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: Using, and extending, striking inequalities by V.V. Ivanov on the down-crossings of monotone functions

and ergodic sums, we give universal bounds on the probability of finding oscillations of observables in 1-dimensional

lattice gases in infinite volume. In particular, we study the finite volume average of the occupation number as one

runs through an increasing sequence of boxes of size 2 s centered at the origin. We show that the probability to see t
oscillations of this average between two values u and 0 vxwyv�u is bounded by z|{j} , with {~v 1, where the constantsz and { do not depend on any detail of the model, nor on the state one observes, but only on the ratio w��Fu .
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In two recent papers, V.V. Ivanov [I1, I2] derived a novel theorem on down-crossings of
monotone functions. Theorems of this kind are useful as key elements of “constructive” proofs
of the Birkhoff Ergodic Theorem [B1, B2]. For example, let � be a non-negative measurable
function on � , and let � be a measurable map � : ��� � which preserves a probability measure� . We denote by �����)��� the sum

� � �)����� ��� 1  ¡
¢ 0

���)�
¡
�£��¤

Let ¥§¦©¨ª¦ 0 be given. A down-crossing is defined as a pair of integers «­¬¯® such that

�°���)���P±²«´³µ¥·¶ and �°¸y�)���P±²® ¹µ¨º¤
Let ��» denote the set of � for which ¼>�°���)���P±²«|½��¾¢ 1 ¿ 2 ¿ÁÀÁÀÁÀ makes at least Â successive down-
crossings, i.e., there is a sequence « 1 ¬�® 1 ¬�« 2 ¬¯® 2 ¬Ã¤°¤°¤�¬�«�»`¬¯®Ä» , such that each pair«�Å , ®ÆÅ defines a down-crossing. The surprising result of Ivanov is theÇÉÈ�ÊDË!Ì*Ê�Í Î!Ï)Î
Ï

One has the bound

� �f� » �Ð¹Ñ�f¨|±>¥|� » ¤ � 1 ¤ 1 �
Note that there is no constant in front of �f¨Ò±>¥�� » , and that the result is independent of � , � ,� and �Ä³ 0. Several (relatively straightforward) generalizations and consequences have been

pointed out in [I1, I2] and in the review paper [K]. We list two of them for the convenience of
the reader, and will mention related work at the end of the introduction.
1) If �$Ó¯Ô@Õ —there is no assumption on �$³ 0 here—then, for all ¥ and ¨Ö�×¥ºØ�Ù one

has the bound � �f��»¾�·¹ÛÚ�Ü ��Ý&» , where Ú and Þ depend only on ßy�´Ù²±!à[��à Õ . One hasÞá�´â��]ß 2 � .
2) The above results can easily be used to actually prove the ergodic theorem, even for �ãÓäÔ 1,

In this paper, we give a partially new proof of Ivanov’s theorem, and we extend it in such a way
that it applies to 1-dimensional models of statistical mechanics. Indeed, it suffices to consider
any translation invariant state of a spin system [R]. To be specific, we might consider an Ising-like
model with spin 0, 1 (in a particle interpretation) and long-range interaction. Then �¯�å¼ 0 ¶ 1 ½>æ ,� is lattice translation and � is the Gibbs state, not necessarily pure. For �¯�ç¼°� � ½ �Dè æ Óé� ,
we let ���)�����ê� 0 be the value of the spin at the site 0 and then � � �)���P±²« has the meaning
of the average “occupation number” on the interval [0 ¶Z«ÄØ 1]. Ivanov’s theorem has then the
interpretation:ë Ì>Ë
ìBË!í°î�ï*î)Ë!ðñÎ
Ï � Ï

The probability that the mean occupation number (as a function of the
volume « ) makes more than Â oscillations between ¥ and ¨ , 0 ¬�¨-¬ò¥ is bounded by �f¨Ò±>¥�� » .

Note that this statement is independent of the spin system under consideration, of the
temperature considered, of boundary conditions or any other parameter of the system. In



INTRODUCTION ó
particular, it also holds if the system is not in a pure state. Thus, it is a kind of geometrical
constraint on ergodic sums, or on the fluctuations of physical observables. If these observables
can take negative values, the results will be modified as in 1) above, but the bound will still be
exponential in Â .

In the statement above, we considered “boxes” which are given by the intervals [0 ¶Z«ôØ 1].
However, the statement can be extended to symmetric intervals by the following new result:

Assume that � , as defined above, is invertible. Define for «·Ó·õ ,

ö � �÷�£��� � ¡
¢��!��ø 1

���)�
¡
����¤ � 1 ¤ 2 �

We now let ù�» denote the set of those � for which the sequence ¼ ö ���)���P±�� 2 «ôú 1 �1½��¾¢ 0 ¿ 1 ¿ 2 ¿ÁÀÁÀÁÀ
makes at least Â down-crossings from ¥ to ¨ , 0 ¬�¨ª¬ò¥ . We will show:ÇÉÈ�ÊDË!Ì*Ê�Í Î
Ï ó Ï There are two constants ûç�üû��f¨Ò±>¥�� and ýü�þý��f¨Ò±>¥���¬ 1 such that one
has the bound � �ÿù�»¾�ã¹ñûXý » ¤
The constants û and ý are independent of � , � , � , and �ã³ 0.� Ê�Í���Ì��ÒÏ

We will describe ý in Section 5, but note that ý ¬ 1, ý������ � 0 as ��� 0 andý�������� exp 	/Ø â��÷ÙL± 41 
�� ��
 when �Æ� 1 ØéÙ . (This is certainly not the best possible bound.)
The Theorem 1.3 can be extended to sequences of volumes which tend to infinity in a more

general way as «Ä� � : Let � 1 ³ 0, � 2 ³ 0, � 1 ³ 0, � 2 ³ 0 be given integers with � 1 ú�� 2 ¦ 0
and define now ö � �)���y� ���

2
ø��

2
� 1 ¡

¢|�!���
1
���

1

���÷�
¡
���B¤ � 1 ¤ 3 �

Let ù » be the set of � for which the sequence ¼ ö � �)���P±��]«���� 1 ú�� 2 �&ú�� 1 ú�� 2 �4½ ��è�� makes at
least Â down-crossings from ¥ to ¨ .ÇÉÈ�ÊDË!Ì*Ê�Í Î!Ï���Ï

There are two constants

û � ûô��� 1 ¶ � 2 ¶!� 1 ¶!� 2 ¶4¨Ò±>¥���¶ ý � ý���� 1 ¶ � 2 ¶!� 1 ¶!� 2 ¶4¨|±>¥|�£¬ 1 ¶
such that one has the bound � �ÿù » �ã¹ñûXý » ¤
The constants û and ý are independent of � , � , � , and �ã³ 0.

Our paper is organized as follows. In Section 2, we show the basic inequality, “Ivanov’s
theorem” which is used in proving Theorem 1.1 for Â�� 1. In Section 3, we extend these results
to arbitrary Â . In Section 4, we use the results of Section 3 to prove Theorem 1.1 for all Â . To
make the paper self-contained, we give complete proofs, even when they are essentially just
rewordings of Ivanov’s work. In Section 5, we give the proof of Theorem 1.3 and Theorem 1.4.
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Î
Ï]Î
Ï#"�Ë!ÍéÊ­Ë�ï*È�ÊDÌ%$ÉË!Ì��òË!ð©Ë!í�&�î('�')��ï*î÷Ë!ð|í
The results described and obtained here are among a rather large list of related literature, obtained
earlier by other authors. While our intention is not to review here the literature, we just note
some highlights which seem relevant in the context of our work.

1) Kalikow and Weiss [KW] have obtained bounds of the form Ú�Ü ��Ý�» (by a clever extension
of a Vitali type covering argument) not only for intervals, as in the present paper, but also for
“rectangles” when one considers õ+* -actions. Thus, in particular, the statements made above
about statistical mechanics extend to models in any dimension (with a rate of decay depending
only on ¨|±>¥ and on the dimension , ). However, their methods seem not to give the astonishing
“best possible” result of Ivanov in 1 dimension. Since the methods of Ivanov, used here, are
typically 1-dimensional in nature and use that the real line is ordered, it is hard to imagine how
to extend them to 2 or more dimensions. The best rate of decay in more than 1 dimensions
remains thus an open question, and will depend on the nature of the geometric embeddings of
the rectangles. The approach used here to go from one sided to symmetric intervals is quite
different from the approach used in [KW].

2) In his review paper [K], Kachurovskii extends the fluctuations theorems to variations
of the mean of “size” Ù , but not necessarily across a fixed gap ¥$�þ¨Äú¯Ù , ¨ . He gets bounds
again of the form Ú�Ü ��Ý&» , based on Ivanov’s work, when �§ÓªÔ Õ and square root decay (up
to logarithms) when �·ÓªÔ 1. These results hold for semi-intervals [0 ¶Z« ] and can probably be
extended by our methods to symmetric intervals. At this point, it seems ([W]) that the methods
of Kachurovskii can be combined with those of [KW] to obtain similar results (but only withâ���Â � 1 
 3 � decay) in the case of - * actions.

3) There is an extensive literature on Ô.� bounds, with �·¦ 1 on which we shall not dwell
here.

/£�10 2���� �+3Ð��3Ð�5476j���84:9);$�=<?>����=>A@
We consider non-decreasing (not necessarily continuous) functions B on

�
. Let Cå�ED.F�CGF be a

closed bounded subset of
�

which is a finite disjoint union of closed intervals CGF . Furthermore,
we assume that ¥ and ¨ are given constants satisfying ¥ª¦�¨ª¦ 0.H ÊJIjð|î�ï*î÷Ë�ð�Ï

Let CLK be a subset of C . A point �~Ó �
is said to be in the shadow of CLK (relative

to C ) if it is in C and if there are two numbers M , N in CLK satisfying:
i) ��¬OMx¬PN ,

ii) the interval �(M!¶QN�� is contained in CLK ,
iii) BÒ� N � �ÒØRBÒ�����£¹�¨@�(NXØS��� , and BÒ�(M ø �|ØTBÒ�����@³ò¥��(MÉØ���� .� Ê�Í���Ì��ÒÏ

This definition is slightly different from the one by Ivanov.
Let

ö �(C K �@� ö ��C K ¶!C�� denote the set of � which are in the shadow of C K (relative to C ).
We assume throughout that C is a fixed set and omit mostly the second argument of

ö
. If Ú is

a set in
�

we let U Ú%U denote its Lebesgue measure. The proof of Theorem 1.1 is based on the
following basic bound by Ivanov [I1,I2]:
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ð�Ë X7Z íôÇÉÈ�Ê�Ë
Ì*Ê�ÍòÏ
Under the above hypotheses, one has the inequalityU ö �(Cx¶!C���UÒ¹ ¨¥ U C[U>¤ � 2 ¤ 1 �ë Ì>Ë�Ë]\ZÏ

Our proof relies heavily on Ivanov’s ideas, but presents some simplifications. We will
first prove the followingÇÉÈ�ÊDË!Ì*Ê�Í � Ï � Ï

Assume B is a non-decreasing, piecewise affine, continuous function. Then
one has the inequality U ö �(Cx¶!C���UÒ¹ ¨¥ U C[U>¤ � 2 ¤ 2 �

Postponing the proof of this theorem, we now show how Theorem 2.2 implies Ivanov’s
Theorem. We first assume that the boundary of C does not contain points of discontinu-
ity of B . To make things clearer, we indicate the function, and the limits of the shadow,
i.e., we write

ö8^ ¿`_�¿ a �(C�� . Let B be an arbitrary non-decreasing function, and let B � be a se-
quence of continuous, piecewise affine, functions approximating B (pointwise). We consider
the sequences

ö � ¿ ¸ �(C��$� ö ^cb ¿`_ed 1 ø 1 
 ¸gf ¿ a=d 1 � 1 
 ¸Gf �(C�� , for «Ã� 2 ¶ 3 ¶°¤°¤°¤ , and large ® . Leth � ¿ ¸ � i �kjl� ö � ¿ ¸ �(C�� . Clearly,
h � ¿ ¸ m h �*ø 1 ¿ ¸ . Furthermore, every � Ó ö ��C�� is ini �kj!�

0 d�n¾¿ ¸Gf ö � ¿ ¸ ��C�� for some « 0 �)��¶Z®Ä��¬o� , as one can see from the definition of shadows.
Thus, we find ö �(C�� m Dp� h � ¿ ¸Û� lim��q Õ h � ¿ ¸Ã¶
and thereforeU ö �(C���Uj¹ rr D�� h � ¿ ¸srr � lim��q Õ U h � ¿ ¸%U�¹ lim��q Õ sup�kjk� U ö � ¿ ¸���C���U�¹ 1 ú 1 ±²®

1 Ø 1 ±²® t ¨¥ U C[U>¶
by Theorem 2.2. Taking ® � � , the proof of Ivanov’s Theorem is complete, when the
discontinuities of B do not coincide with the boundary of C .

If the boundary of C contains discontinuity points of B we can find for each u a decreasing
sequence of closed intervals C �F such that C m C �F , C �F converges to C F and the boundary of
each C �F is made up of points of continuity of B . Let C � �vD F C �F , then obviously C m C �

,
hence

ö �(C�� m ö �(C � � , and thereforeU ö �(C���Uj¹ lim inf��q Õ U ö ��C � ��U�¹ ¨¥ lim inf��q Õ U C � U|� ¨¥ U C[U>¤
This completes the proof of Ivanov’s Theorem in all cases.ë Ì>Ë�Ë]\XË]\�ÇÉÈ�ÊDË!Ì*Ê�Í � Ï � Ï

As we have said before, we can at this point work with piecewise
affine, non-decreasing continuous functions defined on

�
, with a finite number of straight pieces.

We start by defining regular and maximal regular intervals. If Ú is a subset of C we denote
by wô�]Ú � the graph of B above Ú , i.e., wô�]Ú �j�´¼D����¶xBÒ�)���P�yUY�~ÓäÚ ½ .H ÊJIjð|î�ï*î÷Ë�ð�Ï

An interval [ z
¶Q{ ] in
�

is called regular if it is contained in C and if for all�~Ó [ z!¶Q{ ] one hasBÒ�(z���Øé¥�� z Ø����Ð³|BÒ������¶ and BÒ�)���x³}BÒ�({[��Øª¨@� {BØ����j¤ � 2 ¤ 3 �
This means that the graph wô� [ z
¶Q{ ] � lies entirely in the cone spanned by the two straight

lines of (2.3), see Fig. 1.
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BÒ�(z�� �
�

BÒ�({[�

� z {�p���k���
: The shadow cast by a (maximal) regular interval [ �5� � ], the cone � , and the region � .

It will be useful to talk about the sets
� � [ z!¶Q{ ] � and

� � [ z!¶Q{ ] � spanned in this figure: Define
first � � � �(z!¶Q{[� by � �(z!¶Q{[��� BÒ�({[��ØTBÒ� z���ú-¥8z`Øé¨.{¥�Øª¨ ¶ � 2 ¤ 4 �
this is the � -coordinate of the tip of the cone. Then we define� � [ z
¶Q{ ] �y�Ñ¼D���&¶!M��#UY�~Ó [ � ¶Qz ] ¶�BÒ�(z���ú$¥����xØ�z��@³OMx³PBÒ�({[��úò¨@���ôØR{[�1½�¶� � [ z
¶Q{ ] �y�Ñ¼D���&¶!M��#UY�~Ó [ z!¶Q{ ] ¶�BÒ�)����³�Mx³PBÒ� {H��ú�¨@���xØ�{H�1½ ¤H ÊJIjð|î�ï*î÷Ë�ð�Ï

An interval [ z!¶Q{ ] in
�

is called maximal regular if it is regular and is contained
in no larger regular interval. It should be noted that this definition depends on the function B
and on the set C .� Ê�Í§Í�� � Ï ó Ï Different maximal regular intervals are disjoint.ë Ì>Ë�Ë]\ZÏ

Since parallel lines do not intersect, one verifies easily that the union of two regular
intervals with non-empty intersection is regular. The assertion follows.

We denote by C M m C the disjoint union of the maximal regular intervals:C M ��D ¡�� ¡ ¤ � 2 ¤ 5 �
The next lemma shows that it suffices to consider only shadows which are cast by maximal
regular intervals:� Ê�Í§Í�� � Ï���Ï

One has the identity
ö �(C M �j� ö �(C�� , more precisely

ö �(C M ¶!C��Ò� ö ��Cx¶!C�� .ë Ì>Ë�Ë]\ZÏ
If �~Ó ö �(Cx¶!C�� , then there is at least one interval � m C for which �~Ó ö �(�
¶!C�� . By the

continuity of B , there is a minimal such interval in � , which we call � . This interval is regular.
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The assertion follows, because every regular interval is contained in a maximal regular interval,
as follows from the proof of Lemma 2.3.� Ê�Í§Í�� � Ï V Ï The set C M is a finite union of maximal regular intervals.ë Ì>Ë�Ë]\ZÏ

It is here that we use the restricted class of piecewise affine, continuous functions. A
minutes’ reflection shows that the endpoints of the

� ¡
are either points of discontinuity in the

slope of B or boundary points of C . The assertion follows because there are a finite number of
such points.

We define an auxiliary function � . � For

� ¡
� [ z ¡ ¶Q{ ¡ ], let � ¡ � � � z ¡ ¶Q{ ¡ � as above and

define intervals � ¡ ����� by

� ¡ �������
���� ���

� ¶ when �~¹ � ¡ ,
[ BÒ�({ ¡ ��úò¨@���xØR{ ¡ �1¶xBÒ� z ¡ ��ú-¥����ÐØRz ¡ � ] ¶ when �~Ó§� � ¡ ¶Qz ¡ ],
[ BÒ�({ ¡ ��úò¨@���xØR{ ¡ �1¶xBÒ����� ] ¶ when �~Ó§� z ¡ ¶Q{ ¡ ],� ¶ when �~¦�{ ¡ .

Note that � ¡ ����� is simply the intersection of a vertical line at � with the cone
� � [ z ¡ ¶Q{ ¡ ] � or the

set
� � [ z ¡ ¶Q{ ¡ ] � , and U � ¡ ������U is continuous. We define��������� rr D ¡ � ¡ ������rr ¶

and note that this is finite, since each U � ¡ ������U is bounded by ¨£� { ¡ Ø�z ¡ � , so that �������P±L¨ is
bounded by the diameter of C . By construction, � measures the length of the vertical cuts across
the system of cones

�
and sets

�
generated by the

� ¡
, not including multiplicities if the cones

overlap.
Our next operation consists in partitioning the shadow into those pieces

� K¡ generated by a
� ¡

under itself, and those cast by a cone associated with a

�
Å to the right of

� ¡
. In formulas:� K¡ � ö �

� ¡
�pi � ¡

� ö �
� ¡
¶!C���i � ¡

¶
and

� K�K¡ � 	 ö �(C���i � ¡ 
�  � K¡ ¤
See Fig. 3 below for a typical arrangement. We first argue that

� K¡ can be characterized by
looking only at slopes ¥ .� Ê�Í§Í�� � Ï ~ Ï

One has� K¡ � ¡��~Ó � ¡ U�¢1MxÓ � ¡
¶!Mô¦O��¶ for which BÒ�(M���ØTBÒ������³ò¥��(MÉØ�����£É¤ë Ì>Ë�Ë]\ZÏ

It suffices to show that the second set is included in

� K¡ . Consider the ray ¼D� N�¶xBÒ������ú¨@�(NXØ����gU�N�¦O��½ . If it intersects wô� � ¡ i [ M!¶Q{ ¡ ] � then �~Ó ö � � ¡ � . If not, then ��±Ó � ¡
, since� ¡

is regular. Hence ��±Ó � K¡ either and the proof is complete.¤
This definition is similar to, but different from, the one given for the function ¥ in [I2]. Our definition makes the

proofs somewhat easier.
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We now can use the Riesz lemma to give a bound on the size of

� K¡ :� Ê�Í§Í�� � Ï � Ï One has the inequality

U � K¡ UB¹ BÒ� { ¡ ��ØTBÒ� z ¡ �¥ ¤ � 2 ¤ 6 �ë Ì>Ë�Ë]\ZÏ
Define � �����j�EBÒ������Øé¥p� . Then, by Lemma 2.6, we see that� K¡ � ¡5�~Ó � ¡ U§¢¨MxÓ � ¡

¶!Mô¦��&¶ for which �D��M���³ �D�)����£ ¤
We apply here a variant of the Riesz lemma [RN, Chapter 1.3].* It tells us that

� K¡ is a finite
disjoint union

� K¡ �©Dj» [ z ¡ ¿ »D¶Q{ ¡ ¿ » ] ¶
and that furthermore, for every of these intervals one has the inequality

� �����ã¹ñ� � { ¡ ¿ » �B¶
when �~Ó [ z ¡ ¿ » ¶Q{ ¡ ¿ » ]. Taking �ã�Ez ¡ ¿ » , we getBÒ�(z ¡ ¿ »L�|Øº¥8z ¡ ¿ »$¹|BÒ� { ¡ ¿ »>�ÒØé¥8{ ¡ ¿ » ¶
and thusU � K¡ U|�  

» � {
¡
¿ » ØRz ¡ ¿ » �ã¹ ¥ � 1

 
» 	 BÒ� { ¡ ¿ » �|ØTBÒ� z ¡ ¿ » � 
 ¹ ¥ � 1 	 BÒ� { ¡ �|Ø�BÒ�(z ¡ � 
 ¤

The last inequality is a consequence of the monotonicity of B . The proof of Lemma 2.7 is
complete.

We next study

� KªK¡ .� Ê�Í§Í�� � Ï ¦ Ï
One has the following inequality:

¥«U � K�K¡ UB¹¬��� { ¡ �|ØS��� z ¡ �|ØTBÒ� { ¡ ��ú�BÒ� z ¡ ��úò¨@�({ ¡ Ø�z ¡ �j¤ë Ì>Ë�Ë]\ZÏ
First observe that if ��Ó � K�K¡ , then by Lemma 2.6 the infinite ray

¼D����ú¯�¾¶xBÒ������ú-¥��*�­U 0 ¬ �¾½ � 2 ¤ 7 �
does not meet the graph wô� � ¡ � . Consider next any vertical line. To be specific, we take the
line whose abscissa is { ¡ , and, since each of the previous rays emanates from a unique point ofwô� � ¡ � , this provides a bijection between

� KªK¡ and its projection ® K�K¡ along the slope ¥ onto the
vertical line of abscissa { ¡ . See Fig. 2.

* The Riesz lemma is formulated in [RN] for arbitrary functions, with open intervals. Because we have piecewise
affine functions, we can go over the proof and obtain the result for closed intervals.
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z ¡ { ¡
� ¡

BÒ� { ¡ �
BÒ�(z ¡ � � KªK¡

®°KªK¡

�p���k�7±
: The bijection between ²«³ª³´ and µ­³¶³´ . The size of ²«³¶³´ is taken here symbolically. See Fig. 3 for a realistic

arrangement.

Note that ® K�K¡ is a union of disjoint intervals and satisfies U ® K�K¡ UL� ¥«U � K�K¡ U . To understand the
following construction, it is useful to consider Fig. 3.

Consider a fixed

� ¡
, we will omit the index · in this argument. We define two intervals:¸ � z��y� [ BÒ�({[��úò¨@� zXØ�{[�6¶xBÒ� z�� ] ¶¸ � {H�y� [ BÒ�({[�6¶xBÒ� z���ú$¥�� {£Ø�z�� ] ¶

and we let ß�� z��j�¹U ¸ � z���U . We have the following chain of inequalities:

1) ���(z��&Ø§ß�� z���¹ºU`��� z��   ¸ � z���U ,
2) U`��� z��   ¸ � z���U¾¹»U`��� {[�   ¸ � {H��U ,
3) U`��� {[�   ¸ � {H��U¾¹»U`��� {[�   ®°K�K¼U ,
4) U`��� {[�   ®°K�K¼U�¹O��� {H�&Ø½U ®°KªKcU .

Inequality 1) follows from
¸ � z�� m ��� z�� , 3) follows from ® KªK m ¸ � {[� and 4) from ® K�K m �ô�({[�

which holds by the definition of

� K�K and the bijection constructed above. The inequality 2)
describes the intersections of the cones outside of the interesting sets

¸ �(z�� resp.
¸ �({[� . If the

cones do not intersect Ú�Þ`û¾® in Fig. 2, the statement is trivial. If they intersect this region
partially, the statement follows by examining the (rather obvious) cases which can occur.
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z {
�

¸ �(z��

¸ � {H�

ÚBÒ� z��
®

û BÒ� {H�

Þ

� K�K
� K

®°K�K ��� {[�

��� z��

�p���k��À
: The region ÁÃÂ£z.µ , through which a cone passes. The intersection of the cone with the vertical line at � isÄ#Å �¼Æ . Inside this cone there is the bijection between ²«³¶³ (which has 2 pieces) and µ­³¶³ , and there is a piece of shadow,²«³ , which is generated from the (maximal) regular interval [ �5� � ] itself. Note that

Ä#Å ��Æ and
ÄÇÅ �¼Æ will in general contain

pieces from other cones as well.

Combining 1)–4), we see that

¥«U � KªK¡ U|� U ® K�K¡ U�¹¬��� { ¡ �|Ø���� z ¡ ��ú$ß��(z ¡ ��¤ � 2 ¤ 8 �
Since ß�� z ¡ �B�EBÒ� z ¡ �ÒØRBÒ� { ¡ ��úò¨@� { ¡ Ø�z ¡ � , the claim Lemma 2.8 follows.

Combining Lemma 2.7 and Lemma 2.8, and using again the definition of ß�� z ¡ � , we get
immediatelyÈ Ë!Ì*ËÉ'�')�
Ì�Ê � Ï ¯ Ï One has the bound

U ö �(C���i � ¡ UB¹ ��� { ¡ �|Ø���� z ¡ �¥ ú ¨¥ U � ¡ U²¤
We next consider a maximal interval C K � [ z K ¶Q{ K ] of C   C M.
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One has the inequality

U ö ��C���iËCLKÌU�¹ ��� { K �|Ø���� z K �¥ ú ¨¥ U CLKÌUL¤ � 2 ¤ 9 �
ë Ì>Ë�Ë]\ZÏ

We distinguish two cases. Assume first that at least one cone “traverses” CLK completely,
i.e., its tip “ � ” is to the left of the interior of C K and its point “ z ” is to the right. Then

U CLKÌUÒ�©{YK�Ø�zÍKX¹ ��� { K �ÒØS��� z K �¥äØ§¨ ¶
or equivalently ¥«U C K UB¹ê¨gU C K U6úR��� { K �|Ø���� z K �j¤
Since

ö �(C��.i�CLK m CLK the assertion follows. If no cone traverses CLK completely, but some
penetrate into it, we consider instead of the interval

ö �(C��8iÎCLK the shortest subinterval [ � ¶Q{YK ]
containing the projection of all the cones onto the � -axis. Since

ö �(C���i�CLK m [ � ¶Q{YK ], the
assertion follows as before.

It is now straightforward to complete the proof of Theorem 2.2: First observe that ifÏ � [ � 1 ¶�� 2] is an interval of
�   C , then 0 �¹U ö ��Cx¶!C��Íi Ï U>¹������ 2 ��ØÐ����� 1 � , since the widths

of the cones is increasing in the gaps of C . Combining this with Corollary 2.9 and Lemma 2.10,
and observing that the intervals C K , � K¡ , and

Ï
have contiguous boundaries, we get a telescopic

sum in which the ��� t � all cancel, except the first and the last. The first is subtracted, and the last
is zero. The other terms add up to �f¨Ò±>¥���U C[U , and the proof is complete.

Ñ@�1Ò�<?>Ã�ÿ�k>��=6��k>�� �l<?>��B�=>A@
We now give a bound, analogous to Ivanov’s Theorem for the case of Â oscillations.ÇÉÈ�ÊDË!Ì*Ê�Í ó Ï]Î
Ï Let C » the set of �©Ó�C for which the function B has Â successive down-
crossings—as defined in Section 1—from ¥ to ¨ª¬ò¥ to the right of � . ThenU C » UB¹ �f¨Ò±>¥�� » U C[U>¤ë Ì>Ë�Ë]\ZÏ

The case Â·� 1 is an immediate consequence of Ivanov’s Theorem, because if � is
in
ö �(C�� it is in the shadow of some regular interval � , and this means there is (at least) one

down-crossing from ¥ to ¨ . The proof proceeds by induction. Assume we have shown the claim
for all Âé¬×Â � . If ��Ó�C�»ÔÓ , we let [ M ¡ ¶QN ¡ ], ·~� 1 ¶°¤°¤°¤1¶HÂ � denote the intervals of successive
crossings. Each of the cones

� � [ M ¡ ¶QN ¡ ] � contains a smaller cone which has its apex at the point���&¶xBÒ�����P� . Therefore � is in the shadow of all the other cones. But this means that if �ºÓSC » Ó
then �~Ó ö �(C »ÔÓZ� 1 � . The assertion follows.
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We first need to define the notion of down-crossing of sequences more precisely.H ÊJIjð|î�ï*î÷Ë�ð�Ï
For every ¥�¦ ¨ò¦ 0 and every ÂãÓ�Ø we define û » ¿`_�¿ a as the set of monotone

sequences
& �´¼ � � ½ ��¢ 0 ¿ 1 ¿<ÀÁÀÁÀ for which ¼ � � ±²«|½ ��èÙ� makes Â down-crossings from ¥ to ¨ :

û » ¿`_�¿ a � Ú£¼ � � ½ �kÛ 0 U � ¡ ³ � ¡ � 1 for ·É� 1 ¶ 2 ¶°¤°¤°¤j¶
there are numbers 0 ¬�« 1 ¬¯® 1 ¬¯« 2 ¬¯® 2 ¬ t�t�t ¬¯® » for which� ��ÜQ±²« Å ³ò¥�¶ � ¸GÜ�±²® Å ¹�¨�¶ for Ý|� 1 ¶°¤°¤°¤1¶HÂAÞé¤ � 4 ¤ 1 �

We shall say that
& Ó~û » ¿ _
¿ a has Â oscillations of amplitude ¥�±L¨ . �

Given a sequence
&
, and u�³ 0, we define a new sequence ß d F ¿ à f

by , d F ¿`à f� � � �¾øáF�Ø � F ,«º� 0 ¶°¤°¤°¤1¶ZÔªØRu . We denote by ��� & ¶HÂ
¶4¨B¶P¥B¶ZÔ£� the set of those indices u , for which ß d F ¿`à f Óû » ¿`_�¿ a . Thus, ��� & ¶HÂ
¶4¨�¶P¥�¶ZÔ£� counts how many “shifted” subsequences of ¼ � 0 ¶°¤°¤°¤6¶ � à ½ make
at least Â oscillations. In other words, for u Ó[��� & ¶HÂ
¶4¨�¶P¥�¶ZÔ@� , the sequence

Ú � ��øÉF Ø � F« Þ ��¢ 0 ¿ÁÀ<ÀÁÀ<¿`à �]F ¶
makes at least Â down-crossings between ¥ and ¨ .ë Ì>Ë
ìBË!í°î�ï*î)Ë!ðâ��Ï]Î
Ï

One has the inequality:U ��� & ¶HÂ
¶4¨�¶P¥�¶ZÔ@��U|¹ �f¨Ò±>¥�� » �]Ô­ú 1 �B¤� Ê�Í���Ì��ÒÏ
See Ivanov [I1] for the manipulations—essentially a “periodic” extension of the

sequence ¼ � 0 ¶°¤°¤°¤ � à ½ —which lead to the bound �f¨|±>¥|� » Ô .ë Ì>Ë�Ë]\ZÏ
We apply Theorem 3.1 to the following setting. We let Cê� [0 ¶ZÔéú 1 � , and we letBÒ����� � � ¡ for �éÓ [·¾¶Ì·�ú 1 � . It is easy to verify that if an index · is such that the sequence

&
has Â down-crossings from ¥ to ¨ to the right of · , then the same is true for the function B on
the interval [·¾¶Ì·�ú 1 � . In other words,U ��� & ¶HÂ
¶4¨�¶P¥�¶ZÔ@��UÒ¹ U C »]U>¶
and the result follows from Theorem 3.1.ë Ì>Ë�Ë]\�Ë]\ ÇÉÈ�ÊDË!Ì*Ê�Í Î
Ï]Î
Ï

At this point, we use the invariance of the measure � under � . For
every �©Ó·� , we consider sequences

í �)����� ¼>�°���)���1½ , where �°���)�����äã ��� 1F�¢ 0 BÒ�÷� F �£� . We let¤
This terminology is adequate since all bounds will be functions of the amplitude u
�Zw alone, i.e., they only depend

on the relative size of w and u .
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� » ¿`_�¿ a denote the set of those � for which the sequence
í �)��� makes Â oscillations of amplitude¥�±L¨ , and we let � » ¿`_
¿ a�¿ ¸ be the subset of those � where this happens for the subsequence¼>� 1 �)���6¶°¤°¤°¤4¶1� ¸ �÷�£�4½ . We then have, since � �]Ú �j� � �)� � 1 Ú � ,Ï å � �f� » ¿`_�¿ a ��� lim¸gq Õ � �f� » ¿`_
¿ a�¿ ¸ �

� lim¸gq Õ Ô � 1
à � 1  ¡
¢ 0

� �)� �
¡
� » ¿ _
¿ a�¿ ¸ �

� lim¸gq Õ Ô � 1 æ d � �)��� à � 1  ¡
¢ 0 çAèÃé�ê!ë�ìYí`î�í ï�í ð �)���

� lim¸gq Õ Ô � 1 æ d � �)��� à � 1  ¡
¢ 0 ç ë�ìYí`î�í ï�í ð �÷�

¡
��� å

lim¸gq Õ Ï ¸ ¿`à ¤
� 4 ¤ 2 �

Note now that ç ë�ìYí`î�í ï�í ð �÷�+K � � 1, if the sequence ¼>� � �÷�+K �1½ ��¢ 1 ¿ÁÀ<ÀÁÀ<¿ ¸ makes Â oscillations of
amplitude ¥�±L¨ , and 0 otherwise.

The crucial observation by Ivanov is now that if

ç8ëÉìxí`î�í ï�í`ð �)�
¡
�£�j� 1 ¶ then ·ôÓ[��� í �)���6¶HÂ
¶4¨B¶P¥B¶ZÔÆú�® Ø 1 ��¶ � 4 ¤ 3 �

as one can see just from the definitions. Therefore, by Proposition 4.1, we findà � 1  ¡
¢ 0 ç ëÉìxí`î�í ï�í`ð �)�

¡
�£�Ð¹ñU ��� & �)���6¶HÂ
¶4¨�¶P¥�¶ZÔÆú�® Ø 1 ��UB¹ �]¨Ò±>¥�� » �]Ô­ú�®Ä�B¤

Coming back to
Ï ¸ ¿`à , we see thatÏ ¸ ¿`à ¹µÔ � 1 æ d � �)���[�f¨|±>¥|� » t �]Ô~ú�®Ä�B¶

for all Ô , and thereforeÏ ¸ å
lim supà q Õ Ï ¸ ¿ à ¹ lim supà q Õ �f¨|±>¥|� » Ô­ú�®Ô � �f¨|±>¥|� » ¤ � 4 ¤ 4 �

Since
Ï ¹ lim ¸Gq Õ Ï ¸ , the assertion of Theorem 1.1 follows.
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In this section, we prove Theorem 1.3, and Theorem 1.4. The proofs leading to Theorem 1.1 are
not quite applicable, because the device used in Eq.(4.3) does not work in the case of symmetric
intervals, since a subsequence will cut a “hole” in the original sequence. However, we shall
work with the decomposition of the sequence

ö � �)����� ã ��� 1

¡
¢��!� ���)�

¡
��� as the sum of two

sequences
�

and ù to be defined below. We first show that if � � oscillates, then at least one of
the sequences

�
or ù must oscillate as well, but a little less. We study this as a general problem:

We assume
& � ¼ � � ½ �kÛ 0 Ó û » ¿ 2 _
¿ 2 a and further that � � �úz � úû{ � , where

� � ¼�z � ½
and ù©� ¼�{ � ½ are monotone sequences of non-negative numbers. We are going to show that
either

�
or ù must have oscillations, and we will give bounds on the number and size of these

oscillations. (Our bounds are not optimal, and we do not know the optimal bounds, but we will
give a reasonable set of bounds for the cases when ¨Ò±>¥ is close to 0 or 1.)

To describe the nature of the oscillations, we setü � 1 ú �÷¥|±L¨|�
2

¶
so that 1 ¬ ü ¬�¥�±L¨ . Then we define for ·`� 1 ¶ 2 ¶°¤°¤°¤ ,

¨
¡
� ¨Æú 2 �ý· Ø 1 �[�f¨�Øº¥�± ü �B¶¥

¡
� ü ¨ ¡ ¶þ ¡ � 2 ¥�± ü Øé¨~Ø 2 �ÿ· Ø 1 �[�f¨�Øº¥�± ü �B¤ � 5 ¤ 1 �

We also define Â 0 � Â and Â � � 1 ú [ Â ��� 1 ± 2 � ], where [ ] denotes the integer part. We can now
formulate our result:ë Ì>Ë
ìBË!í°î�ï*î)Ë!ð V Ï)Î!Ï If

& Ó�û » ¿ 2 _�¿ 2 a and
& � � úTù as above, then at least one of the sequences�

or ù is in

û:K» ¿`_�¿ a å �� ��5ÓYÛ!�kÛ 1

û »
2

b��
1 ¿ � b ¿ ��� b	�
 � �� ��5ÓxÛ��kÛ 1

û »
2

b ¿`_ b ¿ ��_ b��
 ¶
where � � is the smallest integer satisfying

���­³ ¨Æú-¥
2 �)¥äØª¨|� ú 1 ¤

� Ê�Í���Ì��ÒÏ
The meaning of this inclusion is that either

�
or ù make at least Â 2�5ÓZø 1 oscillations

of “amplitude” ü . Thus, the theorem says that if
&

has Â oscillations of amplitude ¥�±L¨ , then, for
large Â ,

�
or ù have at least â���Â�± 4� Ó � oscillations of amplitude ü . Note that if ¥|±L¨ diverges

then ü diverges as well, while for ¥�±L¨·� 1 ú$Ù we have ü � 1 ú$Ù²± 2.
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Before we start with the proof, we note that the definitions of ¨
¡
, ¥
¡

have been chosen
such that for ·ô³ 1, one hasü ¨ ¡ � ¥

¡
¶ ü þ ¡ � 2 ¥äØé¥

¡
¶ ¨

¡
ø 1 � 2 ¨­Ø þ ¡ ¤ � 5 ¤ 2 �

We will construct recursively the possible sets of indices for which oscillations occur. Assume& Ó·û » ¿ 2 _
¿ 2 a , with the oscillating indices ®
¡
, «
¡

as in Eq.(4.1). Define � 0 � � 0 �þ¼ 1 ¶°¤°¤°¤1¶HÂ�½ ,
and �
�0 �Ñ¼�Ý�Ó�� 0 U§z ¸gÜ ¹�¨ 1 ®ãÅF½�¶�
�0 �Ñ¼�Ý�Ó�� 0 U§{1¸gÜB¹�¨ 1 ® Å ½�¤
Since zD¸gÜ&úP{6¸gÜ�� � ¸gÜ ¹ 2 ¨�® Å � 2 ¨ 1 ® Å , we see that each Ý�ÓP� 0 must be in at least one
of the sets �
�0 , � �0 . Therefore the cardinalities satisfy Uª�
�0 U*úöUª� �0 U�³ Uª� 0 U��ñÂ·�ñÂ 0, and we
conclude that max �xU¶� �0 U<¶5Uª�
�0 U � ³×Â 1. We assume for definiteness that Uª� �0 U�³×Â 1; in the other
case, the proof is obtained by exchanging the rôles of

�
and ù . We define next���1 � ¼�ÝjÓ��
�0 U�z ��Ü ³ò¥ 1 «�ÅF½�¤

Assume first U ���1 U ³ Â 2. By the definition of �
�0 and ���1 , this means—cf. Eq.(5.2)—that� Ó-û »
2 ¿ _ 1 ¿ a 1

�üû »
2 ¿`_ 1 ¿`_ 1 � , which is part of the set û¾K» ¿`_�¿ a , and we stop the induction. In the

other case, we define ���1 �º� �0   � �1 . Clearly, U ���1 U�³ÃÂ 2, but furthermore we have for all Ý@Ó ���1
the inequalities z ��Ü�¬µ¥ 1 « Å ¶z ��Ü ú�{ ��Ü ³ 2 ¥�«�Å&¶
and therefore { ��Ü ³ � 2 ¥�Ø·¥ 1 �Q«�Å�¤ � 5 ¤ 3 �
We now define �
�1 � ¼�ÝjÓ[���1 U�{ ¸GÜ ¹ þ

1 ®ãÅF½�¤
If Uª� �1 U ³ÖÂ 3, then we have, using Eqs.(5.3) and (5.2),ùçÓ´û »

3 ¿ � 1 ¿ 2 a � a 1
�Ûû »

3 ¿ � 1 ¿ ��� 1
¶

and we stop the induction. In the other case, we let � �1 � ���1   �
�1 , and then for all Ý�Ó � �1 we
have {1¸gÜx¦ þ

1 ® Å ¶z ¸gÜ ú�{ ¸gÜ ¹ 2 ¨�®ãÅ�¶
and therefore z ¸gÜ ¹Ñ� 2 ¨~Ø þ

1 �F®ãÅÉ� ¨ 2 ®ãÅ|¤ � 5 ¤ 4 �
If 2 ¨ãØ þ

1 ¬ 0, the inequality (5.4) contradicts the positivity of the z ¡ and hence Uª�
�1 U ¬ÖÂ 3 will
never occur and the induction stops.
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Otherwise, we continue, defining for u�³ 2,� �F �Ñ¼�ÝBÓ � �F/� 1 U zD�ÙÜB³ò¥eFZ« Å ½�¶� �F � �
�F/� 1   ���F ¶� �F-�Ñ¼�ÝBÓ�� �F U {6¸gÜB¹ þ FP® Å ½�¶� �F � ���F   �
�F ¤
There are now four cases.
1) If U ���F U�³ Â 2 F , then ���F�m �
�FF� 1 implies z ��Ü ³Ö¥ F «�Å and z ¸GÜ ¹ ¨ F ®ãÅ for Ý@Ó����F , and hence� Ó�û »

2 � ¿`_ � ¿ a � � û » 2 � ¿`_ � ¿ ��_ � , and the induction stops.

2) If U � �F U�¬ Â 2 F , then we have for Ý£Ó����F the inequality { ��Ü ³á� 2 ¥äØª¥ F �F«�Å , since z ��Ü ¬�¥ F «�Å
and z ��Ü ú�{ �ÙÜ ³ 2 ¥�«�Å , and we continue the induction.

3) If U¶�
�FáUD³ Â 2 F�ø 1, then �
�F m ���F implies {1¸GÜ�¹ þ FP® Å and {6�ÙÜ@³´� 2 ¥äØé¥]F4�F« Å for Ý�ÓS�
�F , and
hence ùªÓ�û »

2 � � 1 ¿ � � ¿ 2 a � a � � û » 2 � � 1 ¿ � � ¿ ��� � , and the induction stops.

4) In the last case, Uª� �F U ¬ÖÂ 2 F�ø 1, and then we have for ÝjÓ��
�F the inequality z ¸GÜ ¹ � 2 ¨ Ø þ F �F®ãÅ ,
since { ¸gÜ ¦ þ F ®ÆÅ and z ¸gÜ úO{ ¸gÜ ¹ 2 ¨�®ãÅ . If � 2 ¨­Ø þ F ��³ 0, we continue the induction,
while in the opposite case, we see that Uª�
�F�U�¬ÖÂ 2 F�ø 1 cannot occur, and the induction stops.

Since 2 ¨ôØ þ �5Ó ¬ 0, as one checks easily from the definitions, the induction must stop for someu ¹S��� . The proof of Proposition 5.1 is complete.
We can now complete the proof of Theorem 1.3 by applying Proposition 5.1. We write the

sum
ö � of Eq.(1.2) as ö ���)����� z ���)����ú�{6���÷�£�j¶

where z � �)���y� ��� 1  ¡
¢ 0

���)�
¡
���B¶ { � �)���y� � ¡

¢ 1

���)� �
¡
���B¤

By Proposition 5.1, if
" �)����ÓÃû » ¿ 2 _�¿ 2 a then at least one of the sequences

� �)��� , ù �)��� is inû K» ¿`_�¿ a . Therefore

� �Q¼°�OU " �)���£Ó�û » ¿`_�¿ a ½>�Ð¹ � �Q¼°�OU � �)����Ó~û:K» ¿`_�¿ a ½>� ú � �Q¼°�OUYù �)���£Ó�û:K» ¿`_�¿ a ½>�j¤
Since � is invariant under � and � � 1, we can apply Theorem 1.1 to both sequences and we get
a bound:

� �Q¼°�OU " �)����Ó�û » ¿`_�¿ a ½>�ã¹ 2
2� Ó ø 1 
��¢ 1

� 1 ± ü � » b ¹ 4 ������ú 1 �[� 1 ± ü � » 
 4 � Ó � 1 ¤
Since both ü and ��� are functions of ¨Ò±>¥ and ü ¦ 1, the Theorem 1.3 follows.ë Ì>Ë�Ë]\�Ë�\ ÇÉÈ&Ê�Ë
Ì>Ê�Í Î!Ï���Ï

This proof will be straightforward combination of the 2 following
lemmas.
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Î �� Ê�Í§Í�� V Ï � Ï Let �¯³ 0. There are a ÂÍK��µÂÍK � ��¶4¨Ò±>¥�� and a ¥AKB� ¨|Þã�f¨Ò±>¥�� , with Þ ¦ 1

when ¨Ö¬´¥ , such that if ¼�ß � ½ÐÓ-û » ¿`_�¿ a , then the sequence with elements � � �üß � ���ø=� is inû »>��»�� ¿ _
¿ a � .� Ê�Í���Ì��ÒÏ
It will be obvious from the proof that similar statements hold in the following cases:

¼�� � ½­� ¼�ß � max � 0 ¶*�)«ãØË���P�P±²«|½XÓ�û »>��»�� ¿`_�¿ a � ¶¼�� � ½­� ¼�ß � «�± max � 1 ¶*�)«xØ����P�1½XÓ�û »>��»�� ¿`_ � ¿ a ¶¼�� � ½­� ¼�ß � �]«�ú����P±²«|½XÓ�û »>��»�� ¿`_ � ¿ a ¶ � 5 ¤ 5 �
where ¨8K�� ¥�Ú��f¨|±>¥|� with Ú ¬ 1 if ¨-¬ò¥ .ë Ì>Ë�Ë]\ZÏ

We will actually construct ÂÍK and ¥AK . Let «�Å and ®ãÅ be defined as the crossing points of
the sequence ��� , cf. Eq.(4.1). Since « 1 ³ 1, and the �°� form an increasing sequence, we have

¨&®ÆÅò³ê� ¸GÜ ³ê� ��Ü ³µ¥�«�Å�¶
so that ®ÆÅ�³ �)¥�±L¨Ò�F«�ÅÒ¦´�)¥�±L¨Ò�F®ãÅ � 1 and thus

®ÆÅ�³Ñ�÷¥|±L¨|� Å ¤ � 5 ¤ 6 �
Therefore,

� ��Ü � � ��Ü « Å«�Å
úÎ� ³ ¥�«�Å « Å«�Å
ú � � ¥�«�ÅZ� 1 ú �«�Å � � 1 ³ñ«�Å ¥
1 ú ���f¨Ò±>¥�� Å � 1

¤
We choose Þã�f¨Ò±>¥��y� 1 ú �)¥�±L¨Ò�

2
¶

so that ¥ K � ¨|Þã�f¨Ò±>¥��-¦ ¨ , and there is clearly a Â K � Â K ����¶4¨Ò±>¥�� for which ¥|± 	 1 ú���f¨|±>¥|� » � � 1 
 ¦ò¥ K . Then we have for ÝB¦ÖÂ K ,
�Q��Üô³µ« Å ¥ K ¤

On the other hand, �Q¸gÜÉ� ß[¸gÜ ® Å®ãÅ!ú�� ¹µßH¸GÜô¹ñ¨�® Å ¶
so that the assertion follows.

We next study sequences with increments of more than 1. Fix �`ÓÎØ and define

� � �)����� �P�D� 1  ¡
¢ 0

���÷�
¡
�£�j¤
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We are interested in the oscillations of � � ±��]«��L� . This question is reduced to the one described
in Proposition 1.2: Let

� � �)����� 1� �6� 1  ¡
¢ 0

���)�
¡
����¶ � � �ê� � ¶

and

�����)����� ��� 1  ¡
¢ 0

�k� 	 �)�á���
¡
� 
 ¤

By construction, � � �)������� � �)��� . Since � � ³ 0 and � � preserves the measure � if � preserves
it, we conclude� Ê�Í§Í�� V Ï ó Ï The probability that the sequence ¼�� � ±��)«��¾�1½ (defined with � and � ) makes at
least Â oscillations is the same as the probability that ¼>����±²«|½ (defined with �l� and �É� ) makes at
least Â oscillations, and this quantity is bounded by �f¨|±>¥|� » .� Ê�Í���Ì��ÒÏ

The Lemma 5.3 is a little too strong for our purpose, since it would have sufficed to
observe that the sequence ¼>�°��±²«|½ makes more oscillations than ¼��F��±��]«��¾�1½ .

We can now complete the proof of Theorem 1.4 by a painful but somehow obvious
combination of the results above. Recall the definition of

ö � in Eq.(1.3):
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We want to bound the probability that the sequence
ö � ± 	 «���� 1 ú�� 2 ��ú�� 1 úR� 2 
 makes Â down-

crossings from ¥ to ¨ . So assume the sequence with elements ß � å « t ö � ± 	 «���� 1 ú � 2 ��úÐ� 1 úÐ� 2 

is in û » ¿ _
¿ a . We let

�Q�¯� ß[� «ôú��« � ö �� 1 ú�� 2
¶ where �Ö� � 1 ú � 2� 1 ú�� 2

¤
Applying Lemma 5.2, (actually Eq.(5.5)), we see that the sequence with elements

ö � ±���� 1 ús� 2 �
is in û »>��»�� ¿`_ � ¿ a , and thus the sequence with elements

ö � is in û »���� ¿`_ ��� ¿ a ��� , where Â K�K �áÂÉØòÂ K ,¨ KªK � ¨ K ±���� 1 ú � 2 � , ¥ KªK �ê¥�±���� 1 ú � 2 � . We next use the “splitting” mechanism and writeö ��� z �Xú�{6� , where
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By Proposition 5.1, we conclude that one of the two sequences
� � ¼�z ��½ or ù©� ¼�{1��½ must

oscillate; we discuss here the case where it is
�

and leave the other case to the reader. Then we
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conclude that there are a Â d 3 f , ¨ d 3 f and ¥ d 3 f for which
� Ó¯û »�� 3 � ¿`_ � 3 � ¿ a � 3 � and these constants

depend only on ¨Ò±>¥ , and furthermore Â d 3 f � â�� Â�� as ÂÄ� � . Finally, ¨ d 3 f ±>¥ d 3 f ¬ 1 when¨ª¬ò¥ . (We will construct further such constants and they will possess the same properties. Of
course, with some more work one can see that the quotient ¨ d 3 f ±>¥ d 3 f goes to 0 when ¨Ò±>¥­� 0.)
If

� Óåû »�� 3 � ¿`_ � 3 � ¿ a � 3 � , then the sequence with elements z � ±x� 1 is in û »�� 3 � ¿`_ � 3 � 
 � 1 ¿ a � 3 � 
 � 1
, and,

applying again Eq.(5.5), we see that the sequence with elements � z ��±x� 1 � t «�± 	 «xú ��� 1 ±x� 1 � 
 is
in û�»�� 4 � ¿`_ � 4 � ¿ a � 4 � . This means that the sequence with elements

�°¸��)���® � 1«k� 1 ú�� 1
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where ® �ç«k� 1 úP� 1, makes at least Â d 4 f down-crossings from ¥ d 4 f to ¨ d 4 f . The probability
that this happens for ®ñ� � 1 ¶!� 1 ú�«Ò¶!� 1 ú 2 «Ò¶°¤°¤°¤ is certainly less than the probability that this
happens for the sequence � ¸ �)���P±²® when ®µ� 1 ¶ 2 ¶°¤°¤°¤ . But this probability is bounded, using

Theorem 1.1, by 	 ¨ d 4 f ±>¥ d 4 f 
 » � 4 � . Since � ¸ �)��� has been derived from the original sequenceö � �)��� by successive modifications, the proof of Theorem 1.4 is complete.� &Ô��ð�Ëk$%'÷Ê ß�� ÍéÊ�ð�ï*íLÏ We thank B. Weiss for very enlightening discussions on this subject.
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[RN] F. Riesz and B. Sz.-Nagy: Leçons d’analyse fonctionelle, Académie des Sciences de Hongrie (1955).
[R] D. Ruelle: Statistical Mechanics, New York, Addison-Wesley (1968).
[W] B. Weiss: Private communication.


