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1. Introduction and statement of the result

We reconsider the classical problem of constructing quasiperiodic solutions for a near
to integrable Hamiltonian system. The classical approach to this problem, going back
to Lindstedt, Gyldén and Poincaré (see [1]), is to look for series expansions of the
solution. However, the method of Lindstedt encounters difficulties both concerning the
formal consistence of the construction and regarding the question of convergence. As
is well known, in chapt. IX of Méthodes Nouvelles Poincaré solved the formal problem
of comsistency, but his long discussion about the convergence in chapt. XIII left the
latter problem still unsolved. The existence of quasiperiodic solutions was established
in the year 1954 with the work of Kolmogorov!?. The more delicate matter of the
convergence of Lindstedt’s series was clarified with the recent works of Eliasson (see
report [3], now published as [4], and [5][6]) and the more recent ones of Gallavotti and
coworkers!71BIPI0I[11I[121113] 31 of Chierchia and Falcolinil*![5],

In the paper [16] we tackled the problem by introducing a constructive algorithm
based on a sequence of canonical transformations which gives the Hamiltonian a suitable
normal form in a neighborhood of a properly chosen unperturbed torus; the e—expansion
of the solutions are then given as a byproduct of the sequence of transformations.

In the present paper we discuss the problem of the convergence of our expansions,
making use of a tree structure inspired by, but not identical to, the representation
introduced in the papers quoted above. The use of a tree representation is the main
technical difference with respect to our previous paper. Such a procedure allows us
to achieve a great simplification of the proof, and also to improve the nonresonance
condition required on the frequencies. Indeed, we replace the Diophantine condition
used in all papers concerned with Lindstedt’s series with the weaker one proposed by
Bruno. It must be noted that a proof of KAM theorem with a condition similar to
Bruno’s one was given by Riissmann!!71[18],

We also try a comparison between the series produced by Lindstedt’s algorithm
and the ones resulting from our procedure. The use of powers of € in our expansions
makes the comparison direct, at least in principle. However, we must admit that we are
still unable to give a complete explanation of the algebraic relations between the two
expansions. We can only say that we obtain different expansions of one and the same
solution, the relevant differences being due to different mechanisms of accumulation of
small divisors.

We conclude this section with a formal statement of the result. In order to simplify
the discussion we consider the case of Thirring’s model, namely a system of weakly
coupled rotators described by the Hamiltonian

(1) H(p,q,é‘)=w-p+%J_1p-p+6f(Q),
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where (p,q) € R™ x T™ are action—angle variables, J is the (diagonal) matrix of the
moments of inertia, and f(g) is a trigonometric polynomial of degree K in the angles q.
For a discussion of the general case see [13], [15] and [16].

We consider an unperturbed torus carrying conditionally periodic motions with
frequencies satisfying the nonresonance condition proposed by Brunol'®. Precisely, in
terms of the real sequence {«,},-; defined by

(2) o, = min |k-w|,
0<|k|<rK

we state Bruno’s condition as follows: there is an increasing sequence of positive integers

{Tj}jZO such that
—Z logay,,, <oo.
§>0 "i
In particular, such a condition was proved by Bruno (see [19], pp. 222-224) to be
equivalent to the condition

1
(3) —Zy—_110g2a2j2B<OO,
320
which is the one we will use here.
Theorem: If the matrix J satisfies ||J~1v|| > ml|v|| for some positive m and for all
v € R™, and ¢ is small enough, then in a neighborhood of a nonresonant unperturbed

torus with frequencies w satisfying Bruno’s condition (3) one can construct an e-analytic
canonical transformation of the form

g=q¢ +epM(@)+20@(¢)+..., p=p +epD (@, ¢)+pP W, ¢)+...
which gives the Hamiltonian the Kolmogorov’s normal form
(4) H(p,q.e) =w-p+R(p,q,¢), R(p,q,¢) =0(p?) .
Remarks.

1. The condition ||J " v|| > m/||v|| is not necessary if the Hamiltonian has the form (1).
This “twistless property” has been pointed out, e.g., in [7]. We keep this hypothesis
so that the statement and the scheme of proof of the theorem can easily be adapted
to the slightly more general model discussed in Thirring’s book [20], §3.6, where a
linear p—dependence is allowed in the perturbation f. In sect. 3.3 we discuss when
and why this hypothesis can be removed.

2. In the analytic case, K — 00, the condition of Bruno, as stated above, looks mean-
ingless. However, in such a case one can follow the suggestion of Poincaré of splitting
the Hamiltonian in trigonometric polynomials of degree K, 2K, ..., with some finite
K. This has been done, e.g., in [16].
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The paper is organized as follows. Our formulation of Kolmogorov’s algorithm is
given in sect. 2.2. A discussion concerning the relations among our method and previous
ones is given in sect. 3. The technical proofs have been moved to sect. 4, so that a reader
not particularly interested in technicalities can easily skip them.

Acknowledgements. This paper was prompted by long and constructive dis-
cussions with G. Gallavotti, L. Galgani, G. Benettin, D. Bambusi, A. Carati, G. Gentile
and V. Mastropietro. We are indebted with all of them. We are also grateful to E. Lega
for useful discussions.

2. Algebraic setting and formal algorithm

We start here with a list representation of functions which can be used (e.g., with
an algebraic manipulator) in order to implement both Lindstedt’s algorithm and the
algorithm of Kolmogorov in our scheme. The aim is to make clear in which sense we
take into account every term generated by the algorithms, with no simplifications. The
reader should figure out a possible representation of functions on a computer, with
commonly used tools such as lists and pointers to list elements. The second section
below is devoted to our algorithm. The next sections contain the tree representation of
our construction, which is useful in order to control the accumulation of small divisors
and to obtain the necessary estimates for convergence.

2.1 Representation of functions

We consider functions g¢(p,q,e) which can be represented as powers series in & the
coefficients of which are trigonometric polynomials in the angles ¢ and polynomials
of finite degree in the actions p. More precisely, we consider the following structure,
illustrated in fig. 1. A function g(p, q,€) = go(p, ¢) +€91(p, q) +- . . is uniquely associated
to a list of coefficients of different powers of €. An entry in the list of powers of € points
to a list of Fourier modes. That is, we write the coefficient of ¢° as a Fourier expansion
9s(p,q) = i ck(p) exp(ik - ¢), where k € Z™, and represent such an expansion by the
list of Fourier modes. An entry in the list of Fourier modes points to a further list of
monomials. That is, we write cg(p) = . i ak,jp’, where j is an n—array of nonnegative
integers labeling the elements of the list of monomials. An entry in the list of monomials
points to a further list of summands, and an entry in the list of summands points to
a numerical coefficient with a list of divisors of the form v - w, with v € Z". That is,
we represent by the list of summands the expression aj ; = > Hi e To summarize, a
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generic function g takes the form

p
[Ty -w’

The symbol >* refers to the list of summands, and the product is over the list of
divisors.

Algebraic operations like sum, product, differentiation and Poisson brackets can be
performed by manipulation of the lists above, either modifying some existing list entry
or creating a new list structure representing the result of an operation. Sum acts on the
lists of summands, being just a concatenation of two lists. Differentiation with respect
to one angle acts on the list of numerical coefficients, being just a multiplication by
an exponent taken from the list of Fourier modes. Differentiation with respect to one
action acts on the list of monomials, moving a pointer to an entry of lower order, and on
the numerical coefficients. Product between two functions acts on all lists. The Poisson
bracket is just a combination of differentiation, product and sum. Similar considerations
apply to the inverse of the operator 0, := w - 94, that acts on the numerical coefficient
and adds one divisor to the list of divisors. We stress in particular that the contents of
the list of summands depend on the operations performed on the list.

In all the rest, we intend that all algebraic operations are performed keeping the
lists as they are generated. This point will be crucial in comparing the series of Lindstedt
and the series generated by our algorithm.

In order to investigate the convergence of the series we proceed as follows: let g5 (p, q)
be the coefficient of some power of ¢ according to (5), and consider the list associated
to it. Then we define

(6) ||gs||=222%.
kE g

where the sums and the product are to be performed over all elements of the corre-
sponding lists, as in (5). Since the norm involves all elements of the sublist describing
the coeflicient of a given power of € we never need to count the elements in a given list:
in order to prove the convergence of a power series g = go+£g1 + . . . it will be sufficient
to prove that ) ., %||gs|| converges for some positive .

3)  9ma.e) = 9:mq), 9s(q) =D exp(ik-q) > P Y
K i

s>0

2.2 Formal algorithm for Kolmogorov’s normal form

We perform a sequence of canonical transformations which bring the Hamiltonian to
Kolmogorov’s normal form order by order in . The transformations are performed using
the algorithm of Lie series. For an account on this method see, e.g., [21] or [22]. As it
will be evident from the algorithm, the property of the Hamiltonian (1) of being at most
quadratic in the action p is preserved by the transformation.



A. Giorgilli and U. Locatelli

\n
~
3
>
-
= c ,QU'A
— o~ (3]
~ @ | > | > | > > -3
@
N ©
I _
S -
X -
. -
%)
q_'c
S 8
% £ +
3
c
S
© ..o =~
c n - — — — o
o o o -
E EU - N :
— H : - Q.
5 EN-| i i E R
c | o o — -
k] S ~ - - o
s o o — o -
() = ~ ~ —~ o
—_ x ~
5 o
U ~—~
5 o
=~ ~
0] 2
8o [ ]~ ~ =~
8 Ei o o o o
E o : : :
- | | :
8o o o o -
S5~ o - - o
s o = N D =
LT
. %)
. o
+
N
o
N
c .
.9+F' o~ ™ -
B89 | A w | w | w R :
c —
> +
LL o -
(@]
I
o

Figure 1. Tllustrating a possible computer representation of the list structure as-
sociated to a function. At the first three levels an entry of the list consists of a label
(e.g., the integer vector of exponents for the list of monomials) and a pointer to
an unique list of the next level. The list of summands has no labels, and contains
only pointers to the coefficients; it acts just as a set of indexes in a sum.
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Let us write the Hamiltonian after » normalization steps in the form

(7) H(’")—szpﬁrzash(s“rza ( ”)+f”)+f(”))

s>r

where A(®) is a homogeneous polynomial of degree 2 in the actions p and a trigonometric
polynomial of degree sK in the angles ¢, and the functions fl(r’s) are homogeneous
polynomials of degree [ in the actions and trigonometric polynomials of degree sK in
the angles. We can always assume that ( fér’s)) = 0, where (-) denotes averaging over all
angles. The upper index r refers to the current iteration of the normalization algorithm,
and is missing in A(®) because this is the part of the Hamiltonian already in normal
form. The original Hamiltonian (1) has clearly this form: just put » = 0, and identify
RO = J-1p. p/2, (0 D = f. All the rest of the expansion is initially zero.

Assuming that we have performed r — 1 normalization steps, thus obtaining
H"=1 as in (7), we perform two canonical transformations with generating functions
ngg’")(q) =" (X" (q) +£0) - q) and "y (r )( , q) respectively, where X (") does not de-
pend on p, £ is a real vector, and Xg ) is linear in p. Performing the transformation
in two separate steps allows us to easily control the degree in the actions of every term
in the expansion.

With the first transformation we compute an intermediate Hamiltonian HM =
exp(arLXY))H(’"_l) of the form

®) A = S+ zssw P (0 + O+ F0Y

s>r

where x\” = X 4 ¢ . ¢ has to be determined so that fé”) = 0 and f{"" has
zero average over the angles. Then we perform the second transformation, computing
H™) = exp(e"L (r))I:_I(T) of the form (7), where Xg) has to be determined with the

condition that the linear term f;" Fr) s removed.
The generating functions are determined by the equations

(9) B X ™) 4 fir=br) — ¢ |
(10) JTI p 4 (frTy =0
(1) 0" +{X O DO} + (F70 = () =0,

where 0,- = {-,w - p} and (-) denotes averaging over the angles g. Moreover, the nor-
malized term A(") in the Hamiltonian is given by

B — Lxér)h(O) + f2(r—1ﬂ") )
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Looking at the explicit expressions of the exponential operators eXp(sTLX(r)) one imme-

diately sees that terms of the same degree in ¢ and in the actions p are easily isolated,

so that one can obtain explicit recursive formula for all functions fl(r’s) in the expres-
sion (7). The explicit recursive formulae for the transformations are reported in [16].

2.3 Representation of the algorithm by trees

The following construction keeps track of the algebraic operations performed in con-
structing all functions generated by the algorithm of the previous section.

Let us represent a function as a union of rooted trees. A tree A is composed by a
root branch uniquely associated to a node; the node in turn can either be an end node
or be expanded in a set of trees with their root attached to that node; we shall represent
an end node by a circle, and a node to be expanded in trees as a box; the latter node
will be also called an internal node. We consider a node as associated to its branch; the
notation #.A4 will denote the number of nodes in the tree A, and so also the number of
branches. The set of internal nodes and of the end nodes will be denoted by A; and A.,
respectively. A tree has a natural partial ordering: a node a precedes the node b # a if
the path from b to the root branch goes through the node a. In that case we shall write
a < b. In particular, if the branch of the node b is attached to the node a we shall say
that a is the left node of b and that b is a right node of a. A node has exactly one left
node, unless it is attached to the root branch. An internal node has one or more right
nodes.

At the lowest level we represent a function by a single node with a root branch.
When determining the generating functions (i.e., when solving the equation 0,5 = f)
we represent the solution S by the same tree as f, but with the root branch replaced
by a wavy line. That is, the wavy line means division of all summands by —ik - w, where
k is the Fourier mode corresponding to the summand. The subset of all nodes with a
wavy line will be denoted by B..

A special role is played by the solution of eq. (10), since the function & - ¢ can not
be represented with the structure of sect. 2.1. However, this expression enters only in
Poisson brackets with functions, and the result is actually a function. Therefore, it acts
as a temporarily created expression that can be represented by just keeping track of the
vector ¢ (actually n functions with zero Fourier mode and zero monomial exponents).
We associate a tree to £ - ¢ by replacing the root branch by a double line in the tree
corresponding to the known function in (10). That is, the double line means extracting
the part of a list corresponding to the Fourier mode k = 0, and solving eq. (10). The
subset of all nodes with a double line will be denoted by B_.

New trees are generated via Poisson brackets. The multiple Poisson bracket ﬁL; f
will be represented by creating a new root branch with a node, and attaching s trees
representing generating functions x and a tree representing the function f to that node,
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in descending order.

To every node we attach two labels, the first one representing the exponent of ¢,
and the second one representing the polynomial degree on the actions. In the following
we call these two quantities e—weight and polynomial weight, respectively; moreover,
for the e—weight of a node v we use the notation w(v). An internal node has labels
determined according to the rule that the exponent of € is the sum of the e-weights of
all its right nodes, and the polynomial exponent is the sum of the polynomial weights of
its right nodes decreased by the number of wavy lines and twice the number of double
lines attached to that node. For instance, in the representation

(1,0)

(1,1)

V7

the weights of the node vy are computed from those of its right nodes v3 and vy;
similarly, the weights of vs and v; determine the weights of v5, and the weights of v
and v5 determine the weights of v,. We emphasize that the weights of all internal nodes
are completely determined by the weights of the end nodes and by the wavy lines and
the double lines inside the tree. For this reason we represent the internal nodes by a
black circle, meaning that there is no arbitrary information associated to it. These rules
are obvious in view of the mechanism above of construction of trees via Poisson brackets.

Remark. One should not try to identify our tree structures with the trees of [3]-[15].
In these papers a tree represents one coefficient of a given Fourier mode, and so it
must be identified with an element of the list of summands in the list representation of
sect. 2.1 (recall that many trees can represent different coefficients of the same Fourier
mode). In contrast, our trees are meant to represent a set of rules that allow one to
construct a new function from existing ones, through the operations of solving the
equations (9), (10) and (11) for the generating functions and calculating Lie derivatives
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(r,0)

(r
(a) (s+r,0) where (b) (s+r,0) ~ where
S>=r S>=r
(s,1) (s,1)
(

(s+r,1) (s+r,1)
(c) (d) ————— &

(s+2r,0) (r,o) (s+2r,0 (r,1)

(e) (f)
(s.2) \S'Z)
O O
(r,0) (r,1)
O
(9) (s+2r,0) (r,1) 3 (s+2r,0 (r,0)

/

(s,2) (s,2)
g i

Figure 2. Tree structures generated by the transformation with the generating

function x\".

of functions. A function defined as the sum of many expressions involving the operations
above is represented as a union of trees. The use of a single tree with a square box as
representing a function reflects the recursive nature of our algorithm: once a function
has been computed, its actual representation as a union of trees is no more useful.

We are now ready to describe the algorithm for Kolmogorov’s normal form in terms
of trees. The Hamiltonian H(?, i.e., the Hamiltonian (1), is represented by simple trees
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with a root and one end node, namely

(0,1) (0,2) (1,0)
(12) - o - © - ©
wp 17230 pep f

Similarly, the Hamiltonian H() is represented by two trees as above for w - p and h(%),
and a set of trees that can be generically represented by a root branch with a box, and
with labels (s,2) for h(®) and (s,1) for fl(r’s).

Assume that all trees which represent H(® ... H"=1) have been constructed. The
algorithm of sect. 2.2 tells us how to construct the trees of H("). Starting with the
trees of H("=1_ that we represent just by a root branch with a box, we construct the
generating function X (") by solving (9). To this end, let us represent symbolically the
equation as

(r,0)
(13) 3mx(r) + fér_l'r) —#JJJJ\D (r 0) =0
\) 1)

Here, the unknown generating function X () is represented by the tree

(14) (r,0)
AVAVAVAVAVE
namely, the node with a wavy line. Changing the root branch of fér_l’r) to a wavy line

represents the operation of solving eq. (13).

We also construct £ - ¢ and Xg ") by solving (10) and (11), and represent symbol-

ically the result as

(r,0)

(1) (r,1) (r) (r,1) (r.1)
(15) ¢hq: ———— "7 . X2 AT AN e

o

(") are obtained by the tree expansion of the two terms on

The two different trees for x.,
the right of (11).
Now we construct the intermediate Hamiltonian H(). Applying the generating

(r

function X1) to every term in H("~1) produces the trees represented in fig. 2. The
union of all trees with the same root’s weights represents the functions f in (8). The
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(r,1)

}jtim%
(s+jr,1)

(r,1) where, if 1=0,1, s>=r.

(s.1)

Figure 3. Tree structures generated by the transformation with the generating
(r)

function x, .
tree representation of H(") is obtained by making the union of the trees in fig. 2 with
the trees in the representation of H( 1),

In order to construct H(™ we apply the transformation with Xg’") to H ("), and
represent again the trees of H(") by a box with a root branch. We obtain the trees
represented in fig. 3. A complete representation of the trees could be done by recursively
expanding the boxes in their actual representation.

2.4 Some properties of the trees

The trees generated by our algorithm have some particular properties which will be
useful in order to produce convergence estimates. We collect here all these properties.

We start with some definitions. Let A be a tree. We denote by Q(v) the path
connecting the node v with the root, including the node v itself. If v is an end node,
then the path Q(v) will be called a primary path. The set of all right nodes of an
internal node v will be denoted by R(v). By construction, the set R(v) of an internal
node v € A; is the union G(v) UV, where v/ is a node with a line, namely represents a
function, and G(v) is a set of nodes with a wavy line or a double line, namely represents
generating functions. All nodes v" € G(v) have the same e—weight, that we denote by
v(v), i.e., v(v) = w(v"”) where ' € G(v).

A subset Z C A is said to be a set of independent nodes in case for any v, € T
there is no primary path in A containing both v and v'.

To any non negative integer g we associate the set N (@ C A defined as

ND =LyeB, : 207 <w(v) <27} ;
we also define ./\/'j(q) for a positive integer j as the set
N =1y e N@ : #(Q(v) NN @) =4} .
For any positive integer r we define the set

M ={ve A o) =7} ;
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moreover for any positive integer j we define
M = {ve MD) - #(Qw)nMD) =} .

We claim that for the trees generated by our algorithm the following statements
are true:
(a) If T is a set of independent nodes, then ) ., w(v) < w(root).
(b) If v < V' then w(v) > w(v') and, if v' € A;, then v(v) > v(v').
(c) With reference to the trees

V \V
(r,m) (r,1)
v
(a) (b)
(s+r,l+m-1) (s+r,|-1)\
v’ v’
O O
(s,1) (s,1)

if the polynomial weight | of v equals 0 or 1, then w(v) < w(v').
(d) ./\/'j(q) = M§-r) = for j > 2.
(e) Nl(q), J\/'Q(q), Mg’") and Mgr) are sets of independent nodes, and moreover one has
MO AN =0, NO UND — N, MO (1 MP = 0 and MO UM — M.
(f) for any integer ¢ > 0 one has

HNO < 2u(root) , #N@ <2 {;(_rliof)lJ .

(g) The maximal number of elements of a generic tree, according to whether it rep-
resents a function or a generating function, is given by the following table, which
holds for r,s > 0 and forl =0,1,2:

#A #Ae #B~ #B-
x® 6r — 5 3r—2 2r — 1 r—1
¢m 6r —3 3r—1 2r —1 r
x5 6r — 3 3r—1 2r r—1
h() 6s—1 3s 2s s—1

FO sl —5  Bs+1-2  25—241  s—1
(h) The total number of trees representing any of the functions h(*), ng), ng), l(r’s)
does not exceed 84°, independent of r and I.

We postpone the proof of all these statements to sect. 4.
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The control of the accumulation of small divisors strongly depends on the prop-
erty (f). With reference to the list structure of sect. 2.1, we can rephrase the property
as follows: for the coefficient of order s in € of any function, the list of divisors k - w
contains at most 2s elements with |k| < K and at most 2 - |s/2971| elements with
2071 < |k|/K < 29 for ¢ > 1. In view of this elementary property the accumulation of
small divisors in the coefficient of order €° is bounded by C?, with some constant C,
provided the frequencies w satisfy the condition of Bruno.

3. Some relations with previous methods

The aim of this section is to discuss the relations of our algorithm with the original
Kolmogorov’s algorithm and with the recent works on Lindstedt series.

3.1 Relations with Kolmogorov’s algorithm

Our method is in fact an algorithmic reformulation of the original method proposed by
Kolmogorov. A short and elegant formulation of Kolmogorov’s method can be found
in Thirring’s book [20], where the model considered here was proposed. Our approach
differs from that of Thirring in two main points: (i) we perform the canonical transfor-
mations with the method of Lie series, as suggested in [23], and (ii) we use traditional
expansions in the parameter ¢ instead of using the so called quadratic method suggested
by Kolmogorov and almost universally used in KAM theory.

The main benefit offered by the use of Lie series is that no inversion is required
in order to determine the explicit form of the canonical transformation, and moreover
the construction of the transformed Hamiltonian requires only the application of the
exponential operator exp(L, ), where x = £-g+ X (¢)+Y (¢) -p is the generating function.
This presents no particular advantage if one is interested only in quantitative estimates
leading to the proof of the theorem, as was the purpose of Thirring. From the algorithmic
point of view instead the advantage is very relevant, because applying the exponential
operator is substantially faster than doing inversions and substitutions of functions. For
instance, substituting the expression p = p' +e¢1 (p', ¢') +. ..+, (p', ¢') in p? requires
O(r?) products, while doing the same operation with the Lie series method requires
only O(r) differentiations and products. Remark that for the functions considered here
differentiation is a trivial operation with little computational cost.

The choice of making a step by step procedure in powers of ¢ allows us to find
series that are easily comparable with Lindstedt’s ones. Indeed, the analyticity in e
of the original Hamiltonian is preserved by the whole process of transformation to
Kolmogorov’s normal form, but extra work is necessary in order to make this dependence
explicit. Let the Hamiltonian H to be explicitly expanded in powers of €, so that applying
the first normalization step one determines the generating function (in the Lie series
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formalism) x = ex1+&2x2+- ... Then one has to compute the transformed Hamiltonian
H' as
Hl = eXp(L6X1+sz2+___)H .

Writing the € expansion of the latter expression in explicit form shows immediately
that one actually has to perform at least the same number of Poisson brackets that are
required by our algorithm, so that at least the same computational time is required. This
situation does not change if one decides, e.g., to proceed by quadratic steps, as usual,
by killing at step r all terms in the perturbation of order €2 ,...,e2 ~1. Therefore,
our choice of proceeding by powers of ¢ is fully justified from the algorithmic viewpoint.

The usefulness of the quadratic method has often been emphasized in connection
with the problem of controlling the small divisors. As remarked, e.g., by Moserl?4],
proving the convergence of the € expansions with traditional methods based on Cauchy’s
majorant’s turns out usually to be unsuccessful. This is related to the compensations
among resonant trees discussed in the recent works on Lindstedt’s series. In fact, in the
present paper we show that the rules for the accumulations of small divisors stated by
property (f) implies that the size of the coefficient of €* is O(C?). This immediately leads
to a convergence proof essentially equivalent to Cauchy’s majorants method. Moreover,
we show that our analysis introduces in a very natural way the nonresonance condition
of Bruno instead of the usual diophantine one. Since this argument is not common, in
the technical section 4 we include a complete proof.

3.2 Comparison with Lindstedt’s series

Having determined the sequence of generating functions Xgl) ) xél) ) X?) ) XéQ) , ... the

canonical transformation leading to Kolmogorov’s normal form is

) p=...0 exp(Lxg)) o exp(Lxgz)) o eXp(Lxgn) o eXp(Lxgl))p' =: (', q)

g= ...o0 exp(Lxéz)) o exp(L )q’ =: ¢(¢")

)

where the generating functions are considered as functions of p’,¢’. Remark that the

transformation with the generating functions XY) leaves the angles unchanged; for this

reason in the second formula only Xg) appears. In view of Kolmogorov’s normal form,
the quasiperiodic solution on the torus is p’ = 0, ¢’ = wt + g, where ¢{, is the initial
phase. Thus, in the original variables the parametric equation of the torus and the

corresponding quasiperiodic motion are

(17) p=v(0,q), q=pwt+q),

respectively, where 1 and ¢ are the functions defined in (16). The second expression
must be compared with Lindstedt’s solutions.
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By the way, a canonical transformation leading to Kolmogorov’s normal form could
be constructed starting from Lindstedt’s series. Indeed, let us write the invariant torus
asq=¢(q¢"), p=19(¢), as given by Lindstedt’s algorithm. Looking at the first relations
as a point transformation, by the known method of the extended point transformation
we can construct a generating function S(p,q’) = p- ¢(¢') + w(q’), with an arbitrary
function w(q’). The latter can be determined by requiring that the equation of the
invariant torus in the new variables be p’ = 0. This can be done because the invariant
torus is a Lagrangian manifold, so that the form p - dq is exact on it. Therefore, the two
methods are fully equivalent.

Coming to the comparison, let us first remark that the expansions generated by
the algorithms coincide after resummation of all coefficients of the same power of ¢
and of the same Fourier mode. This appears as evident, since both expansions are
solutions of the same Hamiltonian equations. A more careful analysis reveals that in
both constructions there are some arbitrary choices which could result in a change of
the initial phases. However, if one assumes, as in [7], that the perturbation f(g) in the
original Hamiltonian (1) is even in the angles then the initial phases turn out to be the
same in view of the fact that the function ¢(¢’) in (16) is odd in the angles.

On the other hand, looking at the algorithm in [7] one immediately realizes that
the coefficient of €* will contain a term with denominator (k1 -w)2(ky-w)?-...- (k- w)?,
with |k;| = jK. Such a term can not appear in our expansions because it violates the
property (f) of sect. 2.4. We conclude that the expansions must contain the same Fourier
modes, but the expressions of the coefficients of a given Fourier mode do not coincide
term by term.

Such a state of affairs is better illustrated by an explicit example. We implemented
both our algorithm and Lindstedt’s one using an algebraic manipulator (Mathemat-
ica). We performed the construction of Lindstedt’s series using the algorithm given by
formula (8) in [7]. §

We consider the Hamiltonian (even in the angles)

1
H(p,q) = wip1 + wap2 + 5(1’% +p3) + e(cos g1 + cos(q1 — g2))

§ The list representation of sect. 2.1 can be used in this case, too. Indeed, using the notations
of [7], the order k of the tree corresponds to the entry €* in the list of powers of ¢; the
“momentum” U = (vg) of the tree corresponds to an entry in the list of Fourier modes;
in turn, this entry points to a list of summands which is the list of all trees in the sum

Z; each element of the latter list contains a numerical coefficient and a list of divisors

7(v). No reference is made here to the monomials list, because there is no dependence on
p in Lindstedt’s series.
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so that K = 2. We write the transformation of the angle variables as a power series in

1 2
0i(d5, a5) = ¢ + el + 2P

with 7 = 1,2. We computed the equations of the invariant torus up to terms of order
€®. The comparison could be made by just looking at the lists produced by the pro-
gram. However, for reader’s convenience, we report the results after translating the list
representation in more readable analytic expressions.

At order € both algorithm give exactly the same expansion. The first differences
appear at order 2. Indeed, reporting for brevity only the expressions for cp§2), with our
algorithm we find (primes are omitted)

(2 _ sin2q  sin(2q1 —2g2) | sin(2g1—qa) sin(2q1 — ¢2)
1 8wi dw; —wr)* 2w (wy —w2)?  wi(w) — ws)(2wy — wy)?
sin g sin g

B 2wiwa (w1 — ws)? B 2w (wy — wa)wsy
On the other hand, with Lindstedt’s algorithm we obtain
(2) _ sin2q;  sin(2q; — 2¢2) sin(2¢g1 — ¢2)
A1 8wi 4(w; —wa)t  2wi(2w; — wa)?

sin(2q1 — ¢2) sings sin go
2(2w1 — w2)?(w1 —w2)?  2wWiw?  2wi(wi —wz)?

The expressions look different, but using some simple algebraic relations one sees that
they are actually the same. For instance, the coefficients of singqs are identified by
applying twice the elementary algebraic identity

1 1 1
(18) — = — .

ab  bla—0b) a(a—0)
The same situation, namely that there are different expressions that are algebraically
equivalent, occurs for all coefficients that we computed explicitly. However, we could
not discover any simple algebraic relations that allow to immediately deduce one of the
expansions from the other. So, let us just illustrate with some specific examples that
Lindstedt’s series contain terms that violate the property (f) of sect. 2.4. This can not
occur at order €3, so let us consider the order €*. The complete expression contains
more than hundred terms; therefore we report here only the expansion of the coefficient
of the Fourier mode (4, —3). With our algorithm we have

1 19 3

Ll o® (g — > _
o <9"1 sin(a —3a2) ) = e T8 T 320002 (wr — wa)E (2wr — wa)
7 9

t 24 (01)? (w1 — w2)5 (Bwn — 2wa) | 16(ws)2 (w1 — wa)® (dws — 3w2)
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1 5
B 16(w1)2(w1 — w2)4(2w1 — wz)(4w1 — 3(.02) N 4(w1)2(w1 — w2)4(3w1 — 2&)2)2
5 21
+2(w1)2(w1 — w2)4(3w1 — 2&)2)(40)1 — 3(.02) B 4(w1)2(w1 — w2)4(4w1 — 3w2)2
3 1 1
_32w1(w1 — w2)6(2w1 — 0.)2) B 24w1 (wl — WQ)6(3(4)1 — 2(4)2) + 16 wl(wl — WQ)6(4(4)1 — 3(4)2)
3 3
- +
8(4)1((4)1 — w2)5(2w1 — w2)2 2(4)1((4)1 — w2)5(2w1 — wz)(3w1 — 2&)2)
_ 11 B 15
16 w1 (wl — w2)5(2w1 — (4)2)(4(4)1 — 3&)2) 8(4)1 (wl — w2)5(3w1 — 2&)2)2
15 B 4
4(4)1 (wl — w2)5(3w1 — 2&)2)(4&)1 — 3&)2) w1 (wl — w2)5(4w1 — 3(4)2)2
3

_2w1(w1 — w2)4(2w1 — wg)(4w1 — 3WQ)2

On the other hand, with Lindstedt’s algorithm we find

1 4y . 3
5 <ap§ ) sin(4q1 — 3(12)> = 8 (1) (@1 = wa)*(dws — 3un)?
1 1
(1) (w1 — w2)? (201 — w2)?(dwr — Bwa)? | 2(w1)? (w1 — w2)? (Bws — 2wz)? (dwr — Bus)?
1 1
+2(w1)2(2w1 — w2)2(3w1 — 2&)2)2(4(.01 — 3w2)2 + 8(0)1 — w2)6(4w1 — 3L¢J2)2
1 1
+4(LU1 — w2)4(2w1 — w2)2(4w1 — 3(.4)2)2 + 8(&)1 — w2)4(3w1 — 2w2)2(4w1 — 3w2)2
1
+

4(w1 — w2)2(2w1 — w2)2(3w1 — 2w2)2(4w1 — 3(4)2)2

According to our rule (f) of sect. 2.4 every denominator can contain at most 8, 4 and 2
expressions of the form k-w with |k| <2, 3 < |k| <4 and 5 < |k| < 8, respectively. The
reader can easily check that this rule is violated by four terms in Lindstedt’s expression.
In recent works on Lindstedt’s series these terms are dominated using the Siegel-Bruno
lemma.

Resonant terms (in Eliasson’s language) that violate the properties of our trees do
appear only starting at order €%, but in this case we do not report any expansion for
brevity reason (e.g., the complete expansion of <p§5) given by our algorithm contains
more than 2500 terms). We just remark that in the expression of the coefficient of the
Fourier mode (3,—2) generated by the Lindstedt algorithm we found some resonant
terms, for instance, one of them has the denominator:

(wl — LU2)2(2LU1 — w2)2(3w1 — 2w2)4(4w1 — 3CU2)2 .

Once again, it is easy to check that such a term can not appear in our developments
since it violates the rule (f) of sect. 2.4.
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3.3 On the twistless property

We discuss here the twist condition ||J~1v|| > m||v]| in our statement of Kolmogorov’s
theorem. This condition is used here in order to assure that eq. (10) for the translation
of the torus can be solved. However, in the case of the Hamiltonian (1) the translation
of the torus is actually zero, as shown, e.g., in [7]. We show here that such a result can
be obtained also with our construction.

We recall that eq. (10) contains the average of the function f with respect
to the angles. We show that such an average is always of the form J =17 - p, with some
real vector 7, so that eq. (10) can be solved without any assumption on J~!. Our
claim follows from the simple remark that all functions which are linear in p in our
construction have the form J~!p - w(g) with some vector function w(g), and that all
functions which are quadratic in p, with the only exception of h(®) = J=1p . p, have
the form (J~1p-v(q))(J 'p- v'(¢q)) with some vector functions v(q) and v'(q). This is
easily checked by looking at the trees of figs. 2 and 3. Indeed, terms which are linear in
p are produced either by the trees (c) and (d) of fig. 2, namely by Poisson brackets of a
p-independent function with a function which is quadratic in p or by the tree of fig. 3
when [ = 1, namely by Poisson brackets between functions which are linear in p. It is an
easy matter to check that such operations preserve the form above for functions which
are linear in p, even when the quadratic function is 2(°). Similarly, quadratic functions
are produced by the tree of fig. 3, namely by Poisson brackets between functions linear
and quadratic in p, respectively. Again, just check that the form above of the quadratic
functions is preserved by the Poisson bracket.

This argument applies only when the Hamiltonian is the sum of a kinetic term
quadratic in p and of a potential energy depending only on the angles.

("‘_177')
1

4. Proofs

We collect here all the technicalities that are needed in order to prove the theorem.

4.1 Proof of the properties of the trees

We refer to the properties (a)-(h) stated in sect. 2.4.

Proof of (a). Recall that for every internal node v one has w(v) = 3, cg () w(¥),
where R(v) is the set of right nodes of v; from this one easily deduces that w(v) is the
sum of the e—weights of all end nodes connected to v through a primary path, i.e., all
V' € Ag such that v € Q(v'). Then the statement follows from the trivial remark that
the sets of end nodes connected to two independent nodes are disjoint.

Proof of (b). For the first property, just use the fact that w(v) is the sum of the
e—weights of all right nodes of v. For the second property, recall that the transformations
with the generating functions are applied in increasing weight in €.
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Proof of (c¢). This is an elementary consequence of the fact that the generating
functions XY) and Xg) are applied to the Hamiltonian H"~Y which is in Kolmogorov’s
normal form up to order r.

Proof of (d). For the second statement, recall that any internal node has right nodes
representing the same generating function, either y; or x2. Consider now any primary
path P, and remark that, by construction, two different nodes of P can not have the
same generating function as right node. Since there are only two generating functions
with the same e—weight, our claim follows. The statement that ./\/'J-(T) =@ for j > 2

requires some attention. Let 7 € N9, and consider any primary path P through 7.
Let us follow that path from its end point to the root. By (b), the nodes with wavy
lines have non decreasing e-weight w. Let v be the first node satisfying v € N'(@; by
construction of P, such a node does exist. If v is the root node, then the claim is trivially
true. If not, then v must be a node with wavy line of one of the structures of figs. 2 or 3.
Let v be the left node of v, i.e., the root of any of these structures. The weights of v are
either (r,0) or (r,1), with » = w(v). By (c), in the cases of figs. 2.a and 3 for [ = 0,1
one has s > r, and so w(?) > 2w(v) > 2%. Thus, by (b), N NP = {v},ie, v e Nl(q).
In the cases of figs. 2.e, 2.g and 3 with j > 1 it is evident that w(7) > 2w(v), so that
v e Nl(q), as above. In case of fig. 3 with 7 = 1 and [ = 2 the node ¥ has polynomial
weight 2, and so its branch can not be changed to a wavy line. On the other hand, the
left node » of ¥ (if any) has v(?) > v(?) = w(v). Thus, w(?) > 2w(v), and v € Nl(q),
as above. The last case is that of fig. 2.c. If v ¢ N/ (@), then the latter argument applies,
and one concludes again v € Nl(q). If # € N@ then the polynomial weight of ¥ is 1,
and one has the structure

(r.0)

(r+s+s,1) (s,2)

<>

(s.1)

which takes into account the worst case. Thus, 7 belongs to the structure of fig. 3, and
so, by the argument above, o € N, l(q). We conclude v € N2(q). This exhausts all possible
cases, so that our claim follows.

Proof of (e). By contradiction, let P be a primary path, and let v, v’ € ./\/']-(Q)HP, with
v < V. Then, #(Q(V") N N(@) > #(Q(v) N N @), which contradicts the assumption.
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The same argument, mutatis mutandis, applies to M§~q). The rest of the statement is a
trivial consequence of the definition of /\/'J-(Q) and of (d).
Proof of (f). Let ¢ > 0. By definition, ZueNj(") w(v) > #./\/']_(‘1) - (271 4+ 1). On
the other hand, by (e) and (a), > @ w(¥) < w(root). The conclusion immediately
i

follows in view of (e). The case ¢ = 0 is now trivial.

Proof of (g). The columns 2,3 and 4 are easily proved by induction, looking at (12),
(13), (14), (15) and figures 2 and 3. We prove the first column. Let o be the total number
of nodes and o be the number of end nodes of a tree A, and let n(v) = #R(v), namely
the number of right nodes of any node v of the tree; then one has ) ,n(v) =0 — 1.
By construction, every node in our trees either is an end node, or has at least two right
nodes, so that we have ) ,n(v) > 2(o — 09). Thus, we have o — 1 > 2(0 — 0y), i.e
0 < 20¢ — 1. The values of column 1 follow, using g as given by the second column.

Proof of (h). Denote by F(g) the set of all trees in the representation of a generic
function g. By the construction of sect. 2.2 it is evident that

#F(XD) = #F(f07)

#FED - q) < #F(FH7)
#F () < #F(XO) 4 #F(F07)
#F(hD) = #F (5 7) + #F(7)

Thus, it is enough to find an upper bound on max;—g 1,2 #F( l(r_l’T)). Looking at figs. 2

and 3 it is easily seen that max; #.T(fl(r’s)) < pr s and max; #.T(fl(r’s)) < fir s, where
the sequences {iirs},~0 ¢50 @30d {firs},5; .5 are recursively defined as

Ho,s = 1
Ls/r]

,E['r,s = Z (2/1'7'—1,r)j,u'r—1,s—jr s
(19) i=0

Ls/7] .
M, s = Z (ZMr—l,r)jﬂr,s—jr .
§=0
In view of the remark above we get #F (X)) < p,_y,., #F(ED - q) < pr_1.,
#F(X;T)) < 2py_1, and #F (R < r,r. Proceeding as in the proof of lemma 6
in [16] we find g, s < 84°.

4.2 Quantitative estimates

We now come to the investigation of the convergence of our algorithm. To this end, we
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make use of the norm (6) introduced in sect. 2.1.

Our goal is to estimate the norm of every function, in particular the generating
functions, produced by the algorithm. Referring to the Hamiltonian (1), we denote
E = max(|[hO|, |IfIl, 1), with h(®) = J=1p . p/2; moreover we recall ||J~v| > m|lv|,
and that K is the trigonometric degree of f. We claim that:

(i) The norm of the function represented by any tree does not exceed

w(root)
(20) (22B+1667l'2/3 L’szEg) .
m

(ii)) The norms of the generating functions are bounded by

2 T
(21) HX(T) < (22B+21e“2/37189K E3> :

€0, [

m

In view of the latter estimate, it is standard matter to prove that the sequence
of canonical transformations with generating functions x; ' and x5’ converges to an

analytic canonical mapping provided ¢ is small enough, for instance if

2

(22) 22B+216W2/3%E36 < ]'
m 2

This also implies the convergence of the sequence H(") of Hamiltonians of the form (7)

to an analytic Hamiltonian, H{°) say, which by construction is in Kolmogorov’s normal

form, as stated in the main theorem. Thus, in order to prove the theorem it is sufficient

to verify estimate (ii).

The estimate (ii) trivially follows from (i) and from the estimate (h) of sect. 2.4. The
rest of this section is devoted to the proof of (i).

The norm of a tree is estimated as follows: every end node contributes with its norm;
every internal node contributes with a factor (depending on the structure of its right
nodes) due to the Poisson bracket(s) represented by it; every wavy line contributes with
a small divisor depending on its e-weight; every double line contributes with a factor
m~L.

The contribution of Poisson brackets is estimated as follows: let f be a homogeneous
polynomial of degree [ in p and a trigonometric polynomial of degree sK in ¢; then we
have

|55 f| < trr?y oo X
(23) |Ei o < 1P 11
' 1

it

Lo || < 0+ DEr2) e D )
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These estimates are a direct consequence of the definitions of Poisson bracket and of our
norm, recalling also that X (") and Xg) are trigonometric polynomials of degree rK in
q. Only the factor 29727e(ir+9)/m* requires some justification. Considering for instance

the estimate for Xg), first obtain

1. (s+T) o (SHIT) iy ()14
Hﬁ%ﬂf ‘ <41y j! el e Pl
then use the elementary inequality
. Ls/r]+j
(s+7)-. x - (54 gr) < 9ip% (1 + 1) < 9ip2iglir+9)/r |
J: r

Recalling that any function of order €" is a trigonometric polynomial of degree r K,
and in view of (2), (9) and (11), the contribution of a wavy line is at most 1/c,., where
r is the e—weight of its node. The contribution m~=! due to a double line is a trivial
consequence of the solution of eq. (10).

We come now to the proof of (20). Denote by b.. = #B. and b— = #B_. The
norm of the tree A is bounded by collecting the contributions of every node, according
to (23); this gives

b— 2 ,
(24) (2) orp I 220 [T @@ T lal
€A;

(0%
vEB~ w(v) v vEA,

The factor (2/m)b= is the contribution of double lines and of the factor I < 2 in the
estimate (23) of the Poisson bracket; the factor (6K )"~ takes into account the factor
independent from r in the estimate (23) of the Poisson bracket. In view of property (g)
of sect. 2.4 we estimate b— < w(root) and b. < 2w(root).

The contribution of small divisors and of the factor 72 in the estimate of the Poisson
bracket are taken into account by [ .z w(¥)?/@u)- Recalling that for an internal
node v one has R(v) = G(v) U (see sect. 2.4), and that all nodes in G(v) have the
same e-weight v(v), the factor [],c 4. ew®)/v()* comes from the contributions of all
internal nodes. Finally, recalling that every end node v represents a function h(®) or

l(O’S) coming from the original Hamiltonian, the factor [],c 4 [lg]| takes into account
all these contributions, where g represents any of the functions above, as appropriate;
this is estimated using the definition of £ and that the number of end nodes does not
exceed 3w(root).

In order to conclude the proof of (20) it is enough to prove that

(25) H w(v)? < 9(2B+16)w(root)

veEB., aw(y)
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(26) H ew(u)/v(v)2 < e7r2w(root)/3 )
vEA;
Using the definition of (@ and ./\/j(q) in sect. 2.4 we immediately get

H ’UJ(Z/)

VEBN aw(V)

9 [logs w(root)] 92q

q=0 veN (D 2
on the other hand, by property (e) of sect. 2.4 we have N (@) = Nl(q) U ./\/Q(q), and by
property (f) we have #N (@ < 2w(root)/2971. Thus, we get

w(v)? 2w(root) 4qw(root)
10g2 H o s - Z 2q9—1 Og2 Crpa + Z 2q9—1 ’
veB. W) q>0 q=0

and (25) follows from Bruno’s condition (3) and from the elementary equality
Z6120 /2971 = 4.
Concerning (26), recalling the definition of M(") in sect. 2.4 we have

H v )/0() < H H ew()/r?

VEA,; 1<r<w(root) ve M(7)

Using the properties (e) and (a) of sect. 2.4 we bound the latter quantity by

Hexp riz Z w(v)| <exp Zw :exp<w).

r>1 veM(r) r>1

This proves (26).
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