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QUANTIZATION OF A DIMENSIONALLY REDUCED

SEIBERG-WITTEN MODULI SPACE

RUKMINI DEY

Abstract. In this paper we apply Quillen’s determinant line bundle construc-
tion to construct a prequantum line bundle on the moduli space of solutions
N of the dimensionally reduced Seiberg-Witten equations with a Higgs field.
The Quillen curvature of the line bundle is shown to be proportional to a
symplectic form on the moduli space.

1. Introduction

The problem of quantization of symplectic manifolds can often be related to ge-
ometry. Geometric prequantization is a construction of a Hilbert space H, namely,
sections of a prequantum line bundle on a symplectic manifold (M,Ω) and a corre-
spondence between classical observables - functions onM - and operators onH such
that the Poisson bracket of the functions corresponds to the commutator of the op-
erators. The latter is ensured by the fact that the curvature of the prequantum line
bundle is precisely the symplectic form [18]. A relevant example would be geometric
quantization of the moduli space of flat connections. The moduli space of flat con-
nections of a principal G-bundle on a Riemann surface has been quantized by Axel-
rod, Della Pietra and Witten by a construction of the the determinant line bundle
of the Cauchy-Riemann operator, namely, L = det(Ker∂̄A)

∗ ⊗ det(Coker∂̄A), [2].
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It carries the Quillen metric such that the canonical unitary connection has a cur-
vature form which coincides with the natural Kähler form on the moduli space of
flat connections on vector bundles over M of a given rank [14].

Inspired by [2], we apply Quillen’s determinant line bundle construction to con-
struct a prequantum line bundle on the moduli space of solutions to the dimension-
ally reduced Seiberg-Witten equations in two dimensions, with a Higgs field [5].In [5]
we dimensionally reduced the Seiberg-Witten equations with a Higgs field and
showed that the moduli space N of solutions admits a symplectic form. We re-
peat the construction of the symplectic form here which uses a moment map and
Marsden-Weinstein quotient construction. In our case the determinant line bun-
dles are parametrized by unitary connections on a unitary line bundle on a compact
Riemann surface of genus g ≥ 1, sections of the line bundle and a Higgs field. We
show that the Quillen curvature of this line bundle is precisely the symplectic form.

2. The moduli space of the dimensional reduction

Let M be a compact Riemann surface of genus g ≥ 1 with a conformal metric
ds2 = h2dz⊗ dz̄ and let ω = ih2dz ∧ dz̄ be a real form proportional to the induced
Kähler form. Let L be a unitary line bundle with a Hermitian metric H such that
L̄ = L−1. Let ψ1, ψ2 be sections of the line bundle L i.e., ψ1, ψ2 ∈ Γ(M,L). We

denote Ψ =

[

ψ1
ψ2

]

. We assume that Ψ is not identically zero.

We have an inner product < ψ1, ψ2 >H and norm |ψ|H ∈ C∞(M) of the sections
of L. Since L̄ = L−1, we can write these without H since < ψ1, ψ2 > and |ψ| are
sections of the trivial bundle and hence are functions on the surface M . Let A− Ā
be a unitary connection on L and Φ = φdz − φ̄dz̄ ∈ Ω1(M, iR).

Dimensional reduction of the Seiberg-Witten equations are written as follows [5]:

(1.1) F (A) = i
(|ψ1|2 − |ψ2|2)

2
ω,

(1.2) 2∂̄Φ = −i < ψ1, ψ2 > ω,

(1.3)

[

− 1
2 φ̄dz̄ ∂̄ − Ā

∂ +A − 1
2φdz

] [

ψ1
ψ2

]

= 0.

Let C = A×(Γ(M,L)⊕Γ(M,L))×Ω1(M, iR) , whereA is the space of connections
on the line bundle L, Γ(M,L) the space of sections of the line bundle and Ω1(M, iR)
is the space of Higgs fields. The gauge group G = Maps(M,U(1)) acts on C as
(A,Ψ,Φ) → (A + idτ, e−iτΨ,Φ) and leaves the space of solutions to (1.1) − (1.3)
invariant. There are no fixed points of this action. Taking the quotient by the
gauge group G of the solutions to (1.1)− (1.3) we obtain a moduli space which we
denote by N , which has a symplectic structure [5].

We showed in [5] that when Ψ is not identically zero, the moduli space has
dimension 2g + 2. We show here that for a trivial bundle L on the torus, genus
g = 1, the moduli space is non-empty. We repeat the proof here.

Proposition 2.1. Let L be a trivial line bundle on a compact Riemann surface

of genus g = 1 then (1.1) − (1.3) has a solution with Ψ 6= 0,Φ 6= 0. Thus N is

non-empty.
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Proof. Let us solve for the case of the case of the torus, g = 1. Let our torus be
thought of as 0 ≤ x ≤ 2π and 0 ≤ y ≤ 2π with the endpoints identified. We take
the metric on the torus to be ds2 = dz ⊗ dz̄, i.e. h = 1. The equations are then as
follows

(1.1) F (A) = − |Ψ1|2−|Ψ2|2
2 dz ∧ dz̄ = 0

(1.2) ∂̄Φ = −1
2 Ψ1Ψ̄2dz̄ ∧ dz

(1.3a) ∂̄Ψ2

Ψ2
− Ā− 1

2 (φ̄dz̄)
Ψ1

Ψ2
= 0

(1.3b) ∂Ψ1

Ψ1
+A− 1

2φdz
Ψ2

Ψ1
= 0.

where Φ = φdz − φ̄dz̄
Since we took the line bundle to be trivial, one solution would be to take Ψ1 = c1,

Ψ2 = c1e
ic2(z+z̄), φdz = −ic2e−ic2(z+z̄)dz, A = − ic2

2 dz where c1 is a complex

constant and c2 is a real constant satisfying |c1| =
√
2c2. ¤

We show later, as we showed in [5], that N has a natural symplectic form. This
form was mentioned in [22] as well. It arises from a form defined on C as follows

(1.4) Ω(X,Y) = −
∫

M

α1 ∧ α2 +
∫

M

1

2
(−β1ζ̄1 + β2ζ̄2 + β̄1ζ1 − β̄2ζ2)h2dz ∧ dz̄

−
∫

M

γ1 ∧ γ2

where I =

[

i 0
0 −i

]

, where X = (α1, β, γ1), Y = (α2, η, γ2) ∈ TpC. It descends
to the moduli space N by a moment map construction which we have elaborated
on later in this paper.

3. Prequantum line bundle

For the rest of the paper we shall restrict ourselves to a genus g ≥ 1 compact
Riemann surface, L a unitary line bundle, i.e. L̄ = L−1.

A very clear description of the determinant line bundle can be found in [14]
and [3]. Here we mention the formula for the Quillen curvature of the determi-
nant line bundle det(Ker∂̄A)

∗ ⊗ det(Coker∂̄A), given the canonical unitary con-
nection ∇Q, induced by the Quillen metric, [14]. Namely, recall that the affine
space A (notation as in [14]) is an infinite-dimensional Kähler manifold. Here
each connection is identified with its (0, 1) part. Since the total connection is uni-
tary (i.e. of the form A − Ā, where A = A1,0, −Ā = A0,1) this identification is
easy. The complex structure is the Hodge-star operator. In fact, for every A ∈ A,
T ′A(A) = Ω0,1(M,End(L)) and the corresponding Kähler form is given by

F (α, β) =

∫

M

(α ∧ ∗β),

where α, β ∈ Ω0,1(M,EndL), and ∗ : Ω0,1(M,End(L)) → Ω1,0(M,End(L)) is the
Hodge-star operator such that ∗(ηdz) = −η̄dz̄ and ∗(ηdz̄) = η̄dz. Then one has

F (∇Q) =
2i

π
F.

Similarly, since the space A is the space of unitary connections, the ∂-deteminant
line bundle det(Ker∂A)

∗ ⊗ det(Coker∂A) exist. T ′′A = Ω1,0(M,End(L)) and the
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corresponding Kähler form is given by

F (α, β) =

∫

M

(α ∧ ∗β),

where α, β ∈ Ω1,0(M,End(L)) and F (∇Q) = 2i
π
F.

3.1. Prequantization of the moduli space of solutions to N for a genus

g ≥ 1 Riemann surface. Let ψ0
1 , ψ

0
2 ∈ Γ(M,L) be two sections of the trival line

bundle L, fixed upto gauge equivalence and such that |ψ0
1 |2 = |ψ0

2 |2 = 1. This is
possible to choose since |ψ0

1 |2 and |ψ0
2 |2 are sections of a trivial bundle (L⊕ L̄), L

being unitary, i.e. L̄ = L−1. Let a (1, 0)-form θ be such that θ∧ θ̄ = h2dz ∧ dz̄, the
Kähler form on the compact Riemann surface [7]. We assume that |ψ1|, |ψ2| and
< ψ1, ψ2 > are smooth functions on M .

Theorem 3.1. The moduli space N of solutions to (1.1) − (1.3) admits a pre-

quantum line bundle P whose Quillen curvature F = − 4i
π
Ω where Ω is the natural

symplectic form on N as in (1.4).

Before proving 3.1 we need some definitions and lemmas. First we note that to
the connection A − Ā (A = A1,0,−Ā = A0,1) one can add any one form such that
its (1, 0) part is negative of the bar of the (0, 1) part and still obtain a derivative
operator. We are going to let these new 1-forms be parametrised by components
of Ψ, Ψ̄ and Φ. In this way we will create 12 new determinant line bundles all
parametrised by C. These are constructed by adding new 1-forms, like (ψψ̄0)θ̄,
or Φ0,1 to the connection 1-form A0,1 to form new Cauchy-Reimann derivative
operators. Note that terms like ψψ̄0 are functions on M since L̄ = L−1, so such
objects are well defined.

Next we will use a particular combinations of the 12 determinant bundles so
constructed so that the Quillen curvature is exactly proportional the natural sym-
plectic form on N . The particular combination which will be useful is P = L̃1+ ⊗
(L1+)−1⊗L̃1−⊗(L1

−)
−1⊗L̃2+⊗(L2

+)
−1⊗L̃2−⊗(L2

−)
−1⊗R̃+⊗(R+)

−1⊗R̃−⊗(R−)−1.,
where each of these will be defined in what follows.
Definitions : Let us denote by L1

± = det( ∂̄+A
0,1

√
3

± ψ1ψ̄
0
2√
2
θ̄), (where the index

1 in L1± stands for ψ1). This is a determinant line bundle on the affine space

B1 = {A0,1+α0,1

√
3

± (ψ1+ψ)ψ̄
0
2√

2
θ̄|α ∈ A, ψ ∈ Γ(M,L)}. This is isomorphic to A0,1⊕{f θ̄}

(where f =
ψ1ψ̄

0
2√

2
). The latter is isomorphic to {α0,1, ψ1} which is isomorphic to a

subspace of C where Φ and ψ2 is kept fixed. Thus the determinant bundle is a line
bundle on C by extending the same fiber for all Φ and ψ2.

Let us denote by L2
± = det( ∂̄+A

0,1

√
3

± ψ̄2ψ
0
1√
2
θ̄) , a determinant line bundle on

the affine space B2 = {A0,1+α0,1

√
3

± (ψ̄2+ψ̄)ψ
0
1√

2
θ̄|α ∈ A, ψ ∈ Γ(L)} which is again

isomorphic to a subspace of C. Thus one can define this to be a line bundle on C
by extending the same fiber for all Φ and Ψ1.

Let us denote by R± = det( ∂̄+A
0,1

√
3

± Φ0,1) a determinant line bundle on B3 =

{A0,1+α0,1

√
3

± Φ0,1| α and Φ varying} which is isomorphic to a subspace of C. The

line bundle can be extended to be a line bundle on C.
We define in parallel the ∂-determinant line bundles. We have R̃± = det(∂+A

1,0

√
3
±

Φ1,0), (the notation tilde stands for ∂-determinant line bundles). Similarly, we have
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L̃1± = det(∂+A
1,0

√
3
± ψ̄1ψ

0
2√
2
θ) and L̃2± = det(∂+A

1,0

√
3
± ψ̄0

1ψ2√
2
θ). In all these definitions

α, ψ,Φ vary. Overlooking the isomorphisms and extending by the same fiber over
the parameters which are not present we think of all these bundles as being deter-
minant bundles on C.
Curvature and symplectic form:

Using the definition of ∗ and that α1,02 = −ᾱ0,12 and γ1,02 = −γ̄0,12 the Quillen
curvature of L1

± is

FL1
±
((α1, β, γ1), (α2, ζ, γ2)) =

2i

π

∫

M

(
α0,11√

3
± β1ψ̄

0
2√
2
θ̄) ∧ ∗(α

0,1
2√
3
± ζ1ψ̄

0
2√
2
θ̄)

=
2i

π

∫

M

(
α0,11√

3
± β1ψ̄

0
2√
2
θ̄) ∧ (−α

1,0
2√
3
± ζ̄1ψ

0
2√
2
θ)

Similarly, the Quillen curvature of L̃1+ is

FL̃1
±

((α1, β, γ1), (α2, ζ, γ2)) =
2i

π

∫

M

(
α1,01√

3
± β̄1ψ

0
2√
2
θ) ∧ ∗(α

1,0
2√
3
± ζ̄1ψ

0
2√
2
θ)

=
2i

π

∫

M

(
α1,01√

3
± β̄1ψ

0
2√
2
θ) ∧ (

α0,12√
3
∓ ζ1ψ̄

0
2√
2
θ̄)

Changing β1 to β2 and ζ1 to ζ2 in the above formula we get FL2
±
and FL̃2

±

.

Similarly, the Quillen curvature of R± is

FR±((α1, β, γ1), (α2, ζ, γ2)) =
2i

π

∫

M

(
α0,11√

3
± γ0,11 ) ∧ ∗(α

0,1
2√
3
± γ0,12 )

=
2i

π

∫

M

(
α0,11√

3
± γ0,11 ) ∧ (−α

1,0
2√
3
∓ γ1,02 )

and the Quillen curvature of R̃± is

FR̃±((α1, β, γ1), (α2, ζ, γ2)) =
2i

π

∫

M

(
α1,01√

3
± γ1,01 ) ∧ ∗(α

1,0
2√
3
± γ1,02 )

=
2i

π

∫

M

(
α1,01√

3
± γ1,01 ) ∧ (

α0,12√
3
± γ0,12 )

Let P = L̃1+ ⊗ (L1
+)
−1 ⊗ L̃1− ⊗ (L1

−)
−1 ⊗ L̃2+ ⊗ (L2

+)
−1 ⊗ L̃2− ⊗ (L2

−)
−1 ⊗ R̃+ ⊗

(R+)
−1 ⊗ R̃− ⊗ (R−)−1.

Then we can check that

Lemma 3.2. The Quillen curvature of P is − 4i
π
Ω on C.

Proof. FL̃1
+
−FL1

+
+FL̃1

−

−FL1
−
+FL̃2

+
−FL2

+
+FL̃2

−

−FL2
−
+FR̃+

−FR+
+FR̃−−FR−

= − 4i
π
Ω. ¤

Quotient by the gauge group:

(A,Ψ,Φ) → (Aτ ,Ψτ ,Φ) = (A + idτ, e−iτΨ,Φ) by a gauge transformation and

Ψ0 → Ψ0
τ = e−iτΨ0, such that ψ1ψ̄0

2 and ψ0
1ψ̄2 remain invariant under gauge

transformations. Over (Aτ , ψτ ,Φ) we consider the fiber Fτ = det(∂̄Aτ ,Ψτ
) and

analogous fibers for the other ∂̄ and ∂-determinant bundles. Let us rename P to
be the bundle constructed by identifying F ≡ Fτ , when (A,Ψ) is gauge equivalent
to (Aτ ,Ψτ ) and analogously for all the other terms.
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Lemma 3.3. P is a well defined line bundle over N ⊂ C/G

Proof. Let us consider first the Cauchy-Riemann operator ∂̄+A0,1

√
3

+
ψ1ψ̄

0
2√
2
θ̄ which

appears in the first term of the tensor product in P parametrized by the A,Ψ. The
same argument works for the other terms in the tensor product. The term ψ1ψ̄

0
2

does not change under the gauge group. If A→ Aτ , under the gauge transformation

τ , it is easy to show that the operators ∂̄+A0,1

√
3

+
ψ1ψ̄

0
2√

2
θ̄ and

∂̄+A0,1
τ√
3

+
(ψ1ψ̄

0
2)√
2
θ̄ have

isomorphic kernels and cokernels and their corresponding Laplacians have the same
spectrum and the eigenspaces are of the same dimension. There is a canonical
isomorphism given by: s → e−iτs. Thus when one identifies ∧top(Ker∂̄A,Ψ)∗ ⊗
∧top(Coker∂̄A,Ψ) with ∧top((Ka

A,Ψ))
∗ ⊗ ∧top∂̄A,ΨKa

A,ψ, where K
a
A,Ψ is the direct

sum of eigenspaces of the operator DA,ΨD
†
A,Ψ of eigenvalues < a, over the subset

Ua = {(A,Ψ)|a /∈ Spec∆A,Ψ} of the affine space (see [14] or [3] for more details),
there is an isomorphism of the fibers as (A,Ψ)→ (Aτ ,Ψτ ). Thus one can identify

∧top((Ka
A,ψ))

∗ ⊗ ∧top∂̄A,ψKa
A,Ψ ≡ ∧top((Ka

Aτ ,Ψτ
))∗ ⊗ ∧top∂̄Aτ ,Ψτ

Ka
Aτ ,Ψτ

and thus we can define the fiber over the quotient space C
G

to be the equivalence

class of this fiber. Thus P is well defined on C
G
. Then we restrict it to N ⊂ C

G
. ¤

Lemma 3.4. Ω is a symplectic form on N .

Proof. Let C = A × (Γ(M,L) ⊕ Γ(M,L)) × Ω1(M, iR) be the space on which
equations (1.1) − (1.3) are imposed. Let p = (A,Ψ,Φ) ∈ C, X = (α1, β, γ1),
Y = (α2, η, γ2) ∈ TpC.

On C one can define a metric

g(X,Y ) =

∫

M

∗α1 ∧ α2 +
∫

M

Re < β, η > ω +

∫

M

∗γ1 ∧ γ2

and an almost complex structure I =









∗ 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 ∗









: TpC → TpC where ∗ :

Ω1 → Ω1 is the Hodge star operator on M which is different from the previous one
( since it takes dx forms to type dy and dy forms to −dx so that ∗(ηdz) = −iηdz
and ∗(ηdz̄) = iηdz̄).

We define

Ω(X,Y ) = −
∫

M

α1 ∧ α2 +
∫

M

Re < Iβ, η > ω −
∫

M

γ1 ∧ γ2

where I =

[

i 0
0 −i

]

such that g(IX,Y ) = Ω(X,Y ). It can be checked that the metric g, the sym-
plectic form Ω, and the almost complex structure I are invariant under the gauge
group action on C.

The equation (1.1) can be realised as a moment map µ = 0 with respect to the
action of the gauge group and the symplectic form Ω. The reason is as follows. Let
ζ ∈ Ω(M, iR) be the Lie algebra of the gauge group (the gauge group element being
u = eiτ , where ζ = iτ ); it generates a vector field Xτ on C as follows :

Xζ(A,Ψ,Φ) = (dζ,−ζΨ, 0) ∈ TpC, p = (A,Ψ,Φ) ∈ C.
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We show next that Xζ is Hamiltonian. Namely, define Hζ : C → C as follows:

Hζ(p) =

∫

M

ζ · (FA − i
(|ψ1|2 − |ψ2|2)

2
ω).

Let X = (α, β, γ) ∈ TpC.

dHζ(X) =

∫

M

ζdα − i
∫

M

ζRe(ψ1β̄1 − ψ2β̄2)ω

=

∫

M

(−dζ) ∧ α−
∫

M

Re < Iζ

[

ψ1
ψ2

]

,

[

β1
β2

]

ω

= Ω(Xζ , X),

where we use that ζ̄ = −ζ.
Thus we can define the moment map µ : C → Ω2(M, iR) = G∗ ( the dual of the

Lie algebra of the gauge group) to be

µ(A,Ψ)
·
= (F (A)− i (|ψ1|

2 − |ψ2|2)
2

ω).

Thus equation (1.1)) is µ = 0.
Next we show that if S be the solution spaces to equation (1.1) − (1.3), X ∈

TpS. Then IX ∈ TpS if and only if X is orthogonal to the gauge orbit Op = G · p.
The reason is as follows. We let Xζ ∈ TpOp, where ζ ∈ Ω0(M, iR), g(X,Xζ) =
−Ω(IX,Xζ) = −

∫

M
ζ · dµ(IX), and therefore IX satisfies the linearization of

equation (1.1) iff dµ(IX) = 0, i.e., iff g(X,Xζ) = 0 for all ζ. Second, it is easy to
check that IX satisfies the linearization of equation (1.2), (1.3) whenever X does.

Now we are ready to show that N has a natural symplectic structure and an
almost complex structure compatible with the symplectic form Ω and the metric g.

First we show that the almost complex structure descends to N . Then using this
and the symplectic quotient construction we will show that Ω gives a symplectic
structure on N . To show that I descends as an almost complex structure we let
pr : S → S/G = N be the projection map and set [p] = pr(p). Then we can
naturally identify T[p]N with the quotient space TpS/TpOp, where Op = G · p is
the gauge orbit. Using the metric g on S we can realize T[p]N as a subspace in
TpS orthogonal to TpOp. Then by what is said before, this subspace is invariant
under I. Thus I[p] = τ |Tp(Op)⊥ , gives the desired almost complex structure. This
construction does not depend on the choice of p since I is G-invariant.

The symplectic structure Ω descends to µ−1(0)/G, (by what we said before and
by the Marsden-Wienstein symplectic quotient construction [8], [9]) since the leaves
of the characteristic foliation are the gauge orbits. Now, as a 2-form Ω descends
to N and so does the metric g. We check that equation (1.2), (1.3) does not give
rise to new degeneracy of Ω (i.e. the only degeneracy of Ω is due to (1.1) but along
gauge orbits). Thus Ω is symplectic on N . ¤

The proof of the theorem 3.1 follows from the lemmas.
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