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Abstract

Based on the HVZ theorem, the absence of embedded single-particle
eigenvalues and dilation analyticity of the pseudorelativistic no-pair Jansen-
Hess operator, it is proven that for subcritical central charge Z there is
no singular continuous spectrum in R\[Σ0, 2m]. Moreover, for the two-
particle Brown-Ravenhall operator, the absence of eigenvalues above 2m

is shown (if Z ≤ 50).
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1 Introduction

We consider two interacting electrons of mass m in a central Coulomb field,
generated by a point nucleus of charge number Z which is fixed at the origin.
The Jansen-Hess operator that is used for the description of this system, results
from a block-diagonalization of the Coulomb-Dirac operator up to second order
in the fine structure constant e2 ≈ 1/137.04 [8, 16]. Convergence of this type of
expansion has recently been proven for Z < 52 [24, 11], and numerical higher-
order investigations have established the Jansen-Hess operator as a very good
approximation (see e.g. [23, 30]).

Based on the work of Lewis, Siedentop and Vugalter [19] the essential spec-
trum of the two-particle Jansen-Hess operator h(2) was localized in [Σ0,∞) with
Σ0 −m being the ground-state energy of the one-electron ion [15]. A more de-
tailed information on the essential spectrum exists only for the single-particle
Jansen-Hess operator, for which, in case of sufficiently small central potential
strength γ, the absence of the singular continuous spectrum σsc and of em-
bedded eigenvalues was proven [13]. These results were obtained with the help
of scaling properties and dilation analyticity of this operator, combined with
the virial theorem, methods which, initiated by Aguilar and Combes, are well-
known from the analysis of the Schrödinger operator [1],[22, p.231] and of the
single-particle Brown-Ravenhall operator hBR1 [9, 2]. For more than one electron
the absence of σsc was only shown in the Schrödinger case [3, 25], the basic in-
gredient (apart from the dilation analyticity of the operator) being the relative
compactness of the Schrödinger potential with respect to the Laplace operator.
Such a compactness property does, however, not exist for Dirac-type operators.
Instead, the proof (of Theorem 1, section 4) can be based on the HVZ theorem
combined with the absence of embedded eigenvalues for the single-particle op-
erators. The absence of eigenvalues above m for the Brown-Ravenhall operator,
the Jansen-Hess operator and the exact single-particle block-diagonalized Dirac
operator is stated in Proposition 1 (section 3). For the two-particle operators
the virial theorem is formulated and a modification of the proof by Balinsky
and Evans [2] is tested on hBR2 to show the absence of eigenvalues in [2m,∞)
(Proposition 2, section 3).

Let us now define our operators in question. The two-particle pseudorela-
tivistic no-pair Jansen-Hess operator, acting in the Hilbert space A(L2(R

3) ⊗
C2)2 where A denotes antisymmetrization with respect to particle exchange, is
given (in relativistic units, ~ = c = 1) by [16]

h(2) = hBR2 +

2
∑

k=1

b
(k)
2m + c(12). (1.1)

The term up to first order in e2 is the (two-particle) Brown-Ravenhall operator
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[4, 9, 14]

hBR2 =

2
∑

k=1

(

T (k) + b
(k)
1m

)

+ v(12),

T (k) := Epk
:=

√

p2
k +m2, b

(k)
1m ∼ −P (12)

0 U
(k)
0

γ

xk
U

(k)−1
0 P

(12)
0 , (1.2)

v(12) ∼ P
(12)
0 U

(1)
0 U

(2)
0

e2

|x1 − x2|
(U

(1)
0 U

(2)
0 )−1 P

(12)
0 ,

where the index m refers to the particle mass, pk = −i∇k is the momentum and
xk (with xk := |xk|) the location of particle k relative to the origin. γ = Ze2

is the central field strength, and v(12) the electron-electron interaction. U
(k)
0

denotes the unitary Foldy-Wouthuysen transformation,

U
(k)
0 = A(pk) + β(k)α(k)pkg(pk),

A(p) :=

(

Ep +m

2Ep

)
1
2

, g(p) :=
1

√

2Ep(Ep +m)
(1.3)

and the inverse U
(k)−1
0 = U

(k)∗
0 = A(pk)+α(k)pkg(pk)β

(k) with α(k), β(k) Dirac

matrices [26]. Finally, P
(12)
0 = P

(1)
0 P

(2)
0 where P

(k)
0 := 1+β(k)

2 projects onto the
upper two components of the four-spinor of particle k (hence reducing the four-
spinor space to a two-spinor space). In (1.2) and in the equations below, the
notation l.h.s. ∼ r.h.s. means that the l.h.s. is defined by the nontrivial part
(i.e. the upper block) of the r.h.s. (see e.g. [9, 16]).

The remaining potentials in (1.1) which are of second order in the fine struc-
ture constant consist of the single-particle contributions

b
(k)
2m ∼ P

(12)
0 U

(k)
0

γ2

8π2

{

1

xk
(1 − D̃

(k)
0 )V

(k)
10,m + h.c.

}

U
(k)−1
0 P

(12)
0 , k = 1, 2,

D̃
(k)
0 :=

α(k)pk + β(k)m

Epk

, V
(k)
10,m := 2π2

∫ ∞

0

dt e−tEpk
1

xk
e−tEpk , (1.4)

where D̃
(k)
0 has norm unity, V

(k)
10,m is bounded and h.c. stands for hermitean

conjugate (such that b
(k)
2m is a symmetric operator). The two-particle interaction

is given by

c(12) ∼ P
(12)
0 U

(1)
0 U

(2)
0

1

2

2
∑

k=1

{

e2

|x1 − x2|
(1 − D̃

(k)
0 )F

(k)
0 + h.c.

}

(

U
(1)
0 U

(2)
0

)−1

P
(12)
0 ,

F
(k)
0 := −γ

2

∫ ∞

0

dt e−tEpk

(

1

xk
− D̃

(k)
0

1

xk
D̃

(k)
0

)

e−tEpk . (1.5)
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For later use, we also provide the kernel of the bounded operator F
(k)
0 in mo-

mentum space,

k
F

(k)
0

(p,p′) = − γ

(2π)2
1

|p − p′|2
1

Ep +Ep′

(

1 − D̃
(k)
0 (p) D̃

(k)
0 (p′)

)

. (1.6)

h(2) is a well-defined operator in the form sense for γ < 0.98 (which follows from
the form boundedness of the Jansen-Hess potential with respect to the kinetic
energy with relative bound less than one; see section 2 for the improvement
of the bound 0.89 given in [16]), and is self-adjoint by means of its Friedrichs
extension.

2 Dilation analyticity

For a one-particle function ϕ ∈ L2(R
3) ⊗ C2 and θ := eξ ∈ R+ we define the

unitary group of dilation operators dθ by means of [1]

dθϕ(p) := θ−3/2 ϕ(p/θ) (2.1)

with the property

dθ1dθ2ϕ(p) = (θ1θ2)
−3/2 ϕ(p/θ1θ2) = dθ ϕ(p) (2.2)

where θ := θ1θ2 = eξ1+ξ2 . For a two-particle function ψ ∈ A(L2(R
3)⊗C2)2 we

have dθ ψ(p1,p2) = θ−3ψ(p1/θ,p2/θ).

Let Oθ := dθOd−1
θ be the dilated operator O (e.g. h

(2)
θ := dθh

(2)d−1
θ ).

From the explicit structure of the summands of h(2) in momentum space one
derives the following scaling properties, using the form invariance (ψ, h(2)ψ) =

(dθψ, h
(2)
θ dθψ) for ψ ∈ A(H1/2(R

3)⊗C2)2, the form domain of h(2) (see [9, 13],
[12, p.42,73]),

T
(k)
θ (m) =

√

p2
k/θ

2 +m2 =
1

θ

√

p2
k +m2θ2 =

1

θ
T (k)(m · θ) (2.3)

hBR2,θ (m) =
1

θ
hBR2 (m · θ), h

(2)
θ (m) =

1

θ
h(2)(m · θ)

where we have indicated explicitly the mass dependence of the operators.

Let us extend θ to a domain D in the complex plane,

D := {θ ∈ C : θ = eξ, |ξ| < ξ0}, (2.4)

with 0 < ξ0 <
1
2 to be fixed later. The definition of the dilated operators with

the scaling properties (2.3) is readily extended to θ ∈ D.
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In order to establish the existence of h
(2)
θ for θ ∈ D as a form sum it suffices

for Tθ := T
(1)
θ +T

(2)
θ to show the |Tθ|-form boundedness of the potential of h

(2)
θ

with relative bound smaller than one. For the single-particle contributions this
was shown earlier for potential strength γ < 1.006 [13].

Let us start by noting that the m-dependent factors appearing in the poten-
tial terms of h(2) are all of the form Eλp , (Ep +m)λ, λ ∈ R, as well as 1

Ep+Ep′

(see e.g. (1.3), (1.6)). This assures that h(2)ψ is an analytic function of m for
m 6= 0.

For θ ∈ D we basically have to replace m by m · θ. We can use estimates of
the type [13]

1 − ξ0 ≤
∣

∣

∣

∣

1

θ

∣

∣

∣

∣

≤ 1 + 2ξ0

(1 − ξ0) Ep ≤ |Eθ(p)| ≤ (1 + 2ξ0) Ep (2.5)

where Eθ(p) :=
√

p2 +m2θ2 . From these relations one derives the relative
boundedness of the following dilated operators with respect to those for θ = 1,

|Aθ(p)|2 ≤ 1 + 2ξ0
1 − ξ0

A2(p)

|p
θ
gθ(p)|2 ≤ 1

(1 − ξ0)4
p2 g2(p) (2.6)

∣

∣

∣

∣

1

Eθ(p) +Eθ(p′)

∣

∣

∣

∣

≤ 1

(1 − ξ0)3
1

Ep +Ep′
.

As a consequence, the dilated Foldy-Wouthuysen transformation is bounded,

|U (k)
θ | ≤ |Aθ(pk)| + |pk

θ gθ(pk)| ≤ c̃, and also |D̃(k)
0,θ | ≤ 1

|Eθ(pk)| (pk +m|θ|) ≤ c̃

with some constant c̃.

In order to show the relative form boundedness of h
(2)
θ , we write h(2) = T+W

and introduce the respective massless (m = 0) operators T0 = p1 + p2 and W0,

|(ψ,Wθψ)| ≤ |1
θ

(ψ,W0ψ)| + |(ψ,
(

Wθ −
1

θ
W0

)

ψ)|. (2.7)

The form boundedness of W0 with respect to T0 follows from the previous single-
particle [27, 6, 5] and two-particle [16] m = 0 estimates. For the single-particle

contributions we profit from [5] (ψ, (pk+b
(k)
1 +b

(k)
2 )ψ) ≥ (1− γ

γBR
+dγ2)(ψ, pkψ)

together with [13] b
(k)
1 + b

(k)
2 < 0 for γ ≤ 4

π . Note that (e.g. for k = 1)
ψ = ψx2(x1) acts as a one-particle function depending parametrically on the
coordinates of the second particle. For the two-particle terms, use is made of

(U
(k)∗
0 ψ0, pkU

(k)∗
0 ψ0) = (ψ, pk ψ) where ψ0 :=

(

ψ
0

)

denotes a two-particle spinor
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whose lower components are zero by the action of P
(12)
0 , showing that the four-

spinor estimates from [16] are applicable. Thus,

|(ψ,W0 ψ)| ≤
2
∑

k=1

|(ψ, (b(k)1 + b
(k)
2 ) ψ)| + |(ψ, c(12)0 ψ)| + |(ψ, v(12)

0 ψ)|

≤
(

γ

γBR
− dγ2 + γ

e2π2

4
+

e2

2γBR

)

(ψ, T0 ψ) =: c̃0 (ψ, T0 ψ), (2.8)

where γBR = 2/( 2
π + π

2 ) ≈ 0.906 is the maximum potential strength for which

hBR1 is bounded from below, and d = 1
8

(

π
2 − 2

π

)2
.

For the proof of the form boundedness with respect to |Tθ|, we can estimate
for |Im ξ| < π

4

Re
√

p2
k +m2θ2 ≥ pk (2.9)

(setting θ = eu+iv and Eθ = x+iy leads for z := x2 to 4z2−4(p2
k+m

2e2u cos 2v)z
− m4e4u sin2 2v = 0, with a solution that can be estimated by z ≥ p2

k upon
dropping all terms ∼ m), such that

|θ| · |(ψ, T (k)
θ ψ)| ≥ |Re (ψ,

√

p2
k +m2θ2 ψ)| ≥ (ψ, T

(k)
0 ψ). (2.10)

The uniform boundedness of the single-particle remainder in (2.7), 1
|θ| |(ψ, (b

(k)
1m·θ

− b(k)1 )ψ)| + 1
|θ| |(ψ, (b

(k)
2m·θ− b

(k)
2 )ψ)| was proven in [13] based on the respective

results for θ = 1 [28, 5].

For the proof of the uniform boundedness of (ψ, (c(12)(m · θ)− c
(12)
0 )ψ) and

(ψ, (v(12)(m · θ) − v
(12)
0 )ψ) we proceed in a similar way. Since c(12) and v(12)

are analytic functions of m, the mean value theorem can be applied in the form
|f(m · θ) − f(0)| ≤ m( | ∂f∂m(m̃1 · θ)| + | ∂f∂m (m̃2 · θ)| ) with 0 ≤ m̃1, m̃2 ≤ m

(adapted to complex-valued functions [13]). The kernel of v(12) is given by

Kv(12)(p1,p2;p
′
1,p

′
2) := U

(2)
0 U

(1)
0 kv(12)U

(1′)∗
0 U

(2′)∗
0 with

kv(12) :=
e2

2π2

1

|p1 − p′
1|2

δ(p′
2 − p2 + p′

1 − p1), (2.11)

such that one gets
∣

∣

∣
(Kv(12) (m · θ) −K

v
(12)
0

)(p1,p2;p
′
1,p

′
2)
∣

∣

∣
≤ mkv(12)

·
( ∣

∣

∣

∣

∂

∂m

(

U
(1)
0 U

(2)
0 U

(1′)∗
0 U

(2′)∗
0

)

(m̃1 · θ)
∣

∣

∣

∣

+ (m̃1 7→ m̃2)

)

, (2.12)

where (m̃1 7→ m̃2) means the first term in the second line of (2.12) repeated

with m̃1 replaced by m̃2, and U
(k′)
0 is U

(k)
0 with pk replaced by p′

k. Further,

∣

∣

∣

∣

∂

∂m
(U

(1)
0 · · ·U (2′)∗

0 )

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∂U
(1)
0

∂m

∣

∣

∣

∣

∣

·
∣

∣

∣
U

(2)
0 U

(1′)∗
0 U

(2′)∗
0

∣

∣

∣
+ ...
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+
∣

∣

∣
U

(1)
0 U

(2)
0 U

(1′)∗
0

∣

∣

∣
·
∣

∣

∣

∣

∣

∂U
(2′)∗
0

∂m

∣

∣

∣

∣

∣

. (2.13)

From the boundedness of U
(k)
0 and of θ one gets the estimate (noting that U

(k)
0

is only a function of m/pk =: ξ)

∣

∣

∣

∣

∂

∂m
U

(k)
0 (ξ · θ)

∣

∣

∣

∣

=
|θ|
pk

∣

∣

∣

∣

∂

∂(ξ · θ) U
(k)
0 (ξ · θ)

∣

∣

∣

∣

≤ |θ|
pk

c

1 + ξ
≤ c̃

pk +m
≤ c̃

pk
(2.14)

with some constants c, c̃ independent of m. With this estimate the boundedness

of v(12)(m · θ) − v
(12)
0 is readily shown (see e.g. [16] and Appendix A, where a

sketch of the boundedness proof for c(12)(m · θ) − c
(12)
0 is given).

Thus we obtain

|(ψ,Wθψ)| ≤ c̃0 |(ψ, Tθψ)| + C(ψ, ψ) (2.15)

with c̃0 from (2.8) and some constant C. We have c̃0 < 1 for γ < 0.98 (Z ≤
134). This holds for all θ ∈ D. Besides this T0- and Tθ-form boundedness with

c̃0 < 1, (2.3) assures that for ψ in the form domain of T0, (ψ, h
(2)
θ ψ) is an

analytic function in D. Thus h
(2)
θ satisfies the criterions for being a dilation

analytic family in the form sense [9],[22, p.20].

We remark that for the Brown-Ravenhall operator the relative form bound-

edness of the potential and hence the dilation analyticity hold for γ < γBR− e2

2 ≈
0.902 (see (2.8)).

3 Absence of embedded eigenvalues

The scaling properties of the pseudorelativistic operator under dilations allows
one to show that under certain restrictions on the potential strength γ there are
no eigenvalues embedded in the essential spectrum. For different methods, see
[7],[22, p.222]. We start by stating some results for the single-particle case.

Proposition 1 Let hBR1 = T (k) + b
(k)
1m be the single-particle Brown-Ravenhall

operator, b
(k)
m = hBR1 + b

(k)
2m the single-particle Jansen-Hess operator and hex ∼

P
(k)
0 U (k)(α(k)pk + β(k)m− γ/xk)U

(k)−1P
(k)
0 the exact block-diagonalized Dirac

operator (projected onto the positive spectral subspace) from [24]. Then

(i) For γ < γBR (Z ≤ 124), hBR1 has no eigenvalues in [m,∞).
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(ii) For γ < 0.29 (Z < 40), b
(k)
m has no eigenvalues in [m,∞), and for

γ < 1.006 the eigenvalues do not accumulate in R+\{m}.

(iii) For Z ≤ 35, hex has no eigenvalues in (m,∞).

Item (i) was proven in [2] (for γ ≤ 3
4 ) and in [12]. The first part of (ii) was

proven in [13], and all proofs rely on the virial theorem. Item (iii) was derived
in [17] with the help of a Mourre-type estimate [7].

The second statement of (ii) results from σess(b
(k)
m,θ) = σess(T

(k)
θ ), based on

the compactness of the difference of the resolvents of b
(k)
m,θ and T

(k)
θ [13] for any

θ ∈ D. We have σ(T
(k)
θ ) ∩ R = {m} if Im ξ 6= 0 [29, 10], so there are at most

isolated eigenvalues of b
(k)
m,θ in R+\{m}. Since b

(k)
m,θ is a dilation analytic family

these eigenvalues are invariant when θ → 1 (see also section 4).

Let us now turn to the two-particle operator. The virial theorem for the
one-particle case [2] is easily generalized to two-particle operators obeying the
scaling properties (2.3). Assuming that ψ is an eigenfunction of the Jansen-Hess
operator h(2) to some eigenvalue λ and that θ ∈ D∩R+, the virial theorem reads

lim
θ→1

(ψθ,
h(2)(m · θ) − h(2)(m)

θ − 1
ψ) = λ ‖ψ‖2, (3.1)

where the mass dependence of h(2) is indicated explicitly. By the mean value

theorem, the operator on the l.h.s. is transformed into m ( dh
(2)(m)
dm )(m · θ̃) for

some θ̃ on the line between 1 and θ. Since this operator can be bounded in-
dependently of θ̃ (see section 2) and ‖ψθ‖ = ‖ψ‖, the theorem of dominated
convergence applies and the limit θ → 1 can be carried out. We get, making
use of the symmetry property of ψ under particle exchange,

λ

2m
‖ψ‖2 = (ψ,

m

Ep1
ψ) + (ψ,

(

db
(1)
1m

dm
+
db

(1)
2m

dm
+

1

2

dv(12)

dm
+

1

2

dc(12)

dm

)

ψ).

(3.2)
This equation has to be combined with the eigenvalue equation which we take
in the following form,

λ (Fψ, ψ) = (Fψ,

(

2
∑

k=1

(Epk
+ b

(k)
1m + b

(k)
2m) + v(12) + c(12)

)

ψ), (3.3)

F ψ := c0 (1 − m

Ep1
)

1

Ep1 +Ep2 −m
ψ = F ∗ ψ.

In the single-particle case, F is taken in such a way that the negative contri-
bution (termed β10) to the linear term db1m

dm can be eliminated [2]. Here, only

a partial compensation is possible because one cannot avoid that F (b
(1)
1m + b

(2)
1m)

8



is a two-particle operator (which cannot be split into single-particle terms).
The symmetric (with respect to particle exchange) energy denominator (Ep1 +
Ep2 −m)−1 assures that the operator Fh(2) appearing on the r.h.s. of (3.3) is
bounded. c0 ∈ R+ is a parameter to be determined later. Let us now restrict
ourselves to the Brown-Ravenhall operator. Then we have

Proposition 2 Let hBR2 be the two-particle Brown-Ravenhall operator and as-
sume γ ≤ γc with γc = 0.37 (Z ≤ 50). Then there are no eigenvalues in
[2m,∞).

Note that, with σess(h
BR
2 ) = [Σ0,∞) and Σ0 < 2m [21], no information on

embedded eigenvalues is provided for the subset [Σ0, 2m). This corresponds to
the multi-particle Schrödinger case where the virial-theorem method proves the
absence of eigenvalues only in the subset [0,∞) of the essential spectrum [22,
p.232].

Proof. Defining dπ := dp1dp2dp
′
1dp

′
2 we have from [2]

(ψ,
db

(1)
1m

dm
ψ) = β10(m) + β11(m), (3.4)

β10(m) := Re (ψ,

(

1

Ep1
− m

E2
p1

)

b
(1)
1m ψ)

β11(m) :=
γ

2π2

∫

R12

dπ g(p1)σ(1)p1 ψ̂(p1,p2)
1

|p1 − p′
1|2

·
(

1

Ep1
+

1

Ep′1

)

g(p′1) σ(1)p′
1 δ(p2 − p′

2) ψ̂(p′
1,p

′
2).

Subtraction of the real part of (3.3) from (3.2), while dropping the second-order

terms b
(k)
2m and c(12), results in

0 = M0 + γ M1 + e2M2, (3.5)

M0 := (ψ,

(

(1 − λ

2m
) (1 −

2c0m(1 − m
Ep1

)

Ep1 +Ep2 −m
)

− (1 − m

Ep1
) (1 +

c0(Ep1 +Ep2 − 2m)

Ep1 +Ep2 −m
)

)

ψ)

γM1 := β10(m) − Re (ψ, c0(1 − m

Ep1
)

1

Ep1 +Ep2 −m

·(b(1)1m + b
(2)
1m) ψ) + β11(m)

e2M2 := Re (ψ, (1 − m

Ep1
) (

1

Ep1
− c0

Ep1 +Ep2 −m
) v(12) ψ)

9



−
∫

R12

dπ g(p1) σ(1)p1 U
(2)∗
0 ψ̂0(p1,p2) (

1

Ep1
+

1

Ep′1
)

·kv(12)
(

g(p′1) σ(1)p′
1 U

(2′)∗
0 ψ̂0(p

′
1,p

′
2)
)

.

In the expression for the electron-electron interaction term, e2M2, it is used that

b
(1)
1m and v(12) have the same structure. Indeed, the kernel of b

(1)
1m is given by

U
(1)
0 kb1mU

(1′)∗
0 with

kb1m := − γ

2π2

1

|p1 − p′
1|2

δ(p2 − p′
2), (3.6)

as compared to the kernel of v(12) defined above (2.11). Due to the symme-

try upon particle exchange, the kernel of 1
2
dv(12)

dm in (3.2) can be replaced by

U
(2)
0

d
dm (U

(1)
0 kv(12)U

(1)∗
0 )U

(2)∗
0 . Therefore (3.4), with kv(12) substituted for kb1m ,

is applicable. As in section 2, ψ0 =
(

ψ
0

)

is a two-particle spinor with the lower
components set equal to zero.

For a symmetric integral operator O with kernel K +K∗, we use the Lieb
and Yau formula, derived from the Schwarz inequality, in the following form
[20] (see also [14])

|(ψ,O ψ)| ≤
∫

R6

dp1dp2 |ψ̂(p1,p2)|2 (I1(p1,p2) + I2(p1,p2)) (3.7)

I1(p1,p2) :=

∫

R6

dp′
1dp

′
2 |K(p1,p2;p

′
1,p

′
2)|

f(p1)

f(p′1)

g(p2)

g(p′2)

and I2 results from the replacement ofK(p1,p2;p
′
1,p

′
2) byK∗(p′

1,p
′
2;p1,p2). f

and g are suitable nonnegative convergence generating functions such that I1, I2
exist as bounded functions for p1,p2 ∈ R3. In order to get rid of the particle
mass m, we introduce the new variables pi =: mqi, p′

i =: mq′
i, i = 1, 2. With

s := 1 − 2c0(1 − 1√
q21+1

)/(
√

q21 + 1 +
√

q22 + 1 − 1) we estimate

0 ≤ M0 + γ |M1| + e2 |M2| (3.8)

≤ m6

∫

R6

dq1dq2 |ψ̂(mq1,mq2)|2 s
(

1 − λ

2m
+ φ(q1, q2)

)

.

For c0 < 2 (or c0 ≤ 2 if q2 6= 0) we have s > 0 and then

φ(q1, q2) :=
1

s
{− (1− 1

√

q21 + 1
)

(

1 + c0

√

q21 + 1 +
√

q22 + 1 − 2
√

q21 + 1 +
√

q22 + 1 − 1

)

+ γ q21 M̃1 + e2 q21 M̃2} (3.9)

where q21M̃i, i = 1, 2, result from the estimates ofMi and are given in Appendix
B. From (3.8) it follows that if φ(q1, q2) < 0, we need 1− λ

2m > 0 which confines

10



λ to λ < 2m. A numerical investigation shows that the supremum of s φ(q1, q2)
is attained for q1, q2 → ∞ with q1 ¿ q2. Then s → 1 and from the explicit
expression (see Appendix B) it follows that

sup
q1,q2≥0

s φ(q1, q2) = lim
q1→∞

q2Àq1

φ(q1, q2) = −(1 + c0) + γ (4 + 2c0) + 4 e2. (3.10)

For the optimum choice c0 = 2, we obtain sup
q1,q2≥0

s φ(q1, q2) = 0 for γ =: γc =

0.37. ¤

The proof of Proposition 2 can readily be extended to the Jansen-Hess op-
erator h(2). However, the so obtained critical potential strength γc is expected
to be rather small. Recall that the inclusion of the second-order term in the
single-particle case leads to a reduction from γc ≈ 0.906 to 0.29.

4 Absence of the singular continuous spectrum

Dilation analyticity is a powerful tool to show the absence of the singular contin-
uous spectrum [1, 3]. Based on the additional fact that there are no eigenvalues
of the single-particle operator above m, we shall prove

Theorem 1 Let hBR2 =
2
∑

k=1

(T (k) + b
(k)
1m) + v(12) be the two-particle Brown-

Ravenhall operator and h(2) = hBR2 +
2
∑

k=1

b
(k)
2m + c(12) the two-particle Jansen-

Hess operator. Let Ω := R+\[Σ0, 2m] where Σ0 −m is the lowest bound state of
the respective single-particle operator. Then

(i) For γ < γBR, σsc(h
BR
2 ) = ∅ in Ω.

(ii) For γ < 0.29, σsc(h
(2)) = ∅ in Ω.

Proof. Let h
(2)
θ be the dilated operator from (2.3). In order to show that there

are only discrete points of the spectrum σ(h
(2)
θ ) on the real line outside [Σ0, 2m]

(note that Σ0 −m < m [30]), we follow closely the proof of the hard part of the
HVZ theorem for θ = 1 [15]. We introduce the two-cluster decompositions of

h
(2)
θ ,

h
(2)
θ = Tθ + aj,θ + rj,θ, j = 0, 1, 2, (4.1)

where aj,θ collects all interactions not involving particle j (j = 1, 2 denote
the two electrons and j = 0 refers to the nucleus) and rj,θ is the remainder.
Explicitly,

a1,θ = b
(2)
1m,θ + b

(2)
2m,θ, a2,θ = b

(1)
1m,θ + b

(1)
2m,θ, a0,θ = v

(12)
θ . (4.2)

11



We note that due to the symmetry of h
(2)
θ upon electron exchange we have

σ(Tθ + a1,θ) = σ(Tθ + a2,θ) and thus need not consider j = 1 and j = 2
separately.

Let us shortly investigate the spectrum of Tθ + a1,θ. First we prove

σ(Tθ + a1,θ) = σ(T
(1)
θ ) + σ(b

(2)
m,θ) (4.3)

by showing the sectoriality of Tθ + a1,θ. According to [25] b
(2)
m,θ = T

(2)
θ + b

(2)
1m,θ +

b
(2)
2m,θ is sectorial if there exists a vertex z0 ∈ C, a direction β ∈ [0, 2π) and an

opening angle φ ∈ [0, π) such that

(ψ, b
(2)
m,θ ψ) ⊂ {z ∈ C : |arg (e−iβ(z − z0))| ≤

φ

2
} (4.4)

for ψ ∈ A(H1/2(R
3) ⊗ C2)2 with ‖ψ‖ = 1.

Clearly, T
(2)
θ is sectorial for θ = eξ ∈ D because it is given by the set

{(p e−2i Im ξ +m2)
1
2 : p ∈ R+} which lies in the sector defined by z0 = 0, β = 0

and φ = 2|Im ξ| ≤ 2ξ0.

The |T (2)
θ |-form boundedness of the potential part of b

(2)
m,θ was proven in the

following form (with ϕ := ψx1(x2); see section 2),

|(ϕ, (b(2)1m,θ + b
(2)
2m,θ) ϕ)| ≤ 1

|θ| (ϕ, (b
(2)
1 + b

(2)
2 ) ϕ) + C (ϕ, ϕ)

≤ 1

|θ| c0 (ϕ, p2 ϕ) + C (ϕ, ϕ), (4.5)

where 1
|θ| ≤ 1 + 2ξ0, and c0 = γ

γBR
− dγ2 < 1 if γ < 1.006. In turn, from (2.10),

1
|θ|(ϕ, p2ϕ) ≤ |(ϕ, T (2)

θ ϕ)|. Moreover, using estimates similar to those given in

[13], we even obtain (for ξ0 <
π
4 )

|(ϕ, (b(2)1m,θ + b
(2)
2m,θ) ϕ)| ≤ c1 Re (ϕ, T

(2)
θ ϕ) + C (ϕ, ϕ)

c1 :=
c0

1 − ξ0
. (4.6)

Since c0 < 1 we have c1 < 1 for sufficiently small ξ0. According to [18, Thm

1.33, p.320] (4.6) guarantees that b
(2)
m,θ as form sum is also sectorial, with the

opening angle φ given by

0 < tan
φ

2
=

tan |Im ξ| + c1
1 − c1

<∞, (4.7)

and some vertex z0 < 0 which has to be sufficiently small (one has the estimate

[18, eq.(VI–1.47)] Re (ϕ, b
(2)
m,θϕ) ≥ −C(ϕ, ϕ) with the constant C from (4.6)).

12



As we have just shown, T
(1)
θ is sectorial with maximum opening angle φ = 2ξ0

and b
(2)
m,θ is sectorial with maximum opening angle φ0 =: φ(ξ0) (obtained upon

replacing |Im ξ| by ξ0 in (4.7) since tan and arctan are monotonically increasing
functions). Let us take ξ0 <

1
2 such that φ+φ0 < π. This is done in the following

way. Choose some ξ0. If 2ξ0 + φ0 < π, we are done. If not, since 0 < φ0 < π
there is δ > 0 such that φ0 < δ < π. Then define ξ1 := 1

2 (π − δ) < ξ0. From
(4.7) and the monotonicity of tan and arctan we have φ0 > φ(ξ1) and thus
2ξ1 + φ(ξ1) < π.

Writing ψ ∈ A(H1/2(R
3) ⊗ C2)2 in the form domain of Tθ + a1,θ as a finite

linear combination of product states ϕ(1)ϕ(2) with ϕ(k) relating to particle k,
we have

(ϕ(1)ϕ(2), (Tθ + a1,θ) ϕ
(1)ϕ(2)) = (ϕ(1), T

(1)
θ ϕ(1))(ϕ(2), ϕ(2))

+ (ϕ(2), b
(2)
m,θ ϕ

(2)) (ϕ(1), ϕ(1)). (4.8)

Thus, the necessary assumptions for Proposition 4 of [25] (which is based on a
lemma of Ichinose) are satisfied, which guarantees that Tθ + a1,θ is sectorial, as
well as the validity of (4.3).

Now we derive the explicit form of σ(Tθ +a1,θ). Since T
(1)
θ =

√

p2
1/θ

2 +m2,

p1 ≥ 0, it follows that σ(T
(1)
θ ) = σess(T

(1)
θ ) is for each θ ∈ D a curve in the

complex plane intersecting R only in the point m.

Concerning the spectrum of b
(2)
m,θ we know that σess(b

(2)
m,θ) = σess(T

(2)
θ ).

Thus we get from (4.3)

σ(Tθ+a1,θ) = {
√

p2
1/θ

2 +m2 : p1 ≥ 0}+

(

{
√

p2
2/θ

2 +m2 : p2 ≥ 0} ∪ σd(b
(2)
m,θ)

)

= σess(Tθ + a1,θ). (4.9)

Any λ
(θ)
2 ∈ σd(b

(2)
m,θ) is a discrete eigenvalue of finite multiplicity. Therefore,

since b
(2)
m,θ is a dilation analytic operator in D it follows from [18, p.387],[22,

p.22] that λ
(θ)
2 is an analytic function of θ in D (as long as it remains an isolated

eigenvalue). If θ ∈ R ∩ D, λ
(θ)
2 = λ2 ∈ σd(b

(2)
m ) because dθ is unitary for real

θ. By means of the identity theorem of complex analysis one has λ
(θ)
2 = λ2 for

all θ ∈ D [1]. Conversely, assume there exists λ̃
(θ)
2 ∈ σd(b

(2)
m,θ) in C\R (called

’resonance’ [22, p.191]) for a given θ ∈ D. Then from the group property (2.2),

a further dilation by any θ̃ ∈ R leaves λ̃
(θ)
2 invariant. Thus λ̃

(θ)
2 is invariant in

the subset of D in which it is analytic.

As a consequence [29], resonances are only possible in the sector bounded

by σ(T
(2)
θ ) and [m,∞). The curve {

√

p2/θ2 +m2 : p ≥ 0} lies in the closed
half plane below (respectively above) the real axix, if θ = eξ with Im ξ > 0
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(respectively Im ξ < 0). Therefore, if e.g. Im ξ > 0, no elements of σd(b
(2)
m,θ)

lie in the upper half plane (they would be isolated for all θ with Im ξ ≥ 0, but
such elements have to be real). Moreover, they can at most accumulate at m.

(If they did accumulate at some z0 ∈ σ(T
(2)
θ )\{m} then, for θ0 = eξ+iδ (δ > 0)

they would, due to their θ-invariance, still accumulate at z0 /∈ σ(T
(2)
θ0

) which is

impossible.) Likewise, real elements of σd(b
(2)
m,θ) can only accumulate at m.

From (4.9) it follows that σ(Tθ + a1,θ) consists of a system of parallel curves

each starting atm+λ
(θ)
2 for any λ

(θ)
2 ∈ σd(b

(2)
m,θ) (with e−i Im ξR++λ

(θ)
2 as asymp-

tote), supplied by an area in the complex plane bounded to the right by such a
curve starting at the point 2m. (This curve has the asymptote m+ e−i Im ξR+;
the left boundary is a line starting at 2m with e−i Im ξR+ as asymptote.) We
note that in the Schrödinger case this area degenerates to one straight line [3].
From the discussion above, σ(Tθ+a1,θ)∩R consists of {2m} plus isolated points
which can at most accumulate at 2m.

As concerns the spectrum σ(Tθ + v
(12)
θ ), (2.3) leads to

Tθ + v
(12)
θ =

1

θ

√

p2
1 +m2θ2 +

1

θ

√

p2
2 +m2θ2 +

1

θ
v(12) (4.10)

with σ(Tθ) as discussed above. For the two-particle potential we have

(ψ, v
(12)
θ ψ) =

1

θ
(ψ, v(12) ψ) ⊂ e−i Im ξ(R+ ∪ {0}) (4.11)

since v(12) ≥ 0. This shows that Tθ+v
(12)
θ is sectorial and that σ(Tθ+v

(12)
θ )∩R ⊂

{2m}.

When considering the essential spectrum of h
(2)
θ one can drop the two-

particle interaction c
(12)
θ . In the case θ = 1 (and γ < 0.66) it was shown for

h̃
(2)
θ := h

(2)
θ − c

(12)
θ that σess(h

(2)) = σess(h̃
(2)) since the difference of the resol-

vents of h(2) and h̃(2) is compact [12, 15]. The required estimates hold also for
θ ∈ D due to the dilation analyticity of the involved operators and because the

constituents Aθ(pk), gθ(pk) and Eθ(pk) of h
(2)
θ are estimated by their respective

expressions for θ = 1 according to (2.5) and (2.6). For the sake of demonstration
we provide in Appendix C the proof of the relative operator boundedness of the

potential terms of h
(2)
θ with respect to Tθ (which is required for the compactness

proof and which necessitates the bound γc = 0.66).

Let us now assume that λ ∈ σess(h̃
(2)
θ ) with λ ∈ R, λ > 2m. Then

there exists a Weyl sequence (ψn)n∈N ∈ A(C∞
0 (R6\Bn(0)) ⊗ C4) with ψn

w
⇀

0, ‖ψn‖ = 1 and ‖(h̃(2)
θ − λ)ψn‖ → 0 as n→ ∞. Using that |(ψn, (h̃(2)

θ −
λ)ψn)| ≤ ‖ψn‖ ‖(h̃(2)

θ − λ)ψn‖, one also has

lim
n→∞

(ψn, (h̃
(2)
θ − λ)ψn) = 0. (4.12)
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The existence of a Weyl sequence supported outside balls Bn(0) with radius n
centered at the origin follows from the respective fact for θ = 1 [15], from the

dilation analyticity of h̃
(2)
θ for θ ∈ D and from ψn being an analytic vector.

For the subsequent argumentation we need the localization formula

(ψn, h̃
(2)
θ ψn) =

2
∑

j=0

(φjψn, (Tθ + aj,θ)φjψn) + O(
1

n
) ‖ψn‖2 (4.13)

where (φj)j=0,1,2 is the Ruelle-Simon partition of unity subordinate to the two-

cluster decompositions (4.1) with the property
2
∑

j=0

φ2
j = 1 (see e.g. [7, p.33],[19]).

This formula was derived in [15] for θ = 1. Its proof involves the uniform bound-

edness of
2
∑

j=0

(φjψn, [h̃
(2), φj ]ψn) and of (φjψn, rj φjψn), the bound being of

O( 1
n ). For θ ∈ D, the required estimates can be carried out in the same way by

using (2.5) and (2.6) as in the compactness proof mentioned above.

The combination of (4.12) and (4.13) leads to two real equations,

λ = lim
n→∞

Re

2
∑

j=0

(φjψn, (Tθ + aj,θ)φjψn) (4.14)

0 = lim
n→∞

Im

2
∑

j=0

(φjψn, (Tθ + aj,θ)φjψn).

Since σ(Tθ + aj,θ) for θ ∈ D\R lies in the closed half plane of C (the lower
one if Im ξ > 0) for all j, the second equation requires (φjψn, (Tθ + aj,θ)φjψn)
to be real. From (4.9) and the discussion below we have σ(Tθ + a1,θ) ∩ R ⊂
[0, 2m] since b

(2)
m does not have eigenvalues above m (for γ < 0.29 according

to Proposition 1). Dilation analyticity of b
(2)
m,θ assures that also b

(2)
m,θ does not

have such eigenvalues. Moreover, from the discussion below (4.11) we know that
σ(Tθ + a0,θ) ∩ R ⊂ [0, 2m]. Therefore,

λ ≤ lim
n→∞

2
∑

j=0

2m (φjψn, φjψn) = 2m (4.15)

in contradiction to the assumption λ > 2m.

In order to show that there are only discrete eigenvalues of h
(2)
θ on the real

line below Σ0 we recall that for θ = 1, the HVZ theorem states that σess(h
(2)) =

[Σ0,∞) where Σ0 = inf σ(T + a1). Thus h(2) has at most isolated eigenvalues
(of finite multiplicity) below Σ0.

Due to the sectoriality of Tθ + aj,θ and the fact that σ(Tθ + v
(12)
θ ) ∩ R ⊂

σ(Tθ+a1,θ)∩R, there is no spectrum of Tθ+aj,θ in the half plane of C bounded
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to the right by {z ∈ C |Re z = Σ0}. Therefore, σ(Tθ + aj,θ) ∩ R ⊂ [Σ0,∞).

Then, repeating the above argumentation for λ ∈ σess(h
(2)
θ ) with λ < Σ0, one

gets from (4.14)

λ ≥ lim
n→∞

2
∑

j=0

Σ0 (φjψn, φjψn) = Σ0, (4.16)

a contradiction. This proves that σess(h
(2)
θ ) ∩ R is confined to the interval

[Σ0, 2m].

The basic ingredient of the proof of Theorem 1 is the invariance of the
resolvent form under dilations with θ ∈ D ∩ R,

(ψ,
1

h(2) − z
ψ) = (dθψ,

1

h
(2)
θ − z

dθψ) for z ∈ C\R. (4.17)

where we restrict ourselves to analytic vectors ψ ∈ A(Nξ0 ⊗ C2)2 with Nξ0 :=

{ϕ ∈ H1/2(R
3) : dθϕ is analytic in D}. For z ∈ C\σ(h

(2)
θ ), the analyticity of

(h
(2)
θ −z)−1 and of the function dθψ allows for the extension of the r.h.s. of (4.17)

to complex θ ∈ D. The identity theorem of complex analysis then guarantees
the equality (4.17) for all θ ∈ D. Since Nξ0 is dense in H1/2 [22, p.187], (4.17)
holds for all ψ in A(H1/2(R

3) ⊗ C2)2.

From (4.17) it follows that (ψ, 1
h(2)−z

ψ) has continuous boundary values as

Im z → 0 for Re z /∈ [Σ0, 2m]∪(σd(h
(2)
θ )∩R). Therefore the singular continuous

spectrum is absent for R\([Σ0, 2m]∪σd(h(2)
θ ) [22, p.137,187]. Since the elements

of σd(h
(2)
θ ) are discrete, there is no singular continuous spectrum of h(2) outside

[Σ0, 2m].

For the Brown-Ravenhall operator hBR2 the proof is exactly the same, be-
cause one only has to drop the second-order potential terms. The less restrictive
bound on γ follows from Proposition 1 (i). ¤

Appendix A (Boundedness of c(12)(m · θ) − c
(12)
0 )

From (1.5) and (1.6) one derives for the k = 1 contribution to the kernel of this
operator [16], using the mean value theorem,
∣

∣

∣

∣

(K
(1)

c(12)(m·θ)
−K

(1)

c
(12)
0

)(p1,p2;p
′
1,p

′
2)

∣

∣

∣

∣

≤ γe2m

(2π)4
1

|p2 − p′
2|2

1

|p2 − p′
2 + p1 − p′

1|2

·
∣

∣

∣

∣

∣

∂

∂m
{U (1)

0 U
(2)
0 [

1

E|p2−p
′
2+p1| +Ep′1

(

1 + D̃
(1)
0 (p′

1) − D̃
(1)
0 (p2 − p′

2 + p1)

(A.1)
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−D̃(1)
0 (p2 − p′

2 + p1)D̃
(1)
0 (p′

1)
)

+ h.c. ] U
(1′)∗
0 U

(2′)∗
0 }(m̃1 · θ) + (m̃1 7→ m̃2)

∣

∣

∣

where h.c. denotes the hermitean conjugate of the first term together with the
replacement (p1,p2)¿ (p′

1,p
′
2). (The second contribution (k = 2) to the kernel

arises from particle exchange and is therefore bounded by the same constant.)
After carrying out the derivative, the modulus of each of the resulting terms is

estimated separately, using the boundedness of the dilated U
(k)
0 , D̃

(k)
0 and the

estimate (2.6) for the dilated energy denominator. According to the Lieb and

Yau formula (3.7), c(12)(m · θ) − c
(12)
0 is bounded if the integral

I(p1,p2) :=

∫

R6

dp′
1dp

′
2

∣

∣

∣

∣

(K
(1)

c(12)(m·θ)
−K

(1)

c
(12)
0

)(p1,p2;p
′
1,p

′
2)

∣

∣

∣

∣

f(p1)g(p2)

f(p′1)g(p
′
2)
(A.2)

is bounded for all p1,p2 ∈ R3, where f, g ≥ 0 are suitably chosen functions.

The derivative of the operator D̃
(k)
0,θ can be estimated by c

pk
because D̃

(k)
0 is

bounded and its m-dependence enters only via m/pk (see (2.14)). Finally,

since from (2.5),
∣

∣

∣

mθ
Eθ(p′)

∣

∣

∣
≤ m|θ| 1

(1−ξ0)Ep′
≤ (1 − ξ0)

−2, the derivative of the

energy denominator is estimated by
∣

∣

∣

∂
∂m

1
Eθ(p)+Eθ(p′)

∣

∣

∣
≤ c

p
1

p+p′ .

For reasons of convergence we have to keep, however, the m-dependence of
the energy denominator in those contributions to (A.1) which contain the factor
1/p′2 from the estimate of the derivatives. This can be handled in the following
way: Let f(m)g(m) − f(0)g(0) = [f(m) − f(0)]g(m) + f(0)[g(m) − g(0)] and
interpret g as the energy denominator and f as the adjacent factors inside the
curly bracket in (A.1). Then, while estimating the derivative of f(m) by an
m-independent function (in general setting m = 0), the energy denominator
can be estimated, using (2.6), by

∣

∣

∣

∣

1

Eθ(|p2 − p′
2 + p1|) +Eθ(p′1)

∣

∣

∣

∣

≤ 1

(1 − ξ0)3
1

E|p2−p
′
2+p1| +Ep′1

≤ c

|p2 − p′
2 + p1| + p′1 + 1

(A.3)

which relies on m 6= 0.

For the sake of demonstration we select the contribution to (A.1) which

contains the derivative of U
(2′)∗
0 , leading to the estimate c̃

p′2
according to (2.14).

Absorbing the bounds of U
(1)
0 , U

(2)
0 , U

(1′)∗
0 and D̃

(1)
0 into the generic constant

c, we get for the respective contribution, say Ĩ , to (A.2),

Ĩ(p1,p2) ≤ m · c
∫

R6

dp′
1dp

′
2

1

|p2 − p′
2|2

1

|p2 − p′
2 + p1 − p′

1|2

· 1

|p2 − p′
2 + p1| + p′1 + 1

· 1

p′2

f(p1)g(p2)

f(p′1)g(p
′
2)
. (A.4)
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We choose f(p) = p
1
2 and g(p) = p. Making the substitution q := p′

2 − p2 for
p′

2 and defining ξ2 := q − p1 we have

Ĩ(p1,p2) ≤ m · c p
1
2
1

∫

R3

dq
1

q2
p2

|q + p2|2
∫

R3

dp′
1

1

|ξ2 + p′
1|2

1

ξ2 + p′1 + 1

1

p
′1/2
1

.

(A.5)
For ξ2 = 0, the second integral is bounded. For ξ2 6= 0, let y := p′1/ξ2. Then
the second integral turns into [12, Appendix A]

2π

ξ2

∫ ∞

0

dp′1
ξ2 + p′1 + 1

p
′1/2
1 ln

ξ2 + p′1
|ξ2 − p′1|

= 2π

∫ ∞

0

dy

y
1
2

ln
1 + y

|1 − y| ·
ξ

1
2
2 y

ξ2(1 + y) + 1
≤ c̃

1 + ξ
1/2
2

(A.6)

since the last factor can be estimated by c

1+ξ
1/2
2

and the remaining integral is

convergent. Therefore we get with the substitution q2 := q/p2,

Ĩ(p1,p2) ≤ m c c̃

∫

R3

dq2
1

q22

1

|q2 + ep2 |2
· 1

p
− 1

2
1 + |q2p2/p1 − ep1 |

1
2

(A.7)

where epi is the unit vector in the direction of pi, i = 1, 2. The last factor
is bounded for p1 < ∞, and the remaining integral is finite. For p1 → ∞, one
gets at most an additional square-root singularity, which is integrable. Thus Ĩ
is finite.

The contribution to (A.1) arising from the derivative of U
(2)
0 which is esti-

mated by c
p2

, is handled by the same integrals if one chooses g(p) = p2 instead

of g(p) = p. For the boundedness of the remaining contributions to (A.1) one
can use similar techniques as for the proof of the p-form boundedness of c(12)

[16]. One must, however, take care to use the same convergence generating func-
tions in the corresponding hermitean conjugate term entering into the r.h.s. of

(A.1). (For example, in the estimates of the derivative of D̃
(1)
0 , one should take

f(p) = p
3
2 and g(p) = 1.)

Appendix B (Estimates for γM1 and e2M2)

From (3.4) and (3.5) we have

|γM1| ≤
1

2

∣

∣

∣

∣

∫

R12

dπψ̂(p1,p2)

{

(1 − m

Ep1
) (

1

Ep1
− c0
Ep1 +Ep2 −m

) b
(1)
1m

+ b
(1)
1m (1 − m

Ep1
) (

1

Ep1
− c0
Ep1 +Ep2 −m

) − c0 (1 − m

Ep1
)

1

Ep1 +Ep2 −m
b
(2)
1m

18



− c0 b
(2)
1m (1 − m

Ep1
)

1

Ep1 +Ep2 −m

}

ψ̂(p1,p2)

∣

∣

∣

∣

+ |β11(m)|. (B.1)

Each of the four terms in curly brackets is estimated separately by its modulus.
For the sake of demonstration we select the second term. With kb1m from (3.6)
and the Lieb and Yau formula (3.7), we get

Tb :=
1

2

∣

∣

∣

∣

∫

R12

dπ ψ̂0(p1,p2)U
(1)
0 kb1mU

(1′)∗
0

(

1 − m

Ep′1

)

·
(

1

Ep′1
− c0
Ep′1 +Ep′2 −m

)

ψ̂0(p
′
1,p

′
2)

∣

∣

∣

∣

(B.2)

≤ 1

2

∫

R6

dp1dp2

∣

∣

∣
U

(1)∗
0 ψ̂0(p1,p2)

∣

∣

∣

2

· Ib.

Taking f(p1) =
p
5/2
1√

p21+m
2+m

, g = 1, and estimating | 1
Ep′

1

− c0
Ep′

1
+Ep′

2
−m | ≤ 1

Ep′
1

(which holds for c0 ≤ 2) we obtain in the new variables qi,q
′
i after performing

the angular integration in the variable q′
1 [12, Appendix A],

Ib :=
γ

2π2

∫

R6

dp′
1dp

′
2 (1 − m

Ep′1
)

∣

∣

∣

∣

1

Ep′1
− c0
Ep′1 +Ep′2 −m

∣

∣

∣

∣

· 1

|p1 − p′
1|2

δ(p2 − p′
2)
f(p1)

f(p′1)
(B.3)

≤ γ

π
q
3/2
1

1
√

q21 + 1 + 1

∫ ∞

0

dq′1 ln
q1 + q′1
|q1 − q′1|

q
′ 1
2

1

1

q
′2
1 + 1

.

In order to get an analytical estimate of (B.3) we use

1

q
′2
1 + 1

≤















1, q′1 ≤ 1

1

q
′2
1

, q′1 > 1
(B.4)

such that, upon substituting q′1 =: q1 z [12, Appendix A],

Ib ≤ γ

π

q31
√

q21 + 1 + 1

[

∫ 1/q1

0

dz z
1
2 ln

1 + z

|1 − z| +
1

q21

∫ ∞

1/q1

dz

z3/2
ln

1 + z

|1 − z|

]

=
γ

π
q21

1
√

q21 + 1 + 1

[

q1F1/2(
1

q1
) +

1

q1
G−3/2(

1

q1
)

]

, (B.5)

F1/2(a) :=
2

3

[

a3/2 ln

∣

∣

∣

∣

1 + a

1 − a

∣

∣

∣

∣

+ 4
√
a − 2 arctan

√
a − ln

∣

∣

∣

∣

1 +
√
a

1 −√
a

∣

∣

∣

∣

]

G−3/2(a) := 2π − 2 ln

∣

∣

∣

∣

√
a+ 1√
a− 1

∣

∣

∣

∣

− 4 arctan
√
a +

2√
a

ln

∣

∣

∣

∣

1 + a

1 − a

∣

∣

∣

∣

.
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For the first contribution to |γM1|, the same functions f, g have to be taken, and

the approximation
√

q
′2
1 + 1 ≤ q′1+1 is made to allow for an analytic evaluation

of the corresponding integral. For the third and fourth contribution to |γM1|
we use instead f = 1, g(p2) = p

3/2
2 and the additional estimate (for c ≥ 0)

1
√

q′2 + 1 + c
≤



















1

1 + c
, q′ ≤ 1 + c

1

q′
, q′ > 1 + c

. (B.6)

For the estimate of |β11(m)| we define ψ1 := g(p1)σ
(1)p1 ψ, take f(p1) =

p
3/2
1 , g = 1 and use again (B.6). With |U (1)∗

0 ψ̂0(p1,p2)|2 = |ψ̂(p1,p2)|2 and

|ψ̂1(p1,p2)|2 =
q21

2
√
q21+1(

√
q21+1+1)

|ψ̂(p1,p2)|2 we then obtain

q21 M̃1 =
q21

l (l + 1)

{∣

∣

∣

∣

∣

1

l
− c0

l +
√

q22 + 1 − 1

∣

∣

∣

∣

∣

q1(q1 + 2)

l + 1

+
l

2π

(

q1F1/2(
1

q1
) +

1

q1
G−3/2(

1

q1
)

)

+ c0
q2

l +
√

q22 + 1 − 1

+
c0
2π

(

q2
l
F−1/2(

l

q2
) + G−3/2(

l

q2
)

)

(B.7)

+
1

2π

(

2πq1
l

+ q1F−1/2(
1

q1
) + G−3/2(

1

q1
)

)}

where l =
√

q21 + 1 and

F−1/2(a) := 2
√
a ln

∣

∣

∣

∣

1 + a

1 − a

∣

∣

∣

∣

+ 4 arctan
√
a − 2 ln

∣

∣

∣

∣

√
a+ 1√
a− 1

∣

∣

∣

∣

. (B.8)

For estimating e2M2 the same techniques are used, except for the simpler esti-
mate 1√

q
′2
1 +1

≤ 1
q′1

in the last contribution (which has little effect on γc due to

the smallness of e2). This results in

q21M̃2 =
q21

l (l + 1)

{
∣

∣

∣

∣

∣

1

l
− c0

l +
√

q22 + 1 − 1

∣

∣

∣

∣

∣

q1(q1 + 2)

l + 1

+
l

2π

(

q1F1/2(
1

q1
) +

1

q1
G−3/2(

1

q1
)

)

+
(q1
l

+ 1
)

}

. (B.9)
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Appendix C (Relative boundedness of the

potential of h
(2)
θ )

First we estimate with the help of (2.9),

‖θ Tθ ψ‖2 = ‖(
√

p2
1 +m2θ2 +

√

p2
2 +m2θ2 ) ψ‖2 (C.1)

≥ (ψ, (Re
√

p2
1 +m2θ2 + Re

√

p2
2 +m2θ2 )2 ψ) ≥ (ψ, (p1 + p2)

2 ψ),

such that ‖T0ψ‖ ≤ |θ| ‖Tθψ‖. Next we decompose for h
(2)
θ = Tθ +Wθ analo-

gously to (2.7),

‖Wθ ψ‖ ≤ 1

|θ| ‖W0ψ‖ + ‖(Wθ − 1

θ
W0) ψ‖. (C.2)

The boundedness of the second term in (C.2) follows immediately from the
method of proof of the form boundedness of Wθ − 1

θW0 (see e.g. Appendix A).
For the first term we estimate, using ‖p1ψ‖2 = 1

2 (ψ, (p2
1 + p2

2)ψ) ≤ 1
2 (ψ, (p1 +

p2)
2 ψ),

‖W0 ψ‖ ≤ ‖
2
∑

k=1

(b
(k)
1 + b

(k)
2 )ψ‖ + ‖v(12)

0 ψ‖ + ‖c(12)0 ψ‖ (C.3)

≤ √
cw ‖T0ψ‖ +

1√
2

√
cv ‖T0ψ‖ + 2

1√
2

√
cs ‖T0ψ‖ =: c̃1 ‖T0ψ‖

where cv = 4e4, cw = ( 4
3γ + 2

9γ
2)2 and cs = ( 2γ

π [π2/4 − 1])2 cv are calculated
in [12, p.72]. With the inequality below (C.1) this guarantees the relative Tθ-
boundedness of Wθ. We have c̃1 < 1 for γ ≤ 0.66.
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