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Abstract

We present bounds for the error of the exponential approximation
of the first occurrence time of a rare event in a stationary stochas-
tic process with a finite alphabet with the a-mixing property with a
summable function a or with a general ¢-mixing property. We prove a
lower bound for this error in terms of the measure of the cylinder and
an upper bound as a function of the measure of the cylinder plus the
decay of correlation of the process.
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2 Exponential approximation for hitting times in mixing processes

1 Introduction.

This article presents lower and upper bounds for the exponential approxi-
mation to the law of the first occurrence of a long string of symbols in a
stochastic source with a finite alphabet. Our result holds for a-mixing pro-
cesses with summable function « and for ¢-mixing processes with general
decreasing function ¢. We prove that for any cylinder set A, the law of its hit-
ting time, suitably rescaled, can be uniformly approximated by a mean one
exponential law. The error in the approximation of this law is bounded from
below by C1IP {A} and it is bounded from above by inf {zIP {A} + g(z)}
where IP {A} is the measure of the cylinder and g is the function of the
decay of correlation of the process.

Moreover, we show that the scaling factor can be written as {4 ;) 1P { A},
where {4 () is bounded below and above by two strictly positive constants
=1 and E», respectively, independent of A,n and t¢.

Important recent papers on this subject are Galves-Schmitt (1997), Hirata-
Saussol-Vaienti (1998) and Collet-Galves-Schmitt (1999).

Galves-Schmitt’s approach introduces a correction factor in the approx-
imating law. This approach works for all kind of cylinders but only in the
case of ¢-mixing processes with a summable function ¢.

The paper by Hirata, Saussol and Vaienti presents a very elegant straight-
forward proof. However their result is interesting for cylinders that don’t
allow an immediate return to themselves.

Collet, Galves and Schmitt (1999) show how this correction factor de-
pends on the return of a rare event onto itself in the first steps.

For a brief review on the field before 1997 we refer the reader to Galves
and Schmitt (1997).

In this article we present a modification of Galves-Schmitt’s approach.
This new technique provides sharper upper bound for this type of approxi-
mation. The improvement is obtained in part by changing the scaling factor.
Our technique works for all type of cylinders and for the mentioned enlarged
family of processes. This answers in part one of the questions pointed out in
the paper by Hirata, Saussol and Vaienti: What is the largest class of pro-
cesses for which the exponential approximation holds? We refer to Doukhan
(1995) for examples and references of a-mixing processes that are not ¢-
mixing and for ¢-mixing decaying at any rate. We recall that an irreducible
and aperiodic finite state Markov chain is ¢-mixing with exponential decay.
Moreover, Gibbs states with a potential with exponential variations are ex-
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ponentially ¢-mixing. See Bowen (1975) for definitions and properties.

Kac’s lemma (Kac, 1947) says that the right scaling factor for return
times is IP{A}. This suggests that we should use it as scaling factor for
hitting times which in our notation means {4 ;) = 1. We show that this is
not always the case for hitting times. We study how {4 ;) depends on A. In
this sense, the use of this scaling factor provides a good approximation to the
exponential law but could be difficult to calculate explicitly. To overcome
this real difficulty we present in Theorem 4 a computable approximation for
this parameter in terms of the short times recurrence of each cylinder. A
corollary presents conditions, on the process and on the cylinders, to get the
scaling parameter equal to one; and also prove that the total mass of this
type of cylinders is high. This behavior was indicated in Hirata, Saussol,
Vaienti (1999); Collet, Galves, Schmitt (1999) and Saussol (1999). We also
present a counterexample in which the parameter is not just A4 # 1 but
also as small as we want, according to the process.

This paper is organized as follows. In section 3 we state the theorems.
In sections 4, 5 and 6 we prove the lemmata that are needed in the proofs
of the theorems and in sections 7, 8 and 9 we prove the theorems.

2 The framework.

Let &€ be a finite set. Put Q@ = £%. For each n € Z let X, : © — R be the
n-th coordinate projection. We denote by T : Q — ) the one-step-left shift
operator.

We denote by F the o-algebra over ) generated by cylinders. Moreover
we denote by F; the g-algebra generated by cylinders with coordinates in
I,1C7Z.

For a subset A C Q we say that A € C, if and only if

A={Xy=ag,...,Xpn_1 =an_1},

witha; €&, 1=1,...,n.
We consider a stationary probability measure IP over F. We shall assume
that there are no singletons of probability 0 or 1.

Let a = (a(l))i>0 and ¢ = (¢(1));>0 be two decreasing sequences con-
verging to zero of positive real numbers. We shall say that (2, F,IP,T) is
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a-mixing if, for all integers n > 1 and [ > 0, the following inequality holds

- P{BAT 00} - P(BYP(C)] "

)
BeF(o,. n}CE€F >0y IP{B} ’

and ¢-mixing if

‘IP {BnT-0t+DC) — (B} P {0}‘ s
sup = )
BeFi0,. 0y CEFn>0} IP{B}IP{C}

where in the above expressions the supremum is taken over the sets B and C,
such that IP { B} > 0 in the first case and such that IP {B} IP {C'} > 0 in the
second one. Given A € Cy,, we define the entrance time 74 : Q@ — IN U {oc}
as the following random variable defined on the probability space (2, F, IP).
For any w € Q

TA(w) = inf{k > 1: TF(w) € A}

Clearly, ¢-mixing implies a-mixing. We recall that mixing (at any rate)
implies ergodicity, and ergodicity ensures that 74 is IP-almost surely finite
(see e.g. Cornfeld, Fomin and Sinai, 1982).

We shall use the classic probabilistic shorthand notation for events de-

fined through random variables. We shall write {r4 = m} instead of
{weQ:raw) = m}, THA) = {w e Q:TrHw) € A} and {X; =
zi} = {X, = z;,..., X5 = z5}. As usual, the mean of a random variable

X will be denoted by IE(X). Wherever it is not ambiguous we will write
C and c for different positive constants even in the same sequence of equal-
ities/inequalities. Where a property holds for @ and ¢ processes we shall
replace a or ¢ by a .

3 Statement of the results.

We now state our main result.

Theorem 1. Let (2, F,IP,T) be ¢-mixing or a-mixing with o summable.
Then, there exist strictly positive constants =1, Zy, C1 and Co such that for
anyn, A € C, andt > 0 there exists £ 4 (1) € [E1,Z2], for which the following
inequalities hold

t
S P >— L _ et
.t {TA Eauw) P {A} }

< Cy inf 2AIP {A} + +(A —n)] .
>0 A>n
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Moreover e~$4u P jg o Jeft-continuous non-increasing function of t over
each [k/IP{A},(k+1)/IP {A}) and for all k € IN

lim e $amePLAY _ o—Caur+ry/prap P{A}

= (Pay)

< C juf 2AP{A}++(A—n)] .

We need first to prove the following results.

Theorem 2. Let (2, F,IP,T) be ¢-mixing. Then, there exist strictly pos-
itive constants A1, Ao, C1 and Cy such that for any n and any A € C,, there
exists A € [A1, Ag], for which the following inequality holds

CiIP {A} < sup
£>0

IP{TA>

¢ —t
_ 5 — < Cyb(A
AAIP{A}} e = CRb(4),
where b(A) = IP{A}", 0 < n=mn(e) <1 if ¢(n) < C/nE for all n > n, with
€ > 0 and b(A) = ¢/%(n) otherwise.

In Galves-Schmitt (1997) an upper bound of the form IP {A}” with 0 <
B < 1 was proved for ¢ summable processes. Therefore, Theorem 2 extends
this result to any type of decreasing function ¢.

Theorem 3. Let (2, F,IP,T) be a-mixing and let us suppose that the
sequence o : IN — IR, is summable. Then, there exist strictly positive
constants A1, Ao, C1, Co and k such that for any n and any A € C,, there
exists A4 € [A1, Ag], for which the following inequality holds

t
C1IP{A} < JP{ >7}_t<czp AV .
) {}_335 ERSw Y S {A}

We emphasize that in both theorems the constants A;, Ao, C1, Co,n and
k are independent of n and A. Notation A, Ay,Cq, and Cs stands for
(possibly) different constants in each theorem.

The difference between Theorem 1 and Theorems 2 and 3 is that the first
one provides a more accurate upper bound given that we use 4 ,(y) instead
of A4 as a correction factor. We first prove Theorems 2 and 3 following
Galves-Schmitt 97 approach. After this is done, we use the estimate of

IP{r4 > 1/IP{A}} to prove that 1/IP {A} is a suitable scaling factor for
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the process and provide a sharper upper bound for the approximation of the
exponential law.

We now present the theorem that gives an estimation of {4 ). Let s
be a positive integer. Denoting by IP 4 the conditional probability on A we

define ZP{( ) ﬂA}
n TA >%

Theorem 4. Let (2, F,IP,T) be exponentially a-mixing. Let s be a posi-
tive integer. Then, there exist strictly positive constants V1, Vo, C1,Cy and
¢ such that for any n € IN and any A € C,, we have that 4 € [¥1, ¥2]
and the following inequality hold

C1IP{A} <sup < Coe™ .
t>0

P{TA>

t —t
CaP{AY[ €

4 Estimates of the probability of a cylinder.

Lemma 1. Let the process be ¢-mixing with any decreasing function ¢ or
«a-mixing with « summable. There exist strictly positive constants C, C,
and T such that for any fixed positive integer n and any A € C,, the following

inequalities hold
P{A} < Ce™'™, (1)

and
iIP{AﬂT"“A} < CIP{A} . (2)
k=1

Proof. Take A = {XT = a7}. Using the a-mixing property we have
PP {A} < la(no 1) + ] "o,

where
p = sup{IP(a;) : a; € E}.

Since, by hypothesis, p < 1 and the function «(l) — 0, there exists an
integer ng such that
(p+alng—1)<1.

This proves (1). To prove (2), in the a-mixing case we remark that
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P{anT*4} <a ([g]) P A} + P {1} P (4

where AW = {X™

m141 = 0pn_;.1}- Then, since o is summable and using (1)

[2] n—[%]
a(k)+2lP{A} Y P{AW} <cP{4}.
k

=1

w3

2”: P{AnT*A} <2/P {4}
k=1

k=0

I

For the general ¢-mixing case we refer the reader to Lemma 1 on Galves-
Schmitt (1997).

5 Bounds for the parameter )4.

For any positive integer k let us define

k

Np = Ty, (3)
=1

where 1 4 is the indicator function of the set A. For any w € Q, Ni(w) is the
number of times the process visits A, during the first k£ steps. We remark
that

Lemma 2. For any real number t > 1 the following inequality holds

P{ry <t} <tIP{A}. (4)

Proof.

[t] [t]
P{ra<ty=Y P{ra=1} <Y} P{T A} =[P {4},  (5)
=1

=1

where we use the invariance of the measure IP with respect to the transfor-
mation 7" in the last equality.
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Lemma 3. Let the process be ¢-mixing or a-mixing with a summable. For
any positive integer n, any cylinder A € C,, and t > 0, the following holds
t]2IP {A}®
P{ra<t}> Ra ] - L ®
tIP{A}+C'tIP{A} +C(tIP{A})?> +2KtIP{A}

where C' > 0,C > 0 and K > 0 are constants independent of n, A and t.

Proof. Let N = Np;. We first remark that

2
(B(N)? = (B(NTys1y)) < E(N)P{N >1},
where the last inequality follows from the Schwarz inequality. Therefore

(E(N))?
P <t}=IP{N >1} > ———.
By definition IE(N) = [t]IP {A} .
To obtain an upper bound for the denominator IE(N?), we decompose
it as follows. Assume first [t] > n, then the definition of N gives

[t]

BN =Y B () + 22n:([t]—1)1E(11A 1))
=1 =1
-1

[
+ 2y ([t]—l)]E(][A 11T4(A)). (7)
I=n+1

The first term of this decomposition is IE(N).
Using Lemma 1 in the second term, we get

i([t] -)IE (11A IT_,(A)) <[t] iP{A NT YA} <C'tIP{A}.
=1 =1

The a-mixing property provides an upper bound for the expectations
inside the third term

IE (14 14(T")) < P{AY + (i —n — 1)IP {A}.
Therefore the third term is bounded above by

[t]—1 00
2IP {A} (IP{A} i+ tia(l)) :

=1 =1
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Now we remark that

[t]-1

1
Y =5l -

Finally we use the hypothesis that the series Y";/°° a(l) is convergent to get
the upper bound

[
2 > ([t = 1) B (T4 Tpogn)) < (HP{A})? + 2Kt IP{A},
I=n+1

where K = ;1% a(l) < +o0.
In the ¢-mixing case we simply observe that
IE (1[A ]IT*I(A)) < (14 ¢ —n)) P{A}”.
Therefore the third term is bounded above by
22 1111~ 1) (1+ $(0)) P {4} < C (t P {A})?

For ¢t < n the proof is the same with the third term absent. This con-
cludes the proof of Lemma 3.

Let f4 be a positive integer such that

falP{A} <o . (8)

N =

and let us define
) _ —logIP {14 > fa} (9)
AafA fA-lP{A} :

Lemma 4. There exists a positive integer ng, such that, for all n > ngy and
A € C,, the following inequalities hold

A <Xagp, <A,

where A1 and Ay are two positive constants independent of n, A and f4.
Proof. To obtain the lower bound, we first remark that

0

531—6*939, (10)
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where the right inequality holds for all & > 0 and the left holds for all
6 € [0,1] or equivalently for all 1 —e™? < 1 —e™' > 1/2. Let us take
0 = 0(A) = —logIP {4 > fa} and remark that IP {74 < fa} =1 —e .
Using (10) and Lemma 3, we get

04) 1 g 1 _
falP{A} =1+ C' +CfalP{A} +2K = 1+C' +C +2K

where C’,C and K are the same constants that appear in Lemma 3.
On the other hand, it follows from (10), (8) and Lemma 2 that

—lOgP{TA > fA} < 2IP {TA < fA} < 2fuIP {A} ,

for all n > ny, since 6 € [0,log2] C [0,1]. Therefore, we can take Ay = 2.
This ends the proof of Lemma, 4.

Ar. (11)

6 The asymptotic independence property.

Lemma 5. Suppose that the process is x-mixing. Let A € C,, and t,s € IN
such that max{t,s} > n. For all A € IN with n < A < max{t,s}, the
following inequality holds

[IP{1a >t+ s} —IP{ra >t} IP{r4 > s}| < [2AIP {A} +*(A —n)] .

Proof. We use Galves-Schmitt approach. We introduce a gap A from ¢+ 1
to t+ A. The idea is that this gap should be large enough for the process to
lose memory but small enough in order to keep the probability of the event
close to the original one. Without loss of generality we can assume that
t<s.

|[IP{1a >t+ s} —IP{ra >t} IP{r4 > s}|
< ‘]P{TA>t+8}—1p{TA>tﬂTAOTt+A>3—A}‘
+ ‘IP{TA>tﬂTAOTt+A>S—A}—P{TA>t}P{7AOTt+A >3—A}|
+ [P{ra>t}IP{ta>s— A} —IP{1a >t} IP{74 > s}| . (12)

We use the stationarity of the measure and Lemma 2 to get an upper bound
for the first and third terms. We use the mixing property on the second.
Therefore equation (12) is bounded above by

P{r4 <A} + (A —n) + P{r4 < A} < 2AIP {A} + +(A —n) .
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We shall need the following iterated version of Lemma 5.

Lemma 6. For all A € C,, let us define @ = 0(A) = —log IP{7r4 > s}. Then,
for any integer k > 1 and any s > n, the following inequality holds

r >ks —e_ak‘< inf
‘ {TA } T n<A<s

e

Proof. It is enough to prove, by induction, that
|IP{TA >ks}— e"”“‘ < [2AP {A} 4 (A — n)] [1 Lefa .y e—H(k—Q)] ’

holds for any integer k£ > 1.
The result is trivially true for K = 1. Let us assume that it holds for
k > 1. By the triangle inequality

[P{ra > (k+1) s} — e "ED| < |P{ry > (k+1) 5} = P{ra > k s}e™|
+ et \JP{TA >k s} —e*%\ . (13)
By Lemma 5
P{rs > (k+1)s} — P{ra > ks}e *| <2AP{A} ++(A—n) . (14)

Bounding the first term on the right hand side of (13) as in (14) and using
the hypothesis that the result holds for k, we obtain the corresponding
inequality for k£ + 1. This concludes the proof of Lemma, 6.

7 Proof of Theorems 2 and 3.

It is enough to prove that the theorems hold for any cylinder A € C, with
n > ng. Let us use the shorthand notation Aq = A4 ¢, -
Proof of the lower bound.

The proof of the lower bound follows the proof of proposition 2.3 in
Hirata-Saussol-Vaienti (1998).

Since IP {74 > t} is constant in [[t],[t] + 1) = [k, k + 1) we get that for
any 0 <d <1
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sup ‘IP{TA > 1) — e—t)\AP{A}‘ > 1 ‘e—kAAP{A} _ o (koA P{A)
tek,k-+0) 2
 courloe
> O 6§ AP {A} e FM2P{A}

In particular

sup ‘ZP {14 >1t} — eft’\AP{A}‘ > CIP{A}.
>0

Proof of the upper bound.

Let us take f4 as in (8). Fix ¢ > 0 and write t = k [fa] + r where
k =k(A) > 0 is the integer part of ¢/[fa] and 0 < r < [fa]. Let us write t4
for k [f4]

AN

‘IP{TA >t} — e_)‘A’fAP{A}t‘ |[IP {14 >t} — IP(14 > ta)|
+ |1P {14 >ta}— e"\A’fAP{A}tA‘
+ |€f)\A,fAP{A}tA _ ef)\A,fAP{A}t‘ .(15)
By stationarity
P {ra >t} — IP{ra > ta}| <r P{A} < falP{A}.  (16)

Lemma 6 and (11) give an upper bound for the second term in (15). We
recall that in order to use Lemma 6 we just need to choose A and f4 such
that n < A < fa.

P {ra > ta} — e PN <O inf AP A} ++(A ~n)]

T n<A<fa falP {A} - (17

Elementary calculus provides a first upper bound for the third term in
(15)

‘e_’\A,fAP{A}tA — e_AAJAP{A}t‘ < AP {A} r < AofalP {A} . (18)
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For Theorem 3 we note that the summability of « implies that a(z) <
3/4 1/2

C/z. Choose fa = (ﬁ) , define Ay = A4 7, and choose A = (ﬁ) +
n. Summing the three terms (16), (17) and (18), and noting that there is a
positive constant C such that n 1P {A}¥* < C 1P {A}'/%, we get the desired
upper bound.

This proves the upper bound in Theorem 3.

For Theorem 2, if ¢(z) < C/z¢ with € > 0, choose fq = ﬁ with

v= 224?L2€ea and A = P{il}ﬂ +n, with g = 1%-5 We get

AP {A} + $(A —n)
falP {A}

+ falP{A} < CIP{A}/*HD)

Otherwise, if ¢(z) decrease slower than 1/z¢ for all ¢ > 0, we choose A
such that AP {A} = ¢(A —n) and fa such that A/fs = falP {A}. (We
recall that this choice for A and f4 guarantees the condition of Lemma 6,
n < A < fs.) Notice that A —n > n, since otherwise ¢(n) < (A —n) =
AIP{A} < 2nlP {A} < Cne " which contradicts the decay of ¢. This gives
the bound

AIP{A} + ¢(A —n)

Y2(A _ 1/2(p)
FEr TP A <8 A ) < 6P

Put again Ay = A4 r,. This proves the upper bound in Theorem 2. (We
recall that these choices of A and f4, satisfy the condition on Lemma 6 and
that faIP {A} < 1/2.)

This, together with Lemma 4, concludes the proof of Theorems 2 and 3.

8 Proof of Theorem 1.

Notice that it is enough to consider A € [n, ﬁ] since otherwise the bound

is trivial. Then, let A be the integer in the interval [n, ﬁ] which minimizes
the quantity AP(A) + (A —n).
For t < A let us define {4 ) = A4 11

Y P{AT
ﬁ, let us write ¢ = } uﬁ, with & € IN and 1 < p < ££5. Define

. For t such that, A < t <

— : 1 : _ 1 :
Eau(t) = AA’NP{IA}. Finally, for ¢t > PLAT let us write t = k HPLaT with
k€N and 1 < p < &L Define £4 ) = Ay

sy p{lA} ’
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To prove that £4 ,(;) is bounded away from zero and infinity (since the
choice f4 = ,uﬁ with 1 < p < 2, no longer satisfies condition (8) ) we
just need to apply Theorems 2 and 3 to estimate IP {’TA > uﬁ}.

For ¢t < A we have

P {ra >t} — e Haso P = P {ry <t} — (1- e ano P4

A)\A 1 P{A}

P{ra<Al+1-¢ *“F&

<
< APP{A} +E,AP{A} .

Fort > & {1 Y by Lemma 6 and Theorem 2 and 3

1 1

‘ZP {Ta >t} — e P{AK AL

2AIP {A} + (A —n)

P {ra < upis}
C (2AIP {A} + +(A —n)) .

For t such that, A < t < ﬁ, we apply the Mean Value Theorem to

IA

the function f(z) = zk. After this, we apply Lemma 6 with gap of length
A (since t > A) and s = %P{IA}.

IP{TA > t} — eft&A’”(t)P{A}‘
1/k
= IP{TA>E]P{A}}_ZP{TA>MP{A}}
1

P{A}}k‘lp{””ﬂ%}}‘

IA
3
—N
N
\Y
|

QAP {A} + a(A —n) 1
< e

P{ra<lpig} ¥
< CQAP{A} +a(A-n)) . (19)

where the last inequality holds since, by an application of Lemma 3,
P {TA < %ﬁ} > CE, and the maximum is bounded (above and below)
by an application of Theorems 2 and 3.

IP{TA>k,u]P{A}}—IP{TA>u1P{A}

;
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Moreover if t € [k/IP{A}, (k+1)/IP {A}) with k € IN then t = kr“P{lA}

and e~ ¢4 P{AM ig 5 left-continuous non-increasing function of t.

lim e~ éauyP{AY _ o—€a u(k+1)/PLay) P{A}
t—(k+1)/P{A}

— P{u> %P;A}}k_zp{Tp IP{A}}M

P{w$P;A}}’“_P{m><k+np;}}\

k+1
+ IP{TA>(k+1)IPiA}}_IP{TA>IP%A}}+
< 22AP{A}+ (A —n)) .

VAN

This together with Lemma 1 concludes the proof.

Corollary. For any exponentially decreasing a-mixing process, the rate of
convergence in Theorem 1 is nIP {A}.

Proof. It is enough to compute the minimum on the upper bound in The-
orem 2 and apply Lemma 1

9  Behavior of {4 ,@.

We prove now Theorem 4 which gives an estimate of the parameter {4,
(and A4,7,). We recall here briefly that A4 s, was defined in (9) and for
a given t = ukﬁ, with K € IN and 1 < p < %, we define 4 () =
Mgty
Proof of Theorem 4. Let f4 be as in (8). For any positive integer k < fa,
let us deﬁneaA,k = P{TA < k} /klp{A} andaA,f = ZP{TA < fA} /fAIP{A}
Then

IA

‘ZP {14 >t} - e_CA’SP{A}t‘ ‘ZP {Ta >t} - e*)‘AJAP{A}t‘ (20)
+ ‘e—/\A,fAP{A}t _ e—aA,fP{A}t‘

n ‘e—aA,fP{A}t_ech,sP{A}t‘ _
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First note that & < 1 — e~ 4+ 62/2 for all # > 0. Then, using the right

2
hand side inequality of (10) we have that § <1 —e % 42 (1 — 6*9) for all
0 €[0,1]. Put 8 = —log IP {74 > k} with k < f4. As in the proof of Lemma
4 we have that 0 < @ < 1. Using this together with Lemma 2 we have,

—log IP {14 > k}
<
TAR = TP (A

<oap+2kIP{A},

for all k < f4. Thus
loak —Aag| < CRIP{A} < CfalP {A} .
By the Mean Value Theorem,

e~ oA P{A} _ e—gA,SP{A}t‘

< oays—Cas| P{A}t e min{o4,f,(a,s HP{A}
< oay—Casl -
Using the fact that by stationarity,
P{ra=j+1} = P{ra>j}—P{ra>j+1}
= IP{raoT >j} —IP{ta>j+1}
= P{T7'4A () 1407 > j}

= P{A) ra>i},

for all positive integer j, we have

‘CA,S_O-A,fl
]P{AﬂTA>%}_IP{TASfA}
P {A} falP {A}
1 fa n .
T P4 ;[IP{TAZEH}"P{TA:”H
1 fa .on inq M n
< ml +1_ZP{TA§]—;—1HTAOT] s —;‘f‘l} +;.ZP{A}
1 /4 n . on n
D =7 A(35) -
fAIP{A}j:zﬂ:—i—lP{TASJ S —1nT7A }+sz (21)
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i £ st (e )

+

({Zﬂ} ) o

< Ce .

IN

First and second inequalities are just by stationarity and inclusion of sets.
We recall that the notation A®) was defined in the proof of Lemma 1. We
note that in (21) we can’t take A instead of A(/?%) since in that case we
would not have gap between {r4 <j—2—1} and {T"7A}. The third
inequality is by the a-mixing property. Fourth is by Lemma 2. The last
inequality follows choosing

mln
\/IP A(zs \/0‘ 75)

together with an application of Lemma 1 and the exponential decay of a.
Finally, we note that the proof of Theorem 3 with this choice of fa4,
and A = —logIP {A}/c, where c is such that a(m) < e™“" for all positive
integers m, gives and exponential upper bound for (20).
We remark that these choices satisfy f4IP {A} < 1/2 and A < fa.
Moreover (4,5 < 1 and since [€4 — Cas| < Ce " and {4 > E1 > 0, there
exists W1 < (4,5. This concludes the proof.

Let s € IN. Define B,, = By(s) as the set of A € C,, which recur before
time n/s, namely, A € B, if and only if there is an integer 1 < j < n/s such
that ANT 7 A # ( for some 1 < j < n/s.

Corollary. Assume that the process is stationary and exponentially «-
mixing and let A € E"\B,,. Then in Theorem 3 we get A4 = 1, namely,
there are positive numbers ¢, C1; and Co such that the following inequality
holds

Cy IP (A) < sup < Cye .

>0
Proof. If A € B, then (4, = 1.

IP{TA>

IPEA}}_e_

Now we prove that the cylinders for which the last corollary holds, are
typical in the following sense
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Lemma 7. Let the process be a-mixing (at any rate). There exist s € IN
and two positive constants C' and ¢ such that

P{B,(s)} < Ce™en.

Proof. Let s be a positive integer. Take A = {XT" = af'} € B, (s). We first
observe that there is an integer k, with 1 < k < [n/s] — 1 such that

a = aV Rt

this implies that
i+1)k k
aﬁﬂ) = a1,
]

for all 0 < j < [n/k] — 1. Let m(k) = [n/k], therefore

Y. P{X{=ad]}
at €Bn(s)
n/s
m(k)k m k)k+r r
Z Z P{XT = Xi%, = :X(m((k))q)kﬂ o, (())k+1 = bi}

IN

n/s

Py (a( )+ IPAXE = }) P{X5, = :X(mm(éck)) Dk+1 = = bt}
k=1 b’fegk

n/s

< > <a(0) + IP{Xx¥F = b’f}) Ce—cn(s—1)/s

k=1 b’lcegk

IN

[1n|£|—c (s—1)

< Ca(0)e" s ] 4 ceen ,
where we use the a-mixing property and Lemma 1 together with the fact
that n —k > n—n/s. Taking a large enough s we get the exponential decay.

Counterexample. We now provide an example of a process and a sequence
of cylinders A,, such that A4, < 1.

Let £ = {0,1} and A = A, = {Xo = 1,...,X,,.1 = 1} Vn € IN.
Suppose that X, are i.i.d. with IP{X, =1} =p. Then (45 =1 — p.
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