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2 INTRODUCTION

1. Introduction

In two recent papers, V.V. lvanov [I1, 12] derived a novel theorem on down-crossings of
monotone functions. Theorems of thiskind are useful as key elements of “constructive” proofs
of the Birkhoff Ergodic Theorem [B1, B2]. For example, let h be a non-negative measurable
functionon €2, andlet 7" beameasurablemap 7" : 2 — Q which preservesaprobability measure
p. We denote by s,, (w) the sum

n—1

$p(w) = Y h(Tw).

j=0
Let 3 > a > Obegiven. A down-crossing is defined as apair of integersn < m such that
s,(w)/m > p, and s, (w)/m < a.

Let 2, denote the set of w for which {s,,(w)/n},_;, . makesat least k successive down-
crossings, i.e., thereisasequencen, < m; < n, < m, < ... < n;, < my, such that each pair
n,;, m, definesadown-crossing. The surprising result of Ivanov isthe

Theorem 1.1. One has the bound

w(€y) < (/B (L.1)

Note that there is no constant in front of («/3)*, and that the result isindependent of €, 4,
T and h > 0. Severd (relatively straightforward) generalizations and consequences have been
pointed out in [I1, 12] and in the review paper [K]. We list two of them for the convenience of

the reader, and will mention related work at the end of the introduction.
1) If h € L>°—thereis no assumption on A > 0 here—then, for all g and « = 3 — ¢ one
has the b(2)und n(Q,) < AeP* where A and B depend only on ¢ = ¢/||h||,,. One has

B = 0(q).

2) Theaboveresultscan easily be used to actually prove the ergodic theorem, evenfor b € L,

In this paper, we give apartially new proof of Ivanov’s theorem, and we extend it in such away
that it applies to 1-dimensional models of statistical mechanics. Indeed, it suffices to consider
any trandationinvariant state of aspin system|[R]. To be specific, we might consider anIsing-like
model with spin 0, 1 (in aparticleinterpretation) and long-range interaction. Then 2 = {0, 1}Z,
T islattice trandation and 4 is the Gibbs state, not necessarily pure. For w = {w, },cz € ©,
we let h(w) = w, be the value of the spin at the site 0 and then s, (w)/n has the meaning
of the average “occupation number” on the interval [0, n — 1]. Ivanov’s theorem has then the
interpretation:

Proposition 1.2. The probability that the mean occupation number (as a function of the
volumen) makes more than k oscillations between 3 and o, 0 < o < 3 is bounded by (a/5)*.

Note that this statement is independent of the spin system under consideration, of the
temperature considered, of boundary conditions or any other parameter of the system. In



INTRODUCTION 3

particular, it also holds if the system is not in a pure state. Thus, it is a kind of geometrical
constraint on ergodic sums, or on the fluctuations of physical observables. If these observables
can take negative values, the results will be modified asin 1) above, but the bound will still be
exponentia in k.
In the statement above, we considered “boxes’ which are given by theintervals [0, n — 1].
However, the statement can be extended to symmetric intervals by the following new result:
Assume that T', as defined above, isinvertible. Definefor n € Z,

Syw) = ) hTw). (1.2)

j=—n+1

We now let ©,, denote the set of those w for which the sequence {S,,(w)/(2n + 1)},,_012. ..
makes at least k£ down-crossingsfrom gtoa, 0 < a < 3. We will show:

Theorem 1.3. There are two constants C = C(a/f) and R = R(«/B3) < 1 such that one
has the bound
1(Oy) < CR".

The constants C and R are independent of 1, 2, T', and h > 0.

Remark. We will describe R in Section 5, but note that R < 1, R(z) — 0 asx — 0 and

R(z) ~ exp(—0(e/4"%)) when z = 1 — ¢. (Thisis certainly not the best possible bound.)
The Theorem 1.3 can be extended to sequences of volumes which tend to infinity in amore

general way asn — oo: Letp, > 0,p, > 0,7, > 0,7, > 0begivenintegerswithp, +p, > 0

and define now
npy+r—1

S,w)= > WTw). (1.3)

j=—npi—r1

Let ©, bethe set of w for which the sequence {S,, (w)/(n(py + p,) + 71 + 75) }pen Makes at
least & down-crossings from 3 to a.

Theorem 1.4. There are two constants

C = C(plapza T1,T2, a/ﬁ) , R = R(plapza 1,7y, a/ﬂ) <1,

such that one has the bound
1(Oy) < CR".

The constants C and R are independent of 1, 2, T', and h > 0.

Our paper is organized as follows. In Section 2, we show the basic inequality, “Ivanov’s
theorem” whichisused in proving Theorem 1.1 for £ = 1. In Section 3, we extend these results
to arbitrary k. In Section 4, we use the results of Section 3 to prove Theorem 1.1 for al k. To
make the paper self-contained, we give complete proofs, even when they are essentially just
rewordings of Ivanov'swork. In Section 5, we give the proof of Theorem 1.3 and Theorem 1.4.
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1.1. Some other work on oscillations

Theresultsdescribed and obtained here areamong arather largelist of related literature, obtained
earlier by other authors. While our intention is not to review here the literature, we just note
some highlights which seem relevant in the context of our work.

1) Kalikow and Weiss[K W] have obtained bounds of theform Ae ™2 (by aclever extension
of a Vitai type covering argument) not only for intervals, as in the present paper, but also for
“rectangles’ when one considers Z%-actions. Thus, in particular, the statements made above
about statistical mechanics extend to models in any dimension (with arate of decay depending
only on o/ 3 and on the dimension d). However, their methods seem not to give the astonishing
“best possible” result of Ivanov in 1 dimension. Since the methods of Ivanov, used here, are
typically 1-dimensional in nature and use that the real line is ordered, it is hard to imagine how
to extend them to 2 or more dimensions. The best rate of decay in more than 1 dimensions
remains thus an open question, and will depend on the nature of the geometric embeddings of
the rectangles. The approach used here to go from one sided to symmetric intervals is quite
different from the approach used in [KW].

2) In his review paper [K], Kachurovskii extends the fluctuations theorems to variations
of the mean of “size” ¢, but not necessarily across a fixed gap # = a + ¢, a. He gets bounds
again of the form Ae~5* based on Ivanov’'s work, when h € L, and square root decay (up
to logarithms) when h € L,. These results hold for semi-intervals [0, ] and can probably be
extended by our methods to symmetric intervals. At this point, it seems ([W]) that the methods
of Kachurovskii can be combined with those of [KW] to obtain similar results (but only with
O(k~?) decay) inthe case of Z¢ actions.

3) There is an extensive literature on L,, bounds, with p > 1 on which we shall not dwell
here.

2. A proof of Ivanov’s theorem

We consider non-decreasing (not necessarily continuous) functions f onR.. Let £ = U,E, bea
closed bounded subset of R which isafinite digoint union of closed intervals E,. Furthermore,
we assume that 4 and « are given constants satisfying 8 > a > 0.

Definition. Let E’ beasubset of E. A point z € R issaid to bein the shadow of E’ (relative
to E)if itisin E and if there are two numbers y, z in E’ satisfying:
) z<y< z,
ii) theinterval (y, z) iscontained in E’,
i) f(z7) = f(z) <a(z—=),and f(y") — f(z) > Bly — 2).

Remark. Thisdefinition is dlightly different from the one by Ivanov.

Let S(E') = S(E', E) denote the set of = which are in the shadow of E’ (relativeto E).
We assume throughout that F is afixed set and omit mostly the second argument of S. If A is
asetin R welet | A| denote its Lebesgue measure. The proof of Theorem 1.1 is based on the
following basic bound by Ivanov [11,12]:
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Ivanov’s Theorem. Under the above hypotheses, one has the inequality
(8%
IS(E, E)| < B\E\- (2.1)

Proof. Our proof relies heavily on Ivanov’sideas, but presents some simplifications. We will
first prove the following

Theorem 2.2. Assume f is a non-decreasing, piecewise affine, continuous function. Then
one has the inequality

S8, B)| < B (2.2)

Postponing the proof of this theorem, we now show how Theorem 2.2 implies Ivanov’s
Theorem. We first assume that the boundary of E does not contain points of discontinu-
ity of f. To make things clearer, we indicate the function, and the limits of the shadow,
i.e, wewrite S, , 5(E). Let f bean arbitrary non-decreasing function, and let f,, be a se-
guence of continuous, piecewise affine, functions approximating f (pointwise). We consider
the sequences S,, ,,,(E) = S;, aat1/m)sa—1/m)(E), forn = 2,3,..., and large m. Let

Upm = NpspSnm(E). Clealy, U, C U,,,,,. Furthermore, every x € S(E) isin
N> o (z,m) Sn,m (&) for some ng(z, m) < oo, as one can see from the definition of shadows.
Thus, we find

S(E) C U,U,m = pILrgo Upm s
and therefore

: : 1+1/m «
SE)| < |u,U. = | U < 1 S, (B < - —

SEN < 0Upm| = Jim [Upm| < lim 0|8, m(B)] < 370 5151
by Theorem 2.2. Taking m — oo, the proof of Ivanov’'s Theorem is complete, when the
discontinuities of f do not coincide with the boundary of E.

If the boundary of E contains discontinuity points of f we can find for each ¢ adecreasing
sequence of closed intervals E} such that £ C EV, EY converges to £, and the boundary of
each EY is made up of points of continuity of f. Let EP = U,E?, then obviously £ C E?,
hence S(FE) C S(E?), and therefore

o
S(E)| < liminf|S(E?)| < =
S(B)| < liminf S(B7)| < 2

This completes the proof of Ivanov’s Theorem in all cases.

«
liminf |E?| = =|E|.
iminf | 57| = Z|B]

Proof of Theorem 2.2. Aswe have said before, we can at this point work with piecewise

affine, non-decreasing continuousfunctions defined on R, with afinite number of straight pieces.
We start by defining regular and maximal regular intervals. If A isasubset of £ we denote

by F(A) thegraph of f above A, i.e, F(A) = {(z, f(z)) | z € A}.

Definition. An interva [a,b] in R is called regular if it is contained in £ and if for all

x € [a, b] one has

fla) = pBla—z) > f(z), and f(z) > f(b) —a(b—1z). (2.3)
This means that the graph F([a, b]) lies entirely in the cone spanned by the two straight
lines of (2.3), see Fig. 1.
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Fig. 1: The shadow cast by a (maximal) regular interval [a, b], the cone €, and the region D.

It will be useful to talk about the sets C([a, b]) and D([a, b]) spanned in thisfigure: Define
firstc = ¢(a,b) by
f(b) — f(a) + Ba —ab
5 a , (2.4)

thisis the z-coordinate of thetip of the cone. Then we define

€(la,0]) = {(z,y) |z €lc,a], fla)+p(z—a)>y>fb)+alz—-b)},
D([a,b]) = {(z,y) |z €[a,b], f(z)>y>[f(b)+alz—b)}.

c(a,b) =

Definition. Aninterval [a, b] in R is called maximal regular if it isregular and is contained
in no larger regular interval. It should be noted that this definition depends on the function f
andontheset F.

Lemma 2.3. Different maximal regular intervals are digoint.

Proof. Since paralé lines do not intersect, one verifies easily that the union of two regular
intervals with non-empty intersection isregular. The assertion follows.
We denote by E,, C E thedigoint union of the maximal regular intervals:

The next lemma shows that it suffices to consider only shadows which are cast by maximal
regular intervals:

Lemma 2.4. One hastheidentity S(E,,) = S(E), moreprecisely S(E,,, E) = S(E, E).

Proof. If z € S(E, E), thenthereisat least oneinterval I C E for whichz € S(I, E). By the
continuity of f, thereisaminimal such interval in I, which wecall J. Thisinterval isregular.
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The assertion follows, because every regular interval is contained in a maximal regular interval,
as follows from the proof of Lemma 2.3.

Lemma 2.5. Theset E,, isafinite union of maximal regular intervals.

Proof. It isherethat we use the restricted class of piecewise affine, continuous functions. A
minutes’ reflection shows that the endpoints of the A ; are either points of discontinuity in the
slope of f or boundary points of E. The assertion follows because there are afinite number of
such points.

We define an auxiliary function g.* For A, = [a;,b,], let ¢; = c(a;,b;) as above and

define intervals G, (z) by "
0, whenz < ¢;,

G (@) = JUO) o =b). /() + Bl —a))], whenz € (¢;,a,],

T LF(by) + el = by), f ()], whenz € (a J,bJ]
0, whenz > b,.

Notethat G (x) issimply the intersection of avertical line at = with the cone €([a;, b;]) or the

set D([a;, b,]), and |G, (z)| is continuous. We define

x) = |UG(£L‘)‘ ,

and note that this is finite, since each |G, ()| is bounded by a(b; — a;), so that g(z)/a is
bounded by the diameter of E. By constructlon g measuresthe Iength of the vertical cutsacross
the system of cones € and sets D generated by the A ;, not including multiplicities if the cones
overlap.

Our next operation consists in partitioning the shadow into those pieces A;. generated by a
A, under itself, and those cast by a cone associated with a A, to theright of A . In formulas:

AL = S(A)NA; = S(ALE)NA;,

and
A;.’ = (S(E) N Aj)\A;. .

See Fig. 3 below for a typical arrangement. We first argue that A;. can be characterized by
looking only at slopes 3.

Lemma 2.6. One has
= {z¢€ A; [y €Ay >, forwhich f(y) — f(z) > B(y —z)}.
Proof. It sufficesto show that the second set isincluded in A’;. Consider theray {(z, f(z) +

a(z —z) |z >z} Ifitintersects F(A; N [y, b;]) thenz € S(A ). If not, thenz ¢ A, since
A, isregular. Hencez ¢ A’ either and the proof is complete.

* Thisdefinition issimilar to, but different from, the one given for the function H in[12]. Our definition makes the
proofs somewhat easier.
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We now can use the Riesz lemmato give a bound on the size of A;.:
Lemma 2.7. One has the inequality

f(bj) - .f(aj) .

A%l < 3

Proof. Define s(z) = f(z) — Bz. Then, by Lemma 2.6, we see that
AL ={zxel;|3yel;y>uz forwhichs(y) > s(z)}.

We apply here a variant of the Riesz lemma [RN, Chapter 1.3].* It tells us that A;. is afinite
digoint union
A% = Ugla; g, 0541
and that furthermore, for every of these intervals one has the inequality
s(z) < S(bj,k) )

whenz € [a; b, ,]. Tkingz = a; ,, we get
flajp) = Bagy < F(bss) — B
and thus
A% = ij(bj,k —a;) < ﬂ—lﬁkj(f(bj,k) — fla;p) < B7H(f(b;) — f(ay) -

The last inequality is a consequence of the monotonicity of f. The proof of Lemma 2.7 is
complete.
We next study A

Lemma 2.8. One has the following inequality:
ﬂ‘Aﬂ < g(b;) —g(a;) — f(b;) + f(a;) + a(b; — a;) .
Proof. First observethat if z € A7, then by Lemma 2.6 the infinite ray

{(z+s,f(z)+Ps) [ 0< s} (27)

does not meet the graph F(A j). Consider next any vertical line. To be specific, we take the
line whose abscissais b;, and, since each of the previous rays emanates from a unique point of
F(A,), this provides a bijection between A’ and its projection D’} along the slope 3 onto the
vertical line of abscissab,. See Fig. 2.

* The Riesz lemmais formulated in [RN] for arbitrary functions, with open intervals. Because we have piecewise
affine functions, we can go over the proof and obtain the result for closed intervals.
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J
Fig. 2: The bijection between A;’ and D;.'. The size of A;.’ is taken here symbolically. See Fig. 3 for a redlistic
arrangement.

Note that D} isaunion of digoint intervalsand satisfies | D} | = §|AY|. To understand the
following construction, it is useful to consider Fig. 3.
Consider afixed A, we will omit theindex j in this argument. We define two intervals:

Q(a) = [f(b) + aa —b), f(a)]
Q) = [f(b), f(a) + B(b—a)],
andwelet ¢g(a) = |Q(a)|. We have the following chain of inequalities:

1) g(a) —q(a) < |G(a) \ Q(a)],
2) |G(a) \ Q(a)| < [G(b) \ Q(b)],
3) |G(b) \ Q)| < |G(b) \ D",
4) |G(b)\ D"| < g(b) — |D"|.

Inequality 1) followsfrom Q(a) C G(a), 3) followsfrom D" C Q(b) and 4) from D" C G(b)
which holds by the definition of A” and the bijection constructed above. The inequality 2)
describes the intersections of the cones outside of the interesting sets Q(a) resp. Q(b). If the
cones do not intersect ABC'D in Fig. 2, the statement is trivial. If they intersect this region
partialy, the statement follows by examining the (rather obvious) cases which can occur.

—~
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Fig. 3: Theregion ABC D, through which a cone passes. The intersection of the cone with the vertical lineat b is
G(b). Inside this cone there is the bijection between A" (which has 2 pieces) and D", and there is a piece of shadow,
A’, whichisgenerated from the (maximal) regular interval [a, b] itself. Notethat G(a) and G(b) will in general contain
pieces from other cones as well.

Combining 1)—4), we see that
BIAY| = |Df| < g(b;) — g(a;) + alay) - (2.8)

Sinceq(a;) = f(a;) — f(b;) + a(b; — a;), the claim Lemma 2.8 follows.
Combining Lemma 2.7 and Lemma 2.8, and using again the definition of ¢(a;), we get
immediately

Corollary 2.9. One has the bound

g(bj) _g(aj) «a
5 gt

We next consider amaximal interval E' = [a',b'] of E\ E),.

IS(E)N Al < il
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Lemma 2.10. One has the inequality

g(v') —g(a’)

S(E)NE'
IS(E)NE| < 5

o
—|E'| . 2.9
+ 1B 29

Proof. Wedistinguish two cases. Assumefirst that at |east one cone “traverses’ E’ completely,

i.e,itstip “c” isto theleft of theinterior of £ and its point “a” isto the right. Then

B =y o < 1) -0@)
- 16 —a ]
or equivalently
BIE'| < olE'| +g(b) —g(a') .

Since S(E) N E’ C E' the assertion follows. If no cone traverses £’ completely, but some
penetrate into it, we consider instead of the interval S(E) N E' the shortest subinterval [c, b']
containing the projection of all the cones onto the z-axis. Since S(E) N E’ C [c,b'], the
assertion follows as before.

It is now straightforward to complete the proof of Theorem 2.2: First observe that if
X = [z, z,] isaninterval of R\ E,then0 = |S(E, E)NX| < g(z,) —g(z,), Sincethewidths
of the conesisincreasing in the gaps of . Combining thiswith Corollary 2.9 and Lemma2.10,
and observing that the intervals £/, A’;, and X have contiguous boundaries, we get a telescopic
sum inwhich the g(-) all cancel, except thefirst and the last. Thefirst is subtracted, and the last
is zero. The other terms add up to («/8)|E/|, and the proof is complete.

3. The iterated theorem
We now give a bound, analogous to Ivanov’s Theorem for the case of k£ oscillations.

Theorem 3.1. Let E,, the set of x € E for which the function f has k successive down-
crossings—as defined in Section 1—from (3 to o < 3 to theright of x. Then

Bl < (a/B)*IE].

Proof. The case £ = 1 is an immediate consequence of Ivanov's Theorem, because if z is
in S(E) itisin the shadow of some regular interval J, and this means there is (at least) one
down-crossing from 3 to . The proof proceeds by induction. Assumewe have showntheclaim
foral k < k™. If z € Ey., welet[y;,z;], j = 1,...,k" denote the intervals of successive
crossings. Each of the cones @([yj, zj]) contains asmaller cone which hasits apex at the point
(z, f(z)). Therefore z isin the shadow of all the other cones. But this meansthat if =z € E,.
thenz € S(E,._,). The assertion follows.
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4. Proof of Theorem 1.1

We first need to define the notion of down-crossing of sequences more precisely.

Definition. For every 8 > o > O and every k € N we define Cy, , 5 as the set of monotone
sequences ¢ = {c,, },,—q ... for which {c, /n},, . makes k down-crossings from g to a:

Ckya”@ = {{cn}nzo | Cj Z cj—l fOrj = 1, 2, ey
there are numbers 0 < n; < my < n, <m, < --- < m, for which (4.1)

Cn, /T > By cpy /My < fori:l,...,k}.

We shall say that ¢ € C, , 5 hask oscillations of amplitude 3/a.”

Given a sequence ¢, and £ > 0, we define a new sequence d‘“%) by d{*X) = ¢, ., — ¢,
n=0,...,L — £ Wedenoteby I(c, k, a, 8, L) the set of those indices ¢, for which d*L) ¢
Ckap- Tus, I(c, k,a, B, L) counts how many “shifted” subsequences of {c,, ..., c;} make
at least k oscillations. In other words, for £ € I(c, k, o, 3, L), the sequence

{Cn+e — Gy }
M)
n n=0,...,.L—¢

makes at least £ down-crossings between 3 and «.
Proposition 4.1. One hasthe inequality:

I(c,k,a,8,L)| < (a/B)*(L+1).

Remark. See Ivanov [I1] for the manipulations—essentially a “periodic” extension of the
sequence {co, . . . ¢; }—which lead to the bound (/)" L.

Proof. We apply Theorem 3.1 to the following setting. We let £ = [0, L + 1), and we let
f(z) =c; forz € [j,j +1). Itiseasy to verify that if an index j is such that the sequence c
has k£ down-crossings from (3 to « to the right of j, then the same is true for the function f on
theinterval [j, j + 1). In other words,

(e, k0, B, L) < |Ey

and the result follows from Theorem 3.1.

Proof of Theorem 1.1. At this point, we use the invariance of the measure ;. under 7T'. For
every w € 2, we consider sequencess(w) = {s,,(w)}, where s, (w) = ZZ:_Olf(Tzw). We let

* Thisterminology isadequate since all boundswill befunctions of the amplitude 3/« aone, i.e., they only depend
on therelative size of o and 3.
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Q4 o denote the set of thosew for which the sequence s(w) makes k oscillations of amplitude
B/a, and we let Q, , 5 ., be the subset of those w where this happens for the subsequence

{5,(w),-..,s,,(w)}. Wethen have, since u(A) = u(T*A),

X = /J’(Qkhay,@) = n!'_)moo ’U’(Qkaa1ﬁ7m)
L-1
. -1 —4
§=0
L-1 (4.2)
: -1
- Tr!l—)mooL /du(w)ZXT_ij,a,ﬁ,m(w)
=0
L-1
T -1 J = i
= M 27 [ Ge) X X (TP = i X
J:

Note now that xg, ., (v') = 1, if the sequence {s,, (w')} =y, ,, Makes k oscillations of
amplitude 8/, and O otherwise.
The crucial observation by Ivanov is now that if

XQk,a,ﬁ,m(Tjw) =1, then j € I(s(w),k,a,8,L+m — 1), (4.3)

as one can see just from the definitions. Therefore, by Proposition 4.1, we find
L-1 .
Z X% a,,m (T"w) < |[I(c(w),k,0, B, L+m —1)| < (a/ﬁ)k(L +m).
7=0

Coming back to X we see that

Xpp < L7 [ dulw)la/)* - (L4m)

for all L, and therefore

X,, = limsupX,, ; < limswp (a/B)* 2™ = (a/p)" | (4.4)

L—oo L—oo L

Since X <lim X,,,, the assertion of Theorem 1.1 follows.

m—»00
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5. Symmetric intervals

In this section, we prove Theorem 1.3, and Theorem 1.4. The proofsleading to Theorem 1.1 are
not quite applicable, because the device used in Eq.(4.3) does not work in the case of symmetric
intervals, since a subsequence will cut a “hole” in the original sequence. However, we shall
work with the decomposition of the sequence S, (w) = Z}:ﬁn h(T?w) as the sum of two
sequences a and b to be defined below. We first show that if s,, oscillates, then at least one of
the sequences a or b must oscillate aswell, but alittle less. We study this as ageneral problem:

We assume ¢ = {c,, },,50 € C}, 2425 and further that ¢, = a,, + b, wherea = {a,}
and b = {b,,} are monotone sequences of non-negative numbers. We are going to show that
either a or b must have oscillations, and we will give bounds on the number and size of these
oscillations. (Our bounds are not optimal, and we do not know the optimal bounds, but we will
give areasonable set of bounds for the caseswhen ./ iscloseto O or 1.)

To describe the nature of the oscillations, we set

_ 1+ (/o)
T = —— (7
2
sothat 1 < 7 < B/a. Thenwedefinefor j = 1,2,.. .,

a;, = a+2(j—-1(a-p/T),
5, = ra,, (5.1)
v =28/ —a—2(j - 1)(a—pB/1).

We aso defineky, = k and k,, = 1+ [k,,_,/2"], where[ ] denotes theinteger part. We can now
formulate our result:

Proposition 5.1. Ifc € Cy 5, ,5 adc = a+ b asabove, then at least one of the sequences
aorbisin

/ —
Ckvavﬂ = U Ck2n+1)’yn77—’7n U U Ckznvaanan ’

p*>n>1 p*>n>1
where p* isthe smallest integer satisfying

x atp
RO

Remark. The meaning of thisinclusion isthat either a or b make at least k,,,. , ; oscillations
of “amplitude” 7. Thus, the theorem saysthat if ¢ has k oscillations of amplitude 3/ «, then, for
large k, a or b have at least O(k/4P") oscillations of amplitude 7. Note that if 3/« diverges
then 7 divergesaswell, whilefor 8/a = 1+ ¢ wehaver = 1+ ¢/2.
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Proof. Beforewe start with the proof, we note that the definitions of «;, 8, have been chosen
such that for ;7 > 1, one has

Taj = IE T’Yj = 2ﬁ_ﬁj’ O‘j+1 = Za—’yj . (52)

We will construct recursively the possible sets of indices for which oscillations occur. Assume
¢ € Gy, 54 25 With the oscillating indices m;, n; asin Eq.(4.1). Define Iy = J, = {1,..., k},
and

Jo = {ieJo|a,, <am},

Jg = {ieJy| b, < ym;}.

Since a,,. +b,, =c,. < Z2am; = 2a;m,;, weseethat eachi € J, must bein at least one
of the sets J§, J{. Therefore the cardindities satisfy |Jg| 4 |J8] > |Jy| = k = ko, and we
conclude that max(|.Jg|,|JE|) > k,. We assume for definiteness that |.J§'| > k,; in the other
case, the proof is obtained by exchanging the roles of a and b. We define next

It ={ieJy|a,, > Bin;}.

Assume first [I'| > k,. By the definition of Jy and I3, this means—cf. Eq.(5.2)—that
a € Chy018 = Chyos.cnrr Which is part of the set Cy, , 5, and we stop the induction. In the

other case, we define I? = J§ \ I}. Clearly, |I?| > k,, but furthermore we have for all i € I}
theinequalities
ani < ﬂlni’

ay,, + b, = 20n,,
and therefore

by, 2 (28— Byn; - (5.3)
We now define

Jf = {ie If | by, < Yimy )

If |J?| > ks, then we have, using Egs.(5.3) and (5.2),

b e Ck377172ﬁ—ﬂ1 = Ck&’hﬁ’h’

and we stop the induction. In the other case, we let J¢ = P\ J?, and then for al i € J¢ we
have
b, > vm,,

a,, +b,. < 2am,;,
and therefore
Uy, < (2 —y)m; = a,m, . (5.4)

If 2 — 7, < 0, theinequality (5.4) contradicts the positivity of the a; and hence TP < kg will
never occur and the induction stops.
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Otherwise, we continue, defining for £ > 2,

I ={iteJiila, 2 Bm;},
If = Ji o\ 1},

Jp = i€} |b,, <vm},
Jy = I\ J}.

There are now four cases.

1) If |I7] > ky, then Iy C Jp', impliesa,, > Byn; and a,,. < a,m, fori € Iy, and hence
a € C, 0,8 = Chkyayra,» @Nd theinduction stops.

2) If [If] < ky, then we havefor i € I} theinequality b, > (28 — B,)n;, sincea,,, < Byn;
anda,,. +0b, > 20n,;, and we continue the induction.

3) If [J)| > kyyyq, then Jp C I} impliesd,, < ~,m; andb, > (28— B,)n, fori€ J}, and

henceb € Cy,, .. ., 26-8, = Chypyy1 7,7, @A theinduction stops.
4) Inthelastcase, |J}| < k,,,,, andthenwehavefori € Jj theinequality a,,, < (2a—v,)m;,

snceb,, >~vy,m;ada,, +0b, <2am,;. If (2a—+,) > 0, we continue the induction,
while in the opposite case, we seethat | J7| < k., 1 cannot occur, and the induction stops.
Since 2a. — v, < 0, asone checks easily from the definitions, the induction must stop for some
£ < p*. The proof of Proposition 5.1 is complete.
We can now complete the proof of Theorem 1.3 by applying Proposition 5.1. We write the
sum S,, of Eq.(1.2) as
Sp(w) = a,(w) + b, (w) ,

where

n

a,(w) = ih(Tjw), b, (w) = h(T 7 w) .
=0 j=1

By Proposition 5.1, if S(w) € C, 5,24 then at least one of the sequences a(w), b(w) isin
Ch..a5 Therefore

p{w |S(w) € Cp 46} < p({w | a(w) € Cy 0 p}) +u{w [b(w) € Cy 4 5}) -
Since p isinvariant under 7" and 7%, we can apply Theorem 1.1 to both sequences and we get

a bound:

2p"+1 .
n{w | Sw) € Craph) <2 ) (/1) < 4"+ 1)1/ .

n=1

Since both 7 and p* are functions of o/ and 7 > 1, the Theorem 1.3 follows.

Proof of Theorem 1.4. This proof will be straightforward combination of the 2 following
lemmas.
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Lemma 5.2. Letp > 0. Theeareak' = k'(p,a/B) anda = aB(a/B), withB > 1
when oo < 3, such that if {q,} € Cy , g, then the sequence with elementst, = q,, % isin

Cr—t\a,pr-
Remark. It will be obviousfrom the proof that smilar statements hold in the following cases:
{t,} = {4, max(0, (n —p))/n} € Cy_ps 0 pr »

{t.} = {g,n/ max(1,(n —p))} € Cp_ps 01 » (5.5)
{tn} = {q'n(n +p)/’l’l,} € Ck—k’,a’,ﬂ )

where o/ = BA(a/B) with A < 1if a < B.

Proof. Wewill actually construct " and 8'. Let n, and m, be defined as the crossing points of
the sequence s,,, cf. Eq.(4.1). Sincen, > 1, and the s,, form an increasing sequence, we have

am; > s, > s, > Bn;,

sothat m; > (B/a)n; > (B/a)m,;_, and thus

m; > (B/a)* . (5.6)
Therefore,
o n,; n; _ P s
b, Sp, 4 p > ﬂnini-i-p = fn;(1+ ”z) > nil—i—p(a/ﬁ)i_l )
We choose 1
B(a/B) = w,

so that 8/ = aB(a/B) > «, and there is clearly a k' = k'(p,a/pB) for which 3/(1 +
p(a/B)¥ 1) > B'. Then we havefor i > K/,
t, > mn0.

ng

On the other hand,

m.
b, = Qo L <gq < am,,
i zmz_’_p — tm; — T

so that the assertion follows.
We next study sequences with increments of morethan 1. Fix » € N and define

rn—1

ta(w) = > h(Tw).
j=0
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We are interested in the oscillations of ¢,, /(nr). This question is reduced to the one described
in Proposition 1.2: Let

r

r—1
1 .
h(w) = =3 h(Tw), T, =17,
0

and

n—1
sa(@) = b (1)) .

§=0
By construction, s,,(w) = t,,(w). Since h,. > 0 and T, preserves the measure y if 7' preserves
it, we conclude

Lemma 5.3. The probability that the sequence{t,,/(nr)} (defined with h and T') makes at
least k oscillations is the same as the probability that {s,,/n} (defined with h,. and T, ) makes at
least k oscillations, and this quantity is bounded by (/).

Remark. TheLemma5.3 isalittle too strong for our purpose, since it would have sufficed to
observe that the sequence {s,, /n} makes more oscillations than {¢t,, /(n7)}.

We can now complete the proof of Theorem 1.4 by a painful but somehow obvious
combination of the results above. Recall the definition of .S,, in Eq.(1.3):

npz2+r2—1

S,w)= > hWTw).

j=—npi—r1

We want to bound the probability that the sequence S,/ (n(p, + p,) + 7, + r,) makes k down-
crossingsfrom 3 to .. So assumethe sequencewith elementsg,, = n-S,,/ (n(p,+p,) +7,+7,)
isinCy, , 5. Welet

n+p S, ,Wherep:Tl—l_Tz

t. = = .
n D1+ Do D1+ D2

n qn

Applying Lemma5.2, (actually Eq.(5.5)), we see that the sequence with elements S,, / (p, + p,)
iSin Cy_ps o 5, @nd thus the sequence with elements S,, isin Cy.i o g0, Where k" =k — &/,
" = d'/(p, +p,), B = B/(p, + p,). We next use the “splitting” mechanism and write
S,, = a, +b,, where

np1+ri ) npy+ro—1 .
a, = Y AT w), andb, = Y  h(TIw).
j=1 J=0

By Proposition 5.1, we conclude that one of the two sequencesa = {a,,} or b = {b,,} must
oscillate; we discuss here the case where it is a and |eave the other case to the reader. Then we
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conclude that there are a k¥, o and B for which a € Cy 4 g and these constants

depend only on /3, and furthermore k@ = O(k) as k — oco. Finaly, o®/3® < 1 when
a < B. (Wewill construct further such constants and they will possess the same properties. Of
course, with some more work one can see that the quotient «®) /3® goesto Owhen /8 — 0.)
If a € Cio o ge, then the sequence with elements a,/p; isin Crk® ,a® /p1,BO /py» and,
applying again Eq.(5.5), we see that the sequence with elements (a,, /p,) - n/(n + (r1/py)) is
iNCr@ 4@ ga- Thismeansthat the sequence with elements

Sm (w) npi1+r1

— Z (T w),
m npl-l—rl =1

where m = np, + r,, makes at least £ down-crossings from 5 to (. The probability
that this happens for m = r,,r; + n, 7, + 2n, ... is certainly less than the probability that this
happens for the sequence s,,, (w)/m whenm = 1, 2, .. .. But this probability is bounded, using

@
Theorem 1.1, by (a®/8®)*". Since s, (w) has been derived from the original sequence
S,, (w) by successive modifications, the proof of Theorem 1.4 is complete.
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