MPE]

MATHEMATICAL PHYSICS ELECTRONIC JOURNAL

ISSN 1086-6655
Volume 1, 1995

Paper 6
Received: October 5, 1995, Revised: November 30, 1995, Accepted: December 6, 1995
Editor: J.-P. Eckmann

Bounds on the Zeros of a
Renormalization Group Fixed Point

Hans Koch !
Department of Mathematics, University of Texas at Austin
Austin, TX 78712

Peter Wittwer 2
Département de Physique Théorique, Université de Geneve
Geneve, CH 1211

Abstract. We prove that the Renormalization Group transformation for the Laplace
transform of the d = 3 Dyson-Baker hierarchical model has a nontrivial entire analytic
fixed point whose zeros all lie on the imaginary axis. Sharp upper and lower bounds on
80 of these zeros are used to verify the assumptions made in reference [11]. Our proof
is computer—assisted.

1 Supported in Part by the National Science Foundation under Grants DMS-9103590, DMS—9401422.

2 Supported in Part by the Swiss National Science Foundation.

1. Introduction and Main Results

In this paper we present a computer—assisted proof of the following theorem. Let § =
2-5/6 and consider the fixed point problem N (f) = f for the nonlinear transformation
N, defined by the equation

(N(H)) () = ﬁ /ds e‘ﬁSQf((ﬂt+s)2)2, te C. (1.1)

Theorem 1.1. The transformation N has a fixed point f* with the following proper-

ties.

(a) f* is an entire analytic function which takes real values when restricted to R.

(b) The Taylor coefficients at zero of f* are bounded in modulus by the corresponding
coefficients of the function z — K exp(lio), for some positive constant K.

(¢) All zeros of f* lie on the negative real axis.

In addition, f* is of type Z, as defined below.

Definition 1.2. A function f on R is of type Z if there are positive real numbers
ro < x1 <...<X79, Such that

(d) f(—z)=0fork=0,1,...,79.

(e) f has exactly 5 zeros in the interval [—xz4,0].

(f) Vok — /Teo1 < 5, for k=5,6,...,79.

Theorem 1.1, formulated in terms of the even function ¢ — f*(¢?), was first an-
nounced in [11], where it was used to prove that for every ¢ < 3/5, there are positive
constants a and b such that

[f*(=r)| <aexp(=br?), reR;. (1.2)

This bound in turn implies that the function h*, defined by the equation
o0
h*(t) = e=et” S /ds e est x(—s?) te C, (1.3)
7

where ¢ = (2% —1)/(4a? — 1) and o = 271/6 is a nontrivial entire analytic fixed point
of Baker’s renormalization group transformation R,

(R(Rh))(t) = 2c /ds 6_2652h(at + s)h(at — s), teR.

— 00

Interest in these fixed point problems stems from the theory of critical phenomena in
statistical mechanics and quantum field theory: The third power of R is directly related

1

to a renormalization group transformation on a space of scalar lattice field theories in
three dimensions, with a certain hierarchical symmetry. We refer to [1,11] for further
information on this aspect of the problem. Other rigorous results on scalar hierarchical
models can be found in [2-12] and references therein.

In order to explain our strategy of proof, we shall now work towards the formulation
of two lemmas which imply complementary parts of Theorem 1.1. The first of these
lemmas covers all but part (¢). Properties (a) and (b) hold for any function in the space
Bio , defined below, that will be used to prove the existence of the fixed point f*.

Definition 1.3. Let p be some fixed but arbitrary positive real number. Denote B,
the vector space of all entire analytic functions f, which take real values when restricted
to R, and which satisfy p™|f(™(0)| — 0 as n tends to infinity. Here, f(™) denotes the
n—th derivative of f. When equipped with the following norm, B, is a Banach space.

171l = sup PtlFMO0)], feB,. (1.4)

The set of all functions in B, whose derivatives at the origin are all nonnegative will
be denoted by Bg , and the set of all functions in Bg whose zeros all lie on the negative
real axis will be denoted by Bg' . Finally, if f is an entire function and N a nonnegative

integer, we define
N

(Pef)(z) =3 % M), ze €. (1.5)
n=0

Notice that N cannot have an attractive fixed point f # 0, since N (f) = f implies
that DN'(f)f = 2f. Here, DN'(f) denotes the derivative of ' at f. Numerically,
the three largest eigenvalues of DN (f*) are approximately 2, 1.427, and 0.859. In the
context of computer—assisted proofs, the standard way of solving a hyperbolic fixed
point problem N (f) = f is to convert it to a fixed point problem for a contraction M.

One of the canonical choices for M is a map of the form

M(f)=f+MN(f) - 1), (1.6)

where M is approximately the inverse of the operator 1 — DN (f*). In the case at hand,
we define such a map M by picking an approximate fixed point fo for N and setting

M = [1 — B.DN (Pyfo)Ps] ™", £=29, d =100, (1.7)
after verifying that the operator in square brackets is invertible.

Lemma 1.4. Let p = 10. There exists a polynomial f, in Bg , and a closed convex set
V in B, containing fq, such that the following holds. The transformation M defined
above is of class C* on B, and maps V to itself. The operator norm of DM(f) is
less than 1, for all f in V. Furthermore, every function f in M(V) is of type Z; see
Definition 1.2.

This lemma implies that M is a contraction on the set V. Thus, by the contraction
mapping principle, M has a unique fixed point f* in V. In addition, f* has all the
properties described in Theorem 1.1, with the possible exception of (c).

2

Our proof of Lemma 1.4 is computer-assisted. By following a strategy that has
been used successfully with several other fixed point problems, we derive sharp bounds
on a certain number of Taylor coefficients for f*, and on the norm of the remaining
higher order part. The novel aspects of our proof stem mainly from the need for high
accuracy: The values of the function f* need to be estimated at a wide range of points,
and on the negative real axis where the terms of the Taylor series are alternating in
sign (the maximal value of |f*(x)|/f*(|z|) on the interval between the last two zeros
considered is less than 107150). In order to give an idea of what accuracy is used to
meet all requirements, let us mention that the approximate fixed point fj satisfies the
bound ||[M(fo) — follio < 1073%°) and that the set V in Lemma 1.4 specifies the first
1001 Taylor coefficients of every function f € V to a precision of up to 370 decimal
digits.

We note that a contraction M of the type considered here is ideally suited for
high precision bounds: The map h +— M(fy + h) — fo can be implemented in a nearly
cancellation—free form since it decomposes easily into an affine part and a remainder
that is explicitly of higher order in h. In fact, other “standard” choices would have made
our computer—assisted proof prohibitively time consuming. The only problem with M
is that it lacks the following important property of the transformation A: If a function
[€ B, has no zeros off the negative real axis, then the same is true for N'(f). Here,
we have to assume that p larger than a certain number p < 4. This property is an
immediate consequence of Corollary 2.1 in [11]. Further details will be given in Section
3.

Let us now turn to the proof of part (¢) of Theorem 1.1. Assume that p > p. Our
strategy is to consider a new contraction I which has f* as a fixed point, and which
leaves the set B;)" N W invariant for some given neighborhood W of f*. One of the
tasks will be to show that the intersection of B;," with W is non-empty. This is done
by constructing an approximate fixed point fo € W whose zeros all lie on the negative
real axis.

The map K will be chosen of the form N o U*, where U* is a suitable (nonlinear)
projection that leaves f* invariant. Such a map is a contraction near f* if DN (f*)
contracts vectors in the range of DU*(f*).

Given a vector u = (ug, u1, g, us) in R* and a function f in B, , let U(u, f) be the
function defined by the equation

(U(u, f))(2) = uoe™* f(upz + us) . (1.8)

In Section 3 we will specify real numbers v > 0 and p < r < p, such that U(u, f) lies in
B, whenever v is an element of U = {u € R*: Ju;| < v,0 < us < 1+v} and f € B,.

Definition 1.5. Let f be a function in B,, and denote by Uy the set of all vectors
u = (ug, u1, U2, ug) in U such that f has no zero in [ug, 0|, if u3 < 0. Then we define
K(f) = NUu*(f), f)), where u*(f) is the vector closest to (1,0, 1,0) among all vectors
u in Uy that satisfy the equation

3

If there is no such vector u*(f), or if it is not unique, then KC(f) remains undefined.

Notice that Uy« is non—empty, since f*(0) # 0. Thus, u*(f*) = (1,0, 1,0), so that
f* is a fixed point of the transformation K. Our reason for introducing the sets Uy is
the following. Consider a function f € B;F. Then the condition v € Uy ensures that
U(u, f) has no zeros off the negative real axis. Recalling the abovementioned property
of N, we conclude that the function K(f), if defined, lies again in B;'.

In what follows, if L is a continuous linear operator on B, , then ||L||, will denote
the operator norm of L.

Lemma 1.6. Let p = 6 and n = 28. There are positive constants v and §, an
invertible linear operator I' on B, satisfying I' — v = P,(I' — v)P,, and a function
fa € B;F, such that the following holds. The transformation K is well defined and of
class C* on (a neighborhood of) a closed convex set W that contains both {f € B, :
IT=f — f2]ll, < 50} and the set M(V) described in Lemma 1.4. Furthermore, the
function fy satisfies the bound ||[T =K (fa) — fa]ll, < 6, and the derivative of K satisfies

the bound ||[T~*DK(f)T||, < %, for all f in W.

By the contraction mapping principle, this lemma implies that I has a unique fixed
point in W. Given that W contains the set M(V), this fixed point has to be the same
as the fixed point f* of M and N. Thus, since W N B > f» is a non—empty closed
subset of W that is invariant under K, it follows that f* lies in Bg .

Remarks.

e The analysis presented here uses input data which are the results of prior numerical
investigations. Among those input data are the polynomial fy, the set V, and 5000
approximate zeros for f* (of which the first 80 are shown to be accurate to within
+10740). Most of these zeros were obtained by iterating a contraction associated with
a version of A/ that acts directly on zeros. This iteration was started with 4 zeros.

e Unlike the polynomial fy, the approximate fixed point fs for I is not given be-
forehand. It is determined, as part of the proof of Lemma 1.6, from a polynomial f;
which is the canonical product associated with the abovementioned approximate zeros
for f*. Despite its high degree, the polynomial f; is too far away from f* to be useful
directly. A better approximation fs is obtained from f; by applying a sequence of 80
transformations of the form f — N (Z/{ (u, f)), where u is chosen appropriately at each
step. This method is an alternative to fine-tuning the coefficients of f; such as to
get a polynomial very close to the stable manifold of N at f*, and then iterating the
transformation A a large number of times.

e Our proof of the preceding two lemmas incorporates several features that are not
commonly found in computer—assisted proofs. This includes the use of high precision
floating point arithmetic. On a higher level, precision was increased by eliminating
the need for a “general error” term in our standard sets (the analogue of intervals) for
analytic functions. Related to this is the fact that we use a weighted sup—norm for
Taylor coefficients, as opposed to the usual £}-type norms. Some advantages of these
choices will be pointed out in subsequent sections. As a general rule, we have tried to

4

use methods that are both efficient and conceptually simple; see e.g. the proof for the
existence and local uniqueness of the fixed point f* for M.

The remaining part of this paper is organized as follows. Section 2 contains the
estimates that are used (a) in our programs to bound the results of elementary opera-
tions on the spaces B, , and (b) in Section 3 to establish some basic properties of the
contractions M and N. In Section 4 we will describe the main steps in the proof of
Lemma 1.4 and Lemma 1.6, with reference to the corresponding computer programs. A
more detailed discussion of these programs is given in Section 5. For an exact descrip-
tion of our proof we refer to the source code (the file Section.6 in the supplement to
this MPEJ paper).

2. Some Operations Involving Analytic Functions

In order to estimate expressions involving the transformations M or IC, it is necessary to
first consider some elementary maps that enter the definition of these transformations.

Most of the bounds given here are close to optimal and very easy to prove, due to
the following fact which is related to our choice of norms. Consider the vector space P
of all polynomials over € with real coefficients, and denote by € the Taylor polynomial
of degree n for the function z — exp(z/p),

n
1
€, (2) = Z Rl 2k, ze C. (2.1)
prE!
k=0
Proposition 2.1. Let pg, p1,-- ., pr be positive real numbers, and let Ty be a k-linear

map from P* to P. Assume that the Taylor coefficients of Ty(f1, f2,- - -, fx) are linear
combinations with positive coefficients of products of Taylor coefficients of the functions
f1, f2, ..., frx, and that there exists a constant K such that ||To(e}p?, €2, . o €5)l po 'g K
for all ny,ns,...,ng. Then Ty can be extended in a unique way to a continuous k—linear

operator T' from B, x B,, x ... x B,, to B,, , and this extension satisfies

||T(f17f2""7fk)||po < K||f1||01||f2”ﬂ2 ||fk||Pk’ fl € Bpw 1<i<k.

The proof of this proposition is straightforward and will be omitted.

In what follows, the symbol ¢, (f) will be used to denote the n*® Taylor coefficient
of a function f at zero. In addition, N is assumed to be some fixed positive integer;
and for every f € B, we define

o) = e 10— Po) Sl - (22)

pN—i-l(N + 1)

2.1. Translation and Evaluation
Consider the translation operators Ty : f — f(. — A) for real values of .

Proposition 2.2. Let p > 0 and A € IR be given. Then Ty maps B, into itself and
satisfies | T f||, < exp(|A|/p)||f|l, for every f € B,. If f is a function in B, such that
Pnyf =0, and if 0 <n < N, then
N+1
()] < s (NI). (2.3

Under the additional assumption that |A|/p < N + 2 — n, we also have the bound

len (Tof)] < AV Fm (N;r 1) (1 — %) _lep(f). (2.4)

Proof. If A is nonnegative, then the fact that T’ maps B, into itself, and the given bound
on ||Txf||,, follow immediately from Proposition 2.1. But since reflection f — f(—.) is
norm-preserving on B, , the same holds for any A € IR.

In order to prove the bound (2.3), assume now that Py f = 0. By using that |c,, (f)|
is less than or equal to || f||,/(p™m!), we obtain

@1 =| 2 et () <l 3 Gt ()
N+1)! & 1 AN
=B S (B

k=N+1-n

(2.5)

By Taylor’s theorem, the last sum can be bounded by its first term times exp(|A|/p).

The result is precisely the inequality (2.3). In addition, if r = [A|p~ /(N +2 —n) is less

than one, then the same sum can be bounded by a geometric series with ratio r. This
proves inequality (2.4).

By using the bound (2.4) for n = 0, and the fact that f(z) = co(T-of), we
immediately obtain the following corollary.

Corollary 2.3. Let p > 0 and x € R be given. Then the evaluation functional
f — f(z) is continuous on B,. If |x|/p < N + 2, then the following holds for all
functions f € B, that satisfy Pnxf = 0.

@) <1al¥ (1= 78 eytr). (2.6

2.2. The Product of Functions

Proposition 2.4. Let 0,7 > 0 be given, and define p = -Z=. If f and g are functions

o+1°

in B, and B, , respectively, then the product fg is an element of B, , and

Ifglle < Ifllllgll-- (2.7)

Under the additional assumption that Pyg = 0, we also have the bound
eo(f9) < (1/0)N Il ex(9) - (2.8)

Proof. The bound (2.7) is obtained by using Proposition 2.1, and (2.8) follows since
Pyg = 0 implies that Px(fg) = 0.

Proposition 2.5. Let 0 > 0 and f € B, be given, and let p = o(N + 1)/(N + 2).
Then the function Z f, defined by the equation (Z f)(z) = zf(z), is in B, . Furthermore,
if Py f =0, then

ep(Z1) < (N +)zeq(f). (2.9)

Proof. Consider the function ¢ : — x(p/0)® on R, . Since ln ¢ has a strictly negative
second derivative, and since (N + 2) = (N + 1), the restriction to IN of ¢ takes its
maximum at N + 1 and N + 2. Thus, it follows that

ep(Z1) = [N N+ 1) sup "l fea 1 (f)]
n2N2 (2.10)

< [N+ (p/a) na|flle = (N + 1)oes(f) .

sup
n>N+42

2.3. The Derivative and a Difference Quotient
The proof of the following proposition is straightforward.

Proposition 2.6. Let p > 0 and f € B, be given. Denote by Df and Af the first
derivative of f and the function z — [f(z) — f(0)]/z, respectively. Then Df and Af
are in B, , and

en(DAI < (N+1)ep(f), ep(Df) < 5 eplf),

(2.11)
en(Af)] < epl), eo(AF) < ey o)

2.4. Convolution with Gaussians

Throughout this subsection, A will be a fixed but arbitrary positive real number. If f
is a function in B, for some o > 4\, define a function H) f by the equation

(HAf) (%) = 41m /dse—ﬁszf((t—sf), te C. (2.12)

By applying H)y to the function z — exp(z/c), we obtain immediately the following
fact.

Proposition 2.7. Let p > 0 be given, and define 0 = p+ 4\. Then H) is a bounded
linear operator from B, to B, , and

IHxfllp < Vo/pllflle, f€Bs. (2.13)

A straightforward calculation shows that the Taylor coefficients of Hy f and f are
related by the equation

Pl en(Haf) =Y Jnk okl er(f), (2.14)

k=n

where .
(2k)! p"n! \k—n

Tk = GuyitE —n)t Rkl

(2.15)

Proposition 2.8. Let p > 0 and 0 = p+ 4\. If f is a function in B, such that
Pnyf=0,and if 0 <n < N, then

en(HAS)| < [pnln! Vol - ea(Hrel)] NN+ Dle (). (2.16)

Proof. By linearity, we may assume that ||f|| = 1. Then the right hand side of (2.16)
is equal to ¢, (H\g), where g is the function defined by the equation

o0
1
g(ac) = ez/a — GJGV(JC) = E k—k' xk, z e C. (2-17)
k=N-+1 aer

Thus, since the Taylor coefficients of f are bounded in absolute value by the corre-
sponding coefficients of g, and since J,r > 0 for all £ > n > 0, the bound (2.16)
follows.

We note that the bound (2.16) is optimal. But in order to be useful, it requires
an estimate on the difference in the square bracket. In practice, the bound on this

8

difference deteriorates for small n since the two terms are almost equal in size (if N is
large). The following proposition provides an alternative in this case.

Proposition 2.9. Let p > 0 and 0 = p + 4\. Define ro = 4\/o and

_4X N +3/2

= — —— 12 =1,2,...,N. 2.18
4 o N+2—n n ()
If f is a function in B, and 0 < n < N, such that Py f =0 and r,, < 1, then

1 (2N +2)!
|c"(H)‘f)‘ = 1—r, 2n)(N+1-n)!

ANFL=m e (£). (2.19)

Proof. Assume that p, f, and n satisfy the given hypotheses. Then for all £k > N, we

have J A\ k+1/2
n,k+1 +
Ikl A BT /2 2.20
Ink o]{I+1—TL_T ()

and o®k!|ck(f)| < ||fllo - Thus, the n*® Taylor coefficient of H) f satisfies the bound

- 1 1

ealBAS)| € o 3 Tllflo € o T Ml (220
prn! Py ptn!l 1 -7,

The expression after the second inequality in (2.21) is precisely the right hand side of

(2.19).

3. The Contractions M and K

In this section we will consider the domains and differentiability properties of the trans-
formations M and K. Explicit expressions will be given for the first derivatives of these
two transformations.

In what follows, p is assumed to be a fixed but arbitrary real number satisfying

(=3.702...). (3.1)

In particular, this inequality holds for the values of p that are used in Lemma 1.4 and
Lemma 1.6. Given such a choice of p, set

1

)\—W, U:p+4A, T=20. (32)

Define Q(f) = f2 and S(f) = f(8%.). Then the transformation N, given by
equation (1.1), can be written as a composition N = H, o Q o S, where H, is the
convolution operator defined in (2.12).

Proposition 3.1. Ifr > %7 then N is a C> map from B, to B, .

Proof. By Proposition 2.7 and Proposition 2.4, the maps H) and @ are of class C*
from B, to B, and from B, to B, , respectively. Since S is clearly bounded from B, to
B, , the assertion follows.

We note that the condition (3.1) on p ensures that the hypothesis of Proposition 3.1
is satisfied for the particular choice r = p. The derivative of A is given by the equation

o0

(DN (f)h)(t?) = ﬁl ds e =7 F((Bt+5)2)h((Bt+5)?), te C. (3.3)

Consider now the transformation M given by equation (1.6), where M is the inverse
(if it exists) on B, of the operator

M’ =1— P,DN (Pyfo)Ps, (3.4)

associated with some approximate fixed point fo of A and two positive integers £ and d
(which will eventually be set to 29 and 100, respectively). The following is an immediate
consequence of Proposition 3.1, given that the condition (3.1) implies p > 32.

Corollary 3.2. If M’ is invertible on Py, , then M is a C°> map on B, .

Our reason for considering the transformation M, in place of N, is that it can
be expected to be a contraction near fy, if £ and d are sufficiently large. The cancel-
lations that occur when passing from A to M can be seen explicitly in the following
decomposition of DM.

DM(f) = M|[(1=P;)DN(f) + PeDN(f)(1—P;) + P.DN ()P, — P, — (1-P,)| +1
= (l—Pg)DN(f) + M[PgDN(f)(l—Pg) + P (DN(f) — DN(PdfO))Pg
+ PyDN (Pyfo) Py — Pi] + Py

= (1=P)DN(f) + MP,DN(f)(1-P;) + MPDN(f — Pafo) P - 55)
3.5
This representation will be used to show that under the hypothesis of Lemma 1.4, the
derivative DM(f) maps the unit ball of B, into a ball of radius strictly smaller than 1,
for every function f in a given neighborhood V of f;. A more detailed description will
be given in Section 4.

Next, we shall consider the transformation K defined in Section 1, assuming the
existence of a fixed point f* for AN/, as described in Lemma 1.4. The definition of K
involves the map U, given by equation (1.8), from R*x B, to the vector space of entire
analytic functions. In order to restrict the range of U appropriately, only vectors u in a
certain subset U of IR* will be considered. The set U is of the form

U={ueR"|u|<v,0<uy<l+v}, v= SLA 1—|—4pM - (3.6)
’ ’ 32T N+1 ’

10

where N is some fixed positive integer (N = 199 in the proof of Lemma 1.6, and p = 6).

Proposition 3.3. Ifr = %7, then U maps U x B, to B, and is of class C*.

Proof. Let (u, f) be a fixed element of U x B, , and let by < v and ba < 1+wv be positive
upper bounds on |uq| and |usg|, respectively. For n = 0,1, ..., define

Eun(2) = uoz" exp(u12), fun(2) = M (uzz + us). (3.7)

By using the results of Section 2, it is easy to see that the functions &, , and fu,n lie in
Bs and By, respectively, whenever s|u;| < 1 and t|uz| < p. The particular values of s
and ¢ that will be used later and that clearly have the required properties, are

1 N+1

= — — t:
4b;y N +2°

s (3.8)

P

by
A short calculation shows that r < st/(s +t). Thus, by Proposition 2.4, the functions
Eu,m fu,n are all elements of B,.. Consider now the map ¢: u — U(u, f) from U to B,
with f fixed as above. Since the partial derivatives of ¢ at u are linear combinations of
functions &y m fu,n , With m +n ranging from zero to twice the order of the derivative, it
follows that ¢ is of class C°°. But since U is linear in its second argument, this suffices
to conclude that U is C*° as well.

We note that the assumption (choice of v) in Proposition 3.3 is more restrictive than
would be necessary at this point, but it allows us to give a proof (choice of parameters)
that can be applied later to get accurate bounds for the map K.

The corollary below will be used to check whether a given open neighborhood W’
of the fixed point f* of N is contained in the domain of K. In particular, for every
f € W', we have to be able to solve the equation F(u, f) = 0, where

F(u, f) = PsU(u, f) — P3f*. (3.9)

This will be done by using the associated Newton map u — u — [D1F (u,)]~ *F (u, f).
Here, and in what follows, we use the symbol D,, to denote the partial derivative with
respect to the n*® argument. In addition, F will be regarded as a map to the space P35, ,
which may be thought of as IR* by identifying a polynomial z — ug + u12 + us2? + uzz>
with the vector of its coefficients (ug,u1,us,us). On R* we consider the following
family of norms

lullo = sup{w; Hui|: i =0,1,2,3}, weR, (3.10)
associated with vectors w in]R‘_L'_ ;

Corollary 3.4. Assume that there exists a vector w €]Ri, a closed ball B C U
containing the point (1,0,1,0), and an open neighborhood W' of f* in B,, such that

11

for every f € W' the following holds: The set Uy contains B, and the Newton map for
the equation F(u, f) = 0 is a contraction on B. Then K is well defined and of class C*
as a map from W' to B, .

Proof. Assume that the given hypotheses are satisfied, and let » = 327. Then for every
f in W', the equation F(u, f) = 0 has a unique solution in B. Following Definition 1.5
(with the appropriate interpretation of “closest”), this solution will be denoted by u*(f),
and we define K(f) = N (U(u*(f),f)). Since by Proposition 3.3, F is a C* map
from U x B, to P33, , the implicit function theorem can be used to conclude that the
map f — u*(f) is C* on W’. The assertion now follows from Proposition 3.1 and
Proposition 3.3.

Let us now assume that the hypotheses of Corollary 3.4 are satisfied. In order to
prove that K is a contraction on some given set W C W', we first need to find an explicit
expression for the derivative of the map U* : f — U(u*(f), f). In what follows, u and
f will always denote elements of U and W, respectively. By using the functions defined
in (3.7), the first partial derivatives of U can be written as

DU (u, flw = woﬁu,ofu,o + wluoﬁu,lfu,o + w2u0§u,1fu,1 + w3uofu,0fu,1 ,

) (3.11)
Dyl (u, f)h =U(u, h) = uo&u,0hu0,

and the corresponding derivatives of F and are obtained by applying the projection Ps
to the expressions on the right hand side of (3.11). For the derivative of u* we get

Du*(f) = —[DrF (u* (£),)] DaF (w*(£), f) . (3.12)

as a consequence of the identity F(u*(.),.) = 0. Let r = $%27. Then the derivative of
U* can be written as follows.

DU*(f) = Dot (u*(f), f) + DaiUh (u*(f),) Du*(f)

3.13
— (1= Py [1 - V()P DU (1), 1) (313)

where V(f) is the linear operator from P3B, to B, , defined by the equation
V(f) = Did (u*(f), £)) [DrF (w*(f), £)] . (3.14)

By combining all the above with the identity DKX(f) = DN (U*(f))DU*(f), we obtain
an explicit expression for the derivative of the transformation K.

12

4. Organization of the Proof

In this section, we describe how the goal of proving Lemma 1.4 and Lemma 1.6 is
reduced to the goal of successfully executing a sequence of 16 computer programs.
This description covers all major steps in our main programs (files program name.p in
Section.6), excluding definitions. The lower level procedures and functions will be
explained in the next section.

We start by noting that the assertion of Lemma 1.4 is proved for a polynomial fj
and a set V = fo + Vp that are given explicitly: The coefficients of fy can be found in
the file approx.t, and Vj is specified in nhood.v. Other quantities are “constructed” in
the course of the proof. In the case of a function f in B, , this means that we determine
upper and lower bounds on the first N + 1 Taylor coefficients ¢, (f), and an interval
[0, b] containing the norm e, (f) of the higher order terms. The resulting N + 2 intervals
define a convex neighborhood of f in the space B,. Any file mentioned here, whose
name ends in “.v”, specifies a convex set of this type.

The various constants like 82 = 275/3 that appear in the definitions of M and

K are bounded from above and below, and these bounds are saved, by running the
program initial. The same program also reads fy and writes the set { fo} as approx.v.
Another quantity that is easy to construct is the matrix Pyg — Pag DN (Pyo0fo) P29 which
enters the definition of M. This matrix is constructed and inverted by running the
program matrix, which saves the result as minv.v and m.v, respectively. As was shown
in Corollary 3.2, the invertibility of M’ implies that M is well defined and of class C*>®
on BIO .

The parts of Lemma 1.4 that remain to be proved are

(P1) The image of V under the map M is contained in V.
(P2) |[DM(f)|l10 <1, forall feV.
(P3) Every function f in M(V) is of type Z.

An important preparatory step in the proof of (P1) and (P2) is to construct the
image x of the set {f € Biop: Pnf = 0, e10(f) < 1}, with N = 1000, under the
convolution H) . This is done by running the program bounds, which simply calls the
procedure vconvinit (described later) and saves the result as kappa.v. The convex set
containing k is used again by mmrest. This program, together with mmfirst, estimates
the difference hy = M(fo) — fo and saves the result in difference.v. The proof of
(P1) is completed by running contract, which first constructs the terms in M(fo+ h)
that are linear or bilinear in h, where A is an arbitrary function in V{. Then, the result
is added to the neighborhood of hy found earlier, in order to obtain a set containing
M(V) — fo. This set gets saved as contracted.v, after it is verified that it is contained
in VO .

We note that our direct method for verifying property (P1) is not commonly used
in computer—assisted proofs. Any straightforward implementation of a contraction will
in general fail to yield such a result. What makes the method work here is that we

13

construct the linear term in the (trivial) Taylor expansion about fo of M(f) in a way
that already takes into account major cancellations, by using the last expression in (3.5).

For the same reason, the task of proving (P2) is unusually simple. The operator
norm of DM(f), for f € V, can be estimated accurately in one step, by applying
DM(f) to the unit ball ||h|l10 < 1 (which can be represented as a convex set in Big
of the type described at the beginning of this section) and bounding the norm of the
result. This estimate is carried out by running the program dmmnorm, which also uses
the representation (3.5) for DM(f). The resulting bound turns out to be less than 1/5.

One of the steps in our proof of (P3) consists in checking that for £ = 0,...,79,
each function in M(V') has a zero in a given small interval Ij centered at —zx , where
2k, is the k* non-integer value listed in zeros.t. The program zcheck, which performs
this task, first adds fy to the previously determined neighborhood of M(V) — fy, in
order to get a set V containing M (V). Then it is verified that for each f € V, the
values of f changes sign on each of the intervals I, . The set V is saved as fixpt.v.

Using the intervals Iy mentioned above, for k¥ > 5, the program checkgap verifies
that if —xy and —xy_1 are arbitrary points in Iy, and Iy_,, respectively, then |/zy —
VZk—1 < 4/3. The same program also verifies the trivial bound [11, equation (3.2)],
which was used in the proof of (1.2).

The proof of (P3), and thus of Lemma 1.4, is completed by running the program
divide. Here, every function f € V is divided by a polynomial p; of degree 5 that
vanishes in each of the intervals Iy, ..., I, at some zero of f. By constructing the
quotient f/py on an interval [—z, 0] containing I, it is verified that f has exactly 5
zeros between —x and 0.

The first step in the proof of Lemma 1.6 is the construction of an approximate
fixed point fo, which is of the form U(u,p) for some polynomial p, and whose zeros
all lie on the negative real axis. The starting point is a polynomial f; whose zeros are
numerical approximations to the first 5000 zeros of f*. The program mkpoly reads these
approximate zeros from zeros.t, constructs the Taylor coefficients of f;, and writes the
result to poly.v. Separate, more accurate bounds on the first 200 coefficients of f; are
determined by running mkcoeff. These bounds are saved in pcoeff.v.

Despite its high degree, the polynomial f; is not a very good approximation to
the fixed point f*. (Truncating the canonical product for f* at the k—th zero intro-
duces an error of the order k~2/3 in the Taylor coefficients.) In order to find a better
approximation, a sequence of transformations similar to K is applied to f;. Each of
these transformations is of the form f — N (L{ (u, f)), where u is some vector in R*
close to u*(f). The reason for not using the transformation I at this point is to avoid
an unnecessary degradation of our bounds. The program kkiter, which implements
these steps, starts by initializing the convolution procedure as in bounds, but with the
new value p = 6. The result is saved in kkappa.v. Then the abovementioned iteration
is carried out. Part of each step is to verify that none of the zeros crosses the origin.
The result after 80 steps is (a convex neighborhood of) the function f> referred to in
Lemma 1.6. It is saved in the file kkin.v. At the end, the “full” transformation K is

14

applied to fy, and the result is written to kkout.v. To be more precise, it is not verified
until later, at the beginning of the program dkkmake (see the description of ustar in
Subsection 5.7), that fo lies in the domain of K as described in Corollary 3.4.

The operator I' mentioned in Lemma 1.6 maps f to vf whenever Pogf = 0, and its
action on Py9Bg is given by the 30 x 30 matrix with elements I';; = 674 'G;; , where G is
the matrix defined in g.m. However, instead of computing the numbers I';; , we change
the norm on Bg such that only the matrices G and G~! are needed. The program
kkmore constructs the inverse of G and the ball W = {f € Bg: [|[T7[f — f2l|le < 55},
where ¢ is determined as an upper bound on the norm |T=[K(f2) — f2]|l6 - The results
are saved in ginv.m and kkball.v, respectively.

The parts of Lemma 1.6 that remain to be proved are

(P4) |IT=XDK(f)T'||¢ < ¢ for every function f in W.
(P5) W contains the set M(V).

The proof of (P4) follows a standard procedure. First, we determine the 30 x 30
matrix D, whose first 29 columns represent (sets containing) the images under DIC(f)
of the monomials z — 2™, with n ranging from 0 to N = 28, and whose last column
represents the image of the higher order “ball” characterized by the conditions Pyh = 0
and eg(h) < 1. Here, f stands for an arbitrary function in W. The matrix D is
constructed by running the program dkkmake, which saves it in transposed form in
dkkt.m. These bounds are then used in dkkcheck in order to verify (P4). The same
program also checks the inclusion (P5), which is the last step in our proof of Lemma 1.6.

All steps described in this section have been carried out by successfully running
the indicated programs on a SPARCstation—10 by Sun Microsystems, Inc.

5. Lower Level Operations

The programs mentioned in the last section constitute the top level in a hierarchy of
programs, procedures, and functions, which reduce the proof of our Theorems to a large
number of simple integer operations and comparisons. All the necessary instructions
have been written in a dialect [17] of the programming language Pascal [16]. The present
section is meant to be a guide to the “real” and most detailed description of our proof
— the source code of our programs. We will explain the basic strategies, and, in general
terms, the intended action of each building block (procedure or function). For a basic
introduction to computer—assisted proofs we refer to [15]; see also [13,14] and other
references given in [15].

Each of the following subsections describes a collection of procedures and functions
that are intended to be included (by programs) as a whole. These collections will be
presented in increasing order of abstraction: At any given level, a procedure will be
defined only in terms of procedures of minimally lower or equal level; and the same
applies to the types of data on which these procedures act. All global constants, types,

15

and variables that are shared by the procedures in a given collection are listed in the
corresponding include—file (whose name ends in “.i”; see below).

Let us start by giving a definition of what we call a bound in the context of
computer—assisted proofs [15]. Denote by P(X) the set of all subsets of a set 3. Let F
and G be maps from Dr C P(X) and Dg C P(X) to P(X'), where ¥ and ¥’ are given
sets.

Definition 5.1. G is called a bound on F if Dp D D¢, and if F(B) C G(B) for all
B € Dg.

In order to estimate e.g the norm function on B,, we will bound the associated
set-map F' which assigns to a set B € P(B,) the set of all values ||h||, as h ranges over
B. For practical reasons, the domain and range of our bound G will always be chosen
within a finite collection of “standard sets” that can be represented on the computer
with a given data type. For example, the standard sets in IR will be intervals whose
endpoints belong to a finite set R of real numbers defined below. The standard sets
for a finite product of spaces ¥; will (by choice) always be corresponding products of
standard sets for the factors ¥; .

5.1. Operations on the Level of Real Numbers

Our basic numerical data type (besides integers) is the type hreal, which is used to
represent fixed—length floating point numbers in the base 10%. Such a number can be
written as

r= O'de104(E_k), (5.1)
k=0

where o € {—1,0,1} is the sign, E is the exponent, and dy, dy, ..., d,, are the digits of r
with values in {0,1,...,9999}. The length m of the mantissa is fixed to some constant
value hdim at the beginning of each main program.

Given m > 1, the set R of representable numbers (reps) is now defined as the set of
all real numbers r that can be written in the form (5.1), with dy # 0 whenever o # 0,
and with |E| < 10

A list, with a short description, of all procedures and functions that operate directly
on reps is given in the file reps.i. This includes conversions from integers to reps
(irset), conversions between reps and decimal strings (srset, rst) used for input and
output, multiplication and division by integers (irmult, irdiv), the standard arithmetic
operations (rsum, rdiff, rprod, rquot), the square root function (rsqrt), and several
procedures that deal with upper and lower bounds (see below).

Every one of these procedures (except rst) either returns a result that lies explicitly
in R, or else it sets the appropriate flag underflow or overflow, which is a global
Boolean variable. In order to ensure that only results with ¢ = 0 or dy > 0 are
returned, some of the procedures call rnormalize. We note that global quantities
(types, constants, variables) that are shared by all programs, are defined or declared in

16

the file types.h. Examples are the limit exmax = 10* used in the definition of §, and
the Boolean constants up = true and down = false.

An important property of the abovementioned procedures is that if their input
is restricted to values in R, then all digits of the returned result coincide with the
corresponding digits of the exact result. Thus, the action performed is equivalent to
first computing the result exactly, and then truncating it to m + 1 digits. In case the
truncated digits were not all zero, the procedures set a flag named trunc. Here, we
assumed that exmax is smaller than the largest (as well as the negative of the smallest)
available integer, and larger than the value of hdim. These conditions are met in all
our programs.

Each of the procedures mentioned above is usually called from inside a similarly
named procedure (ir_mult, ir_ div, r_sum, r diff, r_prod, r_quot, r_sqrt) which then
uses the returned value of trunc in order to find an upper or lower bound on the exact
result. The type of bound is specified in the first argument, which can be set to either
up or down. For example, if 7 > s are positive reps, then r diff(down,r,s,t) will return
in ¢ the lower bound on r — s obtained from rdiff(r,s,t); and r_diff(up,r,s,t) will
return either the same value, if trunc has not been set, or else the next larger number
in R. In the last case, the procedure rtowinfty is used, which determines for a given
number in R its closest neighbor in R in the direction away from zero; if this is not
possible, the overflow flag is set. An analogous procedure rtowzero determines the
closest nonzero neighbor in R in the direction towards the origin, if possible, or else it
sets the underflow flag.

Underflow will be handled later, by the procedures discussed in the next subsection.
Two reps that are used in this context are the smallest positive number in and its
negative, which are returned by the functions minhreal and negminhreal, respectively.
Two other procedures that use these number are rup and rdown, which determine the
successor and predecessor, respectively, of a number in R; if this is not possible, the
overflow flag is set.

Comparison between two reps is done by using an integer irdiff(r, s), which has
the same sign (0 or 1) as the difference r — s.

5.2. Elementary Bounds Involving Scalars

As mentioned after the Definition 5.1, we choose as standard sets in IR non—empty
closed intervals [a, b] whose endpoints a and b are numbers in . Such sets will also be
referred to as scalars. Scalars that are often used are sone = [1, 1], stwo = [2,2], and
shalf = [0.5,0.5]. They are defined as global variables in the procedure sinit, which
has to be called before any other procedure discussed here.

Setting a scalar s to [0,0] is done by calling szero(s). A conversion procedure,
called ssset, converts a decimal string to the shortest scalar (interval) containing the
floating point number represented by the string; if there is no such scalar, then the
overflow flag is set. This procedure is used e.g. by sread in order to read a scalar
from a file. Writing a scalar to a file is done by calling swrite. Two other trivial but

17

useful interval operations are sunion and sinter, which return the convex hull and the
intersection, respectively, of their first two scalar arguments. An empty intersection in
sinter results in an error message.

For comparisons between two scalars we use the Boolean functions ssub, sgt, sge,
slt, and sle. Here, ssub(r,s) is true iff r is a subinterval of s. The other functions
represent the relations “>", “>7) “<” and “<”. For example, sgt(r,s) is true if
and only if every number in 7 is larger than every number in s. The remaining three
relations are defined similarly. As for the relation “=", only comparisons with [0, 0] will
be needed; the corresponding function is seqo.

Bounds on the multiplication and division by integers, and on the standard arith-
metic operations, are provided by the procedures ismult, isdiv, ssum, sdiff, sprod,
and sqot. Here, bounds are to be understood in the sense of Definition 5.1. For ex-
ample, squot(r, s,t) returns in ¢ a scalar that contains all values that can be obtained
by dividing any number z in r by any number y in s; or if a domain violation occurs
(e.g. if s contains zero), then an error message is generated. Domain violations include
numeric overflow, but not underflow. When a reps—procedure causes an underflow, it is
still possible to give upper and lower bounds on the correct result by using the values
minhreal, negminhreal, and 0. The procedures and functions discussed here takes
advantage of this fact, if necessary, and then reset underflow to false. This is done
by calling snormalize.

We note that our choice of standard sets is such that two bounds can be composed
the same way as the original maps, provided that the range of the first bound is contained
in the domain of the second. This makes it possible to use the simple bounds discussed
so far in order to implement bounds on more complex maps. The domains of these
more complex bounds are defined in terms of the domains of the various procedures
and functions they use. In practice, this means that if a bound G is applied to input B
from the appropriate standard set, and it returns without having generated (either by
itself, or by calling other procedures) any error messages or numeric overflow, then B
lies in D¢ by definition, and G(B) lies in the correct standard set. One type of error
message is the numeric overflow. It can only occur in the reps procedures and functions
described in the last subsection; but once it occurs, the overflow flag stays set. The
corresponding error message is printed by the procedure sdone, which is called at the
end of each program.

The basic set of scalar operations, as listed in the file scalar.i, also includes the
functions unary minus, absolute value, square root, factorials (of non—negative integers),
and integer powers. The procedures which provide bounds on these functions are sneg,
sabs, ssqrt, isfactorial, and ispower. The last one in this list is an example of
a composed bound. In particular, ispower(r,4,t) finds a scalar ¢ that contains the
fourth power of every number in a given scalar r, by calling first sprod(r, r, s) and then
sprod(s, s, t).

Finally, for the sake of completeness: sabsO(r, s) returns a scalar s that contains 0
and |z| for every x in a given scalar r, senlarge(s) enlarges s minimally on both sides,
shrink(s) shrinks s to a subinterval of length zero, and ssymm(r,s) is used to convert

18

a non-negative scalar r = [a, b], to a symmetric scalar s = [—b, b].

5.3. Additional Scalar Functions

The bounds discussed here are used only by the programs initial and checkgap,
which include them through the file sfun.i. In addition, they are only called a few
times. Thus, in implementing these bounds, we have traded efficiency (with respect
to both accuracy and speed) for simplicity. In particular, the task is always reduced
(by means of trivial identities) to a point where a Taylor expansion can be used, with a
remainder that is smaller in absolute value than a fixed constant times the last explicitly
bounded term. Bounds on the individual terms in the expansion, and on their sum, are
obtained by using the procedures mentioned in the last subsection.

The exponential function is bounded by the map defined through the procedure
sexp. Here, the identity exp(nz) = [exp(z)]™ is used, in order to restrict the Taylor
expansion for exp(z) to cases where |z| < hdim/136.

Since a non-integer power of 2 enters the definition of N and related transforma-
tions, we also determine a scalar which contains In(1/2). This scalar is constructed by
the procedure slnhalf.

The procedure sarctan provides a bound on the function arctan. In this case we
apply the identity arctan(z) = 2" arctan(z,,), where z,, is the image of x under the nt®
iterate of the map z — x/(v/1+ 22 +1), with n sufficiently large such that |z, | < 1/10.
Then a Taylor expansion is used as indicated above. Given the bound on the function
arctan, one easily obtains a bound on the function arcsin. This is done by the procedure
sarcsin.

5.4. Bounds Involving Vectors

In this subsection we consider bounds on maps to and from the Banach spaces B, . Here,
p is any positive real number — not necessarily an element of . In order to define the
standard sets for B,, which will henceforth be referred to as vectors, we need to fix a
positive integer N. Then a vector is defined in terms of N + 2 scalars vp, v1,...,UN+1,
with vy of the form [0, b], and is given by the set

v={feB,: cx(f) €Evp for 0 <k <N, e,(f) € vny1}- (5.2)

Here, c(f) denotes the k' Taylor coefficient of f at zero, and e,(f) is the bound on
the higher order terms of f defined in (2.2). In our programs, the corresponding data
type vector is an array of scalars indexed by {0,1,...,vdim}, where vdim= N +1is a
constant defined at the beginning of each program.

One of the easiest bound to implement is that on the sum of two vectors. The
procedure vsum determines a vector w containing the sum of two vectors u + v by
calling ssum(u[k], v[k|,w[k]) for £ = 0,...,vdim. This clearly defines a bound, in the
sense of Definition 5.1, on the set-map associated with the function “+” from B, x B,

19

to B,. The domain of this bound is defined in terms of the domain of the bound
represented by ssum, as mentioned earlier. A related procedure vadd differs from vsum
the same way as the assignment v + v — v differs from v + v — w.

Two other procedures that work independently of the choice of the space B, are
vdiff and vsprod, which provide bounds on the difference of two vectors, and on the
product of a vector with a scalar. Further examples in this category are the proce-
dure vzero which returns the vector {0}, the Boolean function vsub which determines
whether its first argument is a subset of the second, the procedure vpositive which
bounds the trivial projection from B, to Bg, and the vector-analogue venlarge of
senlarge.

Most procedures that operate on vectors in B, require as part of their input a
scalar that contains the value of p. Consider e.g. the procedure vnorm which bounds
the function f — ||f||,. If r is a scalar containing p, and if v is a vector in B,, then
vnorm(v, r, s) returns in s a scalar that contains || f||, for every function f in v.

We note that the inclusion map from B, to B, , where a < p, admits an optimal
bound that is as trivial as the map itself: the bound represented by the identity proce-
dure “no operation”. This fact, which is due to our choice of normalization factors in
the definition of e, , is frequently used by our programs. For example, a vector can be
passed from one program to the next (using vwrite and vread) and thereby undergo
an implicit conversion from a vector u C Big to a vector v C Bg which contains the
original set u.

A consequence of the above is the fact that the scaling operator f — f(k.) from
B, to B, can be bounded sharply without any knowledge about o or p, other than the
necessary condition |kp| < o. This bound is implemented by the procedure vscale and
its helper vpowers.

Two frequently used subsets of B,, besides {0}, are the ball ||f||, < b and the
set {fo}, where fo(z) = exp(az). Here, b and « are given real numbers satisfying
b > 0 and |ap| < 1. Vectors containing these two sets are returned by vball and
vexp, respectively. Actually, vexp does little more than calling the procedure pexp
which bounds the Taylor coefficients of P;f, for any given d < N + 1. Our reason for
introducing this additional procedure is that a bound on P5f, is also needed elsewhere.
The collection vector.i contains other auxiliary procedures of this type (pconv, pder,
pprod, pscale), but we shall not always mention them explicitly.

The procedures discussed next use the estimates given in Section 2.

The translation operator (f,z) — f(. + z) and the evaluation functional (f,z) —
f(x) are bounded by the maps defined in vtrans and sval. These bounds simply
implement the estimates from Subsection 2.1. We note that the procedure vtrans can
be instructed to bound only the first d+ 1 Taylor coefficients of the translated function.
This is done by specifying a value d < vdim in the first argument. An analogous feature
has been added to several other procedures, in order to save computation time in cases
where the map is followed directly by a projection P;. This occurs e.g. in the definition
of IC, with d = 3.

20

A bound on the map (f,g) — fg from B, x B, to the appropriate space B, is
given by the procedure vprod. Its arguments are standard sets containing o, 7, f, g,
and fg (the output). The estimates used here are given in Proposition 2.4. A similar
but more efficient procedure vsqr applies if f = g. Two short procedures vder and
vdquot implement the estimates of Proposition 2.6 on the derivative and on a difference
quotient.

The convolution operator Hy: f — J~ (g * (Jf)), where (Jf)(z) = f(#?), and
where g is the normalized Gaussian with covariance ¢ = 2\ > 0, is bounded by using
the estimates from Subsection 2.4. The crucial part here is to estimate the effect of the
higher order term e, (f) of f € B, on the Taylor coefficients of the image. Fortunately,
since H) is linear, it suffices to perform this estimate only once (for a given o) and for
a general function f satisfying Pyf = 0 and e, (f) = 1. The restriction of Hy to this
“higher order ball” is bounded by the procedure vconvinit. This procedure uses both
Proposition 2.8 and Proposition 2.9, and takes the better of the two estimates for each
Taylor coefficient of Hyf. The resulting vector (often referred to as k) is one of the
required arguments in the procedure vconv which implements the bound on the entire
map H) .

5.5. Other Linear Spaces

The operations discussed here are included through the file linear.i. Most of them
involve only finite—dimensional vector spaces. The exceptions are described at the be-
ginning and end of this subsection.

In the few cases where we need to be able to represent vectors with two different
values of N within the same program, we use a data type ltuple besides the type
vector. A 1ltuple is an array of scalars indexed by {0, 1,...,1max}, and 1max is always
chosen to be smaller than the maximal subscript vdim of a vector. A conversion
procedure called 1lvconvert, assisted by 1vho (which bounds the higher order term),
determines a “regular” vector that contains the standard set associated with a given
ltuple. Conversion in the opposite direction is done with the procedure vlconvert,
assisted by vlho.

The regular usage of the type 1tuple is for the representation of standard sets in
RY, where L = Imax + 1. A standard set in R”, also referred to as L—tuple, is defined
to be a direct product of L scalars.

Given a point w = (wg, w1, .. .,wr—_1) in RY, whose coordinates w; are all positive,
we define a norm on R” by setting ||u||, = max{w; |u;|: 0 <i< L} forallu € RX. A
bound on this norm is given by the procedure 1norm, whose first argument is expected
to be a L-tuple w containing w. If r is a scalar containing a given real number b > 0,
then 1ball(r,w,u) will return in u a L—tuple that contains the ball of radius b for the
norm defined above.

Bounds on the elementary vector space operations “sum”, “difference”, and “prod-
uct with scalars”, are implemented by the procedures 1sum, 1diff, and lsprod, respec-
tively.

21

Consider now the space R , representing linear operators on R Following our
convention for product spaces, we define the corresponding standard sets to be L x L
matrices whose entries are scalars.

Our procedures for reading and writing such standard sets (type matrix) are mread
and mwrite. Bounds on the inverse and on the usual products are given by minverse,
lmprod (matrix times L—tuple) and mprod (matrix times matrix). A matrix—norm is
defined by regarding matrices as linear operators on the Banach space RE, equipped
with the norm ||.||, defined above. This operator norm is bounded in mnorm.

If a given L x L matrix is extended to an infinite “square matrix” by filling in
1’s along the main diagonal and 0’s everywhere else, then the result defines a linear
operator M on B,. A bound on the map f — M f is given by the procedure vmprod.

5.6. Bounds on the Terms of DM

The procedures mentioned here are called by the programs contract and dmmnorm. A
list of global variables used by these procedures is given in the file hiemaps.i. Among
these global variables are scalars that are expected to contain the values 82 = 275/3,
¢ = 2\, p = 10, o, and 7; see equation (3.2). Two other global variables that are
expected to be defined properly are the vector vkappa (determined by the procedure
vconvinit) and the matrix m (determined by the program matrix).

The procedure nn provides a bound on the transformation N defined in equation
(1.1), by appropriately composing the procedures vscale, vsqr, and vconv. The proce-
dure dnn which is used to bound the derivative of A is very similar, since A is quadratic.
We note that the parameter p enters vconv only implicitly through the bound vkappa.

Since the map M is quadratic as well, it suffices to implement a bound on its
derivative. This is done by the procedures dmmi, dmm2, and dmm3. The three parts
correspond to the three terms in the final expression for DM in equation (3.5). In
particular, the procedure dmm2 bounds the linear operator M (matrix m) in its last
step.

5.7. Bounds on the Terms of £ and DK

The procedures discussed here are used by the programs kkiter and dkkmake. In both
of these programs, the maximal subscript 1max for the type 1tuple is 3. Among the
global variables are the scalars mentioned above (but now with p = 6) and the bound
vkappa. The latter has to be reconstructed for the new value p = 6. A complete list of
global variables is given in the file kkmap.i.

Several of the procedures considered in this subsection will skip certain instructions
whenever a global Boolean variable called normalize has the value false. This mode
corresponds to the approximate version of U that was mentioned in the description of
the program kkiter. We shall only discuss the full version here.

Two other global variables, the L-tuples 1normal and umax, are initialized in the
procedure kkinit. The scalar components of 1normal contain (as is verified later) the

22

first four Taylor coefficients of the fixed point f* for M. The scalars umax[1] and umax|2]
contain the values v and 1 4 v which define the set U C IR* in (3.6). These scalars are
used in the Boolean function uok, which determines whether a given L—tuple (the first
argument) lies in the set Uy for every f in a given vector (the second argument) of B, .

The procedure ustar provides a bound on the map f +— u*(f) and verifies the
assumptions of Corollary 3.4. The neighborhood W’ mentioned in this Corollary is the
interior of the set obtained by applying venlarge to the input vector v corresponding to
f, and the set B is given by the L-tuple returned by ustar. The set B is obtained from
the procedure findu, which applies the contraction mapping principle to the Newton
map associated with F; where F'(u) = F(u, f); see (3.9) for the definition of F. This
step also involves a bound on the tangent map u +— (F(u),DF(u)), provided by the
procedure df, which uses the formula (3.11) for the derivative D .

A bound on the map K on B, is defined by the procedure kk. The three last
steps in kk are the canonical bound on N, regarded as a map from B, to B,, where
r = (B?7. They are preceded by a bound on the “unpack operator” U*, which is the
composition of f — (u*(f), f) with . The corresponding procedure unpack first calls
findu, then determines a bound (in ve) on the exponential factor that appears in the
definition (1.8) of U, and then passes everything to the procedure dunpacki which does
the rest. We note that dunpackl bounds the product in (1.8) as indicated in the proof
of Proposition 3.3, but with s = 1/(4b1).

The derivative DIC(f), where f is an arbitrary function in a given standard set v
of B, , is bounded by using the procedure dkk. In order to increase efficiency, several
quantities that depend only on v are determined beforehand, and passed to dkk as
additional arguments. These quantities (together with the names used in the declaration
of dkk) are the L—tuple u returned by ustar, the vector ve mentioned above, a vtuple vv
representing a bound on the operator V(f) defined in (3.14), and a vector vus (obtained
easily from vv) containing the result of unpacking v to w and then scaling w with 2.

The type vtuple is an array of vectors, with indices ranging from 0 to lmax = 3.
It is used to represent standard sets for the space of linear operators form P38, to B, ,
which can be identified canonically with (B,)*.

Both ve and vv are determined by the procedure dkkinit. The partial derivatives
(3.11) of U, which enter the definition of V, are bounded as indicated in the proof
of Proposition 3.3. The last step in the construction of vv is to call the procedure
vvmtprod, which bounds the product in equation (3.14).

The action performed by dkk consists in composing a bound on DU*(v) with a
bound on DN (w), where w = U*(v). The first bound uses the procedures dunpackl
and dunpack2, which correspond to the factors DalUd(u*(f), f) and (1—P3)[1 — V(f)Ps]
in equation (3.13). The second part is equivalent to dnn, with a call to vscale omitted
since its result is already available in the abovementioned vector vus.

This concludes our description of how the steps outlined in Section 4 are reduced to
a sequence of smaller steps that can be carried out by a computer running our programs.
For details, we refer to the source code of these programs.

23

References

[1] G.A. Baker, Ising Model with a Scaling Interaction. Phys. Rev. B5, 2622-2633
(1972).

[2] F.J. Dyson, Existence of a phase transition in a one—dimensional Ising ferromagnet.
Comm. Math. Phys. 12, 91-107 (1969).

[3] P.M. Bleher, Ja.G. Sinai, Investigation of the critical point in models of the type of
Dyson’s hierarchical model. Comm. Math. Phys., 33, 23-42 (1973).

[4] P.M. Bleher, Ja.G. Sinai, Critical indices for Dyson’s asymptotically hierarchical
models. Comm. Math. Phys., 45, 247-278 (1975).

[5] P. Collet, J.-P. Eckmann, A renormalization group analysis of the hierarchical model
in statistical physics. Lecture Notes in Physics, 74, Springer—Verlag, Berlin, Hei-
delberg, New York (1978).

6] G. Gallavotti, Some Aspects of the Renormalization Problems in Statistical Me-
chanics. Memorie dell’ Accademia dei Lincei 15, 23-59 (1978).

[7] G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolo, E. Olivieri, E. Presutti,
E. Scacciatelli, Some probabilistic techniques in field theory. Comm. Math. Phys.,
71, 95-130 (1980).

8] K. Gawedzki, A. Kupiainen, Non—Gaussian Fized Points of the Block Spin Trans-
formation. Hierarchical Model Approrimation. Comm. Math. Phys., 89, 191-220
(1983).

[9] H. Koch, P. Wittwer, A Non—Gaussian Renormalization Group Fized Point for
Hierarchical Scalar Lattice Field Theories. Commun. Math. Phys. 106, 495-532
(1986).

[10] H. Koch, P. Wittwer, On the Renormalization Group Transformation for Scalar
Hierarchical Models. Commun. Math. Phys. 138, 537-568 (1991).

[11] H. Koch, P. Wittwer, A Nontrivial Renormalization Group Fized Point for the
Dyson—Baker Hierarchical Model. Commun. Math. Phys., 164, 627-647 (1994).

[12] A. Pordt, Renormalization theory for hierarchical models. Helv. Phys. Acta, 66,
105-154 (1993).

[13] O.E. Lanford, Computer—Assisted Proofs in Analysis. Physica, 124 A, 465-470
(1984).

[14] J.-P. Eckmann, H. Koch, P. Wittwer, A Computer-Assisted Proof of Universality
for Area—Preserving Maps. Memoirs of the American Mathematical Society, 47,
1-121 (1984).

[15] H. Koch, A. Schenkel, P. Wittwer, Computer Assisted Proofs in Analysis and Pro-
gramming in Logic: A Case Study. Preprint mp_arc 94-394, to appear in STAM
review.

[16] D. Cooper, Standard Pascal User Reference Manual. W.W. Norton (1980).
[17] Sun Pascal Reference Manual. Sun Microsystems, Inc. (1990).

24

