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Abstract

We prove that, for any quantum evolution in £2(ZP), there exist arbitrarily
long time scales on which the gth moment of the position operator increases at
least as fast as a power of time given by ¢/D times the packing dimension of the
spectral measure. Packing dimensions of measures and their connections to scaling
exponents and box-counting dimensions are also discussed.



1 Introduction.

Let H be a selfadjoint operator in a separable Hilbert space H. Let [¢)) be any vector
in H, u its spectral measure relative to H and B = {|n)},en a Hilbert basis in H. As
time t increases, the wave packet e |} spreads out over the basis B. In particular, it
is known [G1, G2, La, Co| that, for ¢ > 0, the ¢th moment of the probability distribution
associated with the Fourier expansion of e~ |¢)) over the basis B increases, in time
average, at least as fast as a power of time given by ¢ times the Hausdorff dimension of
. This qualitatively means that propagation is faster the more continuous the spectral
measure is, the degree of continuity being measured by the lower pointwise dimension of
the spectral measure.

The present work is summarized by the qualitative remark that, at any given time t,
the wave packet can only probe continuity of the spectral measure on the level of spectral
resolution achieved at time ¢, hence on a spectral scale of the order of 1/¢. This remark
is relevant to the case of non-exactly scaling spectral measures. For such measures, the
upper and lower pointwise dimensions do not coincide, meaning that there are arbitrarily
small spectral scales at which the measure is somewhere in the spectrum scaling faster
than expressed by the Hausdorff dimension. We accordingly obtain that on arbitrarily
long time scales a larger lower bound is valid, given by the packing dimension of the
spectral measure.

There is at least one abstract example of a zero-Hausdorff dimensional spectral measure
with packing dimension equal to 1, which leads to ballistic transport [G3]. Spectral
measures of a similar nature are likely to occur also for concrete Schrodinger operators.
Such may be the case with the quasi-ballistic dynamics exhibited by the Harper model
with Liouville incommensuration [La].

The Hausdorff dimension of a measure is related to its lower pointwise dimensions
by the theory of Rogers and Taylor [Ro], whose relevance in the present context was
advocated by Last [La]. Our present result calls upper pointwise dimensions into play.
Apart from [G3], these have not yet found their way in the theory of quantum transport.
In the appendix, we therefore elaborate on results by Cutler [Cu| and develop a treatment,
in a sense dual to Rogers’ and Taylor’s, which connects such dimensions to the packing
dimension of a measure. Furthermore, we show that these packing dimensions can also
be calculated by a box-counting procedure.

In the next two sections we establish preliminaries and notations. In Section 4 we
state and prove our main result Theorem 1. The main element of its proof is Proposition
2 which is basically a restatement of existing results. However, we give here an alternative
ab initio derivation which makes no use of Strichartz theorem, but is based on Proposition
1 combined with Last’s argument [La]. A modified version of Proposition 1 allowed to
prove also upper bounds for a special class of Hamiltonians [GS]. Finally, in Section 5, we
transpose the main result to Hamiltonians on a D-dimensional lattice.

A useful discussion with Y. Last is acknowledged.



2 Growth exponents.

For given time 7" and € € (0, 1), we define the minimal carrier Ti(¢, T') of the wave packet
on the basis B as follows:

(e, T) = min{ﬁEN

Z:_pn(T) < 6} ) (1)

where the p,(T) is the average probability up to time T in the basis state |n) € B, given
by:

T d
palT) = [ nle )

Upper and lower growth exponents of the minimal carriers are defined as:

L log(7(e, 7))
ﬁSL(f) = ll;njolipma = W,

We also define 3i = lim,_,q 35 (€). Let us further introduce the gth moment M, (7)) of the
distribution p, (T") by

= Z ’I”Lqpn(T) )

n>0

which can be interpreted as the time-average up to time 7" of the expectation value of
the gth moment (¢ # 0) of the position operator associated with the basis B. The
corresponding growth exponents are

log(M,(T))
+ : q
€) = limsup ——————>,
ﬂq © T%oop q log(T)
We have ﬂ+ < By whenever ¢ < 0 and 3, > GBS whenever ¢ > 0. Lower bounds on £
convey stronger information than lower bounds on ,8;:, g > 0. For instance, if H has a
pure point spectrum then 8 = 0, because minimal carriers remain bounded in time; still,
moments may display nonvanishing growth exponents.

The lower growth exponents 5, characterize the minimal spreading of the wave packet:

for all T > 0, M,(T) > C(6)T9¥ ~9 holds for all § > 0 with appropriate constants C(J).
The upper exponents ﬂ+ give the fastest possible spreading on sequences of times: for all

§ >0, My(T) < C(6)T« (8+9) holds at all times T', but there exists a diverging sequence
(Ti)k>1 such that M, (Ty) > C'(0)T} B9 for all k > 1.

3 Spectral dimensions.

Given a (Borel) probability measure p on R, we define its lower and upper pointwise
dimensions at E € supp(u) as follows:



og(F=eE+d) o o log(u(B— e B+d)
=0 log(€) ’ du(E) =1 P log(€)

d,(F) = liminf

= 3

_ (4)
while for £ ¢ supp(u), d,(F) = d,(F) = oo.

The (upper) Hausdorff dimension dim;} (1) and the (upper) packing dimension dimg (1)
of the measure p can then be defined as follows:

dimfi(p) = p-esssup d,(E), dim$ (1) = p-esssup d,(E) , (5)
E€R EcR
where, for a real function f, p-esssupgcg f(E) denotes the p-essential supremum of f,
i.e. the infimum over all sets A of full y-measure of the quantity supgca f(E). Although
the above definitions are optimally suited to our present purposes, dimensions of Borel
measures are more properly defined and discussed in the appendix.

In the rest of this article, we shall use dyadic partitions of the real axis in intervals
IV = ((j —1)27",j27"], j € Z. Of course, any other hierarchic partition could be used.
For £ € R, we shall denote I ;\(]E) the dyadic interval of the Nth generation to which F

belongs. We shall in particular make use of the fact that

log(u(IY —lo I
d,(E) = 1iminfM ~ Jimint 08 E) (6)
e

Similar equalities hold for the upper pointwise dimension d,(F), with lim inf replaced by
lim sup.

4 Lower bounds on growth exponents.

The following proposition expresses in a quantitative way the fact that the time evolution
up to time 7" does not resolve details of the spectrum on scales smaller than 1/7 (h = 1).
Up to time T it is thus possible to work with an approximate Hamiltonian with discrete
spectrum the eigenvalues of which have a spacing of order 1/7.

We use the notation |x}) = x(H)[t), where x is the characteristic function of I}V

Proposition 1 Given € > 0, we associate to any time T a generation index N so that:
T

oN=D « — <oV | 7

N (7)

Then for any family of indices F C N and p € H with ||¢|| < 1, the following estimate
holds true:

S [ Flale )7 < 26+ 5 3 S i) ®)

neF neF jEZ



Proof. Throughout this proof, we understand that N and T are related to each other
via (7). For 0 <t < T, we approximate e "2|¢) by:

Wr() = S e B k),

JEZ

where EYY = j27V. Then we have:

Ir (@) — e )1 < Z/IN du(B) t*|E — EJ'|” .

jez 1
As |E - EJ| <2 N for E € IV, it follows from (7) that the latter expression is less than
€ as longas 0 <t <7T. Thus

5 [ et < 2e+2 3 [ Ltatvront ®

neF neF

Now the integral can be bounded as follows:

T dt roN+1 dt
L B inrne < [7 E inlwr
1 pm2iH (N _pN
= Z Z<"|XIJN><XIIN‘”> ?/0 dt e HE; —E)E

JEZ IEZ

The latter integral yields 2V *'74;,. Putting this into (9) and recalling (7), we directly get
inequality (8). O

Proposition 2 For integer N and o € (0,1), let Ay, be the union of all the dyadic

intervals of the Nth dyadic generation which have measure M(IJN) < 27 Ne Set by =
W(ANa). If by > 0, then the following holds true for T satisfying by2N 1 < 9T < by2N:

ﬁ(%,T) > C(a)b3*T* (10)

where C(a)) > 0 is only dependent on c.

Proof. Let us define [¢Yn) = xan.,(H)|¥), so || [¥n)||> = by > 0. We wish to apply
Proposition 1, with the following specifications: replace |¢)) by |¢x) and choose F as the
integers smaller than a given m, finally set ¢ = (by/9)?>. Condition (7), which makes
Proposition 1 applicable, then becomes precisely by2V ! < 9T < by2V.

The spectral measure of |¢n) is dun(E) = Xxay,(E)du(E). Hence the sum on the
right-hand side of (8) is restricted to the set Jy,q of indices j € Z for which p(I) < 27N,
The sum can be estimated as follows:



> 2 Kbl < X X G I I (E) P

neF jE€EIN,a neF jEIN,a

= > > an(I))hg (H) )

neF jEIN,a

IN

_[N
R )
< m27Ne,

We choose m as follows:

= | 2] gNe 11
m M(g) , (11)

and denote P, =Y, ., |n)(n|. Substituting all the above in Proposition 1, we obtain

T dt 26y
[ Fimnte < (%)

where P, (t) = e'P,e !, Now we continue as in [La, Theorem 6.1]. Let |[¢) =
|1)) — |tbn). Then |1p}) is orthogonal to |¢y), and

IN

/T@wvome+mmwn/ 1) o)+ I P

2y \? 4b
< (B e

R LAOIETS

Whence, recalling || |[¥n)]|? + || [ )]]? = 1, we get:

T dt 202, \° by _ by
[ 1= Ral > N - (3F) -2 > B

because || [¥n)]|> = by < 1. It therefore follows from the definition of a minimal carrier
that 7(by/2,T) > m. The proof is concluded on recalling the definition of m and € as
well as the connection between N and 7. a

A link to spectral dimensions is provided by (we also use limsup and lim inf in their
set-theoretic meaning; further we suppress the subscripts N — 00):

limsup Ay, = limsup {E € R|p(I]]-\(7E)) < Q’N“}
— log, u(IY
g2 1 J(E)) S a}
N
= {E6R|8u(E)>a} (12)

= {E € R |limsup
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In a completely analogous way, we get

liminf Ay, = {F € R|d,(F)>a} (13)

At this point, we derive lower bounds. First of all, if « < dimy(p), then (5) and (13)
show that liminf y(Ane) > p(liminf Ay o) > 0, so by is larger than some by for all N.
Inserting such a by in Proposition 2, we immediately get 7(by/2,T) > const T for all T'.
This proves the already known lower bound, f; > dimg(x). In addition, we can now
prove the existence of a sequence of times on which the large packing dimension of the
”thin” part of the spectral measure forces the wave packet to travel possibly farther than
imposed by the Hausdorff dimension.

Theorem 1 For all positive q, the upper growth erponent of the ¢th moment of the
position operator satisfies B > dimg ().

Proof. It is obviously sufficient to consider the case dimj(u) > 0. Then, if a <
dimp(p), it follows from the definition (5) of the packing dimension and from (12) that
p(limsup An,o) > 0. Therefore, from the Borel-Cantelli lemma we get that >y p(An,e) =
co. This in turn implies that there is a sequence of integers N, — oo such that by, =
,U(ANk,Ot) > NI;2'

In this situation, Proposition 2 says that

— bN C(a) o
n(Tk,Tk> > Ng_za Tk: .

In this inequality, k¥ € N is arbitrary, C'(«v) is a numerical factor only depending on «, the
sequence of times 7T}, satisfies by, 2V+~1 < 9T}, < by, 2k for all k, and by, > N, 2. From
all that it follows that Ty — co as k — oo and that N < f~'(T}) where f is the function
f(z) = 2%/(18 z%). Hence we get that, for all £k € N,

ka C(a)
n|—=,T, — T
! ( 2 ) T
We denote the right-hand side by Cj. Since o > 0, C} will be eventually larger than 1.
From the definition (1) of a minimal carrier, we obtain that, at all large enough k, the

total probability supported by basis states |n) with n > Cy — 1 is larger than by, /2. For
such k’s, the Chebyshev inequality yields:

b
My(Ty) > % (Cr—1)T .
Whence, replacing C}, and using by, > N 2 we get

1 Cla)rg
M5 > s (s )

Since limy_,o log(f~'(T))/1og(T) = 0, Theorem 1 follows from the definition of the
exponent 3. a




Remark 1 The present proof does not allow to bound 3;" below by means of dim}(x). In
order to do that one needs to know that limsup 1(Ax ) > 0 . We do not know whether
that follows from dim} () > a. Nevertheless we can prove the weaker result given in
Proposition 3 below.

For our next result, let us define

I N
D(p) = sup limsup 0gy (N (1, N, €))
€ N—oo N

(14)

where, for given N and ¢, we define A (i, N, €) as the minimal number of dyadic intervals
of generation N which support more than 1 — € of the measure . It is shown in the
appendix that D(u) is bigger than or equal to the box-counting information dimension of
4 and smaller than or equal to its packing dimension.

Proposition 3 ;7 > D(u).

Proof. It is enough to show that, if « is less than the expression on the rhs of (14), then
lim sup 1(An,e) > 0. Let us choose € and a sequence N so that

o < lim 082 WV (B Ny €)
k— o0 Nk:

(15)

If lim pt(An o) = 0, then the sequence of characteristic functions x A, CODVerges to 0 in fi-
measure. So there is a sequence N, such that x Ay, o COnverges to 0 pu-almost everywhere.

J
We can then find a compact K, with p4(K) > 1—¢, so that xa, _, converges uniformly to
0 in K. Hence, K is eventually a subset of all the A%, . Thujs, for all sufficiently large
J )

J, K has a covering by dyadic intervals of the Nj, th generation, everyone of which is not

Nk O{Nk.

smaller than 2~ “"* in p-measure. There cannot be more than (1 — €)2*™* intervals in
those coverings. Therefore, NV'(u, Ny, €) < (1 — €)2*Nki | which contradicts (15). O

Remark 2 An explicit albeit abstract illustration of the lower bounds proven above is
given in [G3]. There H is multiplication by E in L*((0,27), i), |n) = exp(2mnF(E)),
where F(E) = p((0, E)), and the measure p has dim}(u) = 0 = dimj (¢), dimf(p) =
1 = dimj (). That measure is constructed following [RJLS]. The motion in this model
is ballistic, in the sense that 3/ = 1 for all ¢ > 0.

5 Lower bound for covariant lattice Hamiltonians.

Here we transpose the results of the last section to quantum diffusion of dynamics governed
by covariant Hamiltonians on the lattice. Because disordered media and quasicrystals can
be described by these models, this situation is of particular physical interest. We do not



furnish the technical proofs for the various statements in this section because they can be
completed along the lines of [SBJ.

Let the space of disorder or quasicrystaline configurations €2 be a compact and metriz-
able space on which is given an action T of the group ZP. We suppose that to each
configuration w € Q there is a bounded operator H,, : (*(Z”) — (*(Z”) and that this
operator family is strongly continuous in w and covariant with respect to a projective
representation U of the translation group Z” on £2(ZP), that is

U(a)H,U(a)* = Hra, , a€Z” .

Finally we fix an invariant and ergodic probability measure P on Q. Let now v, € £*(Z")
be a cyclic vector for H, and p,, its spectral measure. It can then be shown by the same
techniques as in [SB] that the packing dimension dimp (p4,, A) in the Borel set A C R (see
the appendix for the definition) is P-almost surely constant and thus defines the packing
dimension of the local density of states in A. It is smaller than or equal to the packing
dimension of the density of states N' which is defined to be the disorder average of the
spectral measure i, o) of the state |0) localized at the origin, namely we have

dimp (i, A) < dimp(N,A) P-as. .

Next we define the time averaged moments of the position operator X on %(ZP) vy

. T dt , ,

MysolT) = [ ZOIT(A) [ K™t - RUTL(A)[0), g #0,
0

where II, (A) is the spectral projection of H, to A. The corresponding growth exponents

= (A) are defined as in (3). Modification of the proof of Theorem 1 (for fixed H,) leads

q,w
to

dimp(py, A) < DB (A), VweQ.

Appendix: various dimensions of Borel measures.

The aim of this appendix is to review and extend known results about lower and upper
pointwise dimensions, Hausdorff and packing dimensions, as well as fractal and box-
counting information dimensions of Borel measures on the real line (the extension to R
is immediate). Links between lower pointwise dimensions and Hausdorff dimensions were
first established by Rogers and Taylor (see [Ro]). The corresponding theory connecting up-
per pointwise dimensions and packing dimensions was given by Cutler [Cu], whose results
we extend here to a completely dual treatment to that in [Ro, Chapters 3.2 and 3.3]. Frac-
tal dimensions of Borel measures were studied by one of the authors [G2] and we complete
here the results given in the latter reference. We also review box-counting information
dimensions and establish relations to Hausdorff and packing dimensions. Throughout this



appendix, i and v are Borel probability measures on R, A is a Borel subset of R and
v € R.

The lower and upper pointwise dimensions of y at a point £ € R were defined in
equation (4) of Section 3. For various alternative definitions, see [RJLS, SB|. In [SB] it is
proven that d,(E) < d,(E) p-almost surely, by a similar proof d,(E) < d,(E) p-almost
surely. These results imply [SB] that E + d,(F) and E ~ d,(FE) are Borel functions in
L*(R, p) taking values in [0,1] and only depending on the measure class of p. Let us
further introduce as in [Ro| the upper and lower y-derivative of p at E by

D)(E) = limsup mlE ¢ E+ed)

e—0 €7

E—¢FE
. DYE) = liminf AUE =B+ )

e—0 €Y

Links between lower pointwise dimensions and upper ~y-derivatives are given by

d,(E) <y = Dy(B)=c0 = d,(E)<7, (16)
v<d,(E) = D,(E)=0 = y<d,(F). (17)

Analogous relations hold between upper pointwise dimensions and lower ~y-derivatives.
Next we denote the y-Hausdorff and the y-packing measure by My and M3 respectively.
The Hausdorff and packing dimension of A are denoted by dimy(A) and dimp(A). As we
shall use it in the proofs below, let us recall the definition of the packing measure [TT].
A é-packing of an arbitrary set D C R is a countable disjoint collection (B(Ey,rk))ken
of closed balls centered at Ej € D and with radius r, < §/2. A positive set function is
defined by

keEN

M (D) = SUP{ > ()

(B(Ek, 7))ren 0-packing of D} . (18)

The vy-packing measure is constructed in two steps:

ME(D) = lim M3*(D) (19)
MJ(D) = inf{ 3" ME(A,) | A, Borel, |J A, = D} , (20)
neN neN

that is, My is an metric outer measure in the sense of Caratheodory. The corresponding
Borel measure is also denoted by Mg. The packing dimension dimp(A) of a Borel set A
is defined as the infimum of all y such that MZ(A) = 0.

For the case of the upper y-derivative and the y-Hausdorff measure (the inequalities on
the left hand-side of (21) and (22)), the following theorem summarizes the main technical
results of [Ro, Chapter 3.2 and 3.3]. For the case of the lower 7-derivative and the
~v-packing dimension, it is strictly speaking new, but the proof uses similar techniques
as in [Cu]. Not only the results, but also the proofs show some kind of duality between
Hausdorff dimensions and lower pointwise dimensions on one side and packing dimensions

10



and upper pointwise dimensions on the other: for the Hausdorff measure case, the proof
of (21) is based on a covering lemma, and (22) follows directly from the definitions; for
the packing measure case, the situation is just the converse.

Theorem 2 For A > 0 we have
67 27

M{({E € A|D,(E) >)}) < < Mp({E € A[DU(E)>A}) < +, (21
and
p({E € A|DL(E) < A}) < 2-"AM{(A), p({E € A|D)(E) <A}) < 27 7AME(A) .

(22)

Proof. The first inequalities in (21) and (22) being proven in [Ro], we here only prove
the packing dimension part. Let R)(6,A) = {F € Al|infesu([E — €, E +¢))e? >
A}. Then for any E € R}(6,)), u([E — 6, E+¢]) > Xe¥ V e < 6. Therefore, if
(B(Ek, Tk))ken is a 6-packing of R) (5, A), we have 354 (27¢)” < 27/X because the elements
of the d-packing are disjoint. Consequently, Mg (R} (3, \)) < Mg"s(RZ(é, A)) < 27u(A)/A.
Moreover, Upen R (1/n,0) = {E € A | D}(E) > A} so that Mg({E € A | D)(E) >
A}) = sup, ME(R)(1/n,\)) < 27u(A)/X due to the o-additivity of M.

To prove (22), we shall use (as in [Cu]) the fact that any Borel measure on R possesses
the centered Vitali covering property [Be]. A centered Vitali covering of A is a set of
closed balls containing for any £ € A and 6 > 0 some closed ball B(E,r) with r < §. The
centered covering property of 4 means that every centered Vitali covering of A contains
a countable set of disjoint balls By such that p(A\ U, Bx) = 0.

Let then A, C {F € A[D](E) < A}. Forany F € A, and ¢ > 0, there exists r < ¢
such that u([E —r, E+r]) < Ar?. Hence the set of balls B(E,r) such that r < ¢, E € A,
and that pu([E —r, E +r]) < Ar7 is a centered Vitali covering of A,. Let (B(Ek,k))ken
be the associated d-packing satisfying pu(A,\ Uy B(Ek, 7)) = 0 as given by the centered
Vitali covering property. Then p(A,) < 34 u(B(Eg, %)) < AY 7. As this holds for
any 6 > 0, we have u(A,) < 277AM2(A,). As the decomposition A = J, A, in (20) can
be chosen disjoint, the result follows. O

Before drawing the for us interesting consequences of Theorem 2, let us introduce
some further notations. We define d}(A) = p-esssuppead,(F) as well as d; (A) =

p-essinfgea d,(E), and similarly EI(A) and d, (A). By the above remarks, these quan-
tities only depend on the measure class of p [SB].

The upper Hausdorff dimension dimij(y, A) of g in A is defined by the infimum of
the Hausdorff dimensions of all Borel subsets A’ C A satisfying pu(A’) = u(A) [Yo]. The
lower Hausdorff dimension dimg(p, A) of 4 in A is defined as the supremum of the a’s
such that A’ C A, dimg(A’) < o imply p(A’) = 0. The packing dimensions dimg (2, A)
are once more defined similarly. If A = R, we further drop the specification.

For the case of the Hausdorff dimension and lower pointwise dimensions, the first of
the following corollaries already appears in [Ro]. A version of Corollary 2 can be found
in [Cu]. Corollaries 4 and 5 appear in [G2, Co] and in [G2], respectively, for the case of
the Hausdorff dimension; here we give a different proof.

11



Corollary 1 dimg(A) < d; (A) implies p(A) = 0. dimp(A) < d, (A) implies p(A) = 0.
Corollary 2 The following identities hold:

dimy({F € A [ d,(E) <d;(A)}) =d,(4) ,

dimp({E € A | dy(E) < d, (A)}) =4, (A) .

Corollary 3
i) Let A" ={E € A| d,(E) =d}(A)}. Either p(A") =0 or dimy(A") =d} (A).

Zu

ii) Let A" = {E € A|d,(E) =d,, (A)}. Bither y(A") =0 or dimp(A") =d, (A).

7

Corollary 4 dimy(u, A) = d(A) and dimg (u, A) = di(A).

i

Corollary 5 dimy (i, A) = d, (A) and dimp (p, A) =d, (A).

Due to the complete symmetry of the results in Theorem 2, it is sufficient to prove
the corollaries for the Hausdorfl dimension case.

Proof of Corollary 1. Let v be such that dimy(A) < v < d, (A). Then Mg(A) =0 and
by (17) and (22) one has

W(A) = p({E € Aly < d(B)}) < p({E € A| DL(E) = 0}) = 0.
O

Proof of Corollary 2. First note that, for any d > 0, the set Ay = {F € A | d,(F) < d}
has a Hausdorff dimension less or equal than d: in fact, by equations (16) and (21) one
has M (Ag) < M{({E € A | D! = oo}) = 0. Now for n € N let d, = d(A) 4+ 1/n.
Then Ag = Nuen A4, = {E € Ald,(F) < d;(A)} satisfies according to the above
dimg (Ag) < df (A). Now suppose there exists a v such that dimg(Ag) < v < df (A).
Then M (Ag) = 0 and because of u(Ag) = p(A), (17) and (22) we have

p({E € Aly <d,(B)}) = u({E € Ao |y < d,(E)}) < p({E € A|D,(E)=0}) =0,
(23)
which is in contradiction to v < d;;(A) . Therefore dimg(Ag) = d (A). O
Proof of Corollary 3. If E € A", then EZ(E) =0 for all ¥ < d;(A). Hence A™ C {E €
A*D)(E) < A} for any A > 0. Now by (22), u(A") < 277AMF(A™). Therefore either
1(AT) =0 or Mi(A™) = oo which by Corollary 2 implies dimy(A¥) = d;; (A). O

Proof of Corollary 4. We have dimg(u,A) < dimg(Ag) = d (A) with Aq as above.
Suppose a 7 exists such that dimy(p, A) <y < df(A). Then there exists a set A’ C A
with M{(A') =0 and p(A") = p(A). As in (23), this is impossible. O

Proof of Corollary 5. Corollary 1 directly implies d,(A) <dimp(pu,A). Furthermore,
by the definition of essential infimum there must exist a set A’ C A with u(A’) > 0

12



such that df(A') > d,(A). Then Corollary 2 implies dimg(A) > d(A). Therefore

d,(A) >dimy (i, A) by the definition of the latter dimension. O

A measure p is said to have exact (Hausdorff) dimension d in a Borel set A if
dimz (s, A) =dimj(p, A), that is, if its lower pointwise dimension is p-a.e. equal to
d in A. In parallel, one can say that p has exact (packing) dimension d' in A if its upper
pointwise dimension is u -a.e. equal to d’ in A. In ref. [G2| an exactly scaling measure p
was defined as one for which the upper and lower local dimensions have a common p-a.e.
constant value. For exactly scaling measures the Hausdorff and the packing dimension
coincide, but the converse is not true.

In the physical literature, box-counting dimensions have found wide use because of
their easy numerical implementation. It is interesting to note that packing dimensions
can also be computed by a box-counting procedure. First we recall that the upper and
lower box-counting dimension of a compact set K are defined as

: . log(Ns(K))
+ —
dimg (K) = 111(1;1 S(}lp log(0)

where Ns(K) denotes the minimal number of closed intervals of size  needed to cover
K (or equivalently, by the box-counting theorem [Fal, the number of elements of a grid
cover of size § which overlap K). The upper and lower fractal dimensions of zin A C R
are now defined as in [G2] by

dimg (1, A) = sup inf {dimg(K) | u(K) > pu(A) —n, K compact } .
n>0 KCA

Theorem 3 dimf;(p, A) < dimgp (g, A) < dimg (p, A) = dim$ (p, A) .

Proof. To prove the first inequality, we replace in the definition of dimg (i, A) the value
of dimp (K) by dimg(K) and call the result d. Then there exist a sequence (K,),>1 of
compact subsets of A satisfying p(K,) > u(A) — 1/n and lim,_, dimy(K,) = d. Now
U, K, supports x in A and has Hausdorff dimension d such that d > dim; (g, A). On the
other hand, d < dimg (11, A) because dimy(K) < dimg (K) [Fa].

Next let us recall from [G2] that dimg (1, A) < dimg (g, A), so we only need to prove
the converse inequality. Let 7, € R and K, C A, n € N, be such that u(K,) > pu(A)—n,,
lim, 407, = 0 and sup,,s; dimf;(K,) = dimp(u, A). We set Ko, = Up>1 Ky so that
w(Ks) = pu(A). Hence, by definition of dimg (4, A) and countable stability of packing
dimensions,

dimg (u, A) < dimp(K,) = sup dimp(K,) < sup dim}(K,) = dimp(p, A)

n>1 n>1

where we used the fact that dimp(K) < dimf(K) for any set K C R [Fa). O
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We finally examine the dimension D(u) introduced in (14) as well as box-counting
information dimensions defined next. Given N € N, the Shannon entropy (“missing
information”) of the measure yu relative to the partition of the real line in dyadic intervals
IV, j € Z), of the Nth generation is given by:

= — > (L)) logy(u(1})) , (24)
JEZ
where by convention those j’s for which x()Y) = 0 do not contribute in the sum. We
consider the class £ of measures p for which Sy () is finite. Then Sy () is also finite for
all N (see below) and the upper and lower information dimensions of u are defined by

Sn(p)
N

dimj (¢) = limsup S]\;\([,u) , dim; () = liminf

N—oo N—o0

Then we have the following:
Theorem 4 If € £, then dimy(u) < dim; (p) and dim} (p) < D(u) < dimpb(p).

Proof. Let Ay, be defined as in Proposition 2. It is immediate that:

dim; (1) > aliminfpu(Axe) > ap(liminfAy,) ,

which is not less than « if @ < dim} (p) because of (13) and of Corollary 5. This proves
the first inequality. To prove the second one, let N'(u, N, €) be as in equation (14), and
let By C R be the union of exactly N (u, N, €) dyadic intervals of the Nth generation,
with p(By) > 1 — €. Let us fix Ny € N so that

—ZM ) logy ( (I))<€-

|51>No

We denote K = (— Ny, Ny| and we note that, if € is small enough, then pu(K°¢) < e. Now we
split the sum in (24) in three terms S;(u, N, €), i = 1,2, 3, which result of summing over
different sets J; of indices j, namely J; = {j € Z|IY C K}, Jo = {j € Z|I’NByNK # 0}
and Js = {j € Z|I)) C K\ By}. We denote P, i = 1,2,3 , the total measure of the
intervals whose label belongs in J;. From well-known properties of the conditional entropy
it follows that

Si(N+1) < Si(N)+ Pilogy(2) < Si(N)+e < (N+1)e

Again from conditioning we also get that

Sa(N) < Pylogy(#J2) — Palogy(P) < logy(N (e, i, N)) + ¢,

where c is the maximum of —zlog, = in (0,1). In the same way,

1
Sy(N) < Pylogy(#Js) — Pylogy(Py) < elogy(No2V*) + elog, (E> .
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Putting all these estimates together, we get

Sn(p) _ logy(N(e, p, N))
N = N

1
+26+O(N) 5

whence:
dimf (u) < 2e+D(p) < 2¢+dimg(p),

because a Nth generation dyadic covering of a compact K with p(K) > 1 — € cannot
be obtained with less than N (e, u, N) intervals, due to the very definition of the latter
quantity. As € is arbitrary and dim}(u) = dim}(u), we get the second inequality in the
thesis. O
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