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Abstract

In the framework of one dimensional potential scattering we prove that, modulo

a compact term, the wave operators can be written in terms of a universal oper-

ator and of the scattering operator. The universal operator is related to the one

dimensional Hilbert transform and can be expressed as a function of the generator

of dilations. As a consequence, we show how Levinson’s theorem can be rewritten

as an index theorem, and obtain the asymptotic behaviour of the wave operators at

high and low energy and at large and small scale.
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1 Introduction

In recent work we proposed a topological approach to Levinson’s theorem, first in three
dimensions in the generic case, i.e. in absence of 0-energy resonance [KR2], and second
for one dimensional scattering systems including also the exceptional cases [KR3]. One
of the key features of this new approach is the use of extensions of C∗-algebras and their
associated index map inK-theory. The basic hypothesis we had to make was that the wave
operator Ω− belongs to a certain C∗-algebra. In this article we prove the crucial hypothesis
for one dimensional scattering systems with sufficiently fast vanishing potentials V . In
fact, we observe an even stronger result, namely that

Ω−
(

− ∆ + V,−∆
)

= 1 + 1
2

(

1 − R(A)
)(

S(−∆) − 1
)

+K , (1)

where S(−∆) is the scattering operator,

R(A) = − tanh(πA) − i(Pe − Po) cosh(πA)−1, (2)

and K is a compact operator. Here A is the generator of dilations and Pe, Po are the
projections onto the even (symmetric), odd elements of H := L2(R), respectively. A
similar formula holds for Ω+, cf. (10), and the same type of formula, but even with
K = 0, was found for point interactions in [KR1].

Note that R(A) is universal in the sense that it does not depend on the potential.
Furthermore, there is a simple relation between the Hilbert transform H and the operator
R(A). In fact, if σ : H → H denotes the operator of multiplication with the sign of the
variable – it is thus the natural intertwiner between even and odd functions on R – then

H = iσR(A).

It thus follows that the wave operator Ω− can be rewritten in terms of H instead of R(A),
which is in accordance with the analysis of the wave operators performed in [DF, W].

The structure of the wave operator exhibited in (1) has various implications of which
we will discuss two. First, the observation that Levinson’s theorem can be formulated
as an index theorem, and thus is topological in nature, and second, that certain strong
convergent limits in scattering theory are in fact norm convergent limits in a restricted
sense.

1.1 Levinson’s theorem

As for the first implication recall that in one-dimensional potential scattering, a common
form of Levinson’s theorem reads :

1
2π

∫ ∞

0

tr[iS∗(λ)S ′(λ)]dλ = N − ν (3)
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where N is the number of bound states of H = −∆ + V , which is finite under our
assumptions, S ′ denotes the derivative of S with respect to λ and tr is the 2 × 2 matrix
trace. The correction term ν is 1

2
or 0 depending on the existence of a resonance for H

at energy 0. Using the above obtained formula for the wave operator Ω−, we will express
(3) as an index theorem.

For that purpose, recall that asymptotic completeness implies that Ω± are isome-
tries with range projection 1 − Pp where Pp is the projection onto the bound states. In
particular, Ω− is a Fredholm operator and

N = Tr(Pp) = − index(Ω−) .

Our aim is to compute this index in a way similar to the Krein-Gohberg index theorem.
We now outline our approach which is based on the construction of a norm-closed algebra
E which contains Ω− and sits in between the algebra of compact operators K(H ) and
that of bounded operators B(H ) on H : K(H ) ⊂ E ⊂ B(H ). Recall that K(H )
forms an ideal in B(H ), and that F ∈ B(H ) is a Fredholm operator if it is invertible
modulo a compact operator, that is, its image q(F ) in the quotient algebra B(H )/K(H )
is invertible. Its index is a topological (even homotopy) invariant, namely it is stable
against perturbations of F along continuous paths of Fredholm operators. Suppose F
belongs to E and that E/K(H ) is isomorphic to C

(

S,M2(C)
)

, the algebra of continuous
functions over the circle with values in the 2 × 2 matrices. Then, viewing q(F ) as such
a function we can take pointwise its determinant to obtain a non-vanishing function over
the circle. The winding number of that latter function is another topological invariant
of F . We denote it by w

(

q(F )
)

, and we shall show below that these two invariants are
equal. By applying this to F = Ω− one obtains our topological formulation of Levinson’s
theorem

w
(

q(Ω−)
)

= −Tr(Pp) . (4)

Obviously, the sign depends on the choice of orientation for the winding number. We
shall see in Section 4.1 how the winding number w

(

q(Ω−)
)

is related to the l.h.s. of (3)
and takes account for the correction term ν.

We note that (4) can be refined: if P is a projection which commutes with Ω−, then
restricting the analysis to the Hilbert space PH results in w

(

q(Ω−P )
)

= −Tr(PpP ).
For example, if V is a symmetric function, choosing for P = Pe or P = Po leads to a
Levinson’s theorem for the even or the odd sector.

Whereas to our knowledge it has not yet been pointed out that Levinson’s theorem
is a topological theorem, the theorem in its known form (proved by analytic means) has
been used in the context of the discussion of various topological quantities, as for instance
the Witten-index in supersymmetric quantum mechanics. We will comment on this in
Section 4.1.
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1.2 Restricted norm convergence

Further implications of equation (1) concern norm estimates which are similar in spirit to
propagation estimates. It is well known that the relations

s− lim
t→−∞

eiH0t e−iHt Ω− = 1, s− lim
t→+∞

eiH0t e−iHt Ω− = S

hold, with H0 = −∆ and where the convergence is in the strong topology, but never
in the norm topology. Defining ln(H) by functional calculus on the positive part of the
spectrum of H , the invariance principle implies also that

s− lim
t→−∞

ei ln(H0)t e−i ln(H)t Ω− − 1 = 0, s− lim
t→+∞

ei ln(H0)t e−i ln(H)t Ω− − S = 0 (5)

again involving the strong but not the norm topology. Now, a rather surprising corollary
of our approach is that convergence of the above limits holds in the norm topology in a
restricted sense, namely after multiplying (5) with a suitable spectral projection of the
generator A of dilations, see Prop. 12. Similar results also hold for expressions in which A
is exchanged with ln(H0), see Prop. 13. All these estimates are related to the asymptotic
behaviour of the wave operators at high and low energy and at large and small scale, as
explained in Section 5.

Acknowledgment S.R. thanks S. Nakamura for a two weeks invitation to Japan where
part of the present work was completed. This stay was made possible thanks to a grant
from the Japan Society for the Promotion of Science.

2 Potential scattering in one dimension

In this section we introduce the precise framework for our investigations. We refer to
[AY, DT, Sc] for the proofs of the following standard results.

Let us denote by H the Hilbert space L2(R), and for any n ∈ N, let H n denote
the usual Sobolev space of order n on R. We consider for the operator H0 the Laplacian
operator −∆ with domain H 2. For the perturbation, we assume that V is a real function
on R that belongs to L1

1(R), where for any ρ ∈ R+, L1
ρ(R) is the weighted L1-space

L1
ρ(R) =

{

v : R → C |
∫

R

〈x〉ρ |v(x)|dx <∞
}

,

with 〈x〉 = (1 + x2)1/2. In that situation, the quadratic form defined by

H
1 ∋ f 7→

∫

R

(

|f ′(x)|2 + V (x)|f(x)|2
)

dx
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is closed, bounded from below, and defines a unique self-adjoint operator H in H . The
spectrum of this operator consists of an absolutely continuous part equal to [0,∞) and of
a finite number of eigenvalues which are all located in (−∞, 0). Furthermore, the wave
operators

Ω± := s− lim
t→±∞

eiHt e−iH0t

exist and are asymptotically complete. It then follows that the scattering operator S =
Ω∗

+ Ω− is unitary. Let us also mention that in the direct integral representation of H

with respect to H0, the spectral decomposition of S ∼= {S(λ)}λ≥0 satisfies the following
property: The map

R+ ∋ λ 7→ S(λ) ∈M2(C)

is continuous and has limits at 0 and at +∞ [AK, DT, K].
Our analysis of the wave operators is based on their representation in terms of the

generalized eigenfunctions which we briefly recall. A full derivation can be found in [AY,
Sec. 2]. For simplicity, we shall restrict ourselves to the study of Ω := Ω−, the analysis of
Ω+ being then an easy corollary, see equation (10).

For each x ∈ R and k ∈ R∗, let Ψ(x, k) be the solution of the Lippmann-Schwinger
equation:

Ψ(x, k) = eikx + 1
2i|k|

∫

R

ei|k| |x−y|V (y)Ψ(y, k)dy . (6)

For k ∈ R∗ fixed, the r.h.s. has a well defined meaning since the map y 7→ Ψ(y, k) belongs
to L∞(R). Then the wave operator Ω is formally given on any f ∈ H by

[Ωf ](x) = 1√
2π

∫

R

Ψ(x, k) f̂(k)dk. (7)

The notation f̂ = F [f ] is used for the Fourier transform of f defined on any f ∈ L2(R)∩
L1(R) by f̂(k) = 1√

2π

∫

R
e−ikxf(x)dx.

3 A new formula for the wave operators

Starting from the Lipmann-Schwinger equation (6) for x ∈ R
∗ and k ∈ R

∗, let us deduce
(1) for the wave operator Ω. The notation x̂ is used for the unit vector x

|x| . One has:

Ψ(x, k) − eikx = 1
2i|k|

∫

R

ei|k| |x−y|V (y)Ψ(y, k)dy

= 1
2i|k|

∫

R

[

ei|k| (|x|−x̂y) +
(

ei|k| |x−y| − ei|k| (|x|−x̂y)
)]

V (y)Ψ(y, k)dy

= ei|k| |x| f(k2, k̂, x̂) +K(x, k) ,
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where

f(k2, k̂, x̂) := 1
2i|k|

∫

R

e−i|k|x̂y V (y)Ψ(y, k)dy

K(x, k) := 1
2i|k|

∫

R

(

ei|k| |x−y| − ei|k| (|x|−x̂y)
)

V (y)Ψ(y, k)dy .

We suspect that the expression f(k2, k̂, x̂) is equal to the scattering amplitude for any
V ∈ L1

1(R), but have not been able to locate such a result in the literature. However, it
is proved in [A, N] that such an equality holds if the potential is slightly more regular,
and in particular for V ∈ L1

2(R) which is assumed in the sequel. It then follows from (7)
and from the relation between the scattering amplitude and the scattering operator that
for any f belonging to the Schwartz space S(R):

[(Ω − 1)f ](x) = 1√
2π

∫

R

ei|k| |x| f(k2, k̂, x̂) f̂(k)dk + 1√
2π

∫

R

K(x, k) f̂(k)dk

= 1√
2π

∫

R+

eiκ|x| [(S(κ2) − 1)f̂
]

(κx̂)dκ + [Kf ](x)

=
[(

T
(

S(−∆) − 1
)

+K
)

f
]

(x)

where

[T f ](x) := 1√
2π

∫

R+

eiκ|x| f̂(κx̂)dκ

and

[Kf ](x) := 1√
2π

∫

R

K(x, k) f̂(k)dk .

We will show below that for V ∈ L1
ρ(R) with ρ > 5

2
, the kernel K(·, ·) belongs to L2(R×R),

and thus the operator K is compact.
Our next aim is to rewrite the operator T as a function of the dilation operator A.

But first we relate it to the Hilbert transform. Recall that the Hilbert transform on R is
defined on any f ∈ S(R) by

[Hf ](x) = 1
π
Pv

∫

R

f(y)

x− y
dy = −i√

2π

∫

R

eikx k̂ f̂(k)dk

and can be continuously extended to a bounded operator in H , still denoted by H. In
the previous expression, Pv denotes the principal value. We also define σ : H → H by
[σf ](x) = x̂f(x) for any f ∈ H and x ∈ R

∗. Clearly σ yields an isomorphism between
He and Ho, the subspaces of even, respectively odd, functions of H .
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Lemma 1. On S(R), the equality 2T = iσH + 1 holds, and thus T extends continuously

to a bounded operator in H , still denoted by T .

Proof. Let f ∈ S(R). For x > 0 one has

[(iσH + 1)f ](x) = 1√
2π

∫

R

eikx(x̂k̂ + 1)f̂(k)dk = 2√
2π

∫ +∞

0

eik|x|f̂(kx̂)dk.

For x < 0, one has

[(iσH + 1)f ](x) = 1√
2π

∫

R

eikx(x̂k̂ + 1)f̂(k)dk = 2√
2π

∫ 0

−∞
eikxf̂(k)dk

= 2√
2π

∫ +∞

0

e−ikxf̂(−k)dk = 2√
2π

∫ +∞

0

eik|x|f̂(kx̂)dk.

The last statement follows then by density.

3.1 T as a function of A

Recall [J] that the dilation group is represented on H by

[Uτf ](x) = eτ/2f(eτx) ,

with f ∈ H , τ ∈ R and x ∈ R. Its self-adjoint generator A is formally given by 1
2i

(X∇+
∇X), where X is the position operator and ∇ = d

dx
. These operators are all essentially

self-adjoint on S(R). It is easily observed that the formal equality F AF∗ = −A holds.
More precisely, for any essentially bounded function ϕ on R, one has Fϕ(A)F∗ = ϕ(−A).
Furthermore, since A acts only on the radial coordinate, the operator ϕ(A) leaves He

and Ho invariant. For that reason, we can consider a slightly more complicated operator
than ϕ(A). Let ϕe, ϕo be two essentially bounded functions on R. Then ϕ(A) : H → H

defined on He by ϕe(A) and on Ho by ϕo(A), is a bounded operator.
We first state a result about the Mellin transform.

Lemma 2. Let ϕ be an essentially bounded function on R which is the image under the

Fourier transform of a distribution ϕ̌ on R with rapid decay to 0 at infinity. Then, for

any f ∈ S(R) with compact support and any x ∈ R∗ one has

[ϕ(A)f ](x) = 1√
2π

∫ ∞

0

ϕ̌
(

ln( |x|
y

)
)( |x|

y

)1/2
f(yx̂) dy

|x| , (8)

where the r.h.s. has to be understood in the sense of distributions.
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Proof. The proof is a simple application for n = 1 of the general formulas developed in
[J, p. 439]. Let us however mention that the convention of this reference on the minus
sign for the operator A in its spectral representation has not been followed.

Lemma 3. The equality iσH = −R(A) holds in H , where R(A) is given in (2).

Proof. For any ǫ > 0, let us define the integral kernel

Iǫ(x, y) = 1
2π

∫

R

e−ik(x−y) ŷ k̂ e−ǫ|k|dk ,

for x, y ∈ R∗. We denote by Iǫ the operator it defines on H . An application of the
theorems of Fubini and Lebesgues shows that for any f ∈ S(R \ {0}):

lim
ǫ→0

[Iǫf ](x) = [F (iσH) F∗f ](x) .

On the other hand, one easily obtains : Iǫ(x, y) = − 2iŷ(x−y)
2π[(x−y)2+ǫ2]

. Now, let us assume
additionally that f is an even function, and let x > 0. Then one has

[Iǫf ](x) = − 2i
2π

∫ ∞

0

[ x− y

(x− y)2 + ǫ2
− x+ y

(x+ y)2 + ǫ2

]

f(y) dy.

Comparison with (8) yields therefore that limǫ→0 Iǫf = ϕe(A)f , with

ϕ̌e

(

ln(x
y
)
)

= − i√
2π

[

Pv
( 1

sinh
(

1
2
ln(x

y
)
)

)

− 1

cosh
(

1
2
ln(x

y
)
)

]

.

Similarly, for f odd and x > 0, one obtains

[Iǫf ](x) = − 2i
2π

∫ ∞

0

[ x− y

(x− y)2 + ǫ2
+

x+ y

(x+ y)2 + ǫ2

]

f(y) dy.

and limǫ→0 Iǫf = ϕo(A)f with

ϕ̌o

(

ln(x
y
)
)

= − i√
2π

[

Pv
( 1

sinh
(

1
2
ln(x

y
)
)

)

+
1

cosh
(

1
2
ln(x

y
)
)

]

.

Using that the Fourier transform of Pv
(

1
sinh( ·

2
)

)

is −i
√

2π tanh(π·) and that of 1
cosh( ·

2
)

is
√

2π
cosh(π·) , one obtains explicit expressions for ϕe and ϕo. By density one finally gets that

iσH = ϕe(−A)Pe + ϕo(−A)Po,

and then the statement follows from the equalities 1
2

(

1 −R(A)
)

≡ T = 1
2
(iσH + 1).
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We have thus verified equations (1) and (2) provided we show compactness of K. But
before doing that we wish to point out the remarkable fact that for one-dimensional point
interactions the formulae obtained above are correct with K = 0 [KR1]. In fact, for the
δ-interaction of strength α ∈ R∪{∞} – the parameter α describes the boundary condition
of the wave function Ψ′(0+)−Ψ′(0−) = αΨ(0) which can be formally interpreted as arising
from a potential V = αδ where δ is the Dirac δ-function at 0 – the wave operator is given
by

Ωα
− = 1 + 1

2

[

1 + tanh(πA) + i
(

cosh(πA)
)−1

]

(

2
√
−∆ − iα

2
√
−∆ + iα

− 1

)

Pe . (9)

3.2 Compactness of K

Let us first observe that the expression for K(x, k) can be simplified. Indeed, it is easily
observed that for x ≥ 0 one has

K(x, k) =

∫ ∞

x

sin(|k| (y−x))
|k| V (y)Ψ(y, k)dy

and for x < 0 one has

K(x, k) =

∫ x

−∞

sin(|k| (x−y))
|k| V (y)Ψ(y, k)dy

We suspect that the corresponding integral operator K is compact for any potential
V belonging to L1

1(R). However, we give below a simple proof that under a stronger
assumption on V the integral operator K is even Hilbert-Schmidt.

Proposition 4. If V belongs to L1
ρ(R) for some ρ > 5/2, then the operator K is Hilbert-

Schmidt.

Proof. The proof consists in showing that the map R×R ∋ (x, k) 7→ K(x, k) ∈ C belongs
to L2(R × R). Since the above definition for K(·, ·) is symmetric for x ∈ R±, we shall
concentrate only on the case x ≥ 0, the case x < 0 being analogous.

a) Let us first consider the case |k| ≥ 1. It is known that the function Ψ(·, ·) is
bounded, independently of x ∈ R and k ∈ R \ (−1, 1). Indeed, for k > 0, one has
Ψ(x,±k) = e±ixk T (k) m±(x, k), where T (·) is the transmission coefficient and m± are
the Jost functions. Furthermore, it is known that |T (k)| ≤ 1 [DT, Thm. 1] and that
|m±(x, k)| is bounded, independently of x ∈ R and k ∈ R \ (−1, 1) [DT, Lem. 1]. Thus,
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it follows that

|K(x, k)| =
∣

∣

∣

∫ ∞

0

sin(|k|y)
|k| V (x+ y)Ψ(x+ y, k)dy

∣

∣

∣

≤ c
|k|

∫ ∞

0

〈x+ y〉−1 〈x+ y〉1 |V (x+ y)|dy

≤ c
|k| 〈x〉

−1

∫

R

〈y〉 |V (y)|dy

≤ d
|k| 〈x〉

−1 ,

where c and d are two constants independent of x and k. Then one clearly has that
|K(x, k)| ∈ L2

(

R+ × R \ (−1, 1)
)

.

b) Let us now assume that k ∈ (0, 1). By taking into account the bound | sin(|k|y)|
|k| ≤

4y
1+|k|y , one has for any α > 0:

|K(x,±k)| ≤
∫ ∞

0

4y
1+|k|y |V (x+ y)| |Ψ(x+ y,±k)|dy

≤ 4〈x〉−α

∫ ∞

0

〈x+ y〉1+α |V (x+ y)|
∣

∣e±ik(x+y)T (k)m±(x+ y, k)
∣

∣dy

≤ 4〈x〉−α

∫ ∞

0

〈x+ y〉2+α |V (x+ y)|
[

〈x+ y〉−1
(
∣

∣m±(x+ y, k) − 1
∣

∣ + 1
)

]

dy .

Since |m±(x, k) − 1| grows at most linearly in |x|, independently of k [DT, Lem. 1], the
term into square brackets is bounded, independently of x, y and k. Thus, one easily
obtains that |K(x, k)| belongs to L2

(

R+ × (−1, 1)
)

if α > 1/2, that is if ρ > 5/2.

Theorem 5. If V belongs to L1
ρ(R) for some ρ > 5/2, then formula (1) holds with K

compact.

We note again that the first factor
(

1 − R(A)
)

is universal in the sense that it does
not depend on the potential. Since Ω+ = Ω−S

∗ the analogous formula for the other wave
operator reads

Ω+ = 1 + 1
2

(

1 +R(A)
)(

S(−∆)∗ − 1
)

+K ′ (10)

with K ′ = KS∗ as well compact.

4 Levinson’s theorem as an index theorem

The Introduction containing a brief description of our topological approach of Levinson’s
theorem, we directly start by defining the C∗-algebras. The algebra E is constructed with

10



the help of the generator A of dilations and of the operator B := 1
2
ln(H0) defined by func-

tional calculus. The crucial property is that A and B satisfy the canonical commutation
relation [A,B] = i so that A generates translations in B and vice versa,

eiBtAe−iBt = A + t, eiAsBe−iAs = B − s. (11)

Furthermore, both operators leave the subspaces He and Ho invariant. More precisely,
for any essentially bounded functions ϕ and η on R, the operator ϕ(A)η(B) leaves both
subspaces invariant. For that reason, we shall subsequently identify the Hilbert space
H = He ⊕ Ho with L2(R+,C

2) ≡ L2(R+) ⊗ C2. And more generally, we can consider
functions ϕ, η defined on R and taking values in M2(C).

Now, let E be the closure in B(H ) of the algebra generated by elements of the form
ϕ(A)ψ(H0), where ϕ is a continuous function on R with values in M2(C) which converges
at ±∞, and ψ is a continuous function R+ with values in M2(C) which converges at
0 and at +∞. Stated differently, ϕ ∈ C

(

R,M2(C)
)

, where R = [−∞,+∞], and ψ ∈
C

(

R+,M2(C)
)

with R+ = [0,+∞]. Let J be the norm closed algebra generated by
ϕ(A)ψ(H0) with functions ϕ and ψ for which the above limits vanish. Obviously, J is
an ideal in E , and the same algebras are obtained if ψ(H0) is replaced by η(B) with
η ∈ C

(

R,M2(C)
)

or η ∈ C0

(

R,M2(C)
)

, respectively.
In a completely different context, these algebras have already been studied in [GI].

The authors introduced them in terms of the operator X and −i∇ on L2(R, E), with E
an auxiliary Hilbert space, possibly of infinite dimension. In that situation, the corre-
sponding functions ϕ and η are norm continuous function on R with values in K(E). The
isomorphism between our algebras and the algebras introduced in [GI, Sec. 3.5] is given
by the Mellin transform. Indeed, A is unitarily equivalent through this transform to the
operator X on L2

(

R,M2(C)
)

, and the operator B is equal to −i∇ in this representation.
For that reason, we shall freely use the results obtained in that reference, and refer to
it for the proofs. In particular, it is proved that J is equal to K(H ), and an explicit
description of the quotient E/J is given, which we specify now in our context.

To describe the quotient E/J we consider the square � := R+×R whose boundary ∂�
is the union of four parts: ∂� = B1∪B2∪B3∪B4, with B1 = {0}×R, B2 = R+×{+∞},
B3 = {+∞} × R and B4 = R+ × {−∞}. We can then view C

(

∂�,M2(C)
)

as the
subalgebra of

C
(

R,M2(C)
)

⊕ C
(

R+,M2(C)
)

⊕ C
(

R,M2(C)
)

⊕ C
(

R+,M2(C)
)

given by elements (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end points, that
is, Γ1(+∞) = Γ2(0), Γ2(+∞) = Γ3(+∞), Γ3(−∞) = Γ4(+∞), Γ4(0) = Γ1(−∞). The
following lemma corresponds to results obtained in [GI, Sec. 3.5] rewritten in our frame-
work.
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Lemma 6. E/J is isomorphic to C
(

∂�,M2(C)
)

. Furthermore, for any ϕ ∈ C
(

R,M2(C)
)

and ψ ∈ C
(

R+,M2(C)
)

, the image of ϕ(A)ψ(Ho) through the quotient map q : E →
C

(

∂�,M2(C)
)

is given by Γ1(A) = ϕ(A)ψ(0), Γ2(H0) = ϕ(+∞)ψ(H0), Γ3(A) = ϕ(A)ψ(+∞)
and Γ4(H0) = ϕ(−∞)ψ(H0).

The following proposition contains the proof of the equality of the two topological
invariants mentioned in the Introduction. In fact, this equality could be borrowed from
a more general result of [BC], but we prefer to give a short and more fashionable proof.
Recall that by Atkinson’s theorem the image q(F ) of any Fredholm operator F ∈ E in
the algebra C

(

∂�,M2(C)
)

is invertible. We define the winding number w
(

q(F )
)

to be
the winding number of ∂� ∋ z 7→ det[q(F )(z)] ∈ C∗ with orientation of ∂� chosen right
around in Figure 1.

Proposition 7. For any Fredholm operator F in E , the winding number w
(

q(F )
)

satisfies

the equality

w
(

q(F )
)

= index(F ) .

Proof. For simplicity, we shall write C for C
(

∂�,M2(C)
)

. Let us first consider the short
exact sequence

0 → J → E q→ C → 0 .

Since J = K(H ), one has K1(J ) = 0, and the six-term exact sequence in K-theory
[RLL] associated with the above sequence reads

0 → K1(E) → K1(C)
ind−→ K0(J ) → K0(E) → K0(C) → 0 . (12)

It is well known that K0(J ) ∼= Z, with a morphism given by the trace Tr on H . Further-
more, K1(C) ∼= K1

(

C(S),M2(C)
) ∼= Z with a morphism given by the winding number of

the pointwise determinant of the 2× 2 matrix, simply denoted by w. Thus, the sequence
(12) becomes

0 → K1(E) → Z
n id−→ Z → K0(E) → K0(C) → 0

where n is some integer which can be obtained from the equation Tr
(

ind([u]1)
)

= nw([u]1)
evaluated on any particular non-trivial element. More precisely, one has ind([u]1) =
[1 −W ∗W ]0 − [1 −WW ∗]0 [RLL, Prop. 9.2.4], and hence Tr

(

ind([u]1)
)

= index(W ),
provided that W is a lift of u which is a partial isometry. As a particular element of E , let
us consider W := Ωα

−, the wave operator for the δ-interaction at strength α < 0 recalled
in (9) and obtained in [KR1]. By an explicit calculation performed in this reference, one
shows that w(q(Ωα

−)) = −1. Since the corresponding operator H describing the point
interaction has precisely one eigenvalue, we have index(Ωα

−) = −1, and hence n = 1.

12



Theorem 8. If V belongs to L1
ρ(R) for some ρ > 5/2, both operators Ω± belong to E .

Furthermore, the following equality holds:

w
(

q(Ω±)
)

= −Tr(Pp) . (13)

Proof. That Ω± ∈ E follows directly from the description of these operators given in
Theorem 5 and in the remark following it. The equality follows from the previous propo-
sition.

4.1 Decomposition of the winding number

The four parts given by the image of the wave operator q(Ω) = (Γ1,Γ2,Γ3,Γ4) are easily
determined with the help of Lemma 6. Indeed, since R(−∞) = 1 one has

Γ4(H0) = 1.

From R(+∞) = −1, it follows that

Γ2(H0) = 1 + 1
2

(

1 −R(+∞)
)

(S(H0) − 1) = S(H0).

Finally, one has
Γ1(A) = 1 + 1

2

(

1 −R(A)
)

(S(0) − 1), (14)

and
Γ3(A) = 1 + 1

2

(

1 − R(A)
)

(S(+∞) − 1).

To better visualise these results, one may consider the following figure:

1

Ω

σ(A)

σ(H0) ∞

∞

Γ3

S

Γ1

0
−∞

Figure 1: The square � = σ(H0) × σ(A) with the wave operator Ω and the limits
Γj, j = 1, . . . , 4 resulting from applying the quotient map q. One always has Γ2 = S
and Γ4 = 1 whereas Γ1 and Γ3 depend on the value of the S matrix at 0 and ∞,
respectively.
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Consequently, the winding number w
(

q(Ω)
)

is the sum of four terms, each side of the
square contributing for one. If the functions Γj are piecewise differentiable and if the
following integrals exist, we can use the trace formula for determining the winding number,
namely

w
(

q(Ω)
)

=
4

∑

j=1

wj, wj := 1
2πi

∫

Bj

tr[Γ−1
j dΓj ] . (15)

We find immediately that w4 = 0 and that

w2 = 1
2πi

∫ ∞

0

tr[S∗(λ)S ′(λ)]dλ

is (minus) the integral of the trace of the time delay. This expression exhibits our choice
of orientation in the calculation of the winding number, namely it goes from energy 0 to
energy ∞ along the side B2 of the square. Comparing (3) with (4) we see therefore that
the correction term ν arises now on the l.h.s. of the equality from the possible contribution
of Γ1 and Γ3 to the winding number. Whereas for point interactions, w3 need not to be
0 [KR1], the known fact that for potential scattering S(+∞) = 1 implies that Γ3(A) = 1
and w3 = 0.

We now determine the contribution coming from w1. For that we could use the known
results of the literature about the form of S(0) but we will give an independent argument.
Its only ingredients are the unitarity of Γ1(A), S(0) and R(A), which follows from the fact
that Ω is a isometry, and the explicit form of R(A). More precisely, in the decomposition

of H into He ⊕ Ho, the operator R(A) takes the form
(

re(A) 0
0 ro(A)

)

, with

re/o(x) = − tanh(πx) ∓ i cosh−1(πx) ∀ x ∈ R .

Proposition 9. Either det
(

S(0)
)

= −1 and then S(0) = ± ( −1 0
0 1 ), or det

(

S(0)
)

= 1

and then S(0) =
(

a b
−b̄ a

)

with a ∈ R, b ∈ C, and a2 + |b|2 = 1. Moreover, w1 = ∓1
2

in the

first case, and w1 = 0 in the second one.

Proof. Let us set S := S(0) and R := R(A). By rewriting Γ1(A) as 1
2

[

(1−R)S+(1+R)
]

,
the condition Γ1(A)Γ∗

1(A) = 1 yields

4 = (1 − R)(1 −R∗) + (1 +R)(1 +R∗) + (1 − R)S(1 +R∗) + (1 +R)S∗(1 − R∗)

which implies that (1−R)S(1+R∗)+(1+R)S∗(1−R∗) = 0. By multiplying both sides of
this equality with R one obtains (1−R)S(R+ 1)+ (1 +R)S∗(R− 1) = 0, or equivalently

X − RXR+ [Y,R] = 0

14



where X = S−S∗ and Y = S+S∗. In the basis mentioned above in which R is diagonal,
the previous equality is equivalent to

(

(1 − r2
e)Xee (ro − re)Yeo

(re − ro)Yoe (1 − r2
o)Xoo

)

= 0

in which the equality rer0 = 1 has been taken into account. This equality implies that See

and Soo are real, and that and S + S∗ is diagonal. This fact together with the unitarity
of S imply that det(S) = ±1 and that the matrix S has a form as stated.

For the calculation of w1, it follows from (15) that :

w1 = 1
2πi

∫

B1

tr
[

1
4
[(1 +R∗) + S∗(1 − R∗)] (dR)(1 − S)

]

= 1
8πi

∫

B1

tr
[

(2 − S − S∗)R∗dR
]

= 1
4
[−(1 − See) + (1 − Soo)]

= 1
4
(See − Soo) .

where we have used that
∫

B1
tr

[

(S−S∗)dR
]

= 0, and that 1
2πi

∫ ∞
−∞ r∗edre = − 1

2πi

∫ ∞
−∞ r∗odro =

−1
2
.

It is interesting to note that the result on the restriction of the form for S(0) coincides
almost with the possible forms that can occur in potential scattering, see e.g. [AK]. More
precisely, only the case S(0) = ( 1 0

0 −1 ) cannot occur. It is found that det
(

S(0)
)

= −1 if H
does not admit a resonance at energy zero. This is referred to as the generic case (g.c.).
In this case we thus have w1 = −1

2
. The so-called exceptional case (e.c.) corresponds to

det
(

S(0)
)

= 1 and occurs when such a zero energy resonance exists.
Thus, taking into account that Γ3 = Γ4 = 1 one obtains from (4)

1
2π

∫

R+

tr[iS∗(λ)S ′(λ)]dλ =

{

N − 1
2
, g.c.

N, e.c.
(16)

In particular, the correction term −ν corresponds to w1. This result (16) is in accordance
with the literature [BGK, BGW, DM, M, Sa].

Remark 1. We wish to make clear that our result, namely that Levinsons’ theorem is an
index theorem, is quite different from a result encountered in supersymmetric quantum
mechanics about the topological stability of the so-called Witten index and its relation to
half-bound states, anomalies and 0-energy eigenstates.

In supersymmetric quantum mechanics one is led to consider a closed densely defined
operator A on some Hilbert space and to compare the dynamics of H+ = AA∗ with H− =
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A∗A. The partial isometry arising from the polar decomposition of A yields a unitary
equivalence between the orthogonal complements of kerH− and kerH+. The quantity
W (A) := limβ→+∞ Tr(e−βH+ − e−βH

−) is a measure to which extend this symmetry fails
to hold between kerH− and kerH+. W (A) was introduced by Witten, and is now called
Witten index, who was motivated by supersymmetric quantum field theory which leads
one to consider the differential operator A = −i∇ − iϕ(X) on R for some mesurable
bounded function ϕ which has finite limits at ±∞ (see the review [NS] and references
therein). As was realized in [BB] the Witten index for the above model is given by
W (A) = 1

2π

∫ ∞
λ0

tr
[

iS∗(λ)S ′(λ)
]

dλ, where S = S(H+, H−) is the scattering operator for

the pair H+ = −∆ + ϕ2(x) + ϕ′(x), H− = −∆ + ϕ2(x) − ϕ′(x), and λ0 is the bottom of
the essential spectrum of H−. Hence in this model W (A) is a quantity which corresponds
to our w2. But note that the contributions from the non-zero eigenvalues of H+ and H−
will always cancel in the above comparison.

It is remarkable thatW (A) depends only on the limit values of ϕ at ±∞ [BB, BGGSS].
This topological stability, which was thoroughly analyzed in [GS] for more generalA, is due
to the (super)symmetry of the pair of operators under consideration: Any slight change
in ϕ would affect both operators H+ and H−. Another remarkable fact is W (A) need not
be integer if A is not a Fredholm operator. This has drawn a lot of attention and was
readily compared with the phenomenon of anomalies, half-bound states and corrections
they incite for the analog of Levinson’s theorem, see e.g. [BB, BGGSS, GS, NS]. But
none of the above supersymmetric approach is aimed at showing that Levinson’s theorem
is an index theorem, nor does the latter follow for instance from the topological stability
of the Witten index.

5 Restricted norm convergence

In [GI], an alternative description of the algebra E in terms of evolution groups is also
given. By rephrasing it in our framework, this leads to new propagation estimates. For the
time being, these estimates are a corollary of Theorem 8, but it could also be interesting
to obtain them from a direct computation.

We now introduce this new description of E inspired from [GI]. We also use the con-
vention of that reference, that is: if a symbol like T (∗) appears in a relation, it means that
this relation holds for T and for its adjoint T ∗. The function χ denotes the characteristic
function.

Lemma 10. A bounded operator F in H belongs to E if and only if there exist Γ1,Γ3 ∈
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C
(

R,M2(C)
)

and Γ2,Γ4 ∈ C
(

R+,M2(C)
)

such that the following conditions are satisfied:

lim
ε→0

‖χ(H0 ≤ ε)
(

F − Γ1(A)
)(∗)‖ = 0, lim

ε→+∞
‖χ(H0 ≥ ε)

(

F − Γ3(A)
)(∗)‖ = 0,

lim
t→−∞

‖χ(A ≤ t)
(

F − Γ4(H0)
)(∗)‖ = 0, lim

t→+∞
‖χ(A ≥ t)

(

F − Γ2(H0)
)(∗)‖ = 0.

Moreover, F belongs to the ideal K(H ) if the above conditions are satisfied with Γj = 0
for j ∈ {1, 2, 3, 4}.

In particular, for F = Ω ≡ Ω−, one has:

Corollary 11. If V belongs to L1
ρ(R) for some ρ > 5/2, then

lim
ε→0

‖χ(H0 ≤ ε)
(

Ω − Γ1(A)
)(∗)‖ = 0, lim

ε→+∞
‖χ(H0 ≥ ε)(Ω − 1)(∗)‖ = 0,

lim
t→−∞

‖χ(A ≤ t)(Ω − 1)(∗)‖ = 0, lim
t→+∞

‖χ(A ≥ t)
(

Ω − S(H0)
)(∗)‖ = 0,

where Γ1 is the operator defined in (14).

Let us point out that this corollary is a much more precise version of the well known
result

(Ω− − 1)ψ(H0)χ(A ≤ 0) ∈ K(H )

which holds for any continuous function ψ on R+ that vanishes in a neighbourhood of
0 and that is equal to 1 in a neighbourhood of +∞, see for example [E, P] for a proof
of such a result in the three dimensional case and for its use in the proof of asymptotic
completeness. In the framework of Section 4.1, this result simply says that Γ3 = Γ4 = 1,
but does not say anything about Γ1 and Γ2.

Now, by using the relation (11), the third and the fourth conditions of Corollary 11
can easily be rewritten in terms of the unitary groups generated by B. For example, the
third condition is equivalent to

lim
t→−∞

‖χ(A ≤ 0)eiBt (Ω − 1)(∗) e−iBt‖ = 0.

Furthermore, the invariance principle and the intertwining relation allow one to simplify
the above expression. Indeed, the following equalities hold:

Ω± e
−i ln(H0)t = e−i ln(H)t Ω± , (17)

where ln(H) is obtained by functional calculus on the positive part of the spectrum of
H . Let us also note that e−i ln(H)t = e−i ln(H)tEac(H), where Eac(H) denotes the spectral
projection on the absolutely continuous part of H . Finally, one obtains :
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Proposition 12. If V belongs to L1
ρ(R) for some ρ > 5/2, then

1. limt→−∞ ‖χ(A ≤ 0)[ei ln(H0)t e−i ln(H)t Ω− − 1]‖ = 0,

2. limt→−∞ ‖χ(A ≤ 0)[Ω∗
− e

i ln(H)t e−i ln(H0)t − 1]‖ = 0,

3. limt→+∞ ‖χ(A ≥ 0)[ei ln(H0)t e−i ln(H)t Ω− − S]‖ = 0,

4. limt→+∞ ‖χ(A ≥ 0)[Ω∗
− e

i ln(H)t e−i ln(H0)t − S∗]‖ = 0.

Proof. The proof simply consists in rewriting the last two conditions of Corollary 11 in
terms of the evolution group generated by B and taking relation (17) into account.

Let us add some more words on the first and the second condition of Corollary 11.
By using the equalities χ(H0 ≤ ε) = χ(B ≤ 1

2
ln ε) and χ(H0 ≥ ε) = χ(B ≥ 1

2
ln ε), and

the relation (11), these conditions can easily be rewritten in terms of the unitary groups
generated by A. For example, the first condition is equivalent to

lim
t→−∞

‖χ(H0 ≤ 1)e−iAt
(

Ω − Γ1(A)
)(∗)

eiAt‖ = 0 .

Furthermore, it is easily observed that the following equality holds:

e−itA Ω(H0 + V,H0)e
itA = Ω(H(t), H0) ,

where H(t) = H0 + e−2tV (e−t·). It thus follows that:

Proposition 13. If V belongs to L1
ρ(R) for some ρ > 5/2, then

1. limt→−∞ ‖χ(H0 ≤ 1)
(

Ω(H(t), H0) − Γ1(A)
)(∗)‖ = 0,

2. limt→+∞ ‖χ(H0 ≥ 1)
(

Ω(H(t), H0) − 1
)(∗)‖ = 0,

where Γ1 is the operator defined in (14).

Remark 2. Let us mention that the study of rescaled operators is quite common. As an
example we recall a similar construction developed in [AGHH, Chap. 1] and comment
on its relation to our result. In that reference the family of operators Hλ(t) = −∆ +
λ(et)e−2t V (e−t·) is introduced where λ is a real analytic function in a neighbourhood of
the origin and λ(0) = 0. It is then proved that as t → −∞ this operator converges in
the norm resolvent sense to a Schrödinger operator with a one point interaction at the
origin of strength α. The parameter α is equal to λ′(0)

∫

R
V (x)dx and hence insensitive

to the zero-energy properties of −∆ + V . A study of the corresponding limit of the wave
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operator Ω
(

Hλ(t), H0

)

yields a convergence to (9). Note that the computation of the part
corresponding to the left side B1 of q(Ωα

−) yields Γα
1 (A) = Po +R(A)Pe, except for α = 0.

To compare this with our approach, note thatH(t) = Hλ=1(t). Since λ = 1 contradicts
the assumption λ(0) = 0 made in [AGHH] a direct comparison is not possible. In view
of Proposition 13 this better ought to be the case since the explicit form of Γ1 given in
(14) shows that the corresponding limit as t → −∞ highly depends on the existence or
the absence of a 0-energy resonance for −∆ + V , a result much closer in spirit to the
corresponding one obtained in [AGHH] for systems in R3, where the function λ = 1 is
allowed. We observe that Γ1 = Γα

1 in the generic case and if α 6= 0.
We recall that we consider convergence in a norm restricted sense of the wave operators

(more precisely norm convergence after multiplication with the projections χ(H0 ≤ 1) or
χ(H0 ≥ 1)). The relation of this kind of convergence with convergence in the norm
resolvent sense of Hamiltonians is not yet established. A deeper and independent study
of the content of Proposition 13 and of its relation with the known results on rescaled
operators would certainly be of interest.
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