M P E ]

MATHEMATICAL PHYSICS ELECTRONIC JOURNAL

ISSN 1086-6655
Volume 6, 2000

Paper 2
Received: Nov 19, 1999 Revised: Feb 10, 2000 Accepted:Feb 15, 2000
Editor: C.E. Wayne

Families of whiskered tori for a-priori stable/unstable
Hamiltonian systems and construction of unstable orbits

Enrico Valdinoci
Department of Mathematics, The University of Texas at Austin, TX 78712-1082 (USA)

enrico@math.utexas.edu

Abstract

We give a detailed statement of a KAM theorem about the conservation of partially hyperbolic tori on a fixed energy
level for an analytic Hamiltonian H(I,¢,p,q) = h(I,pg; u) + uf(I, ¢, p,q; 1), where ¢ is a (d — 1)—dimensional
angle, I is in a domain of R%™1, p and ¢ are real in a neighborhood 0, and W is a small parameter. We show that
invariant whiskered tori covering a large measure exist for sufficiently small perturbations. The associated stable and
unstable manifolds also cover a large measure. Moreover, we show that there is a geometric organization to these
tori. Roughly, the whiskered tori we construct are organized in smooth families, indexed by a Cantor parameter.
The whole set of tori as well as their stable and unstable manifolds is smoothly interpolated. In particular, we
emphasize the following items: sharp estimates on the relative measure of the surviving tori on the energy level,
analyticity properties, including dependence upon parameters, geometric structures.

We apply these results to both “a-priori unstable” and "a-priori stable” systems. We also show how to use the
information obtained in the KAM Theorem we prove to construct unstable orbits.
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1 Introduction

Chains of whiskered invariant tori are the building blocks to prove instability of some Hamiltonian
systems by a mechanism suggested in a celebrated example of Arnol’d [2]. Even if several precise
formulations of Arnol’d diffusion have been proposed in the literature, all of them share that there are
chains of invariant tori with hyperbolic directions so that the stable and unstable directions intersect.
Then, orbits that follow these transition chains experience “large” changes in the actions.

In this paper, we want to make a detailed study of the survival of whiskered tori and prove results
that we hope can be eventually used in the program outlined above.

In particular, we pay special attention to how the tori fit together. We not only prove measure
theoretical statements about their abundance (which we show are optimal), but we also show that
these tori are organized in a geometric manner. All the whiskered tori that we prove are invariant can
be interpolated by a smooth family of whiskered tori (not all the members of the family are invariant).
Moreover, we show that the set of invariant tori is organized in smooth families. This interpolation
is constructed along the proof somewhat explicitly. We also construct a similar interpolation for the
stable and unstable manifolds.

We also pay attention to the analyticity properties of the tori and of the transformation involved,
including regularity with respect to the parameter of perturbation.



We will consider an unperturbed Hamiltonian H(I,,p,q) = h(I,pq) with I in a domain! of R4~1,
@ € T!, p and ¢ real in a neighborhood of the origin. Moreover, we will endow the phase space
R41 x T91 x R x R with the standard symplectic structure w = >, dI; A dp; + dp A dg so that I;
and ; are conjugate variables and so are p and q. We will refer to I as the action variables, ¢ as the
angle variables and p, ¢ as the hyperbolic variables.

The equations of motion of this unperturbed Hamiltonian are

I =-0,H
$ =0/H
p =—0,H
¢ =0,H

where the dot stands for the derivative with respect to time. We will denote by ®; the flow of these
equations.

Note that fixing any Ip in the domain of definition, the d— 1 dimensional torus 77, = {(Io, ,0,0), ¢ €
T91} is invariant under the equations of motion. Moreover, the torus 77, is contained in the invariant
manifold Sz, = {({o, ¢, P, q)}, on which the motion is simply

ét(IOa @ P, q) = (I07 p+ Wtapeixta qekt)

with A and w depending only on the product of the hyperbolic variables p and ¢. If we call ( = pq,
we have that ¢ is an invariant of the motion and A(¢) = 9¢h(1o, (), w(¢) = drh({o, ().
The torus 77, has the following local stable and unstable manifolds

WISO = {(10,4,0,]), 0)7 (RS Tdil, |p| < R}
Wi = {(lo,¢,0,q), ¢ €T, g < R}

and we will call them whiskers, following [2]. A formal definition of whiskered torus will be given in
Definition 2.8 below.

We will prove that most of the above tori, together with their associated invariant manifolds, are
preserved under perturbations. Roughly speaking, Theorem 3.1 below asserts that:

If the Hamiltonian
H(I,¢.p,q) = h(I,pg; p) + pf (I, 0,0, g; j1) (1.1)

is real analytic and “isoenergetically non-degenerate™ and |p| is sufficiently small, then there exists

a smooth canonical transformation, close to the identity, analytic in the parameter u, in the angles
and in the hyperbolic variables, such that, on a suitable set, the new Hamiltonian depends only on the
actions and on the product of the hyperbolic variables.

In this way, (d — 1)—dimensional invariant tori and smoothly interpolated d— dimensional whiskers
are obtained. Such whiskered tori fill the space with density at least 1 — O(m ).

Here and in the sequel, when we refer to a KAM-type transformation as “smooth”, we mean “C* in
the sense of Whitney” (see, for example, [40], [26], [32] and [7]). Anyhow, following [9], a direct and
fully constructive extension is possible, making use of elementary “bump functions”.

The above result applies directly to the so called “a-priori unstable” systems, in the terminology of
[11]. Such systems are obtained perturbing Hamiltonians which possess separatrices: see Definition
2.2 below. A detailed result for whiskered tori in a-priori unstable systems is given in Theorem 5.2
below.

n this paper, we use the word “domain” to denote the closure of an open, bounded,

connected set.
8? h Orh
orh 0

2Which means that the matrix
is nonsingular on the energy level. See Section 2.2.



We also apply our KAM Theorem to “a-priori stable” systems (see Definition 2.1 below), showing
that such systems have the above mentioned geometry near simple resonances. Theorem 6.5 provides
a detailed statement for whiskered tori in a-priori stable systems. Also, in Theorem 6.6, we prove that
near the Diophantine resonances, that the density of the “holes” is exponentially small in ¢, i.e. the
persisting tori fill a suitable domain of the energy level with density at least 1 — O(e*O(l/ EC)), where
c is a suitable constant.

Theorem 3.1 is similar to Lemma 1 of [11]. The main differences between our Theorem 3.1 and [11]
are listed below:

(7) We obtain a relation between the Diophantine constant v and the size of the perturbation p similar
to the one obtained in the classic KAM Theorem (i.e. v = O(y/|u]): see, for example [29] and [32]).
We also obtain some characterizations of the set of validity of the Theorem. As a consequence, we
obtain estimates on the measure of the space covered by the surviving tori, proving that the “holes”
on which the Theorem fails are not wider than O(\/m ). We will also exhibit a simple example which
proves that these estimates are sharp.

(#1) We prove the analytical dependence upon the parameter p for fixed energy rather than for fixed
frequencies, as proved in [11].

117) We study the geometry of the interpolation between tori, observing a structure of “filaments”.
y g Yy P ) g

The first KAM results about persistence of whiskered tori go back to [22] and [44], and normal forms
for whiskered tori can be found in [18], [21], [14], [30]. The recent paper [35] also considers a KAM
theory about partially hyperbolic tori; they obtain, with a different method, the relation between ~
and p mentioned in (7). Moreover, the statement in [35] is obtained for fixed frequencies instead of
fixed energy. The proof in [35] follows the scheme in [32] and deals with the frequency—angle variables
instead of the action—angles coordinates used in our paper. Actually, for our purposes, we need a
slightly more detailed statement than the one in [35]: here (as well as in [12]) we need a “good”
characterization for the set in which the KAM Theorem holds [namely, the relations of the type of
(3.6)], in order to construct the diffusion [i.e., the unstable orbits built in Section 4].

The construction of the KAM tori and of the unstable orbits carried out in our paper are robust
enough to apply to the so called “anisochronous” cases®, in which the KAM tori are separated by

gaps.

A KAM theory for systems with a degenerate integrable part is developed in [42], for the hyperbolic
case, and in [41], for the elliptic case.

The question of the persistence of KAM tori of codimension one (or bigger) is also addressed in [28],
Chapter V, Section 4. Results for whiskered tori of higher codimension can be found in [8]. See also
[43], which constructs a KAM algorithm for elliptic low dimensional tori under a mild non-degeneracy
condition on the small divisors, extending the results of [17], [33], [6].

Also, [25], [24] and [38] consider the creation of low dimensional whiskered tori in perturbation of
integrable systems.

Some of the papers quoted above take into account the case in which the system is not analytic. With
regard to the problem of the conservation of the invariant tori and their hyperbolic manifolds for
smooth Hamiltonians, see also the very recent paper [23].

The persistence of KAM tori for reversible (instead of Hamiltonian) systems is discussed in [36].

With respect to the papers quoted above, the target of Theorem 3.1 here is to provide a more detailed
description of the partially hyperbolic tori of codimension one and investigate the structure of their

3See [11] for the nomenclature. Also, the “gap-bridging” procedure that inspires our paper
was introduced in [11]. The isochronous systems (see [20]), on the contrary, are systems with
a fixed Diophantine frequency: such systems do not present gaps between the tori, and this
fact makes the construction of the unstable orbits easier.



whiskers, in order to apply directly these results to Arnol’d diffusion. We pay special attention to the
smooth interpolation of such manifolds and provide a very strong normal form, in order to describe
exactly the motion of a (d + 1)—dimensional neighborhood of any invariant torus, even if it is not
possible to determine all the motions nearby. The existence of such a normal form is crucial in the
construction of the unstable orbits presented here in Section 4.

The scheme of the present paper is the following. In Section 2 we recall common definitions such
as the ones for “a-priori stable” and “a-priori unstable” systems, isoenergetic non-degeneracy and
chain of whiskered tori. We also discuss a formula relating the determinant of the matrix of isoener-
getic non-degeneracy with the function that implicitly defines the energy level, and we derive some
characterizations of the isoenergetic non-degeneracy.

In Section 3 we state the KAM Theorem about the preservation of whiskered tori and we discuss an
example showing the optimality of our estimate on the density of the preserved tori. We also briefly
emphasize the geometric structure of “filaments” related to these tori.

In Section 4 we show that the whiskered tori built in Section 3 can be used to construct “unstable”
orbits (i.e. trajectories that exhibit an excursion of order 1 in the action variables), provided that
there exist a chain of such whiskered tori, in which the unstable whisker of each torus intersects
transversally the stable whisker of the next one. We also remark that this procedure also allow to
construct orbits “drifting towards infinity”.

In Section 5 and 6 we apply the KAM Theorems of Section 3 to the a-priori unstable and stable
systems, respectively.

Section 7 contains a detailed proof of the KAM Theorem which makes use of a Newton scheme. The
Appendix collects some elementary Lemmas.

2 Preliminaries

2.1 A-priori stable and unstable systems

We recall here the terminology of [11].

Definition 2.1 The Hamiltonian system H(I,0) = h(I) + ef(I,p;¢), in which h and f are real
analytic for I in a domain of R?, ¢ € T¢, and € is a small parameter, is called a-priori stable.

Such a-priori stable systems are often called nearly-integrable since they are perturbations of com-
pletely integrable systems written in action-angle coordinates.

Definition 2.2 The Hamiltonian system

H(I,,p,q) = R(L; p) + P(I,p,q; 1) + pf (I, 0,p,q; 1) (2.1)

in which R, P and f are real analytic for I in a domain of R*1, o € T4, p and q are real in the
neighborhood of the origin, and p is a small parameter, is called a-priori unstable if

8pP(1,0,0; ) = 8p(P + R)(1,0,0; ) = 0 = 0, P(I,0,0; ) = (P + R)(I,0,0; )
and  detd, P =detd, \(R+P)<-C<0 (2.2)

when I, p and q vary in their own set of definition, and C is a positive constant, independent of w.

Some authors refer to the a-priori unstable systems as “initially hyperbolic”. Condition (2.2) means
that p = 0 = ¢ is a hyperbolic equilibrium. An example of a-priori unstable system is obtained
choosing R as free rotators

1
R = 5(112 +.o o+ 15) (2.3)
and P as a pendulum
1
P = §p2 + g*(cosq — 1) (2.4)



where g is a constant.

As it turns out, a-priori stable systems also have partially hyperbolic orbits near simple resonances.
In the distinction between a-priori stable and a priori unstable systems, a crucial role is played by the
size of the Lyapunov exponent near hyperbolic equilibria. This exponent is of order one in the case
of an a-priori unstable system because of (2.2), while it is of order 1/ near the simple resonances of
a generic a-priori stable system. This will be clarified in Section 6.

To better understand the previous remark, the reader may check that the following example [to be
compared with the previous (2.3)-(2.4)] is a-priori stable:

1 1
H(L) = 5(IF + ...+ 131) + 51§ +e(cospa — 1),

where ¢ > 0 is a small parameter. The procedure of making use of an “independent” parameter in
a singular-perturbation problem was already used in [31]. The use of such a procedure in our paper
will be clarified in Section 6.

2.2 The isoenergetic non-degeneracy

In this subsection, we will denote by F either R or C, and we will consider neighborhoods in F. This
is done to deal with both the real and the complex case at the same time.

Definition 2.3 The (smooth) Hamiltonian h(I), with I in a domain of F¢, is called isoenergetically
non-degenerate on the energy level h = E if

h// h/
det ((h’)T 0 > #0 (2.5)
for any I in the domain of h such that h(I) = E.

Notational Remarks. In the rest of this paper, we will use the same notation for both column

" li " /
and row vectors: for instance, following [4] page 409, we write < h ) instead of ( ( h h >

K o0 YT 0
The only place in which we denote row vectors with the symbol of transposition “7” is Lemma
A.1, in order to avoid confusion between v - w [i.e. the scalar product between v = (vy,...,v,) and

w = (w1,...,wy)] and vwT [ie. the matrix whose (4, j)—th entry is v;w;].

We will also denote w = h’ and use the symbol “tilde” for the first d—1 components of a d—dimensional
vector.

Also, we write | - | to denote a norm for real or complex vectors, and the sum of the absolute values
of the components for integer vectors. We will not compute explicitly the constants appearing in the
KAM proof, hence we do not fix explicitly the norm used in the finite-dimensional vector spaces, since
they are, for our purposes, equivalent. On the other hand, a careful choice of the norms is necessary
for a concrete and effective implementation of the scheme: see, for example, [10].

Proposition 2.4 Consider the (smooth) Hamiltonian h(I), with I in a domain of F* and d > 2.

Assume wq # 0 on the energy level h = E. Denote by I4(I) the function implicitly defined by
h(I,1;(I)) = E. Then,

1
det 9214 = (—1)%w; 47t det (}L ﬁ) . (2.6)

Proof. It follows from
(wdﬁﬁldh — 8?dhu~1)of)T - wd(wdq%h — (I)(@Igld h)T)

2
af]d = 3
Wy

Y

making use of Lemma A.1. O



Proposition 2.5 Let d > 2. The following conditions are equivalent:
(i) h is isoenergetically non-degenerate on the energy level h = E for I in a suitable domain of F?.

(ii) w # 0 on the energy level h = E and, assuming for example wq # 0 and denoting by Id(f) the
function implicitly defined by h(I,I4(I)) = E and
jy < LI
wd(Ia Id(I)) /

we have
deta’ #0. (2.8)

(ii7) The following function G is a local diffeomorphism near o = 1:
G:F'xF — F!xF
(l;0) = (ow(I), h(I)).
Proof. (i) and (iii) are equivalent because of the Implicit Function Theorem. The equivalence
between (¢) and (i) follows from (2.6) and from 0714 = —a. O

Writing the details in the proof of the previous Proposition, it is easy to obtain the following

Corollary 2.6 Consider the (smooth) Hamiltonian h(I), with I in a domain of F* and d > 2. Assume
wq # 0 on the energy level h = E, and define a(I) as in (2.7). Then,

R w
r_ —d—1
det o/ = —(wq) det ( o O> . (2.9)

Similar definitions and results hold for a “partially hyperbolic” Hamiltonian h(1, pq), since the variable
¢ = pq plays in this case only the role of a parameter. In particular, the condition of isoenergetic

non-degeneracy becomes
9?h  Orh
det (th 0 #0, (2.10)

for any I in a domain of F% and p, ¢ in a neighborhood of 0. With a, slight abuse of notation, we will
refer to both (2.5) and (2.10) with the term of “isoenergetic non-degeneracy”. All through the paper,
the isoenergetic non-degeneracy condition concerns only the derivatives with respect to the actions I
and never the derivatives with respect to the action ¢ = pq.

Proposition 2.5 can also be slightly modified to include hyperbolic variables as follows:

Proposition 2.7 Let d > 2. The following conditions are equivalent:

(i) h(I,¢) is isoenergetically non-degenerate on the energy level h = E for I in a domain of F¢ and
p,q in a neighborhood of 0.

(ii)~w = Orh # 0 on the energy level h = E and, assuming for evample wq # 0 and denoting by
I4(I,¢) the function implicitly defined by h(I,I4(1,¢),¢) = E and
. o(1, 1 (1
OC(I,C) = w( : d( :C)?C) ,
Wd(I, Id(Ia C)a C)

we have

det 81a 7é 0.

(ii1) The following function G is a local diffeomorphism near o = 1:

G FlxFxF — FIxFxF
(I;0;¢) +— (ow(I,(), h(L,(),()-



2.3 Whiskered tori and transversality

Following [2], we give the following

Definition 2.8 A torus T is called a whiskered torus for the flow ® if it is a connected com-
ponent of the intersection of two manifolds W* and W* invariant under ®*, such that V(5 € W,
tlim dist (®°(¢*),T) =0 and V¢* € W, tli{n dist (®*(¢*),T) = 0.

In the KAM setting, the motion on these tori will be conjugated to an irrational (and, in fact,
Diophantine) rotation, the trajectories on W#* will converge exponentially fast to 7 and the trajectories
on W* will diverge exponentially fast from 7. Such a motion will be described in detail in (3.15)
below.

We call W* and W* the stable and unstable whisker, respectively. We will denote by 7}, M the tangent
space at p of the manifold M.
If V= span{vy,...,v;} and W = span{wi,...,w;} are vector spaces, we set

V + W =span{vi,...,v;,w1,...,w;j} .

Definition 2.9 Let M and N be submanifolds of the manifold X. We say that M and N are
transverse in the point p with respect to the ambient space X if p € MNN and Ty,M+ TN =T, X.

In this paper, we will consider only transversality of whiskers with respect to a common, fixed energy
level h = E. We now recall the standard definition of Diophantine vector:

Definition 2.10 A vector w € R™ is called (v, 7)— Diophantine if |w-n| > v/|n|™ for anyn € Z"—{0}.

We will use later the elementary fact that, if 7 > n — 1, the (v, 7)—Diophantine vectors fill the n—
dimensional space with density 1 — O(y). In the sequel, we will consider Diophantine vectors in the
(d — 1)—dimensional frequency space, so that in the rest of the paper 7 > d — 2 will be a fixed
parameter.

3 A KAM Theorem about preservation of partially hyperbolic
tori

In the sequel we will restrict to Hamiltonian systems whose number of degree of freedom is d > 3.
This is motivated by the very well known fact that, in our setting, Arnol’d diffusion does not occur
for autonomous Hamiltonian systems with less than 3 degrees of freedom (see for instance [1], [3]).
Anyhow, it is easy to see that some of the results of this paper remain valid even in the case d = 2.
But in the case d = 2 it is not possible to have transverse intersections between the unstable whisker
of a torus in the chain with the stable whisker of the next torus, so that the procedure given in Section
4 can not work.

Theorem 3.1 Fiz I* € R4, E € R. Consider the Hamiltonian

H(I,¢.p,q) = h(I,pg; p) + pf(I, 0,0, ¢ 1) 3.1)
with h and f real analytic in
Opern = {(Lop,p,g,p) € CUTDTEDTIHIH 6 |1 — 1" < p, [S| <&, |pl < R, gl < R, |pl < i}

and periodic in the angles . Denote ( = pq and assume that

[I-I*|<p,|C|SR?, |pu|<p



and that h is isoenergetically non-degenerate on the energy level h(I,pg; u) = E when the variables

vary m Op ¢ Rp-
Then, there exist Roo, 0 < Roo < R, and a constant k. (eventually depending on d, T, and the sizes
of h and f), such that, for |u| < po = kA3 < [, there exist:

(el) a smooth canonical transformation ®, close to the identity and real analytic (for a fized action)
in the angles, in the hyperbolic variables and in the parameter p,

(€2) a function heo : REU™D x R x R — R with the same smoothness as ®,

(e3) a set Q, C RV ith density at least 1 — ki, \/Lo,

such that, for |u| < po,
O (Ho®(I', ¢, p,q)) = 0"hoo(I',p'q's 1), Y(I',1',q') € Q. ¢ € T, n € N*
hoo(I',0'q's ) = E, V(I',0',q") € Q. (3.2)

Moreover, setting ' =p'q,

V(I/7p17q1) S Q/u |6C’hoo| > )‘0/27
V(Ilaplaq/) S Qua 90/ S Tdila ql # 07 |8p’(H o ®)| = |q/ aC’h00| > 0;
V(Ilaplaq/) € an 90/ € Tdil: p/ # 07 |aq’ (H © (I))| = |p/ aC’h00| > 0. (33)

More precisely, if we denote
={I R st. |[I —TI*| < p' and 0rh(I,0;0) is (o, 7) — Diophantine} (3.4)

with a suitable 0 < p’ < p, and a suitable o depending on pg [i.e. Yo = Kx\/fo/, then there exist:

(E1) a function TX (¢; p), with range in the action space, which is smooth in I, ¢, p, and (for a fived
I) real analytic in ¢ and u, for || < R%,, |u| < po, verifying IX (0;0) =1,

(E2) a function ol (C; p), with the same regularity as I, that verifies

1
ol (0;0)=0 and sup laso] <ecp < = (3.5)
L0 SRR Ry 2’
where ¢ is a constant with the dimensions of the inverse of an action, such that:
(P1) Orhoo(ZL (G 1), G 1) = Orh(I,0;0) - (1 + alo (¢ ), VI € D;.
(P2) The set ), in (e3) can be described in the following two ways:
W = AT 0.7 q), T€Dr 7] < Rocy I7] < R} =
= {(",p.d) st. |p| < Re, ¢/ < Roo, h oo’ pq,u)—E
and AT € D, s.t. Ophoo (I, p'q's 1) = Orh(I,0;0) - (1 + ol (p'qd; 1))} . (3.6)
Furthermore,

N

Q, {(I',p',q"), I in a neighborhood of I*,
p’ and ¢’ in a neighborhood of 0 s.t. hoo(I',p'q';u) = F
and Orhe (I',p'q’; 1) is (70/2, 7)—Diophantine} (3.7)
Q. 2 {(I'.p,¢), I in a neighborhood of I*,
p’ and ¢’ in a neighborhood of 0 s.t. heo(I',p'q';u) = F
and Orhoo (I',p'q'; 1) is (270, 7)—Diophantine} . (3.8)



(P3) Denoting by Dens the (2d — 1)—dimensional restriction of the Lebesque density on the energy
level {(I', ', p',q') s.t. hoo(I',p'q's 1) = E} and by dens® the d— dimensional restriction in the space
of the actions and the hyperbolic variables of the Lebesque density on the surface defined by the energy
relation {(I',p’,q’) s.t. hoo(I’,0'¢’; u) = E}, we have

densEQu > 1 — ky/llo, Dens E@(Qu X ']I'dfl) > 1 — Ky /Ho - (3.9)

(P4) We have the following equality of sets:

{ZL(0;p), T €D} =
{I s.t. hoo(I,0;u) =FE and

0
Q,

Furthermore,

N

Qg {I, in a neighborhood of I* s.t.
hoo(I,0; ) = E and Orhoo(I,0; ) is (70/2, 7)—Diophantine} (3.11)
{I, in a neighborhood of I*, s.t.

hoo(I,0; u) = E and Orhoo (1, 0; 1) is (270, 7)—Diophantine} . (3.12)

0
0

V]

(P5) Denoting by dens g the (d — 2)—dimensional restriction of the Lebesgue density to the manifold
defined by the energy relation hoo(I',0; u) = E, we have

dens g, > 1 — key/Ho - (3.13)

We term the variables (I’, ¢, p/, ¢’) obtained with this procedure “normal coordinates”, and refer to
the Hamiltonian h as a “normal form”, since the motion in the variables (I, ¢’,p’, ¢') according to
the Hamiltonian h, is particularly simple. As a matter of fact, from (3.2) and (3.6), it follows that
the tori (written in normal coordinates)

T = {(ZL(0; 1), ¢/, 0,0), ¢ € T* 1} (3.14)

are invariant under the Hamiltonian flow of h.
Moreover, it follows that 77 is contained in the manifold with boundary

Sr={(ZLWd; 1), .. d), ¢ €T, || < Roo, |d'] < R},
which is locally invariant and on which the motion is simply:

o) (ZL W), ¢ 0, d) = (TL@d; 1), ¢ +wat,ple > ge>t), (3.15)

provided that |p'ej>‘°°(I/’p/q/)t|, |ger=T"P'd)t| < R where wee = Ophoo and Ao = O¢rhoo depend
only on & =p'q/, I and p. In particular, the whiskers are (locally) parameterized as

Wi = {(ZLO0;p), ¢, p,0), ¢ €T |p| < Ry} and
Wy = {@L(0;p),¢.0,q), ¢ €T |¢'| < Roc} - (3.16)

We propose the name of fan to call sets of the type €2, x T4, which collects the tori, their whiskers,
and their normal hyperbolic trajectories.
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The method of proof used here yields a very strong normal form, since (3.15) describes exactly the
motion of a (d+1)—dimensional neighborhood of the torus (even if it does not determine all the motions
near the torus). This normal form is at the basis of the construction of the unstable orbits presented
here in Section 4 (as well as in [11] and in [12]). Another fundamental ingredient in the construction of
such unstable trajectories will be the fact that Diophantine properties (or, more generally, rationally
independence) of the “old frequency” Orh are preserved for the “new frequency” 91 ho, according to
(P1) of Theorem 3.1.

We remark the fact that the hypotheses of [12] can be readily derived* from the conclusions of our
KAM Theorem. Namely, hypothesis (ii) of [12] follows from (3.2), (3.3), (P1) and (3.15); hypothesis
(iii) of [12] follows from (3.14) and (3.16). We also remind that for “isochronous” systems a much
stronger normal form holds. See [20].

We also remark that, leaving out the hyperbolic variables p and g, our proof also establishes the classic
KAM Theorem for Lagrangian tori in isoenergetically non-degenerate systems. Moreover, the same
result as Theorem 3.1 holds for Hamiltonians depending on several small parameters p™), ..., u(":
the proof would remain the same, denoting y = (p(l), ceey u(”)) and considering it as a vector.

The proof of Theorem 3.1 is deferred to Section 7.

We now derive from Theorem 3.1 a KAM result for Hamiltonians depending on two parameters &
and y, in which the parameter € plays the role of a fixed singular-perturbation parameter, while the
dependence on p will be uniform. We will apply the following Corollary 3.2 in the a-priori stable
setting, in which the Lyapunov exponent is not bounded from zero uniformly in the parameter. In
reference to this, see Lemma 6.3 below.

Corollary 3.2 Fiz I* € R4, E € R. Consider the Hamiltonian

H(I,¢,p,q) = h(I,pg;e) + f(I,0,p,q;¢, 1) (3.17)

with h and f real for any real value of (I,¢,p,q, €, 1), analytic, for any fized e, |e| < &, in

Openi = {L,p,pqp) € CUTITUTDFIIT 6 T — 1| < p, S| <,
lpl < R, lg| < R, |u| < i},

and periodic in the angles ¢. Fize € R, |e] < &, and denote ( = pq. Assume that there exists a
constant C' > 0 such that

sup |h| < C and sup Ifl < Cu, Vipl < @

O o X <& [T-I*|<p, |Sp|<E
pog X (el <E} IpI<R, [a|<R, |e|<¢
and that

Ao = )\0(8) = |8<h\ > 0.

inf
[I-I*|<p,|C|<R?
Assume also that h is isoenergetically non-degenerate on the energy level h(I,pg;e) = E when the
variables vary in O, ¢ rp % {|e| < &}
Then the analogous statement of Theorem 8.1 holds, with the constant ks« eventually depending on d,
7, C, but independent of ¢.

Now we will show that the estimates (3.9) and (3.13) are optimal, using an example which is an
extension of one of [29]. Consider

H(117]2790159027p7 q; H) = h(IhIvaQ) + M(COSQDl - 1)

4Beware of some slight changes in the notation with respect to [12]: for instance, the
transformation @ is called C in [12], and the normal variables (I, ¢’,p’, q’) here correspond
to (A’,%,p,q) in [12]. For a comparison with the notations in [11], see footnote 4 of [12].
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with h(I1,I,pq) = % + I +pq, (3.18)
where p > 0 is a small parameter. If (I1, I) € R? is sufficiently close to the origin, A is isoenergetically
non-degenerate. The unperturbed system has the invariant tori 77, r,) = {(I1, I2, ¢1,¥2), (¥1,92) €
T?}. We will show that the tori destroyed by the perturbation have measure ~ Ve actually, if X is
the set of (I1, 1) enclosed inside the separatrices of the pendulum I7/2+ p(cos p1 — 1), we have that
there is no surviving KAM torus in X, hence the measure of the holes is

meas g{(I1,01) € X, o2 € S, (I, 15,0) = E} =
= measg{(l1,p1) € X, v € St I, =F— 112/2} =

= / \/ 1+ I2dIL doy dps > / dI dpy dps = 2mmeas X > 4%\ /10 .
(Il,gol)ex,tpzésl (Il,gol)EX,w2€Sl

In the KAM settings, the measure of the surviving tori is usually large for small values of the pertur-
bation, but a surprising exception can be found in [37].

3.1 The filaments

We will observe that the interpolation between the tori preserved in Theorem 3.1 presents a structure
of “filaments”. As stated in (3.14), these tori are interpolated by the smooth function ZZ (¢;p), i

the preserved invariant tori correspond to Z7 (05 1) with I in the Diophantine set D.. Proposmons
3.3 and 3.4 will prove that, fixing p and letting I vary in D, the curves T, T ~(C; 1) obtained in this way
do not have self—mtersectlons and different curves do not intersect, so they can be seen as filaments,
side by side:

Proposition 3.3 Fized u, Roo sufficiently small, we have:
TL(Gm) =T5L(C5m), [CL ¢ S R = (=(.

Proof. First notice that 0:ZZ (¢; ) # 0. If it were zero, differentiating hoo (Z2,(¢; 1), ¢ 1) = E, one
would get that the Lyapunov exponent is zero, in contradiction with our assumption. Then apply the
Inverse Function Theorem. a

Proposition 3.4 Fized p sufficiently small, let o : R — R4 be a smooth curve in the action space
with o’(0) # 0. Then, ¥(s,() = 73 (C; ) s ingective near s =0 = (.

Proof. We will show that Ran 8(5’013'0(5)((;/1) ocopn 2. Then apply the Inverse Function
§=0,0=0,u=
Theorem. By contradiction, if there were (a,b) € R? — {0} such that

0= ad,Z3°) (G p) + b IL (G ) (3.19)

5=0,(=0,u=0
Differentiating hoo(Igo(S) (G ), G ) = E we have:
(Orhoo) © (T (G 1), G 1) - BT (G 1) + (Dchoo) © (T (G ), Gu) = 0
(Orhoo) © (T (G 1), G 1) - BTL (Gp) =
so that, multiplying (3.19) by (07heo) © (I;’o(s) (&), G ), we get:
b (Ochso) © (T (050),0:0) = 0

that, for the non-vanishing of the Lyapunov exponent, implies b = 0. Then, in order that (a,b) # (0, 0),

it must be a # 0; so from (3.19) and ZZ (0;0) = I, we get 0= 8,75 (Gp) ; = ¢’(0),
$=0,(=0,1=0

contradicting the hypothesis. O
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4 Existence of unstable orbits

Following [12], we show now that the invariant partially hyperbolic tori, whose existence is ensured
by Theorem 3.1, can be easily used to construct orbits with an excursion of order one in the actions,
provided that the unstable whisker of each torus intersects transversally the stable whisker of the next
one. The construction of such an unstable orbit can be seen as a generalization of the one in [2] and §23
of [5]. We also extend this procedure, via an elementary argument of point-set topology, showing the
existence of an orbit “drifting towards infinity”, as stated in (4.1); see also [16]. Inclination Lemmas
and diffusion paths are also considered in Section 4 of [19].

The proof presented here is essentially “topological”, in the sense that it makes use only of the
continuous dependence on the initial data, so that it covers also cases in which the Hamiltonian has
less smoothness.

The problem of showing the validity of the hypothesis of transverse intersection of the whiskers is not
addressed in this paper. This assumption is established in [11] for a-priori unstable systems, under
suitable regularity conditions and non-degeneracy of the perturbation.

Theorem 4.1 Consider a chain of whiskered tori {7f, } jen as in (3.14), with whiskers {W2 } jen
155

<i< i?1<5<N
and {W}—j } (Jen, a8 in (3.16), with flow in local coordinates as in (3.15). If W}; intersects transversally

WI‘—SJ_Jrl with respect to the E—energy level for j = 1,...,N — 1, then there exists an open set of points
of the phase space arbitrarily close to the first torus Ty, that evolves under the flow arbitrarily close
to the Nth torus Tr, in a finite time.

In particular, if there exists a constant ¢ independent of p such that |I; — In| > ¢, then the orbit
constructed here exhibits an instability of order one in the action variables.

Also, if the system admits a sequence of whiskered tori {TI-J }jen, verifying the same assumptions as
above, with the property that ~
Tim |[;| = o0,

j——00

then, there exists an orbit (I(t),(t),p(t),q(t)) such that

limsup |[I(t) — I(0)] = oo. (4.1)

t— o0
Proof. Consider a neighborhood U; of the i-th torus in which the normal form above holds; the
condition of transversality assures the existence of a piece of the stable manifold of the (i + 1)—th
torus lying in U;. It is not difficult to see that this piece of manifold contains a curve at constant
q’ - q6 ! / / / / / /

Li(p) = {(L;(P). ¥i(P). P\ q0) » 1P/ < 7™}

such that T';(0) € W* N Wy, NU; and the evolution at time ¢ (in local coordinates) of the point
(II(P"), ph(0"), ', ¢}) is simply given by

(L), gh(0)) +w(@')t, ple™ MBIt goeri@ty |
where

wi(p') = Orhoo(I',0'd's 1) Ni(p') = Ocrhoo (I, ' 1)

{I'=1;(0),¢'=q0} {I'=1}(0).¢'=q0}

and ¢’ = p'q’. Hence, using also the irrationality of w;(p’), one can see that, given any neighborhood
B; of a point in W’ N U;, there exists p}, 0 < pf < r*, and a finite time ¢} such that the backward
evolution of T';(p}) at time ¢ lies inside B;. By continuity, there exists a small neighborhood B; of
Ti(p;) whose backward evolution at time ¢} is contained in B;.

This process can be iterated torus after torus, choosing B; 1 as the evolution of B} in the neighborhood
Uit of the (i + 1)—th torus, leading to an unstable orbit. This proves the first claim of this result.
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For the drift towards infinity, notice that, as below, one can construct a sequence of closed ball {B; } jen
and a sequence of times {t;}en such that

(i) each Bj is in a small neighborhood of 77,

(Zl) oti-1 (BJ) CBj_1,VjeN.

Hence, defining B; = @1~ ~%-1(B;) for any j € N, j > 2, we have that B; C Bj_; C By. A well
known argument shows that the intersection of all the B;’s is not empty. So if n € [ B;, the orbit
(I(t),(t),p(t),q(t)) = ®*(n) has the desired property (4.1).

For further details about the construction of such unstable orbits see [12]. O

5 Whiskered tori for a-priori unstable systems

The following Lemma provides a good “normal form” for the unperturbed part of an a-priori unstable
system:

Lemma 5.1 Let H(I,¢,p,q) = R(I;p) + P(I,p,q; 1) be analytic for I in a domain of R, p and
q n a neighborhood of the origin. Fized i € R, assume that

0pP(1,0,0; ) =0 = 0,P(I,0,0; p)
det 97, ,P(1,0,0; 1) < 0.

Then, there exists a canonical transformation (I,¢,p,q) «—— (I',¢',p’,q'), real analytic for I' in a
suitable domain of R4™1, o' € T, p' and ¢’ in a suitable neighborhood of the origin, sending H into
the new Hamiltonian h*(I',p'q"), depending only on the actions I' and on the product of the hyperbolic
variables ¢ = p'q’. This transformation does not affect the action variables, i.e. I'(I,,p,q) = 1.

Of course, this transformation preserves the Lyapunov exponent, which in our case implies

Oeh*(I',0) = \/— det 92, P(I",0,0) . (5.1)
Furthermore, ¥Yn € N4~ 1,
O e—og = 01 Hl,_yp - (5.2)
Also, if there exist i > 0 such that, for any |u| < @,
det 82, ,P(1,0,0; 1) < —C, (5.3)

for a suitable positive constant C, independent of u, then there exists pg > 0 such that the above
transformation depends analytically on p, for |u| < po.

Proof. See [27], where the convergence of the Birkhoff series is shown, or Appendix A3 of [11], in
which a KAM algorithm is used. See also [13] for a more general approach. |

Remark. In case condition (5.3) is not fulfilled, the above transformation may experience a very
drastic loss of regularity in the parameter. This can be understood looking at equations (A3.9)
and (A3.42) of [11], or just considering the following example. We claim that there is no canonical
transformation p = p(p’, ¢'; 1), ¢ = q(p’, ¢'; 1), continuously depending on the parameter u, that sends
the Hamiltonian p?/2 + p?(cosq — 1) into up'q’ + (p'q’)*G(p'q’; 1), with G depending continuously on
. Arguing by contradiction, we would obtain

1 / / 2 7 1\2 v
S (P00 050)) = (P9)*GWq:0),

which implies [p(p’, ¢';0)[ = [p'¢’[\/2G(p'¢’; 0). Then,

p(p',0;0) —p(0,0;0)
/

’ M = 1.
Oy p(0, 0;0) p/lI_I)lO ,

:O7
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and analogously 0,p(0,0;0) = 0. Hence

0y p(0,0;0)9,¢(0,0;0) — d;p(0,0;0)0,r¢(0,0;0) =0,
which contradicts that the transformation is symplectic. |
Here is the application of the KAM Theorem to the a-priori unstable systems:

Theorem 5.2 Let

H(I,¢,p,q) = R(L; u) + P, p,q; 1) + pnf (L, 0,0, q; 1)

be an a-priori unstable Hamiltonian according to Definition 2.2. Assume that Hy = R+ P is isoener-
getically non-degenerate on the level surface Hy = E. Then 3ug > 0 such that, if |u| < po, the energy
level is filled by whiskered tori with density at least 1 — O(\/fg). More precisely:

There exist po and Reo, 0 < po < i and 0 < R < R, such that, for |u| < po, there exist:

(el) a smooth canonical transformation ®, close to the identity and real analytic (for a fized action)
in the angles, in the hyperbolic variables and in the parameter p,

(€2) a function hoo : R x R x R — R with the same smoothness as ®,
(e3) a set Q, C REVHIHL wyith density at least 1 — O(\/lo),
such that, fized |u| < po,
O"(Hod(I',¢',0',q)) = 0"hoo (I',0'qs 1), Y(I',7',q') € Qu, ¢’ € T n e N
hoo (I 0'd's 1) = E, V(I', 0, q) € Q. (5.4)
Moreover, setting (' = p'q’,

V(Ilaplaq/) S an 90/ € Tdil: ql 7& 07 |8p’(HO (I))| = |q/ 6Q"h00| > Oa
V(Ilap/7q/) € Q#a (10/ € Td717 p/ 7é 07 |8q’ (HO (D)| = |p/ a{’hOO| >0.

More precisely: one can find a ball B C R~ in the actions and a set D, of the form
D; ={I € B and 0rHo(!,0;0) is (70, 7) — diophantine}

with a suitable yo [i.e. vo = O(\/10)], such that there exist
(E1) a function T (C; p), with range in the action space, which is smooth in I, ¢, p, and (for a fized
I) real analytic in ¢ and u, for || < R%,, |u| < po, verifying IX (0;0) =1,

(E2) a function ol (¢; p) with the same regularity as TL, that verifies ol (0;0) = 0,
such that:

(P1) Ophoo (T, (G5 1), G 1) = OrHo(1,0;0) - (1 + al (¢ ). VI € D,

(P2) The set 2, in (e3) can be described in the following two ways:

(@1 q;1),0,q), T€Ds, || < Reo, 10| < Reo} =
{(I',p',d) st. IP'] < Roo, 10| < Roo, hoo(I,p'q'spt) = E
and AT € D, s.t. Opheo(I,p'qs 1) = OrHo(I,0;0) - (1 + o (p'q’; 1))} (5.5)

Qu

(P3) Denoting by Dens® [resp., by dens] the (2d — 1)—dimensional restriction of the Lebesque
density on the energy level {(I',p’,q") s.t. hoo(I',0'q’; u) = E} [resp., the d—dimensional restriction
in the space of the actions of the Lebesgue density on the energy level], we have

dens#Q,, > 1 - O(/mo)
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Dens P®(Q, x T1) > 1 — O(/1mo) (5.6)

(P4) We have the following equality of sets:

Q% = {ZL(0;p), €D} =
{I s.t. hoo(I,0; ) = E
and 3I € Dy s.b. Iphoo(L,0;p) = OrH| . - (1+al(0;p))} (5.7)
=0=¢q

(P5) Denoting by dens g the (d — 2)—dimensional restriction of the Lebesgue density to the manifold
defined by the energy relation hoo(I’,0; 1) = E,

dens g, > 1 — O(y/1a) - (5.8)
Finally, one can take po = O(inf(— det 3(21)’(1)73)).
Proof. Using Lemma 5.1, we obtain the new Hamiltonian
H(I' @'\ p',d) = W (I 0'ds 1) + nf* (I, ¢ 0 d's ) -

Notice that by (5.2) the matrices of isoenergetic non-degeneracy of h* and Hy agree in the origin of
the hyperbolic coordinates; and by (5.1) d¢-h* > 0, where ¢’ = p’q’. Therefore, Theorem 3.1 can be
applied. O

6 Whiskered tori for a-priori stable systems

In this section, € will be a strictly positive, fixed, small parameter. Our target will be to look at
an a-priori stable system near a simple resonance and recognize that these systems (under extremely
mild conditions) are “hyperbolic in the first order”. In this way we will be able to apply the previous
results to the a-priori stable case too.

We note that this implies that the d—dimensional resonant tori break down for generic perturbations,
creating (d — 1)—dimensional whiskered tori. The mechanism of such a breakdown was considered,
without measure estimates, in [38] and [25].

Lemma 6.1 Consider the function

W1, p, q;e) = h(I,p;e) +ef(I,p, q;€) (6.1)

with h and f real analytic for (I,p) in_a domain of Rd—1 X R and q € S'. Assume that there
exists (I,;ﬁz € R4 x R, wverifying dph(I,p;0) = 0 and Oh(I,p;0) # 0. Assume that the function
flq) = f(1,p,q;0) has a non singular critical point, i.e. there evists q such that 0,f(q) = 0 and
83]‘((7 # 0. Then, two functions exist p(I;€) and q(I;€), real analytic for I near I and & small, with
=p, q(I;0) = q, such that

SphlN(I, p(I;e), q(I;2);6) = 0= 0,hNI, p(I;e), q(I;¢);¢). (6.2)

Moreover, if f has a non singular mazimum and o nonsingular minimum, we can make the previous
choice of @ in order to verify B B
O2h(I,p;0) 02 f(I,p,q;0) < 0. (6.3)
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Proof. Apply the Implicit Function Theorem to

‘C(pa qa I? 6) = (617}7’[0] (vaa qa 6)7 8qf(vaa qa 6))
near [ =1, p=p,q=qand e =0. O
The following Lemma sets the equilibria found in (6.2) in the origin:

Lemma 6.2 Consider the Hamiltonian system (6.1), under the same assumptions as the previous
Lemma. Let ¢ € T ! denote the angles conjugated to the actions I. Then, the canonical transfor-
mation associated to the generating function

g™, pl'l o, q) = (q — q(1""; 6)) p!' +p(11";¢) sin (q — q(11"); 6)) +¢- I
sends the Hamiltonian (6.1) into a new Hamiltonian
RE(I pll gl ey | werifying Opin) RI(IMY 0,05¢) =0 = 8q[1]hm (1,0,0;¢). (6.4)

Proof. Straightforward check. O

We now inspect the hyperbolic structure of the above h) near I = I and p = 0 = ¢, showing that,
for € small enough, h! inherits such a hyperbolic structure from the one of hl” stated in (6.3). In
detail:

Lemma 6.3 Let hlY be the Hamiltonian obtained from h!° in the previous Lemma. Define

)‘(I7p7 q; 5) = \/_ det 6(2p[1]7q[1])h[1] (Iap7 q; 5) . (6'5)

Then,
2
()\(1,0,0;6)) = —e(Oph 0 f) — e*det 8, ) f

with the functions on the right hand side evaluated in p = p(I;€) and q = q(I;€). In particular, if ¢ is
small enough, \(I,0,0;¢) is real and positive, and |RX(I,p, q;€)| > c.\/e, for a suitable constant c.,
for any I in a suitable neighborhood of I and p and q near 0.

Proof. Straightforward check. O

Lemma 6.4 Consider the system (6.1). Assume that (I,p) € R¥~! x R wverifies O,h(I,p;0) = 0 and
agh(l_, P;0) # 0. Assume that the function f(q) = f(I,p,q;0) has a non singular mazimum and a non
singular mim'mum. Then, there exists a canonical transformation (I,p,p,q) «—— (12, o2, pl2 2,
defined for pi2! and ¢ in a neighborhood of 0, I in a neighborhood of I and o2 € T, with new
Hamiltonian h2/(I3, Bl &) verifying

|0 R I, pPlg BT )] = IN(IP, p1, g5 6)] > /e (6.6)

for a suitable const(mt ¢, for any I'? in a suitable neighborhood of I, p? and ¢!? near 0, where we
defined ¢?! = pl2lql2 and \(I,p, q;€) is defined in (6.5). Furthermore,

O (11, 056) = 87 (h+ e f) (I, p(1%;e), q(11%;€);e), W¥n € N1 (6.7)

Proof. First apply Lemma 6.2 to obtain a Hamiltonian like (6.4), and recall also Lemma 6.3. Then
apply Lemma 5.1. O

The next theorem will show the existence of whiskered tori near simple resonances for a-priori stable
systems. It will follow via Corollary 3.2, applying the previous Lemmas, where (Ji,...,J4) and
(1, ...,%q) in the next statement will correspond respectively to (I1,..., I4—1,p) and (¢1,...,Pd—1,9)
of the Lemmas above. This is done making use of a classical result in perturbation theory, namely
the Averaging Theorem (see, for instance, §5 of [3] and §52 of [4]).
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Theorem 6.5 Fizv € N, v > 2. Consider the system H(J,v) = h(J)+ef(J,¥;¢€), with h and f real
analytic for J in a domain of R® and ¢ € T¢. Assume that h is isoenergetically non-degenerate on the
energy level h = E with respect to the first (d — 1) action variables. Let J be such that 85,h(J) = 0,
93,h(J) # 0 and let 84, ,...5,_, h(J) be rationally independent. Set

Fr@)=—— [ f(T e b ai0) dis .. diba .

meas T4=1 Jra_s

Assume that Fy has nonsingular mazimum and minimum. Then, a suitable subset (depending on
v) of the energy level near J, is filled by whiskered invariant tori with density at least 1 — Oga”/ 2),
provided that ¢ is small enough; more precisely, the tori [resp., the fan®] fill the space, near J, with
(2d — 3)—dimensional density [resp., (2d — 1)—dimensional density] at least 1 — O(e"/?).

More precisely: there exist

(i) a smooth canonical transformation (J,) = ®(I',¢',p',q'), with I' € R4, p' ¢’ € R, ¢/ € T4~ 1,
(i) a smooth function heo : R x R — R,

(iii) a set Qe,, C REU=DFIHL with density at least 1 — O(e¥/?),

such that:
I'(Hod(I',¢',p'.q) = 0"hoo(I'. ;) , Y(I',p',q') € Qe ¢’ € T n € N*
hoo(I',p'q'se) = E, V(I',p/,q') € Qe .
In the coordinates (I',¢’,p',q’), the above mentioned tori are given by
T(I') = {(I'.¢',0,0), ¢ € T},

for I' in a suitable set Q2 ,, whose density is at least 1 — O(e"/?). The corresponding (local) whiskers
are

W*(I') = {(I',¢',p,0), ¢ € T [p'| < Reo}
W (I') ={(I',¢,0,¢), ¢ €T |¢'| < R} ,
for a suitable Ry, > 0.

Furthermore: for any I' € ngy there exists a smooth function Iy ., : R — R such that
Iy en(0)=1" and

QE,V = {(.'Z'p’e’l,(p/q/),p/,q/) I' e Qg,u |p/| < Reo s |q/| < Roo} .

Moreover, setting (' = p'q" and Moo = O¢rhoo, we have that |\oo| > ¢*\/e, for a suitable constant ¢* > 0
and for any (I',p',q') € Qe,. Also, woe = Orhes is a (7, T)—Diophantine vector with v = O(e*"?) for
any (I',p',q') € Qe .

Finally, for any (I',p',q') € Qe,, and for any ¢ € T,

B, (1,00 d) = (I', ¢ +wao(I', 1) 1, plem TP glre Tty
provided that |p'e==T'2'0)t| |g/roc(T'P' a1t < R

Proof. Making use of the Averaging Theorem, we can find a canonical transformation, close to
the identity for small ¢, sending the Hamiltonian H(J,¢) of the hypothesis into H’(I,¢,p,q) =
h(I,p) + ef’(I,p,q;€) + O(e”). Such a transformation is defined in a suitable neighborhood of J
(which is small if v is big). Moreover

1
b -0) — .
f (vaaqvo) eas']I‘d—l /’]Td—l f(va',wla s ,TJZJd,l./q,O) dwl .- -d¢d71 .

5Recall the notation of the fan at page 10.
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Then, use Lemma 6.4 and Corollary 3.2 with u = . Notice also that it is important that Theorem
3.1 contains a quantitative estimate on how small pg is. In particular, it must be smaller than k. A3,
and this estimate is satisfied if A &~ /€, and u ~ €”, with v > 2. |

The statement of the previous Theorem can be sharpened considering Diophantine simple resonances
and optimizing the choice of v as done in the Nekhoroshev theory:

Theorem 6.6 Consider the system H(J,v) = h(J) + ef(J,;€), under the same assumptions as
Theorem 6.5. Assume also that Or,..dayh(J) is (7, 7)—Diophantine. Then, if € is small enough,
a neighborhood of J in the energy level is filled by whiskered invariant tori with density at least
1 — O0(e=9U/=%), where ¢ > 0 is a suitable constant. More precisely, the tori [resp., the fan.] fill
the space, near J, with (2d — 3)—dimensional density [resp., (2d — 1)—dimensional density] at least

1— O(e00/=)

Proof. Following the notations of [34], we set A = {n = (n1,...,n4) € Z4 st ny=...=nqg 1= 0},
1/(2742)
2 T
¥ ¥ «
K= — a= =Cco———5 6.8
“ < € ) ’ 2KT’ r=e K sup\h”| ' ( )

where the ¢;’s are suitable constants, chosen so that the hypotheses of the “Normal Form Lemma” of
[34], page 192, are verified. Applying it to H(.J,v), it leads to the new Hamiltonian H(I, ¢, p,q) =

hI,p)+ef*(I,p,q;e) + f(I,¢,p,q), with

1
b .0) — .
f (Iapa q; O) - meas Td—1 /Td—l f(Iap', wlv T awdfla CI,O) d¢1 cee dwdfl y
and the size of f, is controlled by e e~?(1/=°), Then, as in the proof of the previous Theorem, apply
Lemma 6.4 and Theorem 4.1. a

Notice that, in the proof of the previous Theorem, an explicit dependence of the constants with respect
to the size of the domain of analyticity can be easily carried out. Namely, if the strip of analyticity in
the angles ¥ has width &, then the “Normal Form Lemma” bounds the size of f. by eexp(—K¢/6),
where K is defined in (6.8). Related measure estimates for elliptic equilibria can be found in [15] and
in Section 4.1.5 of [7].

7 Proof of the KAM Theorem about partially hyperbolic tori

Proof of Theorem 3.1. The proof presented here makes use of a Newton-type algorithm, that will
provide a sequence of canonical transformations converging on a suitable Cantor set. The general step
of the algorithm can be summarized as follows:

Defining recursively suitable quantities as in (7.27) (7.35), and assuming condition (7.36) [which is
fulfilled by vo = O(\/10)], there exists a sequence of canonical changes of variables ®;, converging in a
suitable Cantor set, transforming the Hamiltonian (3.1) into H; = hj + f;, with h; depending only on
the actions and on the product of the hyperbolic variables, and supy, |fi] < 60;, where V; is a sequence
of sets, converging to a Cantor set, and 0; converges to zero super-exponentially fast.

Also, the set V; can be written as follows:
Vi = {(Lepain) e COTIHEDIII ol < Ry || < Ry, [9¢] < & lul < po,
and there exists I € D, st |I iji(pq;,u)| < ﬁj} ,

where Dy is defined in (3.4), the quantities R;, p; and &; are defined in (7.27)~(7.35), and Z; and o;
are functions defined via the Implicit Function Theorem by the relations
Orhi(Zj (Gu), Gp) = Orh(1,0;0)- (1+af(Gp) .- (14 af (¢ p)
hy (] (G ), G5 1) E.
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The fact that the KAM tori are of codimension (not higher than) one, i.e. p and ¢ are (at most)
one-dimensional, is crucial, in this argument, for the estimate on the small divisors.

In order to have dimensional estimates, we introduce a constant ¢ with the dimensions of the inverse
of an action. This is done only to have “dimensional” estimates: the reader who does not find it useful
may set ¢ = 1 in the sequel. In this way the matrix of isoenergetic non-degeneracy becomes

2
Uy = (alh cw) , where w = 9rh.
cw 0

In the sequel, we will often make use of the following easy relation: for § < 1

)

—is € €
e 10 = < =<
Z eS—1— § —

J=0

=2

(7.1)

[STIY

Also, we will use that, if a > 0, 0 < § < 1, then there exist two constants C' and C’ (depending only
on d and a) such that

Z |n|a€7\n\6 < 057(d+a)

nezd

Z |n|a€7\n\6 < Cl5f(d+a) €7N5/2 ) (72)
A

n|>N

Now we start the iterative process. The first step is slightly different from the other ones, since we
need to build the first couple of functions ZJ and of as follows.

THE FIRST STEP. Set ho(I,pg; ) = h(I,pq; 1), fo(I,o.p,q;p) = pf(I,¢,p,q;u). Consider
po < p/4, Ry < R/4 and pg < [i/4 small enough: then, via the Implicit Function Theorem, thanks
to the isoenergetic non-degeneracy, we can find two functions Z¢ (¢; 1) and of (¢; i), real analytic in
¢l < R§ and |u| < po, verifying

75(0;0) =1, Orho(Z3 (G 1), G ) = wo(1) (L +af(Gp)s  ho(ZE(Gp), ) = B,
Z§ (¢ ) = I < po and |0 (G5 )] < cpo )
where wo(I) = 9rho(I,0;0). Let 0y, Ao, Bo and Lg be such that sup|fo| < 6o, sup|07ho| < Ao,
sup |U, *| < By, and sup |0rho| < Lo, where the sup is done over O, ¢ g ,,,- Obviously, we may choose
o = O(no)-
For any real analytic F(I, ¢, p, ¢; u) we will write the Taylor—Fourier expansion

F(Lio,p,gip) = > Frjn(I;p) ph¢? €™ %
k,jEN
nezd—1
Also, without loss of generality, we may assume that V|I — I*| < 2pq, |p| < 2Ry, |g| < 2R, |p| < 2uo0,
we have that [R0:ho (1, pg; p)| > Ao/2.

THE ITERATIVE SCHEME. Fix Ny suitably large (see (7.7) below) and go suitably small (see
(7.11) below). Also define & = £/2 and fix dg, 0 < §p < min{1,&y/4}. Denote f,gjn the Taylor—Fourier
terms of fy. Set

0 .
xol',¢'\p' q's 1) = > (00 ®)* (g )T em™¥
o s = NAcho(T 0’5 0) — Do (T, P'd's 1) - 7
|k—j|+In|>0, In| < Ng
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defined on the set

Vo Ro oy = {(Lso,nq;u) e CU-DHEDHAIH ¢ 1p) < Ry, |g| < Ro, || < o, |1l < po,

and there exists I € D st |I — ZI (pg; p)| < /30} .

In the definition of Vﬁ%, Ro,£o,u0> 0he index “07 high above refers to the index “0” of 7. We now
consider the Lie transform (I, ¢, p,q) = <I>§(0 (I';¢',p',q'). From (7.4):
{h07X0} = _fO(Ilv(plvplvql;/J“)—l_ L. ’
+ Y ) @)Y e+ o) (). (7.5)

k,jEN keN
nezd—1,|n|>Ng

The next ¢;’s in this section stand for suitable constants (that can be explicitly determined by the
algorithm). Set 4 = min{vp, A\o}. From (7.2):

sup |3 tsen neza [ (I 1) ()5 (g €| <
V_O s |n|>Ng
p0/2,Roe™°0,60—50,k10
< e85, ) e Noda/2 = g5 () Be? (y5) 2, (7.6)
where we have chosen 0 ( )2
c1(g
Nog=—1 . 7.7
0 60 8 Czan < )

Furthermore, from (7.5), (7.1) and (7.2):

sup [{ho,xo} = sup > T () (@Y e <
B0/2,Roe™%0,60—50,10 V50/2>R067‘50>£0*50,u0 k‘{cf?‘jr‘ﬁiigl
In|<Ng
S C1 00 607‘172 . (78)

Estimates on the small divisors. Assume that

pogmin{%, &;272]\70} (7.9)
Define® Ay = Ay. Assume also that
Yo < 2A5N; M min{po/2, R3} . (7.10)
Define
fo = % < min{p—;, R2, 2A0’]Y\Ofg+1’ 8A);0No} (7.11)

the inequality above following from (7.10). Now, VI € D, and n € Z4~ — {0},

2 %

g W . (7-12)

|01ho (Ig(C;u),C;M> | = |(1+ad (¢ ) woD) - nl = (1 — epo) lwo(I) - n| >
Thus, if [I —ZX(¢; )| < po.

Orho(I.Cis) -l > |Orho (Z3(C:p). Gir) -l = [0rho (Z3(C ). C: ) = Drho(L, G )] No >

60ne needs the dummy definition of A{ just to make the notation uniform with the j—th
step of the algorithm, in which one will set A}‘ = max{Ag, A;}.
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270

2 3l — AgpoNo >

o d—1
> — Z — . 1
> G VYn € {0} (7.13)

Besides, since wo(I) is real, if k # j and |I — ZL(¢; p)| < fo:
|i0rho(1, C; ) -+ Ocho(1, G ) (k — )| =

> [Rlidrho (Z'(CG ). Gi) -+ Ochal1, Gin) (k — ]|~ AopolNo 2

> (Rl (1+0d(G)) woll) - n+ ch(L, G ) (k = )] = M/8 =

= [Rliad (G ) wo(I) -n + cha(I, G 1) (k= )| = Aa/8 >

> |k = | [ROcho(I,C: )| — [Rfiad (C: 1) wo(1) - m] = ho/8 =

> [ROcho(I, G p)l = liag (G ) wa(l) - n| = Ao/8 > Ao /4. (7.14)

The estimate on the small divisors in xq is thus given by (7.13) and (7.14). These inequalities also

show the convergence of the series defining y( on Vpo’ Ro o110

Estimates on the Lie transform. From the estimates on the small denominators and (7.2), it
follows that

0
sup Ix0] < e —2 9y O (7.15)

Vo Yo
0. Roe %0/ 6050 /2.u0

so that, by the Cauchy Estimate:

0o _
sup sup |81£X0| < es——06,""
Vo 1<i<d—1 Yo PO
50/2,Roe~%0,60—80.10
0 < B
sup sup | ({,;X0| < 3 — 4
Vo 1<i<d—1 80)
50/2,Roe~%0,60—80.u0
0o
— K
sup |0p x| < 03W5O !
Vo 5 Yo £to
po/2:Roe™ °0,60 =30, 10
0o
sup [0y X0l < c3 oy "™, (7.16)
Vo RO

Bo/2,Roe%0,60—380,10
where k;’s denote suitable constants (depending only on d and 7). Hence, using Lemma A.3, V|t| < 3,

0
(V0/4 Roe~*%0 &0 — 450:N0) = V0/3 Roe3%0 ,£0—3d0, 110 < ‘/,63'0,306750750*50,#0 (7'17)

provided that
5™ < 1. (7.18)

Cs
75 Po

Estimates on the new Hamiltonian. Define

1
/ (1 - t) {{h07 X0}7 XO} o (I)T;(O (1/7 (P/7p/7 q/; /J*) dt
0

ho(I', ¢ 0’ d's 1)

¢ o' ds )

folI',p'd’s )

1
/{fo,XO}O‘PQO(I’,w’,p’,q’;u)dt

0

k
Y T m@'d)
keN
ho(I',p'd’s 1) + fo(I',0'd's )
koii i

W0 d ) + U 0w+ D R g e

k,jEN, nezd—1
In|>Ng

h(I',p'qs )
AU d s )

Hl(II-, @lvpla ql)

Ho®, (I''¢',p,q)
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Using Lemma A.5 (at the first order for fp and at the second order for hg) one has
hoo®L, = ho+ {ho,xo}+ h
foo @y, = fo+ i
This implies, by (7.5), that
Hi(I' ¢, 0’ d') = (L', p'd's 1) + 19" 0 s ) (7.19)

By Lemma A.6, (7.15) and (7.8), making use of (7.17) to control the domains, we obtain:

02
sup \h$| < sup [{{ho, X0}, X0} | < c6 *0~ 9y ™ (7.20)
Ve Vo Yo Po
po/4,Roe™ 400,60 —1450, 10 p0/3,Roe3%0 60360, 0
02
o sw Al < e E KT (7.21)
V50/4YR06_460,€0*450,M0 0
Hence, by (7.6)
92
sup fil Ser =26, =6 (7.22)

Vo s Yo Po
po/4 Roe™ 290,60 —480,u0
Then, setting p1 = po/8, R1 = Roe %%, & = & — 40y, we obtain a new Hamiltonian like (7.19) with
supyo |f1] < 61

2p1,R1,€1:10

By the ITmplicit Function Theorem, we obtain two functions Z{ (¢; ) and ol (¢; ), real analytic for
¢ < R? and |u| < po verifying

IZHG ) - TGl < p/2 (7.23)
el (Gu)] < epr/2 (7.24)
(. . — 1. . I(r. —
Orhy (Z{(Gp), Gu) = Orho (TE(CG ) Gr) - (T+ai(Gp) =
= wo(l): (1+ag(Gp) - (1+ai(Gw) (7.25)
h (Z{(¢G ), Gm) = B, (7.26)
By construction V! p . CVy oo, s0 that supys o |fi] < 61, and we can iterate the

previous arguments (writing the appropriate index instead of the index 0), from (7.4) onwards.

ITERATION OF THE ALGORITHM. Set v* = min{vp, A\o/2}. Fix a suitable ¢ > 1, and define

recursively:
_ 91 _ %
0 = R (7.27)
2 a)?
N; = Zlog—-21— 7.28
J 5] 0og CZEQJ' ( )
. v
- D 7.29
P] 214"7 NT+1 ( )
3
pin = & (7.30)
Rjs1 = Rje % =Rye? 1o % (7.31)
J
§1 = &40, =6 —-4) 6 (7.32)
i=0
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0] s ni
cr ——6; (7.33)

9'+1 = =
! Y5 Pi
2F0;
gj = 67*12 (7.34)
Cl('yj)
;= min{y; 1, Aj}. (7.35)
Obviously
2 1
N; = —log—.
T8 e

Iterating the scheme, one obtains

Hi(I,,p,q) = hi(I,pg; ) + fi(1,0,p,q; 1)

with
sup | fi| < 0;
Vi
where _
Vi= VgnRi,fi,Ho .

In order to apply recursively the algorithm above, one has to check that the following conditions are
satisfied at the general j—th step of the scheme:

(C1) The sup [resp., the inf] over V; of a quantity involving only h; (or its derivatives up to a
suitable order) is less or equal than the double of the corresponding sup [resp., greater or equal
than the half of the corresponding inf] over Vj of the corresponding quantity with index 0 (e.g.:
A; = infy, |0chy| > Ao /2, etc.),

(C2) The matrix U; is nonsingular on Vj,
(C3) v <245 N7 min{p;/2, R2} and p; < X;/(8cL;Ny),
(C4) There exists a constant C* such that e; < (C* Aj 0)?.

To prove (C1) (C4), we will assume the following main condition:

. Ko 9
c1(min{yo, Ao })? 2 E6,
< .
Ko (log 2, ({0, Mo))? (7.36)

where K7 and K» are suitable constants. We remark [see (7.42) below] that this condition is satisfied
choosing y9 = O(v/0y), for 6y small enough, 0y < O(A3).

The proof of (C1)—(C4) is by induction, assuming them true for ¢ = 1,...,7 — 1. In these pages, k;’s
will stand for suitable constants.

First notice that, by definition of hjz, the relation A\; > A\;_1/2 follows, and so v; > v7_;/2.

Notice also that &; > &? |, V1 <i <7, so

gi>el >, >k VI<i<]. (7.37)
Therefore, defining Ay = log(1/ey),

2i+1£i 1 2i+1€i
5(] €o 50

Making use of the inductive hypothesis, this implies that

Vi<i<j—1. (7.39)
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Thus
0 < k792 L Ag AJH
T )t
Then,
g5 < K} AgAG T c2ET! 5]2_1 . (7.40)

Iterating (7.40), one gets (C4). Furthermore, it is easy to see that supy, [U; —Uj—1| < B, '377, hence

1

sup [U; — Up| < Zsup U —U;i—1| < Bal Zg—i =
0

i—1 Vs i>1

This implies (C2), via Lemma A.2. Incidentally, we have also proved that B; < 2By. The other
relations in (C1) follow in the same way. Also, the already proved (C4) implies that

2717 1

N; > 5 log G hoes (7.41)
then, recalling (7.38), one obtains (C3).
Passage to the limit. From (7.23):
j4+m—1 jt+m—1
sip T, -Zil< Y. s T T < Y sy T

ICI<RZ,, |1l <po ICI<RZ, [l <po

i=j i=j i
showing the uniform convergence of Z] to a suitable ZZ, for [¢| < RZ, and |u| < po.
Also, if we set

EH (1+al(Gp) -1, V¢ <R, |ul < po,

using the fact that |a;| < cpj < cpo/47 it is easy to prove that the above product converges uniformly
and that |as| < cp.

Via iteration of (7.15), the convergence of the transformation ®; = @i o...0 <I>1 readily follows.
Since the convergences are uniform for complex |u| < po, |p| < Roo, |q] < ROO, \\rcp| < €00, We obtain
the claimed analyticity in the angles, in the hyperbolic variables and in the parameter p.

CHARACTERIZATION OF THE SETS ©, AND Q) OF VALIDITY OF THE THEO-
REM ([see (3.6) and (3.10)] AND MEASURE OF THE PRESERVED TORI. Let Z such

that if £ > Z then ¢; K3 (logaz)K2 =1 < 1. Set

202 | SEE _ 0(y/8a) = O(/Tual) (7.42)

C1

Then, the KAM condition (7.36) is satisfied.
Since hoo is isoenergetically non-degenerate for I and ¢ sufficiently close to I* and 0 respectively and

for pp small enough, without loss of generality, we may assume that inf 101,_1hoo| > 0,
I€B, [¢I<RZ,,|ul<no

where B stands for a suitable (d — 1)—dimensional domain.
Then, if we denote by the symbol “tilde” the projection onto the first d —2 components and by ¢ the
function implicitly defined by heo (I, ¢(I),0; u) = E, Proposition 2.5 implies that

= afhoo<i7L(I~)70;N)
A= G L D0 )

(7.43)
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is a diffeomorphism. This proves that
T=TL(0;p) < hoo(I,0;p) = E and rhoo(I,0; 1) = wo(I) - (1 + al (0; ). (7.44)

And this implies (3.10) and (3.11).
We now prove that the function Z., is locally invertible on the E—energy level, i.e., there exist a
suitable p’ > 0 such that

for any I, |I — I*| < p', hoo(I, 0; 1) = E, there exists a unique I, |[I — I*| < p
such that ho(Z,0;0) = E and I = ZL (0; ). (7.45)
To show this, recall Proposition 2.5 and consider the local diffeomorphism
G(I,0) = (00rho(1,0;0), ho(I,0;0)) . (7.46)

Given I, let I be the component in the actions of G (9rhao(I,0; 1), E). From (7.43) it follows
that A(I) = A(ZL (0; 1)), proving the existence in (7.45). The uniqueness follows from the fact that

I35, (0; 1) = T, (05 1) and ho(I,0;0) = E = ho(g, 0;0) imply G(I,1+ al(0; ) = G(7,1 + ol (0; ).
Then, (3.12) readily follows from (7.45). The other characterizations of the set of validity of the
Theorem and the related estimates on the measure can be proved with similar arguments. |

X 3k ok ok ok

Appendix

A Some technical Lemmas

A.1 Some linear algebra

Lemma A.1 Consider A € Mat(n x n). Let a,b, c,d be n—dimensional column vectors and «, 3,7 €
R, with B # 0 # ~v. Then

A a b
det [ &' a 7 | =(—B) """ det ((va—ab)d" — B(vA —bc")) . (A1)
ar 3 0
Proof. We have:
A a b ~YA ~ya b (YA ya vb) —b(cT a v)
det | T a ~ = 4 %et| T a v | =9 "det T oy =
ar 3 0 T B 0 dT B 0
YA —=bct ya—ab 0
= 4 "det cr Q vy | =
dr 6] 0
B(yA—bct) va—ab 0
= (y8)7" det Be” a v ]=
BdT 6] 0
B(yA — beT) ~a — ab ya—ab 0
= (yB) "det Bt - a d* a v | =
pd* s 54 0
B(yA —bel) — (ya — ab)dr ~va—ab 0
= (y8) " det Bl — ad” ! v | =
0 3 0
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= (y8) " (-1)*"**ydet (5(7‘4 —bc”) 8 (ya —ab)d’  ~a /g ab> _

= ()" (1) Py (~1)*"2 B det (B(yA — beT) — (va —ab)d”) .

proving (A.1). |

A.2 Perturbations of nonsingular matrices.

Lemma A.2 Let M, N be square matrices of the same order. If M is nonsingular and |N| < 1/|M ™1,
then (M + N) is nonsingular too. Moreover

M N71<7| .
A= T A

In particular, if M is nonsingular and |[N| < 1/(2|M~1]), then (M + N) is nonsingular too and
(M +N) 1 <2|MY.

Proof. We have that M ! Zkzo(—l)k(M’lN)k =M+ N)L O

A.3 Estimates on Lie transforms

Lemma A.3 Let V be a domain of C? x C. Fized r = (r1,...,72q) € R2L, with r; > 0, we call
V.= {ZZ (Zl,...,ZQd) E(CQd s.t. Jw = (wl,...,wzd) eV s.t. |Zi —wi| < Ti}.

Assume that x(z,y) is real analytic on V,. Fized r' € R*, 0 <rl <r;, then <I>§((VT/) C V, provided

that |t| < to with

su Oy, su Oz,

tomax{ P, | ;X|, pVT'“ﬁlX', i:l,...,d}gl. (A.2)
Ti =T Titd = Tiyq

Proof. If (z,y) € V., then 3(z,y) € V such that |z; — z;| <7 and |y; — 7| < rj 4, 1 < <d. Set
(z(t),y(t)) = @} (z,y). If the thesis were false, there would exist ¢, [t| < to, which is the time of “first
exit” from V,.. Explicitly, (z(t),y(t)) € V;. for all |t| < |¢| and (z(f),y(¢)) € dV,. But

|2 (t) — 2| = |2i(t) — 2i(0)] < sup |&i(t)|[£] < sup |0y, x|to <ri — 7] (A3)
[tI<[2l Vr

that"shows |z;(f) — z;| < |zi(f) — x| + |z — Zi| < ri —rl + 7, = r;. In the same way one sees
lyi (t) — Uil < Tia- So (z(t),y(t)) € Int V., in contrast with (z(t),y(t)) € V. O

We denote by L, H = {H, x} the Poisson operator and by L{( the operator L, applied for j times.

Lemma A.4 For allme N
dm m
o (H o 0 (2,9)) = (L7 H) o B (2,).

Proof. Induction over m. O

Lemma A.5 Assume the hypotheses over r, r', x, to in Lemma A.3. Fiz k € N, k > 1. Then

k—1 .5
.
Ho@\(z,y) =3 7 LLH + " Ri(w,vi1),
J=0

"In (A.3) we assumed supy;, |9y; x| # 0; if not, obviously |z;(#;) — 2;] = 0 < r; — 7}, and
the argument goes on in the same way.

27



with

Re(z,y;) /1 (st & (Hod(x,y))| _, d (A4)
) _ G- a o _
k I) y7 o (k o 1)! di X .’L‘,y T=ts S
supy, |H|
sup |Ri| < ————, V[t|<to. (A.5)
> (to — [2])*
Proof. Set F(t)=H (@;(fv, y)). By the Taylor expansion one has
k=1 ,; 1 K1 i
tdF (1—s)kt dF,
F(t) = ——(0 — ——(ts)t" d
(®) ;j! dta()+/0 o ap et

so that (A.4) follows from Lemma A.4. Then, by the Cauchy Estimate and Lemma A.3,

sup [Ri| < s il (Ho®(x y))'/l (st ds <
up | fig| = sup —_— , RSl <
Vs (@y)eV,, ri<le | 47" X o (k—1)!
1 SUD (2 y) eV, Irl<to | H © PL (2, 9)]
< — Rl
oK (to — [t])* -
supy, |H|
(to — [t])*
proving (A.5). O

Lemma A.6 Assume the hypotheses over r, v’ and x in Lemma A.3. Assume also that x is real
analytic on Vi with R; > r; and that H s real analytic in V.. Then,

: , 1 1 ’
sup |L? H| < j! sup |H| (sup |x|)’ (max{ , }) .
Vi A H] Ve ] (VR X)) (ri =) (Riya —7riva)” (riva —7riyq)(Ri —7i)

(A.6)
Proof. If we set 1
t
’ supy, |0y, x| supy, [0z, x|
ax —, —, i=1,...,d
TE= T Tikd — Tigg
we have that to verifies (A.2). By Lemmas A.4 and A.3, one gets by the Cauchy Estimate
|7 H| & Hoot|< 2 |Ho®!| <
sup = sup|— o <= sup o <
v, X v, | At |,— TR v <t X
j! su Oy, su Og, J
< J: sup |H| = j! sup |H| (max{ Py, | ,’X|, Py, | xI’X| }) <
v vy Ti =T Ti+d = Titq
<t sup ] sup [y (max{ 1 1 by
< jlsup up |x max , 7
a Va (ri = 1) (Riva —Tiva)  (Tivd — Tiyq) (i —13)
proving (A.6). O
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