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LOCAL PERTURBATIONS OF ENERGY AND
KAC’S RETURN TIME THEOREM

Y. LACROIX

Brest

To Gérard Rauzy on the occasion of his siztieth birthday.

Abstract. We introduce the notion of local perturbations for normalized energies and
study their effect on the level of equilibrium measures. Using coupling technics and Kac’s
return time theorem, we obtain some d-estimates for the equilibrium measures. These
reveal stability of certain energies under local perturbations. They also show how some
weak-x convergence of equilibrium may be obtained in absence of || ||-accuracy of the
energies.

1. INTRODUCTION

This paper concerns Statistical Mechanics - Thermodynamic Formalism (see [9] for
basics). However it entirely translates to Probability Theory, where it concerns chains
with complete connections [2,3]. There the log of the local transitions for the chain is
the normalized energy for Thermodynamics; they describe microscopical interactions
for a system with many particles.

Given a transition function g, the pre-cited theories associate to it equilibrium mea-
sures. These are stationary and describe the macroscopical aspect of the system after
a long time.
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We shall restrict to the case of uniqueness of the equilibrium measure. For such a case
to hold there is a relatively important literature - also studying the Ergodic Theoretic
properties of the single measure - see e.g. [4]. For a given g we denote by p, the uniquely
associated equilibrium measure (by hypothesis).

A natural question is the study of the sensitivity, or stability, of the system, for a
given interaction g, under perturbation of g. Let g be another local transition function.
It always is a perturbation of g. Then the perturbation theory asks about the behavior
of pg — g when g is close to g. That is what is the effect of microscopical perturbations
on the macroscopical aspect of the system at equilibrium 7

Now the meaning of “g is close to g” has to be specified. Usually g is thought of as
being close to g when || g — § || is small - which is relevant to the Perturbation Theory
of Markov chains also : this is || || perturbation theory.

In this note we introduce and study local perturbation theory : we think of §
being close to g if ug({g # g}) is small (cf. the first statement of Theorem 1).

For classical || ||oo-perturbation the reader will find in [9] -using [11]- the correspond-
ing basic stability results, and in [2,3] more quantitative aspects. Essentially under the
hypothesis of uniqueness of equilibrium it follows that pg 2 Hg as | d— g |lco— 0.

weakK-*

Convergence in the d-metric under additional regularity assumptions on g are detailed
in [2,3].

However the technics developed to prove this stability under classical perturbation
do not apply to the case of local perturbations. The reader will find in Example 3 of
the following section a very simple example where this is illustrated.

We have proved in Theorem 1 the stability under local perturbations for certain
energies. The proof required the introduction of new ingredients. The main novelty is
the use of Kac’s return time theorem [5,10], to overcome the absence of || ||.o-accuracy
for § — g. Otherwise we use now standard -still powerful- coupling technics [1,2,3.4],
[12]. Let us mention that in [7] another technic -of algebraic nature- is developed to
prove stability.

We stress that our result also proves that there is no hope to detect empirically strong
local variations of the law of a process, producing a time series - whence to determine
its law.

The paper is organized as follows. Section 2 introduces the basic notations, presents
in Theorem 1 the main result. In Example 3 we choose the simplest case to show how
our stability result applies while the classical perturbation results do not.

In Section 3 we briefly sketch our proof. The final Section contains the details of the
different steps used to prove Theorem 1.

The author would like to thank M. Babillot for her interest, and providing references
[2,3]; also thanks to J. Buzzi for encouragements, and the anonymous referee for making
constructive comments about a very preliminary draft of this paper.
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2. NOTATIONS AND STATEMENT OF RESULT

Our results are presented within the simplest framework as generalizations to larger
alphabets and /or sub-shifts of finite type are somewhat easy to guess, but would induce
loss of clarity in the exposition.

2.1 : the shift, G-functions, g-measures, and ergodicity.

Let X = {0,1}", and S : X — X its usual one-sided shift map. This is a cover-
ing transformation in the sense of Keane [6]. He proves for such that invariant Borel
probability measures and so-called G-functions are intimately related. Now from the
Thermodynamical view-point the log of G-functions are normalized energies.

To get something working usual is to restrict generality and define the set of G-
functions as follows : we let X have product topology and

G ={g: X —]0,1[: g continuous and for any = € X, Z g(y) = 1}.
yeS—1zx

It is standard that such gs are local transitions for chains with complete connections -
see e.g. [2].

Let M(X) denote the set of Borel probability measures on X. Let C(X) denote the
set of real valued continuous maps on X, endowed with || |c. A g € G defines a transfer
operator £, acting continuously, linearly, positively, and contracting || || on C(X) :

Lyf(z)= Z g f(y), zeX.

yeS—1x

Since moreover L,1 = 1, its dual acts on M (X) : now M (X) is compact convex whence
the Schauder - Tychonov fixed point theorem yields that it has a fixed point.

Such a p1 is an g—measure or equilibrium measure : since Ly(foS) = f, it must be a S-
invariant one. From the Statistical Mechanical view-point, the p describes macroscopical
evolution while the g does so for the microscopical one.

When several such p exist we speak of phase transition while otherwise we shall agree
to say that g is ergodic. If it is, we denote the only p by pg. This will be the case by
hypothesis.

2.2 : Variations, and (pseudo)-distances for measures.

For g, g ergodic, if g # g, then p, and pg are singular, hence the variation norm is
bad to measure py — pg. From the macroscopical point of view, measures of cylinders
make sense : let

w = (wo, ..., Wy -1) €10, 1wl

be a word of length |w|. Let [w] be the set of z € X that have their first |w| coordinates
equal to those of w.
Then for given m > 1, we have two probability vectors :

T (9) = (g ([w])) j|=m,
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and 7,,(g) is defined similarly. Then we can measure

dm(tg: 1) =l Tm(9) = 7m (@) 1= D |ng([w]) — pg([w])]-

lw|=m

Ornstein [8] proved fruitful the d distance :

d(pg; pg) = nf{r([(0, DIV (L, 0)]) = v € J (g, 1)},

where J(pug, p17) is the set of joinings between pu, and pg, that is the S x S-invariant
probability measures on X x X that go for the first natural projection to u, and for the
second to pg.

We shall evaluate both using d,, and d : it holds that d,,, < md (cf. Lemma 5).

Conditions ensuring ergodicity require more than continuity. One is that of summable
variations. We will need variations later : put

var,(g) = max sup |g(z) — g(y)|-

lwl=m g yelw]

2.3 : Statement of results.

We assume 0 < A < 1/2 is such that g, > A. We let u, denote the Bernoulli
measure B(2\,1 —2)) on X. We denote by

Xp={2€X:1<l<p—-1=z[I+m—1]#0"}

We let m > 1, we let E be an at most countable index set, and for each i € F, p;
denotes an integer and F; C {0,1}™P:. We assume in the second statement of Theorem
1 below that

A:={g#7g} CU; Upep, [v].

Theorem 1. For any K > m+1,

max{dm (11g, p1g), d(prg, 1g)}
<2 [(K = 1) (varmi1(g) + (1 = 2X)pug(A)) + > s k(b — K)pa(Xy)] -

As a consequence, with K =um+1, u>1,

max{dp, (g, ), d1g, 115)}

< 2m [u (arm i1 (g) + (1= 20) (5, #F; (1 — N + mU=GL
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Comments 2. In the first estimate of Theorem 1, we see a quantitative meaning of “g
is a small local perturbation of g” : that is uz({g # g}) is small.

Under the assumption of the second statement ({g # g} C Uicr Uper, [v]), we have
another illustration of this : enough is that Y, #F;(1 — X\)"™*Pi be small.

To deduce stability under local perturbations -for certain energies- from Theorem 1,

second statement, take, for example, a g such that var,,1(g) = 0 (that is g depends only
(a—@nm™ !
(2A)2m

small ; then take § so that umpug({g # g}) is small also, and conclude that d(u, g) is
small (Example 3 below falls into that case).

We emphasize here that the produced bounds require the sequence (vary,(g))m>1 to
decrease very rapidly to 0. This is due to the nature of the proof : our result produces
universal bounds for ergodic g satisfying A < g < 1 — X. Now as revealed in [7] a proof
technic keeping more information on g yields better bounds.

on the first m+1 coordinates). Then pick a very large u first to make m?u

Now we produce the simplest example we found that illustrates how Theorem 1 even
gives some weak-x convergence of equilibrium, and for which classical theory does not
apply because || § — ¢ ||~ remains bigger than or equal to 1/4.

Example 3. Consider IL: x — ), 5tz mod 1. This is the factor map to the trans-
formation M : x — 2xmod 1. By [6] the same notions of G-functions and equilibrium
measures can be developed for M on the torus. Call Gy the corresponding set. Then
any g € Gr s such that g oIl € G. But the reverse is false : take Bernoulli measure
po = B(3, 1). It corresponds to go € G with go(0z) = 3/4 and go(lz) = 1/4.

Consider g, € Gur to be such that for 0 < n < 1/4, g, oIl and go coincide outside
balls of radius n centered at 0°°, 1°°, 01°° and 10°°, and otherwise let g, be ergodic and
>1/4.

Then though || go — gn o I || o> 1/4 for all m, our result shows that as n — 0,

weak-x
Hgn :ugo )

even in the d-distance. Hence weak-+ convergence may hold in absence of || ||~ accuracy.

3 : SKETCH OF PROOF OF THEOREM 1
The proof of Theorem 1 is quite simple and develops along the following four steps :

(o}) 1 let Y = X x X, T =S x S, and pick a 7 € Gr which is a Gp-function for (V,T)
and satisfies for any (x,y) € Y and 7,5 =0, 1,

{Zi T(iz, jy) = 3(jy),

>, iz, jy) = g(iz).

Then by ergodicity assumption, and these two properties, any v such that Liv = v
belongs to J(fug, 15). Here pay attention to choose 7 charging the entry to diagonal as
much as possible.
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(e2) : pick a T-measure v, and define for ¢ > 1,
Ay =A{(z,2")eY:i<q=z; =z}
Then show that

{dq(ﬂgvﬂé) < 2v(A),

d(pigs prg) < v(AQ)-
In the sequel we estimate on v(AS,), for m > 1 as in Theorem 1.

(o3) : introduce n,,(z) = min{k > 1:TFz € A,,}. First show, using attractivity - [4],
that v({n,, < co}) =1, whence deduce by Kac’s return time theorem [5] that

> kv(Ap 0 {nm =k}) =1.

k>1

Remark 4. There always exists an ergodic T-measure v, for which v({n, < oco}) =1
as soon as v({n, < oo}) > 0, using invariance, and ergodicity. However we think the
proof that this holds true for any T-measure (for chosen T) is interesting enough, and
relevant for the understanding of the treatment of the tail series in (o).

(e*) : observe that v(Ay N {n, = 1}) < v(Ay), and using stationarity of v that for
k>2, v(An N {n, = k}) > v(AS, NT~tA,,). Conclude using attractivity again that
the tail series in (2) is small, that its first term (k = 1) is about v(A,,), and that the
intermediate terms are each about v(AS, NT1A,,) : whence if this one is really small
we get estimates on the effect on equilibrium of local perturbations of g.

4 : PROOF OF THEOREM 1.

4.1 : The maximal coupling - (e!).
We let 71 (x,y) =  and ma(z, y) = y. Define the Gr-function 7 for (Y, T') - continuous
but not strictly positive - by (cf. [2])

min{g(ix), §(jy)} if i = j;

. ir)—g(y)) T (GGy)—gGz) T e - . ~
7(iz, jy) = (g((go(x)),g%yy))))jti%éj(?i;)g(gj(lz}))ﬁ if i # j and g(1z) # g(1y);

0 otherwise.

A few minutes require to check out the required properties of this 7 as stated in (e!).
Notice that
7(1lz, 1y) + 7(0x, 0y) > 2.

By [6] (same argument as the one sketched in the introduction) there is at least one
T-measure. Pick one and call it v.

By ergodicity assumptions on g and g, and the properties (o!), mv = p, and mov =
pz © whence we have the following diagram of measure-theoretical factors :

(Y, T,v)

T /N T2
(Xa Sv,ug) (Xvsaué)
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4.2 : Variation inequalities - (e?).
We let A, = {(z,y) €Y :i < ¢ = x; = y;}, as in (#?), and relate the distance
between p1, and pg to the quantity v(A,) :

Lemma 5. Let f € C(X) and g > 1. Then

g (f) = pa(H < 2 [ f oo (1= v(Ag)) + varg(f)r(Ag).

Hence it follows that B
dq(pgs ) < 2(1 —v(Ag)).
Notice also that since v(A,) < v(Ay), it follows by (') that

d(pg, p1g) < 1—v(Ag).
Finally, ch < 2qd.

Proof. We decompose along cylinders and use (e!) to go from integrating on X to
integratingon ¥ (= X x X) :

6 (F) = 15N < Sy | fruy g — fiuy Fii]
= Z|w|:q | f[w]xX f omdy — fXX[w] f © 7T2dV|
S Zlv\j\;u\):q, f[w]x[v} |f om — f o 7T2|dU
2 wi=q Jpuixguy [ 0 ™1 = £ o maldv
< 2| fllee (1 =w(Ag)) +vare(f)v(Ag)-
For the second statement we take f constant on cylinders of length ¢, and on each such
[w] equal to sign(pg([w]) - s ([w])). )
For the third observation of the lemma we notice additionally that d(ug, ) <1 —
V(Al).
Next d, < 2v(AS) < 23970 v(T—"A§) = 2qu(AS) by stationarity of v. Passing to
the infimum over J(ug4, ptg) in this last inequality, we deduce the last statement of the
Lemma. [

4.3 : Attractivity and Kac’s return time theorem - (e3).
Define 6 : Y — X by

6(z,y) = (|2 — yil)izo-
This is a shift commuting topological factor map.
On X, define the partial order x < y < Vi, x; <y;. Say an f : X — R is increasing
if
z2y=fz) < fy)
We define uy as in Theorem 1. Then gy(1.) is increasing (constant) and satisfies as
already noticed

> rliz, jy) < 12X = ga(16(z, y)).
1#]
Using 6 and =, heavily inspired by [4, Lemma 4.1], we have the following :
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Lemma 6. Let ® € C(Y), f € C(X) be increasing and together satisfy
O(z,y) < f(8(2,y)).

Then for all n > 0, L2®(z,y) < Ly, f(6(x,y)), hence

v(®) < pua(f).

Remark 7. The same conclusion holds for g replaced by an ergodic g € G such that
g(1.) is increasing - use a remark on the characterization of ergodicity in [4].

Proof. Set 75.4(i # j) = > _;2; T(iz, jy), and let 7, (i = j) = 1 — 754(i # j). Then
compute using the hypothesis of the Lemma and that g(1.) increases :

L-P(z,y)

{Zi;ﬁj_i_z'i:j}T(ix Jy)®(iz, jy)

< Tay(i # 9)F(18(2,y)) 4 Tay(i = 5) F(06(x, )

= Toy(i # ) f(18(z,y)) + (9 (16(z,y)) — oy (i # 7)) £ (08(z, y))
+gx(06(z,y)) f(06(x, y))

< Ly, f(6(z,y))-

By [4, Lemma 2.1], £, f™ is increasing for any n > 0, whence repeated application
of the preceding computations yield that for any such n,

LI0(z,y) < Ly, f(6(x,y)).

By [6], since g is Lipschitz, we have that £} f(2) — ux(f) uniformly in z as n goes to
infinity. Whence

V(@) = v(L1®) < v(LD f) = v(ua(f) = pa(f).

Now we pass to Kac’s theorem : we take notations from (). Then
v(Any) > v([0™] x [0™]) > (2A)™ > 0.

Hence Kac’s theorem applies :

Theorem 8 (Kac). [5,10]. >~ kv(Am N {ny = k}) = v(ng, < oo).

We may use attractivity (Lemma 6) to prove that
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Lemma 9. v(n,, <oo)=1.
Proof. Take ¢ > 1 and put

{Y(Q) = {npn = qm +1};
X(q)={z e X:1<u<m= zlum, (u+ 1)m[#£0™}.

Then define ®,(z,y) = 1y (g (z,y) and f4(2) = 1x(q)(2). It follows that ®; and f,
satisfy the conditions for Lemma 6 to apply : whence v(Y (q)) < ux(X(q)), but since
iy is Bernoulli with parameter 1 — 2\, we get

v(Y(q)) < (1—(20)™)%

Now {n,, = oo} C Y(q) whence 0 < v({n,, = oo}) < liminf (Y (q)) = 0. [

4.4 : End of Proof of Theorem 1 - (e%).
By stationarity, v(A,,) = v(T1A,,) = v(Am N {n, = 1}) +v(AS,NT~1A,,). Hence
we deduce from (e3) that

(x1) V(AL) = kv(Am N {nm =k}) —v(A5, NT 7 Ap).

k>2

Using stationarity of ¥ and Lemma 9 it follows that for k > 2,

(%2) V(AL NT ' A) = v(Ap N {ng = k}).

E>2

Moreover, A, N{n, =k} =0 for k <m + 1. From (x''?) we get

V(AS) =mu(A, VT Ap) + > (k—=m = Dv(Ap N {nm =k}).
k>m+2

Now for K > m + 1, the same argument with “<” instead of “=" yields to

(%3) V(AS) < (K — V(A NT " Ap) + Y (k= K)v(Ap N {ng = k}).

Estimating v(AS, N T 1A,,).
Remember A = {g # G} (= U; Uyer, [v] in the second statement of Theorem 1).
Then decompose

Am = U|w|:m(([w]
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Let us first consider (z,y) € A, N (X x (X \ A)) : then |g(iz) — g(iy)| < var,i1(9),
whence » ;. 7(iz, jy) > 1 —varmy1(g) and 3, 7(iz, jy) < vary41(g). Hence

V(AL NT Ay) = fA i#j 7(iz, jy)dv(z, y)

fAmm(XxA) Zz‘;ﬁj 7(iz, jy)dv(z, y)

(x4) + Ja A X (X\AY) 2oz T, Jy)dv(z, y)
varm 1(9)v(Am) + (1 = 2X\)pg(A)

varm1(9) + (1 = 2A)pg(A)

var,+1(g) + (1 — 20) ( #F (1— )m+pi))_

ININIA

Estimating the tail series in (x).

Define B, =T tA¢ N...NT k1 A¢ . Then A,, N {n,, = k} C By.

Next set Z, = {z€ X :1<p<k—1= z[p,p+ m[# 0™}. Denote ¥, = 1p, and
fr = 1x,. Then they satisfy conditions for Lemma 6 and therefore we obtain

V(A O {nm = k}) < v(Bi) < ua(X0).

Combining this with (¥31), and Lemma 5, we deduce the first statement of Theorem
1.

To get the second one we first choose K = um + 1 for some v > 1. By stationarity
we get that for each v > u,

Z MA(va+t+1) S mpx (T_vam—I—l) = mpx (va+1)-
t=1

We input this in the tail series of (x%) to get with (x*) that

(x) v(47,) < um(varm+1(g) +(1-22) (Z@ #Fi(1— )‘)m+pi))
+ ZvZu mQ(v —u+ 1):u>\(va+1)-

To end with we compute that by definition of puy,

pa(Xom 1) < (L= (2™, and 32 (0 41— wpm?(1 - (@)™)" = m? L

v>u

with ¢ =1 — (2\)™. |
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