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Abstract. We consider the three-dimensional Dirac operator H with constant mag-
netic field and electric potential which decays at infinity. We study the asymptotic
behaviour of the discrete spectrum of H as the norm of the magnetic field grows
unboundedly.



1 Introduction

Let Ho(b) be the three-dimensional Dirac operator in constant magnetic field B =
(0,0,b), b > 0. Choosing an appropriate gauge, system of units, and coordinates, we
can write

Ho(b) = > a;lli(b)+ 73

=123

L 0 O']‘ . P L ]2 0
a]'_(a.j 0)?]_172337ﬂ_(0 _[2>7

oj, 3 =1,2,3, are the Pauli matrices

(01 {0 = (10
g1 = 10 , 02 1= ; 0 , 03 1= 0 —1 5

Iy is the unit 2 x 2 matrix, II;, 7 = 1,2,3, are the components of the extended
momentum

where

.0 by .0 bz .0
H :H b = -1 — H :H b = —y— — — H =
1 1( ) Z@;z:-l_ 9’ 2 2( ) Zay 5 3 5627

and X = (z,y,2) € R® It is well-known that for each b > 0 we have
0 (Ho(b)) = 0ess(Ho(b)) = (=00, —1] U [, +00). (1.1)

Further, let V' : R®> — R be the electric (scalar) potential. We shall say that V is
in the class £ if and only if for each ¢ > 0 it can be written as V = V| + V, with
Vi € L*(R?), and supypa |V2(X)| < e. Throughout the paper we assume V € L,
unless more restrictive assumptions are imposed.

In particular, V € £ entails the compactness of the operator V Hy(b)™!. Set

H(b) := Ho(b) + VI, = Ho(b) + V

where I, is the unit 4 x 4 matrix. Since the operator V Hy(b)™! is compact, we have

Oess(H (b)) = 0ess(Ho(b)), and hence (1.1) implies
Oess(H (b)) = (—o0, —1] U [1, +00).

However, the discrete spectrum of the operator H(b) might be non-empty. The aim
of the present paper is to investigate the asymptotic distribution as b — oo of the
eigenvalues of H(b) lying in the gap (—1,1) of its essential spectrum.



2 Statement of the main result

Let T'= T* be a selfadjoint operator in a Hilbert space. Denote by Pr(T') its spectral
projection corresponding to the interval Z C R. Set

N(/\l,/\z,T) = rank P(Al,/\z)(T)7 /\1,/\2 € R, A< /\27

N(AT) :=rank P\ (T), X € R,
n(s;T') = rank P 1o0)(£T),s > 0.

If T is a linear compact operator which is not necessarily selfadjoint, put
n.(s;T) := rank P o) (T*T), s > 0.

In what follows if X = (z,y,2) € R® we shall write occasionally X = (X, z) where
X, = (x,y) are the variables on the plane perpendicular to the magnetic field B =
(0,0,b), while z is the variable along B. Fix X, € R? and set

X(X1):=xo+ V(XL,.)

where

Proposition 2.1 Let V € L. Then for almost every X, € R* the operator x(X )
is defined as an operator sum selfadjoint in L*(R;C?). Moreover, for almost every
X, € R? the operator V(X 1,.)x5" is compact and, therefore,

Tess(X(X1)) = Tess(X0) = (=00, =1JU[I, +o0).

The proof of the proposition is contained in Section 7.
Let Ay and Ay be real numbers such that —1 < Ay < Ay < 1. Introduce the magnetic
integrated density of states

D()\17)\2) = DV()\la)\Q) = /R2 N()\la)‘2§X(XJ_))dXJ_-

Proposition 2.2 Let V € L, A\, 2 € R, =1 < A\ < Ay < 1. Then Dy (A1, \2) < 0.

The proof of this proposition can also be found in Section 7.
We shall say that a point A € (—1,1) is regular if and only if

vol {XL € R*|dim Ker (x(X1) — ) > 1} = 0.

Note that A; (respectively, Ay) is a regular point if and only if lim.,o D(A; + &, \y) =
D(A1, Az) (respectively, lim.0 D(A1, A2 4+ €) = D(A1, A2)).
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Theorem 2.1 Let V € L, A\, s € R, —1 < Ay < Xy < 1. Assume that the points Ay
and Ay are reqular. Then we have

1

T

bliglo b'N (A1, Ay H(b)) = —D( A1, Ay). (2.1)
The present paper could be regarded as a supplement to [7] where strong-magnetic-field
spectral asymptotics for the Schrodinger and Pauli operators have been considered.
The methods applied here are close to the ones used in [7]. However, the Dirac
operator H(b) studied in this paper as well as the auxiliary operator x(X) are not
semibounded in contrast to the Schrodinger and Pauli operators. This additional
difficulty is overcome by the application of a simple but yet non-trivial generalization
of the well-known Birman-Schwinger principle.

Various types of spectral properties and, in particular, eigenvalue asymptotics for the
Dirac operator with or without magnetic field have been studied in [8], [3], [4], [5],
[6]. However, the asymptotic behaviour as b — oo of N (A, Ap; H(b)) has never been
investigated before.

The paper is organized as follows. The next four brief sections contain auxiliary results.
A formulation of the Kac-Murdock-Szego theorem borrowed from [7], can be founded in
Section 3. Section 4 is devoted to the generalization of the Birman-Schwinger principle
concerning the number of the eigenvalues situated in a gap of the essential spectrum
of a selfadjoint operator. In Section 5 we describe certain spectral properties of the
unperturbed operator Hg(b). In Section 6 we perform some preliminary estimates.
Finally, Propositions 2.1-2.2 are proved in Section 7, and Theorem 2.1 — in Section 8.

3 The Kac-Murdock-Szego theorem

In this section we follow closely the exposition of [7, Subsection 3.1]. For the reader’s
convenience, we reproduce a suitable version of the Kac-Murdock-Szego theorem whose
proof can be found in [7, Subsection 3.1].

In the sequel we shall denote by S, the space of linear compact operators acting in
a given Hilbert space, and by S,, p € [1,00), — the Schatten—von Neumann spaces of
operators T € S, for which the norm ||T|, := (Tr |T|p)1/p is finite.

Moreover, we shall say that the function v defined on R\ {0} is in the class C if it is
non-decreasing on (—o0,0) and (0, c0), non-negative on (—oc,0), and non-positive on

(0, 00).

Lemma 3.1 Let {T(b)}ys0 be a family of selfadjoint compact operators satisfying the
estimate ||T'(b)|| < to with to > 0 independent of b. Let v € C. Assume that v(t) = 0
for |t| > to. Suppose that there exists a real p > 1 such that the following three
conditions are fulfilled:

(i) T(b) € S, for each b > 0;



i) the quantity t|P dv(t) is finite;
R\{0}
(iii) the limiting relations

lim b~ Tr T(b)' = / ! du(t)
b—roo R\{0}
hold for each integer | > p.
Let t # 0 be a continuity point of v. Then we have
lim b~' n_(—; T (b)) = v(t) if t<0,

b—y00

lim b~ ny (4, T(b)) = —v(t) if t>0.

b—00

Remark. We shall use Lemma 3.1 only with ¢ < 0.

4 The generalized Birman-Schwinger principle

One of the versions of the classical Birman-Schwinger principle (cf. [2, Lemma 1.1])
says that if Ho = Hg >0,V = V*, and |V|'/?(Hy + 1)""/? € S, then for each A > 0
we have

N(=XHo + V) =n_(1;(Ho + N2V (Ho + X)7/?) (4.1)

where the sum Hg 4+ V should be understood in the quadratic-forms sense.

Lemma 4.1 below contains a generalization of (4.1) to the case where Hy is not neces-
sarily semibounded.

Related arguments in the special case where Hy coincides with the free Dirac operator
have already appeared in [2, Section 5]. Much later arguments of this type have been
employed in [4] and [5].

Let Hg be a linear operator selfadjoint in the Hilbert space H. Assume A, Ay € R,
)\1 < )\2, [)\1, )\2] C ,0(7‘[0)

Set R(A1, da; Ho) := (Ho — M) (Ho — A2))~Y2. Since [A1, Ag] is in the resolvent set
of Ho the operator (Ho — A1)(Ho — Az) is positive-definite, and hence the operator
R(A1, A2; Ho) is well-defined and bounded. Set

1
G(Ai, Ag; Ho) = <7‘[0 - 5()\1 + /\2)> R(A1, A2; Ho).

Evidently, G(A1, A2; Ho) is bounded. Further, let V be a symmetric operator on D(H)
such that V(Ho + i)' € S.., which is equivalent to VR(A1, Ag; Ho) € Soo. Set

’C()‘la)\%HOaV) =

R(M1, Aa; Ho)VER (A1, Aa; Ho) + 2Re G( A, Ay Ho)VR(A1, Ag; Ho).
Obviously, (A1, A2; Ho, V) € Seo.



Lemma 4.1 Let Hy be a linear operator selfadjoint in the Hilbert space H, A, Ay € R,
A < Ay, and [A, A2] C p(Ho). Let V be a symmetric operator on D(Ho) such that
V(Ho + i)_l € S.. Then we have

N(/\l,/\Q;H0+V) =n_(1;IC()\1,)\2;7-[0,V)) (42)
where the sum Ho + V should be understood in the operator sense.

Proof. Obviously,
1 . 1
N daiHo+ V) = N (00 =05 (o +V = S0u+ 2)?) . (43)

The minimax principle implies that the quantity at the right-hand side of (4.3) is equal
to the maximal dimension of the linear subsets of D(Hgy) whose non-zero elements u
satisfy the inequality

2

1 1
HHOU FVu = 00+ ] < 700 = 2)?ul?

where ||.|| denotes the norm in H. This last inequality can be re-written as

1/(Ho — M) (Ho — Aa)ul® < —||[Vul]? — 2Re < (%0 - %()\1 + )\2)> " Vu> (4.4)

where (.,.) denotes the inner product in H. Note that the operator R(A1, A2; Ho)
maps bijectively H on D(Hy). Set u = R(A1, Ag; Ho)w, w € H, in (4.4). Hence, (4.4)
is equivalent to

[w]|* < =[[VR(M, Aa; Ho)wl|—
1
2Re < <”H0 — SO+ /\2)> R(M1, Aas Ho)w, VR(Mr, Ao ’Ho)w> -

— (K(A1, Ag; Ho, V)w, w) . (4.5)

By (4.3), the quantity N (A;, Ay; Ho + V) coincides with the maximal dimension of the
subspaces of H whose non-zero elements w satisfy (4.5). By the minimax principle
this maximal dimension equals n_(1; (A1, A2; Ho, V)). Hence, (4.2) is valid. O

In this paper we shall apply Lemma 4.1 in the case Ho = Ho(b), V = V, and [A1, A] C
(—=1,1). Set

R(M, M) = Ro(A, ) = R(A, Ag; Hy(b)), (4.6)
Gy A2) = Gy(Mr, do) := G(Ar, Aas Ho()), (4.7)
K (M, Aa) = Ky(n, Aa) i= K(Ay, Ay Ho(b), V). (4.8)

By analogy with (4.6) and (4.7) introduce the operators o(A1, A2) and y(A1, Ag) replac-
ing Ho(b) by xo. Similarly, fix X, € R? such that the operator x(X,) is well-defined,
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and V(X1,.)xo" € S, and define the operator k(X ) = x(\;, Xa; X1 ) substituting
in (4.8) the operator Hy(b) for o, and V for V(X ,.).
Applying (4.2), we obtain

N, Ass H(B)) = n_(1; Ky (A1, A2)),s (4.9)
DA, As) = /R n_ (1 £ (Ars Ag; X1 )) dX 1. (4.10)

For further references we formulate here a lemma which is closely related to the gen-
eralized Birman—Schwinger principle.

Lemma 4.2 Let the operators Ho and V and the numbers Ay, Ay € R satisfy the
hypotheses of Lemma 4.1. Then the spectrum of Ho + V contains at least one of the
points Ay and Xy if and only if the operator K (A1, Aa; Ho, V) has an eigenvalue equal
to —1. Moreover,

> dim Ker (Ho 4+ V — );) = dim Ker (K(A1, A2; Ho, V) + 1).

71=1,2
Proof. 1t suffices to note that the equations
(Ho + V - )\1)(7‘[0 + V —_ /\z)u = 0, u e D(Ho),

and

KA1, Ao;Ho, V)w 4w =0, weH,
are equivalent for u = R(A1, A2; Ho)w, w € H. O

Corollary 4.1 Let M, Ay € R, —1 < Ay < Ay < 1. Then Ay and Ay are simultaneously
reqular points if and only tf

vol {XL € R*|dim Ker (k(Ay, do; X1 )+ 1) > 1} = 0.

5 The ground-levels projection

The unperturbed Hamiltonian can be written as

mio=( ey 7))

where



The commutation relation [I1;(b), II3(b)] = b implies
a(b)a(b)* = T, (b)* + Ty(b)* — b, a(b)*a(b) = T1,(b)* + TI,(b)* + b.

Therefore F'(b)? coincides with the Pauli operator

5 2
s . [ HO(b)*—b 0
F(b)* = (]Z:; UJHJ(b)) = ( 0 TI(b)2 + b (5.1)
where
)= > I
j=1,2,3
Moreover,
. F(b)* + I, 0
2 _ .
Define the orthogonal projection p, by
(ppu)(z,y,2) = / Pz, y; 2,y u(z',y', 2) dz'dy’, v € L*(R?), (5.3)
R2
where
! / b b N2 "2 BN ! !
Pol,ysa'y') i= o —expq—7 (2= 2") + (y — y)? + 202y — ya')] ¢ (5.4)

It is essential that P is the integral kernel of the orthogonal projection on Ker a(b)*
= Kera(b)a(b)* C L*(R?). Evidently, p, commutes with II5.
On L*(R?,C*) introduce the orthogonal projection

pm 0 0 0
0 0 0 O

P, = 00 p 0 (5.5)
0 0 0 0

Obviously, P, commutes with I3 and Ho. Moreover, if u = (uy, uq, us, us) € D(Hy),
we have

1 0 IIs O Prty
0O 0 0 0
HyPou = M, 0 —1 0 - (5.6)
0O 0 0 o 0
Put
Qb =1d — Pb. (57)



On {D(113)}* ¢ L*(R?; C?) introduce the operator

ho = ( ng ?i ) : (5.8)

Evidently, o(hg) = 0ess(ho) = (—o0, —1]U[1, +00). Note that if we replace II5 by —idd—z
in (5.8), we shall obtain the operator xo.

Define the operators r and ¢ substituting Ho(b) for hq respectively in (4.6) and (4.7).
Taking into account (5.6), we find that the spectral theorem for selfadjoint operators
entails the following lemma.

Lemma 5.1 The restrictions of the operators Ho(b) (respectively, Ry and Gb) on
PyD(Hy(b)) (respectively, P,L*(R?;C*)) are unitarily equivalent to the restrictions of
ho (respectively, r and g) on PyD(ho) (respectively, p,L*(R3; C?)).

6 Preliminary estimates
Lemma 6.1 Let A, Ay € R, —1 < A; < Ay < 1. Then the estimates
e[| Ho(8)[ T ull* < | Ry(Mrs A2)ull* < ol [Ho(B)| ], Vu € LHRCY),  (6.1)
cuf[lhol ™ oll* < (A, Ao)oll* < ealllhol ™Mol Yo € LR C), (6.2)
alllxol ™ wl* < flo(Ar, A)w|l* < exlllxol "l Vw € LH(R; C?), (6.3)
hold for some c;j(A1,A2) >0, 7 =1,2.

Proof. In order to deduce (6.1), it suffices to note that ||R(A1, A2)u||* = ||((Ho(b) —
A1) (Ho(b) — )\2))_1/2u|\2, and the quantity |A*(A — X\ )7' (A — A2)7!]| is bounded and
strictly positive if A € o(Hg(b)) = (—oo, —1] U [1,+0o0). Estimates (6.2) and (6.3) are
completely analogous. O

Let the matrix M(X) : C* — C* be defined for X € R®. Denote by |M(X)| the norm
of M(X), X € R®.

Lemma 6.2 Let (M| € LP(R%), p > 2, M\, M € R, =1 < Ay < Ay < 1. Then the
estimate

IM Ry By|J? < bes /R IM(X)[PdX, b>0, (6.4)

holds with c3 which depends on Ay and Xy, but is independent of b and M.

Proof. Evidently,
IMByPy|| < ||MRs|| < cal | M[Ho(b)| || <

call [Ho(O)|7H I M |0 (rey = c2ll IM] || zo re). (6.5)
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On the other hand,
IMRyPy|I3 = [ Mpyrll3 < eIl M| pylhol HI3 = 23] [M ] py(T3+1)72)3. (6.6)

Taking into account (5.3)—(5.4) and

1 ei(z—z’)(
2 -1/2, , - , ! /
(G4 1))y )= 5o [ [ oy, ) dads!
we get
M| py (105 + 1) 7Y2|[3 =
b2 2 _b (l._xl)2+(y_yl)2 11 dC
2n)? /33 |M(z,y,2)| d:cdydz/me ( ) dx dy /R S
b
- E/Rs |M(X)|? dX. (6.7)
Combining (6.6) with (6.7), we obtain
2
IMR B3 < b2 [ [M(X)[dx. (6.8)

Interpolating between (6.5) and (6.8), we find that (6.4) holds with c¢3 = ¢5/27. O.
Recall that if T € S, p > 1, then n.(e;T) < 7P| TP, e > 0.
Corollary 6.1 Under the assumptions of Lemma 6.2 the estimate

n.(e; MRyPy) < bege™ /RS IM(X)[PdX (6.9)
holds for every ¢ > 0 and p > 2.

Lemma 6.3 Let |[M| € L3(R?).

(i) There exists a constant ¢4 such that for every ¢ > 0 we have
na(es MRyQy) < eqe™ / IM(X) dX. (6.10)
R3

(ii) Moreover, for every e > 0, A, Ay € R, =1 < A\ < Xy < 1, and |M| € L*(R?),

there exists a number by such that b > by entails

n*(E;MRbe) = 0. (611)
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Proof. By Lemma 6.1 we have
n.(e; MRyQy) < nu(ecy ' |M||Ho(b)]7'Qs), & > 0. (6.12)
Further, (5.1)-(5.2) entail
|Ho(b)|™'Qy < (I1” + b)7'/2Q, < (I1* + b) /21,

Moreover, the operators |Hy(b)|~!, Qp and (II* + b)~'/2I, are pairwise commuting.
Therefore, we have

n.(eey ' | M| Ho(b)| ' Qs) < An(eey s [M|(T* 4 0)71/2). (6.13)
The classical Birman-Schwinger principle (see (4.1)) entails
naecs™; IMI(IT 4 )71/2) = N(=b; 12 — 3==2| M2) < N(0; 1% — 3==2|M[2), (6.14)
while the magnetic version of the Cwickel-Lieb-Rozenblioum estimate implies

N(0;TI2 — 22| MJ?) < c5c3€_3/ IM(X)P dX (6.15)
RS

where ¢5 is independent of M and ¢ (see [1, Theorem 2.15]).
Now, the combination of (6.12)—(6.15) immediately yields (6.10) with ¢, = esc5.
On the other hand, by the Kato—Simon inequality we have

M (I 4 0)72|| < || |M](=A + ). (6.16)
Since |M| € L?*(R?), the multiplier by |M|* is -A-form-compact. Therefore
Jim [[[M](=A+0)7 = 0. (6.17)
Fix e > 0, and taking into account (6.16)—(6.17), choose by so that b > by entails
|| M| (T2 4 )72 < ecyt. (6.18)
Now, (6.12) and (6.13) combined with (6.18) imply (6.11). O
Corollary 6.2 Let M € L*(R?). Then for every e > 0 and b > 0 we have

-3
n.(es MBy) < (csb+ e) (g) [ 1M ax. (6.19)
RS
Proof. Since )y + P, = 1d, we have

ne(e; MRy) = nu(e; MRy Py + MRy Qy) < nule/2; MRy Py) + nu(e/2; MRy Q).
Applying (6.9) with p = 3 and (6.10), we get (6.19). O

Remark. In most cases we shall apply Lemmas 6.2 - 6.3 and Corollaries 6.1 - 6.2 with
M=VI,.
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7 Proof of Propositions 2.1 — 2.2

Let V : R® = R be a measurable function. Fix ¢ > 0 and set

wn-vo-{SREEO o
V2(X) = V2. (X) = V(X) = Vi (X). (7.2)

It is easy to check that V' € L is equivalent to V;. € L*(R?) for all € > 0. In what
follows if V€ £ and ¢ > 0 we shall choose the decomposition V = V| + V, with
Vi € L3(R?) and supyeps |[Va(X)| < ¢, as in (7.1)—(7.2), and shall call it briefly the

e-decomposition of V.

Lemma 7.1 Let V € L. Then for almost every X, € R? the operator V(X 1, .)x5"
is compact in L*(R).

Proof. Fix e and write the e-decomposition of V. Choose X € R? so that

| (X1, 2)f dz < oo (7.3)

Evidently, the complement of the set of X, satisfying (7.3), is a null-set. Moreover,
(7.3) implies that the operator Vi(Xy,.)x5" is compact.

Now, pick a sequence &, such that ¢, > 0, and lim,,, &, = 0. Write the &,-
decomposition of V = Vl(n) + V2(n) with V;-(n) :=Vje,,j =1,2. Fix X; € R? such that
IR |‘/i(n)(XL,Z)|3 dz < oo for all n. The complement of such X, is again a null-set

being a countable union of null-sets. The operators ‘/l(n)(.XJ_7 )Xo are compact, and
we have

IVi(X 1, )xgt = Vi (XL, Oxa = 1A (XL )xa | < en.

Since the operator V(X,.)xs" can be approximated in norm by compact operators,
it is a compact operator itself. O

Remark. Lemma 7.1 entails immediately Proposition 2.1.

Lemma 7.2 Let v € LP(R), p > 2. Then we have

lvells < co [ (=) dz (7.4)
where cg = co(p) is independent of v.
Proof. Applying Lemma 6.1, we get

lvolly < ellvlxol ™ [15- (7.5)
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Evidently,

2 —1/2||P
lobal ™1 =)o~ +1) (76)
P
If v e L*(R), we have
d2 -1/2 )
o= 1) | < sup(c 4 7 ol = lollzeony: |
v ( a2 T ) = §2£(§ +1) [0llzee(r) = [[v]lzoe(m) (7.7)
If v € L*(R), we have
2 2 1 d¢ , -
’ (_E + 1) 2 = ﬁ/R 241 loliz2my = vl m)- (7.8)

Interpolating between (7.7) and (7.8), and bearing in mind (7.5) and (7.6), we find
that (7.4) holds with ¢g = 2¢5. O

Corollary 7.1 Let V € L*(R?). Then the estimate
/ n.(e;3 V(X1 Do) dX. < ege / V(X)]? dX (7.9)
R? R?

holds for each ¢ > 0 with cg = c6(3).

Proof. Fix X; € R? for which [g |V(X1,2)]? dz < oo; the complement of the set of
such X is a null set. Applying (7.4), we get

na(& V(X)) < <TIVIXL Jelly < eoe™ [ V(XL 2)f de.
Integrating with respect to X; € R?, we get (7.9). O
Corollary 7.2 Let V € L*(R?), —1 < Ay < Ay < 1. Then we have
D, Ne) < cre™? /R V(X)) dX (7.10)
with ¢z = ez7(Ai, A2) = 2% (e2(Ar, A2)[[v (A1, A1)
Proof. First, by (4.10) and oV(X,.)%0 > 0, we have

DA, Ao) g/

[ n(12ReyV (X0, )e)dXs < [ nu(12]IV (X0, )e)dX..

Further, Corollary 7.1 implies

Jo L2V, Je)dXs € a2l [ IVEOPdx. (74
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Inserting the value of ¢g into (7.11), we obtain (7.10). O

Remark. Proposition 2.2 is implied almost immediately by Corollary 7.2. In order to
see that, we assume that —1 < A; < Ay < 1, fix € > 0 such that A\ — & > —1 and
Ay + & < 1, and write the e-decomposition of V. Then we have

Dv (A1, A2) < Dy, (M — e, A + ),

and by (7.10)
DVl()\l - 5;/\2 ‘I’E:) § C7()\1 — 5’/\2 —|_€) AS |‘/1(X)|3dX

Therefore Dy (A1, A2) < oo.

8 Proof of Theorem 2.1

Let —1 < Ay < A; < 1. Introduce the operator
k’b = kb()\l, )\2) = 7’()\17 )\Q)pbv2pb7’()\1, )\2) + 2Re g()\l, )\g)prpbr(/\l, /\2)

where the operator py is defined by (5.3), while the operators r(A1, A2) and g(A1, A2)
are introduced at the end of Section 5.

It is easy to check that if V € LP(R?) then Vipyr € S,, p > 2; hence, Vpyr itself as
well as rpy V2por, gppVpyr and rp,Vpyg are Hilbert-Schmidt operators.

Proposition 8.1 LetV € C5°(R?), —1 < A\ < Ay < 1. Then the asymptotic relations
Timn 71T ky (A1, Do)’ = —/ (s Ags X1 dX,

are valid for every integer [ > 2.

Proof. Throughout the proof the parameters A; and Ay are fixed, and we omit them
in the notations.

For [ > 1 write
3l

kéIZk‘]l( ZKJZXJ_

i=1

where the terms k;; and «;;, 7 = 1,...,3', are defined recurrently:
ki () == rpV2pyr, ko () := gpeVpur, k() := rpsVpsg,

ki1 (X1) = oV(X1,.)%0, maa(X1) :=9V(X L, ), kaa(X1) :=oV(X1,.)y,
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kra(b) ki (D), 5=1,...,377,
k]ql(b) - k271(b) kj,l—l(b)? J= 31_1 + 17 . 72 31_17 [ > 2)
k371(b) qul—l(b)? J= 2 31_1 + 17 ’31’

51,1(XJ_) Kjl— ]_(XJ_) ] =1 ...,31_1,
ri(X1) = kaa(X1) kju-1(X1), J = 3 L41,...,235 1 >2.
/{/3,1(XJ_) K/j,l_]_(XJ_), _] = 231 1 + 1,. .. ,31,

The operators k;(b), j =1,...,1,1 > 2, can be written in the form
kjo = E; Wi Ty Wi Tie Wi B

where the operators £, and E]—‘I,—z coincide either with r or with g, the operators W ;;,
s =1,...,l, coincide either with p,V2p, or with p,Vpy, and the operators T ;;, s =
1,...,1 — 1, coincide either with r2, or with gr, or with g>. Note that among the
operators Ts;;, s =1,...,0 —1, and E 1 X b, there are either at least one operator
r?, or at least two operators gr.

Analogously,

ki (X1) = € i( X)) wima (X)) mog jawn (XL el

where ¢, = o if Ef} = r and ¢, = v if B, = g, w,;0(X1) = V(X1,.)? if W, =
p, V2py, and ws,],l(XL) VX, )W i=mVps,s=1,....0, 15,0 =0* il Ts 1 =12,
Tsi0 =0y il Ts;y=rg,and 75;, =v* if Ts;; = g%, s = 1, ol =1

Obviously,

3
Tr ky = Tr kju(b)

3l
Tr w(X,)dX, = Zj/R Te ks (X1) dXo, 1> 2.

R2

Hence, it suffices to prove that

lim ™' Tr k; (b) =

b— o0 27 JR2

Trr (X )dXy, j=1,...,3, 1>2. (8.1)
It is not difficult to show that
!
Tr kj,l = /RSZ Hlszl'ws,j,l($s+1,ys+1a Cs41 — Cs)Pb($s+1,ys+1; :Esays)x

To Tyt (Co) ey daady,dC, (8.2)
where X o ;
— Jre " V3i(z,y,z)dz it W =pV7p
. . — ) 2 _ 'Y ‘ gy )
ws,y,l(S& Y, C) { % fR e—zzCV(:E’ Y, Z)dZ if Ws,j,l — vapb,
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Py is introduced in (5.4), t5;:((), s = 1,...,1 — 1, coincides with the matrix-valued
symbol of the operator T ;;, and ¢;;,(() is the matrix-valued symbol of the operator
Ejf, x E;;. Moreover, the notation H’Zs=1 means that in the product of [ factors the
variables 41, Y141, and (;31, should be set equal respectively to zy, y1, and (5.
Analogously, we have
Tr k(X)) =Tr gz, y) =
. I weia(z,y, Cogr — Co)Tr T ta 50 (COT_ dC,, X1 = (z,y) € R (8.3)

In order to prove (8.1), we insert (5.4) into (8.2), and obtain

b! !
Tr kj,l = (27_[_)1 /RSZ ng:llws,j,l(-rs-l-la Ys+1, Cs-l—l - Cs) X

b 0 .
exp {_Z [(;t:s+1 —25)" + (Yor1 — ¥s)* 4 20(2ep1ys — ys+1‘rs)}}

Tr It (¢ dady,dC.
Change the variables
T =T, Y1 =Y,
Ty = 17_1/217{9 + 2,y = b_1/2y; +y, s=2,...,1L
Note that the corresponding Jacobian is equal to b'~'. Thus we get

b
(2m)!
Hi_:ll'ws,j,l(xll + b_1/2xls+17 Yy + b_1/2y;+1, Csr1 — Cs) Tr Hls:lts,j,l(gs) Hlszld:g;dy;dgs,

where

[ ®(zl,.. iyl .yl
ki = /RSl wi (@, v, G = G)eEhrivisl)

Oz, ... Y2, Y1) 1=

1 ‘ ‘ ‘ -1 .
—— {fﬂzz Rttty + Y (($s+1 — 25)" + (Ysg1 — ¥s)® + 2i(Top1ys — ys+1$s)>} .

4 s=2
Therefore,
bliglo b_lTI‘ k]‘,l(b) =
1 Ozl vy T, L, o _ l ] l 1ot
(27T)l R3! € ? e VI s:lws,],l(-rla Y1 §5+1 é.s)TI’ Hs:lt«sq]yl(CS)Hszldmsdysdgs'

(8.4)
Changing the variables in the integral at the right hand side of (8.4)

! P

Ty = 21, Y1 = Y,
P S O
Te=Ts —T1, Yg = Ys — Y1, S = 4,..., 10,
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we get

blif& b_lTl“ kj,l(b> = Asl Hllszlws,j,l(xla Yi, §s+1 - Cus)
Pi(@op1s Ystr; or Ys) Tr Tyt 51 (C)TT 2 d gy . (8.5)
Since
/R2 Pi(z,y; 2", y")Pi(a”, y" 2,y )da"dy" = Pi(2,y; 2", y'), 2. y,2"y' € R,
,Pl('ray; Iay) = (271-)_1’ T,y € Ra
we find that (8.5) is equivalent to
lim b7 () =
1 _
% /].IH'Q Hllszlltwsvqu(wl? y17 §8+1 - §S>Tr Hi:lts,j,l(gs) Hls:ldgs d$1dy1 =
1
E/R Te ki (X0)dX0, G=1,...,0, [>2,

(see (8.3)), which is identical to (8.1). O

Set
v(s):= %IRQ n_(=s;k(X1))dX1, s <0,
T =% fre (53 R(XL))dX L, s >0,

Note that s # 0 is a continuity point of v if and only if

(8.6)

vol {XL € R*|dim Ker (k(X,) —s) > 1} = 0.
Corollary 8.1 Lett <0 be a continuity point of v. Then we have

lim b~ n_(=t; k) = v(t).

b— oo
The corollary follows immediately from Proposition 8.1 and Lemma 3.1 with 7'(b) = ks,
v defined as in (8.6), and to = [PV 3=y + 21gl IV 12r.

Proposition 8.2 Let V € C§°(R?). Assume that t < 0 is a continuity point of v.
Then we have
blim b='n_(=t; K3) = v(t). (8.7)
—00

Proof. Evidently

n_(—t; Ky) > n_(—t; Ky Py) = n_(—1; ks).

17



Applying Corollary 8.1, we get

liminfb™'n_(—t; K;) > libm infb™'n_(=t; k) = lim b~ 'n_(—t; k) = v(2). (8.8)
—00

b— 00 b—y 00

On the other hand we have
[be = Pb[(bpb + Qb[(be + 2Re Pb[(be =

P K Py + QbIX’be + 2Re PbRbVQRbe + 2Re PbiVRbe + 2Re PbRbVGbe.

Note that
RyVGy = Gy VR, + Ry J Ry

where

1 oV A% 1%
J = [V, Ho(b) — 5()\1 + A2)] = [V, Ho(D)] = 1 (%Oq + 8—ya2 + @0@) .

It is essential that J is independent of b.
Apply the estimates

Ky = B Ky Py + QoK Qp + 2Re PRV R, Q) + 4Re BGWV RyQy + 2Re PRy J RyQy >

P Ky Py + QK3 Qp — e P RyWVEAR Py — e ' Qu Ry V2 Ry Qy—
QEPZ,GZPZ, - QE_IQbRbVQRbe - €P5R2Pb — E_lQbRbJ*JRbe >
Pb(ffb — €(R5V2Rb + ZGZ + RZ))P{, — Qb(aGg + 6_1R5(4V2 + J*J)Rb)Qb, e > 0. (89)

Now fix u € (0,—t), and choose ¢ so small that we have £(3||G}||* + || Rs||*) < p/3;
hence ¢||2P,G2 Py + PyR2Py + QyGEQy|| < /3. Then (8.9) entails

n_(—t; Ky) <n_(—t — u; BKyPy)+

n+(u/3; EPbRbVQRbe) + n+(p€/3; QbRb(4V2 + J*J)Rbe) (810)

Lemma 6.3(ii) combined with the estimate
n+(252; QbRb(4V2 + J*J)Rbe) <na(6/2; VRyQs) + ni(0; JRyQp), 6 >0,

implies that the quantity ny (ue/3; Qs Ro(4V? + J*J) RyQy) vanishes for b large enough.
Hence, (8.10) entails

limsupb™n_(—t; K;) < limsupb™'n_(—t — u; B K, P)+

b— 00 b—oo
limsupb™'ny(u/3;e PRV Ry Py), 1 € (0,—1), € > 0. (8.11)
b—co
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Corollary 6.1 combined with the estimate ny (6% P,RyV*Ry Py) < n.(8; VRyP,), § > 0,

implies

a2\ ¥/?
limsupb™'ng (u/3;e BBV Ry Py) < 3 (—C) /3 VP dX.
[ R

b—oo

Letting € | 0, we find that (8.11) entails

limsupb™'n_(—t; K3) < limsupb™'n_(—t — u; P Ky B), p € (0, —t). (8.12)

b—o00 b— 00

Now choose a sequence {y;},, such that p; € (0,—1), im0 1z = 0, and all the
points —t — yi; are continuity points of v. Then Corollary 8.1 implies

limsupb™'n_(—t — u;; BKyPy) = bli)lrolo b 'n_ (=t — ppy k) = v(t + ). (8.13)

b—00

Letting [ — oo, we find that (8.11)—(8.13) entail

limsupb™'n_(—t; Kp) < v(t). (8.14)

b—y o0

The combination of (8.8) and (8.14) immediately yields (8.7). O

Proposition 8.3 Let V € L*(R?). Assume that t < 0 is a continuily point of v.
Then (8.7) remains valid.

Proof. Pick a sequence {d;},5,, lime &; = 0, and write V = V5 + Vi, where Vj =
VoJ € CSO(RB), Vi = Vl,l € LB_(R3>, and HVLZHLS(RS) < é;.

Introduce the operators Ky, kb o and k(X ), replacing V' by V. Analogously, define
the function v; = vy, substituting k& for ko. Choose the sequence {e,} such that
0 <&, <min{l,—t/2}, lim, &, = 0, and the points —t + ¢, are continuity points of
all functions vy ;. Evidently,

Ky > (1 —e2)Kypo+ (1 — e 2) Ry Vi Ry + 2ReGy Vi Ry + 222ReGy Vo Ry,
Ky, < (1+ 53)]&’1),0 +(1+ 5;2)35\/1235 + 2ReGy Vi Ry — 2e2ReGhy Vo Ry,
and, hence,
n_(=t; Kp) <n_(=t —e,; Kyo) +n_(e,/3; (1 — e )Ry V2 Ry +
n_(e,/3;2Re GyVoRy) + n_(g,/3;2e*Re Gy Vi Ry),
n_(=t; Ky) >n_(=t+¢e.; Kpo) —ny(e./3;(1 +e )Ry VER,)—
ny(e,/3;2ReGy Vi Ry) — n_(e,/3; 262 ReGy Vo Ry).

Utilizing Corollary 6.2 and Proposition 8.2, we get

limsupb™'ny(—t; Kp) < v (t 4 &,) + g6} + coc> /RS 1Vo|? dX, (8.15)

b—y00
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lipninf b4n (=t K3) > vog(t = &) — esdf - c95;?/ Vol dX,  (8.16)
— 00 R3

where cg depends on ¢, but is independent on 9;, while ¢g is independent of both &,
and J;.

Similarly, using Corollaries 7.1 and 7.2, we obtain the estimates

Voult + &) < vt +26,) + h8? + che? /RS Vol dX, (8.17)

voult — &) > v(t — 2¢,) — h8? — céef/s Vol dX, (8.18)
R

where ¢ depends on ¢, but is independent on §;, while ¢} is independent of both &,

and 4;.
Letting at first [ — oo (hence, §; | 0), and then r — oo (hence, ¢, | 0), in (8.15) -
(8.18), and taking into account that ¢ is a continuity point of v, we obtain (8.7). O

Using Lemma 4.1, Corollary 4.1, and Proposition 8.3 with ¢ = —1, we deduce the
following corollary.

Corollary 8.2 Let the hypotheses of Theorem 2.1 hold. Assume in addition V €
L3(R?). Then (2.1) holds.

In order to complete the proof of Theorem 2.1 it remains to show that we can approx-
imate V € £ by V € L*(R?).

Let A\;, Ay € R? —1 < )\ < )y < 1, be regular points. Fix ¢ > 0 such that
M —3e>—1, A +3e <1, A\ +3e < Ay — 3¢, and write the e-decomposition of V.
Evidently,

N (A +e,Aa—e; Ho(b)+ V1) < N (A1, Ag; H(D)) S N (A —e, Ay +e; Ho(b)+ V7). (8.19)
Now chose the numbers ¢; € [0, ¢) such that
vol {X, € R¥dimKer (xo+ Vi(X1,.) = (\jte+e))>1}=0, j=12
Applying Corollary 8.2, we deduce from (8.19) the following estimates

limsup b "NV (A, Ag; H()) < limsupb™' N (A — &, Xy + &; Ho(b) + V1) <

b—co b—y 00

limsupb™ ' N(A; — e —e1, Ay + &+ e9; Ho(b) + V1) =

b—y o0

DVl()\l — & — €&y, /\2 + e+ 52) S IDVl()\l - 267 )\2 + 26), (820)
lim inf 6™ AN (A1, Ag; H(b)) > lim inf6™ N (A + &, Xg —e; Ho(b) + V3) >
—00 —00

hleleb_lN()\l + e+ €1, )\2 — & — &9, Ho(b) + ‘/1) =
— 00
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DVl()\l +e+4 €1, /\2 — & — 52) S DVl(/\l + 26, /\2 - 25) (821)
Finally, note the obvious inequalities
DVl()‘l — 26, )\2 + 28) S DV()\I — 38, )\2 + 38),

DVl(/\l + 25, )\2 — 25) 2 DV()\I + 35, )\2 — 35) (822)
Putting together (8.19)—(8.22), we get

limsup b~ ' N (A, Ag; H(b)) < Dy (M — 38, Xy + 3¢), (8.23)
b—00
liginfb‘l./\/(Al, Ag; H(b)) > Dy (A + 3¢, Ay — 3e). (8.24)

Letting £ | 0 in (8.23)—(8.24), and bearing in mind that A; and Ay are regular points,
we come to (2.1).
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