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STABILITY OF THE BROWN-RAVENHALL OPERATOR

GEORG HOEVER AND HEINZ SIEDENTOP

ABSTRACT. The Brown-Ravenhall Hamiltonian is a model for the behavior
of N electrons in a field of K fixed nuclei having the atomic numbers Z =

(Z1,...,ZK), which is written, in appropriate units, as
N
B=AyN (Z DgY + aVc) At N
n=1

acting on the N-fold antisymmetric tensor product $n of A+ (L2(R3) ® C),

where D((]") denotes the free Dirac operator Dy acting on the n-th particle,
A4 denotes the projection onto the positive spectral subspace of Do, Ay N
the projection onto ) and the potential V. is the usual Coulomb interaction
of the particles, coupled by the constant a. It is proved in the massless case
that for any v < 2/(2/m + m/2) there exists an ag such that for all @ < ap
and aZy < v (k = 1,...K) we have stability, i.e., B > 0. Using numerical
calculations we get stability for the physical value o &~ 1/137 up to Zj < 88
(k=1,...K).

1. INTRODUCTION

A basic requirement of thermodynamics is the extensivity of the energy. To be
able to show this property, it is essential that on a microscopic level the energy per
particle is bounded from below independently of the size of the considered system.
This property, also referred to as stability of matter, as been proven in the literature
for a wide class of models starting from the pioneering work of Dyson and Lenard
[6, 7] in the non-relativistic case and of Conlon [3] and Fefferman and de la Llave [9]
in the relativistic case. (See [10, 12, 14, 16] for an overview and more references.)
A particular interesting work for our purposes is the work of Lieb and Yau [15] who
consider the stability of matter of a relativistic system of N (spinless) electrons in
a field of K fixed nuclei having atomic numbers Z = (Z1,...,Zk) and positions
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2 G. HOEVER AND H. SIEDENTOP

R = (Ry,..., Rk). Hence the relevant Coulomb potential is
V(Rl, RK,Zl, ,z )(:cl, ce TN
1) v )
ZpZ)
| "’Zm:l [z _Im| nz:lkz:l ‘x"_Rk‘ kzl:l |Ri, — Ry’
n<m

As an expression for the kinetic energy they use anl Ip|™, where |p| = v—A and
|p|(") acts on the n-th particle, i.e., they examine the Hamiltonian

N
Hy kRr,z = Z Ip|™ + aVr.z,
n=1
where « is a coupling constant. The physical value of a, the Sommerfeld fine
structure constant, is approximately 1/137.037.
The goal is to prove stability, i.e., the existence of a constant ¢ such that for all
K and N

Hy krz > —c(N+ K).

Due to scaling properties this is equivalent to Hy x r,z > 0. In [15] stability is
proved if Za < 2/m and o < 1/47q, where Z := max{Z,... ,Zk} and q is the
number of spin states. The bound 2/ is sharp for this kind of kinetic energy.

The above model has the problem that it does not really account for the spin
of the electrons and becomes instable if one of the atomic numbers exceeds 2a/7
(which is about 87.2 for the physical value of o). A model that does not have
the problem on the one-particle level for any physical atomic number has been
proposed by Brown and Ravenhall [2]. This has been shown on the one-particle
level by Evans et al [8] and improved by Tix [17, 18]. Instead of expectations of
|p| expectations of the Dirac operator are considered. A collapse to the negative
spectral subspace is prevented by restricting to positive energy states only which is
a particular way of implementing Dirac’s idea of filling the sea of negative states.
The precise definition of the Brown-Ravenhall operator is as follows:

Let Dy denote the free (massless) Dirac operator acting on L?(R3) @ C*, A,
the orthogonal projection onto the positive spectral subspace of Dy and $ :=
A (L2(R3) @ CY). Let Hn := AX_, 9 be the N-fold antisymmetric tensor product
of $ and Ay n the orthogonal projection from ®TI:[:1(L2(R3) ® C*) onto H. We
consider the operator

N
(2) BykRrz = AN <Z D + OzVR;z> Ay

n=1

on $Hy, where D((Jn) denotes the free Dirac operator Dy acting on the n-th particle.

(The A4,y on the very right in (2) is superfluous but we write it here and in the
following to stress the reduction to the positive subspace.)

With the results of [15] one gets stability also for this model if Za < 2/m.
But it is guessed that By g r,z > 0 if aZ < 7, = ﬁ perhaps under some
restrictions on a. Indeed in [8] this is proved for the special case N = K =1 for
the massless case and in [17, 18] in the massive case. In [8] it is also shown that
V¢ is optimal: If «Z > . then we have instability, i.e., Bi 1 g,z is unbounded from
below. The one-electron molecule (N = 1, K arbitrary) was treated by Balinsky
and Evans [1]; they prove stability for aZ < +. under a constraint on «, which is
satisfied by the physical value. We consider the general case (N, K arbitrary):

Theorem 1. Let v < 2/71'7-?—71’/2 Then there exists an ag such that for all a < ag
and Z, ..., Zx with aZy <~ (k=1,...K) we have By, k,r,z > 0.
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Remark. For the physical value 1/137.037 of a we get stability up to 7 < 88
(k=1,...,K). This exceeds the maximal atomic number one would get with the
mentioned methods of [15]

It remains as a challenge to improve this to get stability in our model for the
physical value of o up to the largest possible atomic number Z = vy.a ! ~ 124.

The paper is organized as follows: In Section 2 we introduce some notations and
summarize known results, that we will use, so that the rest of the paper should
be self-contained. The third section treats a commutator estimate, that will be a
crucial ingredient in the proof of our Theorem. This main proof is done in Section
4. The last section contains the numerical results that give the mentioned stability
up to Z = 88 for the physical value of a.

2. PRELIMINARIES

Here we introduce the notations we will use below and summarize some known
results.

Fix K > 2 nuclei located at distinct points R = (Ry,... ,Rx) € R3X all with
the same atomic number Z. Decompose R3 in K Voronoi cells Iy, which are the
nearest neighborhoods to the nuclei:

Tp:={z:|lx—Rg|<|z—R,l=1,... ,K}.
Let By denote the biggest open ball with center Ry in I'y and let Dy be its radius:
Dy, := dist(Ry, 0Ty,) = %minﬂRk —Ry|:1#k}, Bip:={z:|r— Ryl < Dy}
Further, for o € (0,1) let
B,(f) ={z: |z — Ri| < (1—0)Dy}.

We identify sets with their characteristic functions.

Now consider N electrons and let Vz := V(g, .. rx:z...,z)(71,... ,2N) be the
Coulomb potential induced by the nuclei with all the same atomic number Z and
the electrons as defined in (1).

Proposition 1 ([15], Theorem 6). For any 0 < A <1

N 1,1
V> =S Walzn) + =225 —,
2o L W) 57 5

where, for x € Ty, Wx(z) := Wy i(z) := |17—ZR,€\ + F\ i (z) with

1
L 2Dy, (1— —L5 [c— Ry |?) for |1' — Rk‘ < ADg,
Fy = D7
(V2Z+§)\x71{k\ for |z — Ry| > ADj.
We will localize the kinetic energy to control the Coulomb singularities. More

exactly we shall consider trv|p|, where v is a density matrix, i.e., a positive definite
trace class operator, on L*(R3) @ C* or on L?(R?).

Proposition 2 ([15],Theorem 10). Let 0 < o < 1 and xo, x1 be Lipschitz contin-
uous nonnegative functions with xo® + x12 = 1 and x1 supported in B}U). Define

11— x0(@)x0() — xa(@)xa(y)
2 |z — y[

L(z,y) =

)

— L(Iay) fO’f‘“$|—‘y||§0'D1, fE,yEBl,
Ly(@,y) = { 0 otherwise,
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and Lo :== L — Ly. For any positive function h on By and for arbitrary € > 0 let

Ur(z) = { 5B ¢ i s, W 0hG) oz < By
oltnerwise.

Then, for any density matriz v acting on L?(R3),

rlpl > trxaalpl = Us() + trvomvollpl - Ua(e) - 12l

where Q = 1Dy [ [ dwdy Lo(z,y)>.

(Note the typing error in [15, (3.12)].)
To control the remaining potentials we will use Daubechies’ inequality:

Proposition 3 (Daubechies [4], see also [15], Theorem 8). For any density matriz
v on L2(R3), any positive function U € L*(R?) and any u > 0 we have

tey(ulpl — U) < 00258 [ u~° [ doU ()"

We want to apply the above two propositions to the reduced density matrix
4 (without spin) of a density matrix A;yA, acting on L?(R3) @ C* (using the
kernels and indicating the space-spin variables by (z,s) € R3 x {1,...,4} it is
Az, y) == Zizl(AJr'yAJr)((x, s), (y, s))). If one had no restriction (i.e., without the
A4) one could only conclude that ||¥]] < 4 - ||v||. But due to the projection onto
the positive spectral subspace we have:

Proposition 4 ([14], Appendix B). Let 4 be the reduced density matriz of A vA
as above. Then ||| < 29|

The key estimate we will use is the positivity of the one particle operator (N =
K =11in (2)). Using the notations of the introduction we have:

Proposition 5 ([8], Theorem 1).
2
_l’_

Biirz2>0 if aZ <~v.=

3
rola

3. A UseruL COMMUTATOR ESTIMATE

Here we prove a proposition which will be essential in the proof of our main
Theorem in Section 4.

Proposition 6. Let 0 < o < 1 and x be a Lipschitz continuous radial real function
with x(z) = 0 if |x| > 1 — 0o, so that xx(z) := x(%5 R’“) is supported in B,(ca). Let
A :=1-A; and

1
EE

Then, for all density matrices v acting on L?(R3) @ C* and arbitrary § > 0,

1
K = [Xk-,A—] k*ka[XkaAf]-

trA+’YA+K < tI‘A+’yA 6 B(U) ||7|| C"
6Dy,

where (writing X( ) x(|z]))

" / ds = — x(8)2|rx(s) — sx(r)|*(r* + s?)

(7.2 _ 82)4
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ocp)

Proof. Without loss of generality we can take Ry = 0. Because of A_ = %( )

with the Dirac matrices a (see [8]) we have

[leAf]:XkAf_Aka:% ((a'P)|1|Xk Xk (e )| |>

Since \_117| has the integral kernel m we could get as an integral kernel of
[xk, A_] by differentiating

1 (Qa-(my)

5 \ 2w — gt Xk (Y) — Xk(z)

20 (z —y)
22z — y|*
1 a-(z—y)

(3) = s (@) — xx(¥))

22 |z -yt

To justify this in spite of the non-integrable singularity in the first line (notice that
due to the Lipschitz continuity of x the appearing singularity in the second line is
integrable) one can argue as follows:

First we regularize ‘%‘ by considering < ‘ | for e > 0. By an easy calcula-

e—clpl

1
g EreE 88 the integral kernel of TR Differentiation yields

—%% as the integral kernel of %‘Qe""'p‘ and for f € L*(R?) ® C* we
have

tion one gets

(6 A
Ipl

—elp|

e—elrlf — / yT;:ry;) (xe(z) — X6 () £ ().

Tending € to zero we get e Pl f — f and e Pl f — xrf in L? and hence — by
dominated convergence — (3) as the integral kernel of [xx, A_].
So, K has the kernel

We now proceed as in Section VI of [15], but in contrast to [15] we have to treat
variables with spin. Let z := (z,s) € R3x{1,... ,4} be a space-spin variable and let
J dz indicate the integration over z € R? (if not stated otherwise) and summation

1
over s € {1,...,4}. Let 71 := A;yA;+ and 7 denote the operator square root

of 1. We identify the operators with their kernels. Since v1(z,y) = 71(y,z) and
K(z,y) = K(y,z) we get

trn K = /dg/dgvl(Lg)K(g,z)

= 2%/dz/y . dy 71 (z,y) K (y. z)
2§R/dx/y|>mldg/d,z’y (2, 2)7% (2, ) K (y, 2).

If (1 —0)Dy < |z| and |z| < |y| then xx(z) = xx(y) = 0, hence K(z,y) = 0.
Therefore we can add a factor B,(:) () in the integrand. By applying Minkowski’s

Ll T
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inequality we get

tryn K
- 2§R/d:0/ 2 715 (z,2) IEU)(I)> . (B](CU)(x)/ ‘ ‘dg'yf(g,g)K(g,g))
Y| >z
< ¢ [de [dzhi@aB @F
1 2
+g/d£/d§ Bl(f)(w)/ ‘ ‘dgvf(z,g)K(y,z)
>|x

- ¢ / dz / dzf (2. 207 (2.2)BY (2)
+§/dy/d_’/ . dﬂc/dzB,(:)(x)fyl%(g,g)K(y,@’h%(é, y)K(Y, z)

|
min{|y|,ly" [}

= s/dzw(Li)Bz(f) (z)

+§/dg/dg’ </dm§(g’az)v§<zag)) : (/M de(g&)K(M’O
= etry B /dy/dy (YY) (/M dz K (y, )K(Lg')>,

with M = {z : z € B,(c" ,|z] < min{|y|,|v'|}}. The last summand is equal to
%tr'le *K, where K has the kernel

(5) K(x,y) = K(2,9) 1, 0en® jo<pyy (2 Y)

with the characteristic function 14 of the set A. Since try; K*K = tryA, K*K A,
we get, using [trAB| < ||A||trB if B is positive and taking e = Dik above,

1) o Dy S
(6) K < potrn B 4+ A KK A
Similar to [14], Appendix B, we claim
N 1 o~ -~
(7) tI‘A+K*KA+ = §tI'K*K

Because of
trK*K = tr(A2 + A?2)K*K = trAy K* KA, +trA_K*KA_
it is enough to prove trA K*KA, = trA_K*KA_.

Let U : 1 0) where 1 indicates the 2 X 2 unit matrix. Then it is easy to
verify that A_ = U*A_ U, hence

trA_K*KA_ = ttU*A L, UK*KU*A U = trAL UK*U*UKU*A.

Now, U commutes with scalar multiplications. Hence, having (5) and (4) in mind,
the fact

Ula: (z—y))U=Ula: (z—y)U"=-a-(z—-y)
yields UKU* = —K and UK*U* = —K*. Thus
trA_K*KA_ =trA  K*KA
and we get (7).

Now, continuing (6), we have

1) (o) , Dk 1, ~, ~
try K < D—kthk + T”W” . 5t]rK K
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and it remains to calculate the last trace. Using (4) and the fact that (a-(z—y))? =
(x — y)?, elementary calculations give

~ 1

1 [
§trK K = E/dg/oeB,(f): dg|K(m,y)\2

z|<|y|

I
L8 [ MO P I) — sx(n)P? + )
B Dk27f2/0 d/;d (r2 — s2)4 )

and we are done. O

4. PROOF OF THE THEOREM

We want to prove

N
By rkRrz=AL N <Z D((]") + OtVR;Z) ALn2>0
n=1
for Z = (Z,...,Zk). Using the same convexity arguments as in [5, p. 507] it
is enough to prove By xR,Z, > 0 with Zo = (Z,... ,Z), Z > max{Z1,... ,ZKk}.

Applying Proposition 1 and the fact that Ay DoAy = AL |p|A; we get

Vv

By, kR, Z.

N N 1 K 1
Ay (Z D§" —ay Wale) + gaZ’ Y D—k> Agn
k=1

n=1 n=1
N
= A+,N <Z hn> A+7N + D
n=1

with h,, == [p|" — aWy(z,) and D = taZ?3 %, o, (note that we are act-
ing on Hn and Ay n|s,y =Id). Hence the positivity of By x r,z is implied by
Ar N (Zfl\;l hn> A4 N > —D. Proving this for all N is equivalent to showing

K
1 1
AyhAy > —D=--aZ’y —
(8) tryApLhAy > 5 2D,

with h := |p|—aW) (acting componentwise on L?(R3)@C*) for all density matrices
v on L2(R?) @ C* with 0 < v <1 (cf. [11] and [15, (2.22)]). This is, what we want
to do now.

Fix some Lipschitz continuous nonnegative radial function 0 < y < 1 with
x(z) =1if || <1—30 and x(z) =0 if |z| > 1 — o and so that 1/1 — x?2 is also
Lipschitz continuous. Define x(x) := X(x—DI:k) (k=1,...,K) as in Proposition 6
and let xo 1 be nonnegative functions with X% —l—xg’ © = 1. (The Lipschitz continuity

of v/1 — x? implies the same for xo.x).

We borrow a part u|p| (1 € (0, 1)) of the kinetic energy to control the remaining
potentials in the end and set v := 1 — . Now we fix a density matrix v acting on
L*(R?)®@C* with 0 < 4 < 1. First we observe that — for estimating trAyA (v|p|—
aWy) — it is enough to consider the reduced density matrix 4 without spin (see the
definition before Proposition 4) instead of A;yA,. We then can apply Proposition
2 to 4. Using the fact that ||| < 2 (Proposition 4) and going back to the full
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density matrix we get with & := vl

trA L yAL (V\p| - aW,\)

Z
> trxiApyAexa <V|P| - pcciiRl\ —aF\a(z) - VUl(x))
200
+trxo 1A+ yA+ X0 (V\p| —aWy(z) — vU; (av)) - D,
aZ
9 = wvtryA ———Jx1iA
(9) vtry +X1<|p| |x7R1|)X1 +
(10) X014 78 xo (v]pl — alVa (@)
204}
—trAyA L <ax12F>\71 +vU; (x)) — L
EDl

To handle the first summand (9) we want to apply Proposition 5. Using the
definition of the operator K in Proposition 6 (with £ = 1) and AL + A_ = 1,
AL A_ = 01it is easy to see that

1
T — z— R,

1
“Axyi—oaly = —Apady
|z — Ry |

Neglecting the last term, which is positive, and using |p| > A4 |p|A+ and Proposition
5 we get, as soon as aZ < 7,

az
Aixa (|p\ - M)X1A+
az -

> Aixa (A+|p|/\+ - A+MA+)X1A+ —aZAL KA,

> —aZA KA.
Thus, Proposition 6 yields

~ 1) (o) aZ

(11) (9) 2 *VO[ZtrA+’yA+K 2 *O[ZtrA+’)/A+D—1B1 - ﬁC

We now repeat the whole strategy treating the second summand (10) and the
second nucleus: Applying Proposition 2 to the reduced density matrix (without
spin) of 4 := x0,1 A1 YAy X0,1 we get with the corresponding definition of U, (notice
that by scaling © does only depend on x and not on D)

- aZ
(10) = toxaixe (vipl - == — aFh2(2) — vUa(2))
|x — Rg‘
- 204
rxo.27x02 (bl — aWi(2) — wUa(2)) - 2o
EDQ
oz
= viryA v (lpl - = xeAs
|LE - R2|

+trxo,2x0,1 A+ YA+ X0,1X0,2 (1/|p| - OZWA(QJ))
2000

—trA yA (ax22F>¢ + l/Ug(ac)) Dy

(For the last equality notice x2x0,1 = x2 and Usxo,1 = Uz.) We can estimate the
first summand similarly to above (cf. (11)). Repeating this procedure for all other
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nuclei we get

trALyAy (1/|p| - on)\)
K K
1) (o) C 1
> i _ = _—
> —aZ trAiyAs (,;_1 Dn B, ) aZ 3 321 Dn

< 20 o~ 1
—trAyAy (Z(anQF)\,k + uUk)> -=> Be

15
k=1 k=1

+trxo,x - X0, 1 A yYA s Xx0,1 -+ - Xo, K <V|P| - 04W,\> .

Introducing a new parameter 8 € (0, 1) we split the potential Wy in the last sum-
mand into two parts. One part is joined with the other potentials. To the other part
we can add a factor R, where R is the characteristic function of the complement of
Uiil B,(C3U). Together with the remaining u|p| and using the abbreviations

5 21 — p)Q c
G = axi?Fry + (1 — p)Ux + aZD—B,(C ) A= % +aZ~
k

we get

trA Ay <|p\ - QWA)

K K
1
> trAyyAy (ulp\ —(1=B)axg, - XgxWa—D Gk) —A> N
k=1 k=1

+trxo x - X0,1 A+ YALX0,1 -+« X0, K ((1 —wp| — ﬂaWAR>

Finally we estimate the first and last summand applying Daubechies’ inequality
(Proposition 3). As above, we make again use of the fact that only the reduced
density matrix without spin is relevant and that its norm does not exceed two (cf.
Proposition 4):

trA+’yA+ h

K 4
> —0.0258- 2M73/ ((1 — B)axo, (). .. xo,x () Wi (z) + ZGk(fU)) dx
k=1

K
1
—0.0258 - 2(1 — p) 3 /54(14%@)43(1«) de =AY -
k
k=1

To estimate the integrals we consider each Voronoi cell 'y separately. Since the
support of Gy, lies in By, outside of By we have only to consider W). There

Z 1
WA(I):FORH with  Zo:= 2 +v2Z + 5.

If we estimate the integral over I'y \ By, by integrating over one side of the mid-plane
defined by the nearest nucleus (cf. [13, p. 982]) minus By we get

431

/ dx Wy (z)* < Zy* —=.
o\ B Dy,

Since all terms scale in the right way, the integral over By, gives a factor Dik times

an integral over normalized functions (with 1 instead of Dy and 0 instead of Ry).
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Hence we get, indicating the normalized functions by the symbols without indices
trApyALh
(12) > {0.0516u3 [37r(1 — B)*atZy*

(13) + [ do((=Ball - x@) (Blo) + ) + G@) |

+0.0516(1 — ) *p*a [371'Z04 + / dx(Fx(z) + %)4] + A}
B

\B@o) |z|
3L
=1 Dk

In view of (8) we get stability, if the above expression in braces is smaller than or
equal to aZ? and aZ = aZ(1 — p) ' < 7e.

To get the statement of the Theorem we choose 7 < v.. We want to con-
sider aZp < v (k =1,...,K). Due to the convexity argument mentioned in the
beginning it is enough to consider Z := ya~!. We choose (1 — u) = = (thus
aZ < (1 — p)y. is satisfied) and fix all other parameters arbitrarily. With these
choices and using Z o < 47 for Z > 1, which is valid for small values of «a, all
expressions inside the braces above can be estimated by a constant (independent
of a). Now, we only have to guarantee that this constant is less than or equal to

taZ? = %204*1, which is fulfilled for small values of a.

5. NUMERICAL CALCULATIONS.

To show the mentioned stability for the physical value a = 1/137.037 up to
7 = 88 we choose as in [15] o = 0.3,

1 for r < 0.1,
x(r) =4¢ cos((z—0.1)75) for0.1<r<0.7,
0 for r > 0.7,
and
h(r) = 1 for r < 0.1 and 0.7 <7r <1,
T 2 8 for 01 << 0.7,
so that we can also use the estimate (see [15, Section VIII(B)])
0.5751 for r < 0.7
< — I
Ulr) <e+ { o (16 —7)(1—7r)* for 0.7<r <1

For Z = 88 we choose p = 0.291 (then aZ < (1 — pu)v.) and A = 0.98, ¢ = 0.159,
0 = 0.374 and B8 = 0.874. We do the angular integrations of the integrals ana-
lytically (cf. [15, Section VIII(A)]) and the remaining integrations on a computer.
(The numerical reliability of our results is enhanced by the fact that all occurring
integrands are regular.)

So we get Q < 0.116, C' < 1.289, hence A < 3.248. For the integrals the result is

/B da((1= Ball = x(@)?) (Fr(a) + %) +0(@)" <0561

and

Z
/ dz(Fx(z) + )" < 6.864- 10°.
B\B@Go) |z
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Thus the first summand in the braces of (12) and (13) is smaller than 1.805, the
second one smaller than 1.887 and the whole expression is bounded by 6.94 whereas
%aZ 2 > 7.06 yielding the desired estimate.
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