show that the paths under this measure have a finite lifetime with probability one.] Since p is
supported on D, p is singular with respect to W. We call the set of paths ¥ under the measure p,
“nonintersecting Brownian motion.”

The measure g can also be considered as an eigenstate for a Markov chain. Consider the
following continuous time, time homogeneous Markov chain with state space A. Let 5 = (y1,72) €
A with b = b(77),z; = ¥/(b’). Start independent Brownian motions B}, B at 1, x5, respectively.
Let Xg = 7 and for s > 0 let X, be the element of A obtained by attaching B’ [O,Tejs] to v/ and
then scaling to {z : |z| < 1}. To be precise, we define X = (7!,72) where

b(vd) = e [V + T2,

I
s e BI(e®t — b)), e W <t < e b 4+ T



Note that Wiener measure on A is the invariant measure for this chain, and for any 5 € A, the
measure on X conditioned that Xy = % approaches Wiener measure as s — oo. Note also that
D¢ is an absorbing set for this chain. What we will show is that if we start with X =4 € D
and we consider the distribution given by X, conditioned that Xo = 7 and X € D, then this
distribution converges to . In particular, if we start with initial probability distribution g on Xj,
the conditional distribution of X given X € D is u. By definition of (, it is clear that if we start
with distribution g on Xg, then
P{X, €D} =e %5,

Let T' = (I'',T?) be an ordered pair of disjoint closed subsets of {z : || < 1} such that I/
contains exactly one point of norm 1, which we denote as ;. We will refer to such a ' as an initial
configuration. If ¥ = (v',7?%) € D, we will also write 5 for the initial configuration (T'',T?) with
T/ = 47[0, b(7;)]. Start independent Brownian motions, B}, BZ, at 1, z, respectively, and let

I/ =T U B/[0, T%).

Let Dy = Ds(f) be the event
D, ={T:nT%=0}.

We will prove the following.

Theorem 1.2 For any initial configuration T,

lim BZCSP(D(f)) = ¢(T),

5— 00

exists. Moreover there exist cs,cg such that if we define 65 = 65(T) by
P(D(T) = $(T)e (1 + 5,),

then
|6s] < 066_05\/3.

Also,
esP[D1(T)] < ¢(T) < ¢gP[Dy(T)].

The outline of this paper is as follows. In section 2 we conformally transform C into an infinite
cylinder by the logarithm. It is more convenient (although not really necessary) to consider the
Brownian motions taking values on the cylinder. The logarithm transforms the radial direction to
the real axis of the cylinder and power law decay is transformed into exponential decay. The real
axis can now be handled in the same way that a “time” variable is considered, and this converts
the problem to a question of convergence of a Markov chain whose state space is a space of paths.
This technique is sometimes referred to as radial quantization (see [15, 9.1.5]). The necessary
estimates for Brownian motions are derived in Section 3, and the main convergence result is proved
in the next two sections. A Markov chain on “excursions” is analyzed in Section 4, and a the rate of
convergence to equilibrium is estimated. This is used to derive the main result in Section 5. Sections
3-5 are done for Brownian motions on the cylinder, but the results can easily be transformed by
the exponential map to results about Brownian motions in C.

In Section 6 we define the “h-process” associated with Brownian paths conditioned never to
intersect. (The term h-process is used by probabilists (see [10]) for Brownian motions conditioned



on certain events of probability zero. These are often defined in terms of a harmonic function A
from which the name comes. We will not need to use any results from the theory of h-processes, but
it seems appropriate to use this term for our construction.) This gives a measure on pairs of paths
going to oo and never intersecting. By conformal transformation we can use this measure to define
a measure on pairs of paths starting at one point z;, conditioned to end at another point z5, and
conditioned so that the paths do not intersect. The starting point for the nonrigorous conformal
field theory predictions for ¢ is the assumption that a “conformal field” exists whose two-point
function is given by the Green’s function of two Brownian motions starting at one point, ending at
another point, conditioned so that the paths have no intersection. (See [8, 15] for discussions of the
methods of conformal field theory and [11] for the particular example of nonintersecting Brownian
motions.) While we are far from constructing a field with this two-point function, we have made a
start by constructing a measure on nonintersecting Brownian motions which allows one to define
such a Green’s function.

We have restricted our discussion in these sections to pairs of Browmnian motions. However,
the same techniques can be used to derive results about other configurations of Brownian motions
restricted either to have no intersections or to not “disconnect” points. We discuss these generaliza-
tions in Section 7 without proofs (the proofs follow the same basic line as for pairs of nonintersecting
Brownian motions). In Section 8 we discuss how these limiting measures can be used to derive an
inequality for exponents. This paper was written while the author was visiting the University of
British Columbia.

2 Cylinder

It is more convenient to transform the complex plane C to an infinite cylinder. Let C denote
the infinite cylinder derived from the complex numbers C by the equivalence relation z; ~ 2y if
71 — 2z = 2mjt for some integer 7. We will use #(z) and I(z) to denote the real and imaginary
parts of z; if z € C, S(z) is defined only up to integer multiples of 2r. Note that the exponential
function gives a conformal transformation of C onto C\ {0}. Let F denote the logarithm function,
i.e., the inverse of the exponential, which takes C \ {0} to C. If v : [0,b] — C, we define the
function G(v) = G as follows. Let

o(t)= [ expi2R((9))ds.

Then G, : [0,0(b)] — C,
G (1) = expl (o™ ().

Similarly, if 5 : (—oc, 0] — C is a continuous function with

[ expiaRcroyds = b, < o,

we let G, : [0,b,] — C be defined by

o(t)= [ exp{R((5))} s



Gy(1) = { ETP{V’(U”(U)}, izg

The scaling of time is not arbitrary. It is chosen so that the following result holds. See [13] for a
proof.

Proposition 2.1 If B; is a standard Brownian motion taking values in C, then Y; = Gg(t) is a
standard Brownian motion taking values in C.

Let R, = {# € C: ®(2) = a}. Let Y denote the set of continuous functions 7y : (—o0,0] — C
satisfying
7(0) € Ro,

R(v(1)) <0, <0,

/ OOO exp{2R(7(1))} dt < oo. (4)

In particular, ®(7(t)) — —o0 as t — —oo. There is a one-to-one correspondence between ) and X’
given by 7 — G,. Let G be the set of ordered pairs 7 = (v',~?) with 47 € Y. For any ¢ > 0, let Y°
be the set of functions 7 : [0,b] — C with

7(0) € R—a7 A)/(b) € R07

R(v(1)) <0, 0<t<b.
Let YV, = UpY? and let G, = (¥,)%. Note that G, Y., G, correspond to A, X,—a, A.—a, respectively.
For any v € Y we will let ¥,y be defined by the operation G™1[®.-.G(7)]. In other words, let
b= sup{t: 7(~t) € R_.}.
and let ¥, :[0,b] — C,
Uy(t)=7(t—-0b), 0<t<b.

If r <aand v € )Y,, we can define ¥,y similarly.

Wiener measure on G,, which we denote by W,, can be derived from Wiener measure on A, -«
by the map G~!. Equivalently, we can take z1,22 € R_, chosen independently according to the
uniform distribution on R_,; let B}, B? be independent Brownian motions taking values in C
starting at xq1, x4, respectively; and set

T = Tg = inf{t : B € Ry},

Y(1)= B}, 0<i<7.

Let H = G(D), i.e., H is the set of ¥ = (y!,4?) € G such that
71(_0070] N 72(_0070] =0,

and similarly H, = G(D.-a).
We consider the Markov chain on G defined as follows. Suppose v € G. Let B!, B? be indepen-
dent Brownian motions in C starting at z; = v1(0), 22 = v2(0), respectively. Let

i =inf{t: B! € R,},



At = (L + Téj),_ $,  —oo<i< ~7}
Tl = Bi(t+71!)—s, —1I<t<0,
Yo = (75:7%)-

This is just the conformal transformation of the Markov chain discussed in the previous section.

3 Estimates for Brownian motion

In this section we consider independent Brownian motions B, B!, B? taking values in the cylinder
C. We let

T, = inf{t: B; € R,},

7l =inf{t: Bl € R,}.
It is well known that if a,b > 0 and By € Ry, then

a

P{rm, <1_,}= P

We will refer to this fact as the gambler’s ruin estimate. We state two lemmas without proof. The
first is a version of the Beurling projection theorem (see [1]) and the second can be derived from
the first by using an appropriate conformal mapping.

Lemma 3.1 There exists a c; < 0o such that if a > 0, v : [0,1] — C is a continuous function with

7(0) € Ro,v(1) € R, and B(0) € Ry, then
P{B[0,7.] N 7[0,1] = 0} < cze~*/2.

Moreover,

P{B[0, 7] 1 7[0, 1] N {R(2) > 5} # 0} > 1/er.

Lemma 3.2 For any €,6 > 0 and r € R, let Ly be the line segment connecting —ei to 14 (r — )i
and Ly the line segment connecting €i to 1+ (r+6)i. Let D = D(e, 6, r) be the bounded open domain
bounded by Ry, L1, Lo, and

{z€C:|z| = ,R(2) < 0}.

Let 0 = o(e,6,1) be the first time that Brownian motion leaves the region D. Then for every é > 0
there exist u > 0 and o < oo such that if e > 0, r € [-27,27], and B is a Brownian motion starting
at the origin, then

P{B(o) € R} > ue™.

Let T' = (T'1,T?) be an initial configuration, i.e., I'',T? are disjoint closed subsets of {z € C :
R(z) < 0} such that TY N Ry consists of a single point, which we denote z;. Let

Y = Y(T) = min{dist(z,T?), dist(zs, '")}.

Note that ¥ > 0 since the TV are closed and disjoint. Let B', B? be independent Brownian motions
starting at @1, 29, and for a > 0, let T = IV U B/[0,7/] and let D, = D,(T') be the event

D, ={T:nT1? =0}.



Let
q(a) = sup P(D,),

where the supremum is over all z1,29 € Ry and IV = {z;}. (We will make the convention that
when no initial configuration is given then the assumption is that I/ = {z;}.) It can be shown [9]
that the supremum is taken on when |21 — 23| = 7, but we will not need to use that fact here. The
strong Markov property immediately gives that

q(a+b) < q(a)q(b).
Hence, there exists a A such that as a — oo,

q(a) ~ e,

Moreover, g(a) > e~*@. Tt is easy to see that g(a) is the same as the ¢(a) defined in Section 1 and
hence A = 2¢ where ( is the intersection exponent. The following lemma is an easy corollary of
Lemma 3.2.

Lemma 3.3 There exist cg > 0 and a > 0 such that if T is any initial configuration with

Y(T) > e,

then
P(Dl) Z Cgéa.

The next lemma is a very important technical lemma. It gives a uniform estimate for the
intuitive statement “Brownian motions which are conditioned not to intersect have a good chance
of being a reasonable distance apart.” Let

Y, = min{dist(B'(r}),T2),dist( B*(r2),T})}.
Lemma 3.4 There exists a cg > 0 such that for any initial configuration T,
P(DyY; > %) > ¢oP(Dy).
Proof. For every 1/2 < p <1, let V(p) be the event
V(p)= DY, > Sp<a<i)

For any € > 0, it is easy to see by direct construction of an event that there is a u. > 0 such that
for any initial configuration with Y = Yy > ¢,

P[V(1/2)] > u..

Choose integer N sufficiently large so that

o0

Z n22—n S

n=N

0| —



Forn > N, let

n

h, = %-I— Z m22 .
m=N+1
- P[V(h)
r(n) = inf —-"%
) = B D

where the infimum is over all initial configurations with Yo > 27". By the comment above, r(n) > 0
for each fixed n. We will show below that there is a ¢3 > 0 such that for all n > N,

C2

r(n) 2 (1——=5)r(n - 1), (5)

n

and hence there exists a ¢; > 0 such that r(n) > ¢; for all n. This clearly gives the lemma.
By the Beurling estimates (Lemma 3.1), there exists a § < 1 such that for any » > 0 and any
initial configuration with Yy < 2u,

P(D,) < B. (6)
Choose n > N, and assume the initial configuration satisfies Yy > 27". Let

oc=o0,=inf{a>0:Y, > 2_(”_1)}.

Let ¢ = ¢, = n*27". By iterating (6), we see that

2

P(o> ¢ D,) <" =27

?

for some ¢t > 0. But, by Lemma 3.3,
P(Dq) Z P(Dl) Z 682—na.

Hence there exists a ¢; > 0 such that

However, by definition of r(n),

P[V(ha) | 0 < ¢: D] > r(n— P[D(h,) | 0 < gl. O

We will need the following slightly stronger version of the lemma which can be proved in the
same way.

Lemma 3.5 There exists a cg > 0 such that for any s > 1 and any initial configuration T,

I 1,2 2 1 1.2 2
P(Dy;Y: > 5;7’_5 > T, > 1) > P (Dyy o, > T2 > 1),

10



It seems that there should be a constant ¢ > 0 such that for all initial configurations and all
s>1,
P(Dysrl, > ri;r2, > ) > cP(Dy),

but we do not have a proof. Fortunately, we will be able to prove what we need with Lemmas 3.4
and 3.5. It follows immediately from Lemma 3.4 that if we start with any initial configuration, and
a>1,

1
P{Ya Z 5 | Da} 2 Cg.

However, it is easy to see that if Y, > 1/2, the paths can be extended with positive probability to
R,+1 without intersection. Hence Lemma 3.6 is a corollary of Lemma 3.4.

Lemma 3.6 There exists c19 > 0 such that for all a,
q(a +1) > eoq(a).

Lemma 3.7 There exists c1 > 0 such that if 21,29 € Ry and B', B are independent Brownian
motions starting at x1, x4, respectively, then for a > 1,

P(D,) < erig(a)|zy — o '/2,
Proof. By the Beurling estimate (Lemma 3.1) and Brownian scaling, it is easy to see that
P(Dy) < c|zy — z5|"/2.
But, using Lemma 3.6,

P(D,) = P(Dy)P(D, | D) < P(Dy)g(a— 1) < P(D1)g(a). O

Lemma 3.8 For a,e> 0 let VI = V(e a) be the event
VI ={BI[0,7I] C {R(z) > 0} U{z:|B(0) — 2| < €}}.
There exist € € (0,1/10) and u > 0 such that for all a > 0,
supP[VInV2n D,] > ug(a),
where the supremum is over all 1,29 € Rg, |x1 — 3| > 10¢, and Bj(O) =2x;.

Proof. It suffices to prove the result for ¢« > 1. We will first prove that there is a u; > 0 such
that for all € sufficiently small, a > 1

sup P[V! N D,] > uyeq(a), (7)

where the supremum is over all z1, 29 € Rg, |21 — 22| > 10e.

By Lemma 3.7, we can find a § > 0 such that if |z —23| < §, then P(D,) < ¢(a)/2. Choosea > 1
and choose z1,z3 € Rg, which may depend on «, that maximize P(D,). Clearly |z1 — x| > § > 10¢
if we choose ¢ sufficiently small. Let

p=p1=inf{t: B} € {R(2) <0}\{z:]z — 21| < €}},

11



c=o0y=inf{t: B} € R_.},
n=m =inf{t > p: B} € Ry}.
It is easy to verify that there is a v; > 0 (independent of €,a) such that
Plo<n|p<ti}> 0.

It can be seen using the gambler’s ruin estimate that there is a v > 0 (depending on § but not on
€) such that for any y € R_,,

P{|B'(n)— 22| < 6|0 <n< 7y B (o) = y} > vge.

Hence,
P{[B'(n) — 2| <& |p <7} > vivge.
By using the strong Markov property at the stopping time 1 we see that
P(Dg;p < 7,) <P(Da | p < 75) < [1 = v1v2€)q(a) + viva€[g(a) /2],

and hence V1V €
P(V! N Da) = P(Daip > 7)) 2 =7g(a).

This gives (7).

For € > 0, a > 0 choose z1, x5, which may depend on @, which maximize
P(V'n D,). (8)
Note that for any z1, 25 € Ry,
P(VIND,) <P(A1NAyNA3) =P(A)P(Ay | A))P(A3| A1 N Ay),

where

Ar = {BY0, 7] N {R(2) < e} = 0},
Ay = {B2[07T12] N Bl[olel] = 0)}7
Az = {B'[r{, 7] 0 B*[r{,7]] = 0}.

The gambler’s ruin estimate gives P(A;) < ce. The Beurling estimate (Lemma 3.1) estimates
P(A; | A1), and Lemma 3.6 estimates P(As | A1 N A;). Hence we get

P(VND,) < celay — 22| %q(a).
In particular, if € is sufficiently small and |z — 29| < 10,
P(V'nD,) < uieq(a)/2,

and the maximum in (8) is taken on by zy, 2, with |21 — 22| > 10e. Fix such a small € and let
6 = 10e. Then proceed as above using stopping times pg,09,72. O

The next lemma can be proved easily by direct construction of an appropriate event. We omit
the proof.

12



Lemma 3.9 For any y1,y2 € Ry and €,6 > 0 let V = V(¢,8,y1,y2) be the event
V = {dist(B(r{), B379[0,707]) > 2¢,| B (1)) — y;] < 6, j = 1,2}.

For every 0 < 6 < € < 1/10, €1 > 0 there exists u > 0 such that if z1,29 € Ro, 11,y2 € Ry,
|1 — 22| > €@, |y1 — 92| > Be,
P(‘/ﬂDl) Z u.

Once we have Lemmas 3.8 and 3.9 we can use the strong Markov property to conclude the
following.

Corollary 3.10 For every € > 0 there is a u > 0 such that if T is any initial configuration with

Y(I') > ¢, then )
P[D,(T)] > ug(a).

From Lemma 3.4 and Corollary 3.10 we see that there is a ¢19 > 0 such that for all a, b,

q(a+b) > c12q(a)q(b).

In particular f(a) = logq(a) + logeqz is a superadditive function. It follows from the standard

theory that for all a,
/(@) < lim @ = lim Lgtq(t)

a ~ t—oo 1 t— oo

= _2C7

i.e., g(a) < (1/e12)e”2¢%. In particular, in all the lemmas above we may now replace g(a) with
ce~2¢¢ With another use of Lemmas 3.4, 3.6, and 3.8 we can deduce the following.

Proposition 3.11 There exists a ¢13 > 0 such that for all a > 0,
e~ < q(a) < c1ze 20,
Morevoer, there exist 0 < c14 < ¢15 < oo such that if T is any initial configuration, and a > 1,
c14¢” X P(Dy) < P(D,) < e15¢”XP(Dy).

In proving the main convergence result, we will need the following estimate which states intu-
itively that Brownian motions conditioned not to intersect are transient. Let B!, B? be independent
Brownian motions starting on Rg. For any 0 < m < a, let

ol(m,a) = sup{t < 7 : B! € R},

J/(m,a) = sup{R(B)) —m : 1 < 0’ (m,a)},
Zi(a) = sup{J?(m,a) : m < a},
Z(a) = max{Z'(a), Z*(a)}.

Lemma 3.12 There exists c1g < oo such that for every x1,x9 € Rg and every 0 < r < a,

P(Dy; Z(a) > r) < crgar~ e e/
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Proof. We will show that for r,, = nr/2,n=0,1,2,...;n7r/2 < a,
P(D,; J (rp,a) >

and hence ,
P(Dg; Jl(rn,a) > ) for some r, < a) < car~le 2Cagr/4,

But it is easy to verify that if Z1(a) > r, then J'(r,,a) > r/2 for some r,. An identical argument
works for Z%(a).
Let n be given and set b = (n 4 1)r/2. Assume b < @, otherwise (9) is trivial. Let

p= lnf{t 2 Tb1 : Btl € Rnr/?}?

n=inf{t > p: B} € Ry},

Define events
U={p< ;B [r,p]n B0, 7] = 0},

V = {B'[n, 7 n B¥[r2,72] = 0}.

Then ,
D,n{J(r,,a) > 5} CDy,NnUNYV,

and hence

P(Dy;J (rp,a) > =) < P(D)P(U | Dy)P(V | Dyn U).

N | =3

By Proposition 3.11,
P(Dy) < e, P(V|Dyn ) < cem 270,

and the Beurling estimate (Lemma 3.1) gives

P(U | D) <ce™’/t. O

Suppose we start two Brownian motions with any initial configuration. By Lemma 3.4 we know
that by the time the paths reach Ry there is a good chance they are reasonably far apart (given
that no intersection has occurred). Once they are far apart we can attach almost any kind of
configuration which lies basically between R; and Rs. If the configuration is such that the paths
still stay reasonably far apart than we can use Corollary 3.10 to say that a solid proportion of
these paths will have this configuration as we go to infinity. We give an example now of one such
“configuration”.

Suppose 7 : [a,b] — C is a continuous function. There is a unique 7 : [a,b] — C that projects
to v under the equivalence relation such that S(5(a)) € [-7, 7). Let

w(y) = [3(5(0)) - 3(3(a))l,

w(y) = sup{[3(5(1)) — I(7(a))] : @ < 1 < b}
We will use the following simple topological fact. Suppose ~',4? are continuous functions from
[07 1] to C with 71(0)772(0) € Rs;71(1)772(1) € Rs+l- Suppose

w(y') > 6,

14



w(v?) < 7.
Then
71(0,1)N 720, 1) # 0.
Let Uy, Uy be the events
Uy = {w(B'[T},T;]) > 67},
Uz = {w(B'[T1,T;]) < 7}.

The following lemma can be proved using the idea in the previous paragraph. We omit the details.
Lemma 8.13 There exists a constant ¢ such that if ' is any initial configuration, and s > 2,
P(D,NUy) > ce”XP(Dy),
P(D,NU,) > ce 2P(Dy).

It follows that if 33 = (7{,73),72 = (74,72) are chosen independently from the conditional
distribution given no intersection up to time s and initial configuration T, there is a positive prob-
ability (independent of T' and s) that the paths 4{ and 71 intersect. This lemma has implications
on the measure that we will define on the behavior of Brownian motion near a cut point. At a
typical cut point, a Brownian path winds infinitely often around the point.

4 Markov Chain on Excursions

It will be convenient to consider excursions from R, to R, where s; < s3. These are Brownian
motions starting on R,, conditioned not to revisit R, before reaching R,,. These are basically one
dimensional excursions, or more precisely, complex Brownian motions doing an excursion in the
real part and acting like a standard Brownian motion in the imaginary part. The use of excursions
in understanding one dimensional Brownian motions is standard so we will be a little informal in
our discussion.

Let ;)73 be the set of excursions from R_; to Ry, i.e., the set of v € Y, with

—s < R(y(t)) <0, 0<t<b(y),

and let G, = (575)2. We will also use Y, and G, to denote the set of excursions from R, to R 4
for any s1. Let £ = Ubﬁg where EZ is the set of “loops” of length b which start and end on R_;
without reaching Ry, i.e., the set of w : [0,b] — C with

w(0),w(b) € R_;.

R(w(t) <0, 0<t<b,

We write b, for the unique b with w € £°. Note that we do not assume that w start and end at
the same point; these are loops in the real part only. We can also consider L, as the set of loops
starting and ending on R, that never reach R y; hence £, C L, for r < s.

Let B be a Brownian motion starting on R_g. Let

o=o0s=sup{t <79:B; € R_}.
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Then B naturally splits into a loop w € £, and an excursion 7y € Y,
w(t)= B, 0<t<o,
A(t)= By, o<t<mp.

Wiener measure W, on excursions will be the measure obtained by chosing the starting point on
R_; at random (from the uniform distribution on R_;) and considering the measure induced by A
as above. We will use ()5 to denote the measure on £, generated by w, again choosing the initial
point from the uniform distribution. We can easily adapt W, or @, if we want a measure on paths
starting at a particular point on R_; rather than at a randomly chosen point. Wiener measure
W, on G, is defined by taking Wiener measure on each component. It is not difficult using the
gambler’s ruin estimate to check that if » < s and I, denotes the indicator function of the set £,,
then

dQ, = (s/r)l, dQs.
Lemma 4.1 Let L] denote the set of w € L such that
lw(t) —w(0)] <1/20, 0<1t<b,,

and let L2 denole the set of w € L, such that w[0,b,] does not disconnect R_,_y from R_s11. (Here
Ls is the set of loops starting and ending on R_s.) Then there exist ¢1, ¢y such that for all s > 1,

Qs(L}) > ers™,
Qs(L3) < cas™h.
Proof. The first inequality is easy. Let B be a Brownian motion starting on R_g and let
p1 = inf{t : |B; — Bo| > 1/20},
p2 = inf{t > p1: By € R_s}.
It is easy to see that P{T_s41 < p2} > ¢, and hence, using the gambler’s ruin estimate,

Qs(Ly) = P{ro < pa}
= P{r_s11 <p2}P{ro < p2| 7541 < p2}
> es™L.

For the second inequality define random times by pg = 0 and for k& > 0,
g = inf{t > pp—1 : B € R_sy1 UR_5_1},

pr = inf{t > n : B, € R_,}.
We will write “A DND” for “the set A does not disconnect R_;_; and R_s;1.” Then

Qs(L7) = P{B[0,0] DND},

where, as before,
o=o0s=sup{t <79:B; € R_}.
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Note that there is a v < 1 such that

and hence
P{B[0,p1] DND | p; < 10} < u.

By the strong Markov property,
P{B[p1,0] DND | p1 < 10} = P{B[0,0] DND},

and hence

P{B[0,0] DND; p1 < 70} < «P{B[0,0] DND},

and

P{B[0,0] DND;p, > 7} > (1 — w)P{B[0, 0] DND}.

But by the gambler’s ruin estimate,

P{B[0,0] DND;p; > 10} < P{py > 70} <es™'. O

If v € ),, we define the reversed path v by

TRty = —s —y(by— 1), 0<t<b,,

and similarly we define 5% for 5 € G,. Note that Wiener measure W, is invariant under the

mappin — ~. Le ~S e the set of ordered pairs of excursions that do not intersect, i.e. e
pping 7 — ¥7. Let H; be the set of ordered p f that do not intersect, i.e., th

set of (71,~%) € G, such that ‘
7'0,0(vH] N 4*[0,b(v*)] = 0.

Excursions are somewhat more likely than unrestricted Brownian motions to avoid each other. The

next lemma makes this precise.
Lemma 4.2 There exist ¢1,cy such that for s > 1,

c182e % < Ws(ﬂs) < epsle s,

Proof. Let B!, B? be independent Brownian motions starting at Ry with the initial point

chosen according to the uniform distribution. Let
0! = ol =sup{t < 7! : B, € Ro}.
Then the lemma is equivalent to the statement

c15%e72 < P{BY o', 7] N B%[0?, 78] = 0} < egsPe™ 5,

For the upper bound define random times (depending on s) by p} = p2 = 0 and for k > 0,

ni = inf{t > pi_l : B € Ry},
p‘,i = inf{t > ni : Bf € Ro}.
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Let U(k,m) = Us(k, m) be the event
Uk,m) = {n < 7351, < 75 B' [, 7310 B [0y, 72] = 0}
By the gambler’s ruin estimate, Proposition 3.11, and the strong Markov property, we can see that

PU(k, m)] < C(%)Hme—?@.

But it is easy to check that
{B'lo", In B0 7] =0y c J U Uk, m).

Hence
o0

P{B' o', 71N B*[0?, 2] = 0} < i Z P[U(k,m)] < cs?e 2,
k=1

m=1

For the lower bound let V(k, m) = Vi(k, m) be the event

Vs(k,m) = {7'331 > lc;rs2 > m; Bl[k,k + 1] C{S(2) € (-

IS

|
N—
‘:r—’

37 5w
1)
It is easy to check that there is a ¢ such that for all 1 < k,m < s2,

Blm,m+1] € {3(2) € ( }i R(BL), R(Br,) < 0;R(Byyy), R(B7 1) 2 1}
P[V(k,m)] > cs™2. (10)
Let V(k,m) be the event
V(k,m)=V(k,m)N{B' [k, 7510 B*m, 5] = 0;0' < k+1;0% < m+1}.
Then the f’(k‘, m) are disjoint and by (10), the strong Markov property, and Lemma 3.8,
P[V(k,m)] > es72e7%, 1< k,m< s
If we sum over all k,m < s% we get

P{B'[o!, 7} ]n B[0? 73] = 0} > es?e 25, O

We now define a discrete time, subMarkov chain on excursions 3 € H, (going from R_; to Ry).
Assume Xg = 7 € ‘H,. Start Brownian motions B!, B? with initial configuration 5. On the event
[Ds44(7)]°, we kill the process. Otherwise, we set

&7 = sup{t < T§+4 : Bl € Ry},
and set Xy = 5 = (71,7%) where

() =B +6)~(s+4), 0<t<7l, —o.
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We can continue this procedure to produce a time homogeneous, discrete time chain with state space
Hs. Let g(71,72) be the density for the transition probabilities with respect to Wiener measure
given that Xo = 1, i.e., for any A C Hs,

P{XicA|Xo=%}= [49(7175’2) dW,(72). (11)

Ifvy e GS we define
¢(7) = P(D1)7
6(7) = ¢s(7) = P(Dy; 7ty > w2, > 1),

where, as before, we are starting Brownian motions with initial configuration 4. One can check that
¢ and ¢, are continuous functions on Gy (with respect to the metric d defined in the first section)

at all 7 with ¢(7),o(7) > 0.
Lemma 4.3 There exist ¢19, cag such that for all s > 4, 31,75, € Hs,
c106(71)s 2 A(78) < 9(31,72) < c200(71)s 2 H(757).

The statement of the lemma is a little imprecise since densities are defined only up to sets of
measure zero. We can restate the conclusion of the lemma as follows: for every 7, with ¢(75) > 0
and every neighborhood U (in the metric d defined in Section 1) of 4% sufficiently small,

c16(71)s T ?3(F2)W(U) < P{X1 € U | Xo = 1} < c26(F1)s™*S(F2) Wi (T).

We will sketch the proof of Lemma 4.3 although we will not give all the details. Assume we start
independent Brownian motions B!, B? on Rg with initial configuration 7; = (v{,7#) and let them
go until they reach R;14. As before, let

i =~{ U B0, 7],
D, = Dy(71) = {TLn T2 =0},

Let ‘ .
o =0 =sup{t < 1] ,:B; € Ry}.

We split the Brownian motions into three pieces
Bj[07 T%]? Bj [7—57 Uj]7 Bj [Uj7 7—sj—l—4]'

In order to get B[0, T51+4], B?[0, 7'3+4] we can choose the three pieces from the appropriate spaces:
the first piece from G, using Wj; the second from Lsy9 X Lsyg using Qs42 X Qst2; and the third
piece from G,y using Wsio. (These pieces need to be translated appropriately.)

Let

Dy = Dy 0 {B'[0, 7] N {R(z) > %} C {S(2) < %};

0,730 {R() > 5} C {I9() — 7l < 55} )
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It is each to check, using Lemma 3.4, that

c16(71) < P(Dy) < P(D3) = ¢(71).

Suppose A is a subset of 7%3+2 (considered as nonintersecting excursions from Ry to Rgy4). Let

A= {77 € 470,061 N {RG) £ 5) € (9G] < 55}

5 1
7[0,6(r)IN{R(2) < 5} CH{IS() — 7| < 553 1 (12)
For A C Hyya, let V(A) denote the event
‘[(A) = {(B1[017T:+4]7B2[U277_3+4]) € A}7

where we have abused notation slightly by writing Bla, b] for the function B : [a,b] — C. Suppose
we have chosen the first and third pieces, Bj[O,Tg],Bj[Uj,Tsj_i_A If we want Dgs4 to hold then
B'[r},0'] and B*[r}, 0% must be in L2, as defined in Lemma 4.1. From this we can conclude
that

PV(A) N Dypa] < e2872¢(71)Wya(A). (13)

Similarly, by appropriate attaching of paths (details omitted), we can see by considering Ei“ that
c18726(71)W2(A) < P[V(A) N Dysa]. (14)

We now consider the third piece which is a pair of excursions from R4 to Rs44. This can also be
thought of as a pair of excursions from R,y4 to Ry. Let B!, B be independent Brownian motions
starting on R,y4 (with the uniform distribution) and let

57 = sup{t < Tg Bi € Roya},
¥(t) = Bllo?, )",

that is to say, ‘ o ‘ ‘ ‘
Y(t)= B (rg —c’ =), 0<t< 71! ,—0.

The measure induced by (v!,7?%) is Wiener measure Wiz on Gepa. Let
p=inf{t > 57 : B! € Ry},

and let ‘ -
59 = Bllo?, '],
Then it is easy to check that the measure induced by (4!,42) is, in fact, Wiener measure W,. Let

J2 be given with qg('?g) > 0 and let U be an open neighborhood about %3 in the metric d. By the
continuity of ¢, if U is chosen sufficiently small then

5972) < 3(3) < 2(72), 7. (15)

If ¥ € Vsy2, considered as an excursion from Ry to Rgy4, write Agy for the excursion from R4 to
R,14 obtained for 4 by considering the path starting at the last visit to R4 and proceeding along v
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to Rst4. Define Agy for 7 € GS+2 similarly. Let Ay be the subset of Hs4o (considered as excursions
from Ry to Rsi4),
Ay ={y € Hsy2 : Ay € U},

and define Ay as in (12). Then by the strong Markov property, Lemma 3.4, and (15) we can see
that

Wsd(2) < Wara(Av) < Wara(Av) < 2Wi6(72).
Combining this with (13) and (14), we see that
c1d(71)s T2 G(72)Ws(U) < P{X1 € U | Xo = 11} < e26(71)s*0(72)Wo(U).

From the definition of ¢ (see (11)), it is easy to derive Lemma 4.3.

The next lemma is a standard result about rate of convergence of subMarkov chains. We have
included a proof because it will be important for our purposes that the constants uy, uy depend
only on aq,as, as.

Lemma 4.4 For every 0 < ay,az,a3 < 0o there exist uy = ui(ay,az,as) > 0,up = uz(ay, az,as) <
oo such that the following holds. Suppose (X, p) is a probability space with a nonnegative kernel
K(z,y) defined on X x X. Suppose there exist M < oo and functions ¢,¢ on X with 0 < ¢ <
1,0< ¢ < M and

é(2)b() < K(2,9) < asd(z)b(y) (16)
Let A be the operator on L'(X, u) with kernel K,

Ag(w) = [ ()R (2,9) dp(a)

Let f be the unique positive eigenfunction for A, i.e., the unique f > 0 salisfying
[ 1(@) du(z) = 1.
Af(z) = Bf(x),

for some 5 > 0. Assume that
[ 5@t du(e) = as. (17)
Let || - || denote the L' norm,
loll = [ lg(@)] duo).
Let by, = hy(g) = A”g/||A™gl|. Then for all g > 0 with ||g|| < oo,
|hrn = fl] < uge™""1.

Proof. Without loss of generality we may assume § = 1 for otherwise we consider K =

B~'K,v = ~"4. Note that (16) implies

1) = [ @)K @) du(a)
@ [ 1()é(a)s(y) dula)
ab(y) [ 1(2) du(z) = azi(y).

IN

IN
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Similarly, using (17) as well,

1) > ar(e) [ 1(@)o(x) due) > arasi(y).
Suppose ¢ > 0. Then for all n > 1,
|47l = [ 4" (Ag(a)) du(z)
= [ 4 90K (w,2) duw) du(z)
< w [ 47 [ 9)ély)iie) du(y)] du(e)
<2 [gw)oty) dutw)] [ 47 f(a) du)
= ([ g()oty) du(y) (18)

ajas
lgl- (19)

<

a3

IN

ayas

Let go = ¢ and
a0 = [ gulx)é(2) du(z).

Note that

Ago(w)

[ ol)E (v, ) diy)
ar [ 9o(y)éw)(x) duly)
120 f(a).

v

v

Hence we can write

where g; > 0. Also, by (18),
[15Y8 7))
| Agoll < -
ajas

Hence, by (19), for every k,
a

A%l < [[AM o]l < (——)aq.

aias

Since || A* f|| = || f||, we see that this implies that for all k,

[A% 1] ,
[|A*+goll =7

where p < 1 is given by
(az/a1a3)”

P~ (axfaras)? + (ar/az)’

22



Similarly, we define inductively,

o = [ gal@)6e) du(a).

and g,41 > 0 by

As above we establish for each £k,
[ A% g )
[|AF+ g —

In particular, by induction, we see that

[lgnl
[ A% goll

T

p".

IN

But,
A"go = 1 f + Gn,

for an appropriate number r, and hence
hp =tnf + u,
where ||u,|| < p™ and ¢, is a constant, 1 — p" < ¢, < 1. Therefore
[P = FII = (tn = 1) f + un]] < 2™,
This proves the lemma. O

For each s > 4, let fs; denote the nonnegative eigenfunction of the Markov chain on excursions,
i.e., fs is the nonnegative function on H; such that

[ 1) divim =1,
and i
[ £00)9,32) A1) = B fu(72),

for some §; > 0. Here g is as defined in (11). We will apply Lemma 4.4 to this chain with

K(51,72), #(71), ¢(72) in the lemma corresponding to g(71,72), ¢(71), s~ 2A(78), respectively. Note
that Lemma 3.4 can be used to show that for any f, if

Af(3) = / F(30)9(F1, 72) AW (32),

and h = [|Af]|/[| 1, then
/h ;1 dW(’Yl)>C

and hence the same must hold for the eigenfunction fs. This establishes condition (17) of Lemma
4.4. Lemma (4.3) establishes that (16) holds. In both cases the constants are independent of s.
Hence we have the following corollary.
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Lemma 4.5 There exist cog < 0o and cy; > 0 such that the following holds. Suppose s > 4 and
Q is a any probability measure on Xo such that P(Dy) > 0. Let g, = g, s denote the densily, with
respect to Wiener measure, of X,, given that Xg is distributed according to Q) and let h,, = ¢,,/||gxl|
be the normalized density. Then if fs is defined as above,

/|fs - hn| dWs S CQOC_Cmn-

We emphasize again that the constants in the lemma do not depend on s. Suppose r < s.
Any measure on H, gives a measure on H, by projection by ¥,, as described in Section 2. This
measure will be absolutely continuous with respect to Wiener measure W, on ‘H,. Let f,., denote
the density of the measure obtained by projecting the measure with density f;. Then the following
is an immediate corollary of Lemma 4.5.

Lemma 4.6 There exist cog < 0o and cy; > 0 such that the following holds. Suppose s > 4 and
0 < r < s. Consider the Markov chain on H, and let Q be a probability measure on Xg. Let
Gn = Gn, be the density, with respect to Wiener measure, of the projection onto 'H, of the measure
on X,, given that Xq is distributed according to ). Let hy, = hy, = ¢,/||gn|| be the normalized
density. Then for all n,

/|fr,s - hnl dW, < cqpe™ 17,

5 Convergence

In this section we prove the main result. Start with any initial configuration I' = (I'',T?). As
before, let ‘ ‘
) =inf{t: B} € R,}.

Let 9, = (71,72%) € G, be defined by
i) =Bi({t)—r, 0<t<7]

and let T, = (T'},T'?) be defined by

I = (T9 = r)yu~7[0, 1]

r

As before, we define the event
D, =D, (T)={I}nT%=0}.

Fix s > 4 for the time being; we will eventually let s go to infinity. Let D" = Dn(s+4)(f). For
n > 0, let ‘ ‘ ‘
T =T,= Ti(s+4)7
5 = 5;7;73 =sup{t < T7 : B{ € Ry(spa)—s)-
For n > 0, let F,, be B[Si,Ti] — n(s +4), i.e., F, = 7, = (n},72) € G, where

(1) = BI(Sh +1) —n(s+4), 0<t<T)- 8.
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Let
7 - { F,, if D™ holds,

A, otherwise,

where A is an absorbing cemetery state. By Lemma 3.4, Lemma 3.8, and Proposition 3.11, there
exists c¢q, cg with B B
c1e” 2 FIP[D(T)] < P[D™] < cpe " HIP[Dy(T)]. (20)

Let K™ be the event
D'n{B'S}_,, TN B* S}, T3 =0, k=2,3,...,n}.
Note that D™ C K", but by Lemma 3.12 and (20), if n < 30s,
P[K"\ D"] < coe”“P[D"]. (21)

Let X,, be defined by
v { F,, if K™ holds,

A, otherwise,

Note that Xy, ..., X,, has the law of the subMarkov chain on H; described in the previous section
(with X giving the initial distribution). Let g, denote the density with respect to Wiener measure
W of X, and h,, = ¢,,/||¢n||, the normalized density. Then by Lemma 4.5,

/|fs - hn| dWS S CQe_cn7

where f; is the normalized invariant density for this chain. Let u, denote the normalized density
for Z, given Z, # A. Then by (21), for n < 30s,

/ |ty — P | AWy < ™",
and hence for n < 30s,
/|fs - un| dWS S CQe_cn7

for appropriately chosen ¢y, ¢. Since this holds for any initial configuration we can conclude that
for all n > s/8,

/|fs - un| dWs S 626_63- (22)

If r < s, let h,, denote the density of the measure on G, obtained by projecting u, dW; by the
mapping V¥, as defined in Section 2. Then (22) implies that for r < s/8 < n,

/ frs — Byl dW, < cpe™", (23)

where f,. ; denotes the density of the measure on G, induced by projecting f dwW,.

We are now ready to prove the main theorem. Suppose we start with any initial configuration
I and start independent Brownian motions B!, B? with initial configuration T. For r < 5/2 < /4,
define (74,72), (s> Ma.5) € Gr as follows:

ol =sup{t < i : B! € Ry_,},
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p' =inf{t > o’ : B! € Ry_,},

A/Z(t) = Bg - u, 0 S t S Ti - Ti—rv

Wz];,s(t):Bg—u, OStSTi—p]

Let A™* and A" be the normalized densities with respect to W, on G, of the distributions induced

by (v1,~2) and ("71{,57 772,5), respectively, given the event D,(I'). By Lemma 3.12,
/|h““ — ATS| AW, < cqeTc.

But by (23),
/|fr,s _ ilr,u,s| dWT S 026—037

and hence

/|f7q7s — B dW, < cge™ .

In particular, for 2r < s < s < \/u,
/lfr,s - fr,s’l dI/V’/‘ < /|f7’,s - hr,u| dI/V’I‘ + / |f7",s’ - hT7u| dI/VT < C26_05-

If we now fix r, and let s go to infinity, we see that {f, s} is a Cauchy sequence in L'(G,, W,) and
hence has a limit which we denote f7. We have proved the following, and as a consequence have
proved Theorem 1.1.

Theorem 5.1 There exist constants cqq, co3 such that for all u > 72,

/ |7 = h™Y| dW, < egg exp{—ca3\/u}.

Let @5 be a probability measure on G such that the projection of )5 on G; given by Wj is
f? dW,. We will take the limit of )5 as s — oo. One small point is to make sure that the limit
lies on curves that satisfy (4). In other words, we want to show that {Qs} is a tight collection of
measures on G. If one starts a Brownian motion on Ry, it is known that E(m) = co. The next
lemma implies that this expectation is finite if we require the Brownian motion to avoid an infinite
curve.

Lemma 5.2 There exist caq, ca5 such that the following holds. Let~ : (—oc,0] — C be a continuous
curve with ¥(0) € Ry and R(y(t)) — —o0 as t — —oo. Suppose B is a Brownian motion starting
at Ry. Then for every y > 0,

P{Tl > Y B[077—1] N 7(_0070] = @} S 6246_0251/_

Proof. Let
o=1inf{t: B; € y(—00,0]},

and T = 7y Ao. By the Beurling estimates (Lemma 3.1) one can easily see that there exists a § < 1
such that

P{T>y+1|T>y}<pB,
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and hence for integer r.
P{T >r}<p".
But
{r1>y; Bl0, ] N y(=00,0] = 0} C{T > y}. O

For any 7 = (v',7%) € G let

ol = —sup{t :v/(t) € R_,}.
By Lemma 5.2, we can see that for any r > s, y > 0,

Q{ol —al_, >y, j=1,2} < ce Y,

S

Hence if we define p to be the weak limit of the measures ¢}, we have for every s, v,

p{od —ol | >y, j=1,2} < ce Y, (24)
By the Borel-Cantelli Lemma, there exists a ¢96 such that
p{ol — ol_, < egglog s for all sufficiently large s} = 1. (25)

In particular, u is supported on (y',~72) such that 77 satisfies (4), i.e., u is a probability measure
on G.
For s > 0 let
Qs = P(D1)7

where the initial configuration is selected from the distribution f* dWs on G,. It follows from
Theorem 5.1 that for any initial configuration T,

PID,41(T) | Dy(D)] = [l + O]
In particular, the ag have a limit « and
a; = afl + O(e~e2 V%)),
It is not difficult to see that a must equal e~2¢. For any initial configuration T, and s > 0, let
P, = 2 P[D(T)].
We have just demonstrated the following, which proves Theorem 1.2.

Corollary 5.3 There exist ¢z, cos such that the following holds. For any initial configuration T,
the limit
T) = lim ¢y(T)

5— 00

o
exisls. Moreover, if we define §; = 65(T) by

then

Moreover, B B B
cas1 (1) < () < earthy(T).
Corollary 5.4 If q(r) is defined as in Section 1, then there is a constant cy9 such that
q(r) ~ coge %",
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6 Properties of the Measure

We now will return to the spaces A and D on C as defined in Section 1. We will write u for the
measure obtained on D by transforming the measure p of the previous section by the exponential
map. Note that by (24),

B, [b(7") + b(+?)] < ox.

For any 7 € & and r € R let 0,7 denote the function obtained by Brownian scaling by a factor of
e’,
0,7(t) = e"y(e™?"t), 0<t< e b(y).
Note that ©,v € X'(r) where
X(r)={y:0_,ye X},

and ©,u gives a measure on D(r), where D(r) is defined in the obvious way. For v € X(r), r > s,
define T4y € X in the following way. Let

o= inf{t: |7(1)] = '},
Tv(t)=~(t), 0<t<o.

For r > 0, let u" be the measure on D given by Tq0,v. The measure u" is not the same as u. In
fact, it is not difficult to show that

dp" = ¢, dp,

where 1, is (the transformation by the exponential map of) the v, of the previous section. To be
more precise, if I' = (I'',T'?) is an initial configuration in C, (a pair of disjoint closed subsets of
the closed unit disk with exactly one point of each set of norm one, denoted z1,z3) and B!, B? are
independent Brownian motions starting at x1, x4, respectively, then

¢, (T) = 2P{(T" U B'[0, T}]) N (T? U B?[0, T72]) C {0}}.
As r — oo, the measures y" approach a measure u* with
dp™ = du.

This is the measure of paths conditioned never to intersect.

The measure p* is the invariant measure for a particular Markov chain. Suppose we start with
an initial configuration T' = (T, T?). As usual, start Brownian motions at z1,z5. For any s > 0 let
[s = (TL, T?%) where ‘

T4 = e (17 U B[0, T2)). (26)

S
We weight 'y by _
U(T)
¥(To)
More precisely, let g5(T'y,Ty) be the transition density of the chain (26) with respect to Wiener
measure and let the new chain have transition density

zg;;gs(rh Ty).

ST NT? C {0}}

2 {rinT? c {01}

28



Note that
E[I{I'} n T2 C {0}}o(T,)] = e (Ty),

and hence this weighting gives a Markov chain, which can be considered as the “h-process” associ-
ated with nonintersecting Brownian motions. It is easy to check that p° is an invariant measure
for this Markov chain.

Let X denote the set of continuous functions 7 : [0,00) — C with 4(0) = 0 and |y(¢)| — oo as
t — o0o. Let A = (X)? and let D be the set of (7',7?) € A such that

7(0,20) N 7%(0,00) = 0.

We can define a measure i on D by taking a weak limit of the measures u” as r — oco. It is easy
to check that for each r, the measure on D given by ©_, T, /i equals .

The measure ji is a measure on paths starting at 0 and “ending at infinity” conditioned never
to intersect. We can use a conformal transformation to get a measure on a pair of paths starting
at some fixed point and ending at some other fixed point. Suppose, for example, f(z) = z/(z + 1),
so that f(0) =0, f(oo) = 1. If B; is a Brownian motion starting at the origin in C and

£
o= [ 1B

Y; = f[B(U_l(t))]7

then by conformal invariance Y; is a Brownian motion. We can use the same time change to send the
measure fi to a measure f(/i) on Brownian paths starting at 0, ending at 1, and conditioned never
to intersect. For unrestricted Brownian motions, there is a subtlety in performing this conformal
transformation because recurrence implies with probability one

/|ﬂawﬁ:m
0
However, with probability one with respect to f, if (y1,7?%) € ’[),

Kﬂﬂawﬁ<m.

This essentially follows from (24) and (25).

7 Extensions

For ease we have considered the case of £k = 2 independent Brownian motions. The results of this
paper hold equally well for other numbers of Brownian motions. Since the proofs follows the same
basic pattern we will only discuss the results. Throughout this section, constants may depend on
k.

We will first consider k£ = 1. It is not obvious immediately, but the analogue of the intersection
exponent for one Brownian motion is the disconnection exponent. Let B; be a Brownian motion
taking values in C starting at |z| = 1. For s > 0, let D; be the event

D, = {BJ0,T.:] does not disconnect 0 from infinity}.
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The strong Markov property and Brownian scaling imply that
P(Dyy.) < P(D)P(D,),
and hence there is an a > 0 such that as s — oo,
P(D,) ~ e 2,

and P(D;) > e72%*. The number «a is called the disconnection exponent for Brownian motion. It
has been conjectured [12] from conformal field theory that @ = 1/4. It is known rigorously [5, 20]
that

% <a < .49.
The methods of this paper can be used to prove that
P(D,) ~ ce 2%,
Also a limiting measure u exists on X" which lives on the set
Z={y € X :7(0,b(7)] does not disconnect 0 from infinity}.

More precisely, Z is the set of curves v € X such that 0 is in the closure of the unbounded
connected component of C\ 7[0,b(v)]. This measure is also the eigenstate of the Markov chain
on A as described in the first section conditioned that the chain has stayed in Z. There is also a
measure [ on X that represents the measure on paths conditioned never to disconnect. If z1, z9 € C,
we can conformally transform f by a linear fractional transformation to get a measure on Brownian
paths B with the property that B(0) = z;, B(b) = 2z and B(0,b) does not disconnect z; from z,.
Similar disconnection exponents can be defined by considering k independent Brownian motions
and requiring that the union of the k£ paths not disconnect zero from infinity. The particular case
k = 2 is interesting because the disconnection exponent is related to the Hausdorff dimension of
the frontier or outer boundary of Brownian motion [18, 20].

Now assume k > 2 and we have k + 1 independent Brownian motions B',..., B**! starting at
T1y. ..y Ty With |zq| = 29| = -+ = |2g41| = 1. For s > 0, let Dy be the event
Dy = {B'0,T.] n(B*0,T%] U ---U B*'[0, TEH) = 0}. (27)

Let
qx(s) = sup[P(Ds)],
where the supremum is over all x1,..., 2541 on the unit circle. Again it is straightforward to show

that there is a (i such that
qr(s) = 725, 5 — 0.

It is known that (; = 1 [5]. No other values of (; are known rigorously, and in fact, we know of no

conjectures for k > 2. Using the methods in this paper, we can show that
qr(s) ~ ce™ %S,

Let Gp = (X)*1 and Hy the set of (v',...,7*t1) € Gy such that
710, 6(yHI N (72(0,6(v)] U - UA*HH0,0(y* 1)) = 0.
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Then there is a measure u on H}, that represents the limiting measure of paths conditioned not to
have intersected in the sense of (27), and similarly there is a measure ji that represents the limiting
measure of path conditioned never to intersect. Also by a linear fractional transformation we can
define a measure on k 4+ 1 Brownian paths starting at z;, ending at 29, and conditioned so that the
first path avoids the other & paths.

Another possible intersection rule is to forbid all intersections. Suppose k& > 2 and let B', ..., B*
be independent Brownian motions starting at x1,...,z; on the unit circle. For s > 0, let

D, = {B[0,T.]n B"[0,T7] =0, 1< j < m < k}.

Let
k
q"(s) = sup[P(D,)],
where the supremum is over all z1,...,z; on the unit circle. There exists a Az such that
¢"(s)m e, s — o0,

and ¢*(s) > e *¥*. No value of ), is known rigorously, but conformal field theory [11, 12] predicts

4k* -1
A = .
k 12
The methods of this paper allow us to prove
¢*(s) ~ ce™ M5,

We can also define the limiting measure g. If k& > 2 the limiting measure lies on H*, the set of
paths (7,...,7%) in Gy such that

0,61 N A™(0,0™] =0, 1<j<m<Ek

where b = b(y7). The Markov chain conditioned to stay in H* is not ergodic for k > 2 . If we
consider the cyclic order of the points y'(b'),...,7*(b*), we can see that the order cannot change
if the paths are not allowed to cross. The space H* splits into (k — 1)! equivalence classes all of
which look the same. If we start Brownian motions on the unit circle and condition them not to
intersect, they the order of the endpoints on the circle eventually stop changing. The measure on
paths then converges to u on H* (normalized to be a probability measure). Equivalently we can
think of u as lying on the space of unordered k-tuples of curves.

To make things a little more complicated consider & + m independent Brownian motions
B',..., B¥™ starting on the unit circle and let

Dy = {(B'0,T5]U---U BY0, TE) 0 (BX1[0, T U - -u B [0, TEF™]) = 0).

Let
k,m = sup[P(D;)], (28)

where the supremum is over all starting points in the unit circle. Then there exists a (j ,, such that

Qkm(S) = 6_20“"5, 8 — 00,
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and ggm(s) > e~2Cms_ Again the methods of this paper can be used to prove that

Qkm(S) ~ ce~ 2 kms,

When we try to define a limiting measure p we run into the same problem as in the preceding
paragraph. Certain crossing of points on the unit circle are forbidden, so g must lie on a smaller
set of paths. In this case we have the added difficulty that these different equivalent classes are
not identical, and in fact we would expect them to have different eigenvalues associated with them.
For example, if £ = m = 2 then the points can be arranged x1,x2, 3,24 O 1,23, %2, z4. One
would expect that paths of the first type would find it easier to survive. In fact we conjecture
that the supremum in (28) is taken on by paths for which the points are “separated,” i.e., for
large s on the event D we can draw a straight line which separates {BY(TL),..., B¥(T%)} and
{BFL(TEFYY B (TEF™)Y We do not have a proof of this fact. The methods of this paper
do allow us to analyze each “equivalence class” and show that an appropriate limiting measure
exists for each class. We could do similarly for even more complicated intersections rules, but we
have discussed enough here.

8 Estimation of an Exponent

The methods of this paper say very little about how to compute the exponents. We will sketch the
proof of one result in this chapter. Let the exponents ((k,m) = (s, be defined as in the previous
section. The case k =1 =1, m = n = 2 of the following proposition was proved in [7].

Proposition 8.1 For any positive integers k, [, m,n,

Clk + Lmt n) > C(k, m) + (L, m).

Let B',..., BFt4m+7 he independent Brownian motions starting at 1, .. oy Thtltmtn O the

unit circle. For s > 0 define sets

vl =nB'0,TLu---UB*0,TE],

V2 = BFo, TE U - u BF0, TAH),
‘/'83 — Bk+l+1 [07 Teks-l-l-l-l] U---U Bk+l+m [07 Teks-l-l-l-m],
‘/54 — Bk-}—l-l—m-l—l [07 Tﬁkj—l-}—m-}-l] U---U Bk-|—l-|—m-|—n [07 Tﬁl‘cj—H—m-}—n]7

and events
D} ={V}! nVvy =10},

D? = {1/32 N ‘/34 = 0)}7
Di = {(Vsl U ‘/32) N (‘/33 U Vs4) = (b}
Let o = 2((k,m), 3 = 2((m,n). We know that

P(D!) < ce™*, P(D?) < ce™*P,

?

Also
D?c Din D2
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Since D! and D? are independent, it is immediate that ((k + ,m + n) > ((k,m)+ ((I,n). The
hard part of the proposition is to prove the strict inequality. Let

Dy ={v;nV/ =0}

It suffices to prove that there is a A > 0 such that

P(Di, | DN D?) < ce, (29)
for then
P(D3) < P(D;N DN Dy )
< P(D,ND)P(D;_, | Dy N DY)
< CC—S(OA+B+/\).
The proof of the proposition is based on two observations. Fix starting points 21, ..., Tkqitm4n

on the unit circle. Let G} = (X_,)™, G2 = (X_,)*". Let H! be the set of (v1,...,7*+™) € G!
such that

(71[07 bwl] U---u 7k[07 b’y’“]) N (7/k+1[07 b'vk“] U---u 7k+m[07 b’yk+m]) =0,

and define H? similarly. We make the natural identification of paths which start at the circle of
radius 1 and end at radius e” with paths which start at the circle of radius e™"
1. Let P!, P? be the measures on H! and H?2, respectively, given by Wiener measure conditioned
on the events ., H? respectively, and let @7 (j = 1,2) denote the measure on H’_, obtained by

and end at radius

projecting P? by T,_;. Let Q§ denote the probability measure on G7_; whose density with respect
to Wiener measure I/Vsj_1 is a constant times I(Hg_l)@b where I denotes indicator function and 7
is as defined in the previous section. By an analogue of Corollary 5.3, there exist constants c1,co
such that for every A C H!_,,

c1Qi(A) < QU(A) < 2QI(A).

Hence it suffices to prove (29) for the measures QA;, (;)3, i.e., it suffices to prove that if H>_, = H. | x
H2_,; Q% = Q! x Q% and H?_, is the subset of ((71,...,75t™), (741 AFtmtlinyy e 13 |
with
710, (yH] N A0, (5] = 9,
then
QY(Hy_y) < ce™. (30)

To prove this, we only need the analogue of Lemma 3.13. This lemma states that under the
measure Q, if A1 and y*tH4m+7 have not intersected up to time e” there is a positive probability
(independent of the path up to time e”) such that the paths will intersect before time e”*2. Tterating
this fact gives (30). We omit the details.
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