Consolider Computing Optimization Techniques for Statistical Data Protection

Interior-point methods for large-scale optimization. Application to statistical data protection.

GNOM

Group of Numerical Optimization and Modelling

http://www-eio.upc.es/research/gnom

Jordi Castro

http://www-eio.upc.es/~jcastro

Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya Barcelona

Consolider Computing

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main research areas

Operations Research/Optimization

- Interior-point methods for large-scale linear and quadratic programming problems
- Solution of large-scale non-linear optimization problems
- Solution of large-scale structured problems, in particular stochastic optimization problems, network flows problems...
- Efficient implementation of algorithms
- Applications:
 - Statistical tabular data protection: real problem of great interest for National Statistical Institutes (NSIs)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.

< □ > < □ > < □ > < □ >

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?

< □ > < □ > < □ > < □ >

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?
- For very large problems, iterative methods (e.g., preconditioned conjugate gradients) for the solution of definite and quasidefinite systems of IP methods.

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?
- For very large problems, iterative methods (e.g., preconditioned conjugate gradients) for the solution of definite and quasidefinite systems of IP methods.
 - Development of efficient preconditioners

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?
- For very large problems, iterative methods (e.g., preconditioned conjugate gradients) for the solution of definite and quasidefinite systems of IP methods.
 - Development of efficient preconditioners
- Combinatorial optimization tools for the optimal solution of some statistical tabular data protection techniques.

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?
- For very large problems, iterative methods (e.g., preconditioned conjugate gradients) for the solution of definite and quasidefinite systems of IP methods.
 - Development of efficient preconditioners
- Combinatorial optimization tools for the optimal solution of some statistical tabular data protection techniques.
 - Optimal CTA (described later) is an open problem

イロト イポト イヨト イヨト

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?
- For very large problems, iterative methods (e.g., preconditioned conjugate gradients) for the solution of definite and quasidefinite systems of IP methods.
 - Development of efficient preconditioners
- Combinatorial optimization tools for the optimal solution of some statistical tabular data protection techniques.
 - Optimal CTA (described later) is an open problem
- Solution of the LP relaxations of CTA

イロト イポト イヨト イヨト

- Direct methods for the solution of large and sparse linear positive and semidefinite positive systems and indefinite systems of IP methods.
 - Which is the best package?
- For very large problems, iterative methods (e.g., preconditioned conjugate gradients) for the solution of definite and quasidefinite systems of IP methods.
 - Development of efficient preconditioners
- Combinatorial optimization tools for the optimal solution of some statistical tabular data protection techniques.
 - Optimal CTA (described later) is an open problem
- Solution of the LP relaxations of CTA
 - IP methods are far more efficient than simplex. Developing efficient IP methods.

Disclosure in tabular data: External attacker

Table of average salary by ZIP code and Age

	Z_1	Z_2	Z_3	TOTAL
E ₁	20	24	28	72
E ₂	38	38	40	116
E_3	40	39	42	121
TOTAL	98	101	110	309

Table of individuals by ZIP code and Age

	Z_1	Z_2	Z_3	TOTAL
E ₁	20	15	30	65
E_2	15	20	1	36
E_3	8	9	8	25
TOTAL	43	44	39	126

< < >> < <</>

Disclosure in tabular data: Internal attacker

Table of average salary by ZIP code and Age

	Z_1	Z_2	Z_3	TOTAL
E ₁	20	24	28	72
E ₂	38	38	40	116
E_3	40	39	42	121
TOTAL	98	101	110	309

Table of individuals by ZIP code and Age

	Z_1	Z_2	Z_3	TOTAL
E_1	20	15	30	65
E_2	15	20	2	37
E_3	8	9	8	25
TOTAL	43	44	40	127

< < >> < <</>

- Set of cells a_i , i = 1, ..., n, that satisfy Aa = b.
- Usually positive tables: $a \ge 0$.
- Real tables:
 - any structure (A)
 - n is large. E.g.: n = 800 millions cells for bussiness data of Germany

- Cell Suppression Problem
- Minimum-distance Controlled Tabular Adjustment

Cell Suppression Problem

ORIGINAL TABLE

	Z_1	Z_2	Z_3	TOTAL
E_1	20	24	28	72
E_2	38	38	40	116
E_3	40	39	42	121
TOTAL	98	101	110	309

GNOM (UPC)

・ロン ・四 ・ ・ ヨン ・ ヨン

Cell Suppression Problem

ORIGINAL TABLE

	Z_1	Z_2	Z_3	TOTAL
E ₁	20	24	28	72
E ₂	38	38	40	116
E ₃	40	39	42	121
TOTAL	98	101	110	309

PROTECTED TABLE

	Z_1	Z_2	Z_3	TOTAL
E_1	20	24	28	72
E_2	38	38		116
E_3	40	39	42	121
TOTAL	98	101	110	309

イロト イ団ト イヨト イヨト

Cell Suppression Problem

ORIGINAL TABLE

	Z_1	Z_2	Z_3	TOTAL
E_1	20	24	28	72
E_2	38	38	40	116
E_3	40	39	42	121
TOTAL	98	101	110	309

PROTECTED TABLE

	Z_1	Z_2	Z_3	TOTAL
E ₁		24		72
E_2		38		116
E_3	40	39	42	121
TOTAL	98	101	110	309

イロト イ団ト イヨト イヨト

• The MILP formulation is very large:

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• The MILP formulation is very large:

 Table of 8000 cells, 800 sensitive cells, and 4000 linear relations: MILP of 8000 binary variables, 12,800,000 continuous variables, and 32,000,000 constraints.

• The MILP formulation is very large:

- Table of 8000 cells, 800 sensitive cells, and 4000 linear relations: MILP of 8000 binary variables, 12,800,000 continuous variables, and 32,000,000 constraints.
- Exact algorithms for general tables
- Heuristic algorithms for some structured tables

ORIGINAL TABLE

	Z_1	Z_2	Z_3	TOTAL
E ₁	20	24	28	72
E_2	38	38	40	116
E_3	40	39	42	121
TOTAL	98	101	110	309

GNOM (UPC)

-

ORIGINAL TABLE

We want: $40 \ge 45$ or $40 \le 35$, for instance

GNOM (UPC)

ORIGINAL TABLE

We want: $40 \ge 45$ or $40 \le 35$, for instance

PROTECTED TABLE

	Z_1	Z_2	Z_3	TOTAL
E ₁	25	24	23	72
E_2	33	38	45	116
E_3	40	39	42	121
TOTAL	98	101	110	309

< □ > < □ > < □ > < □ >

ORIGINAL TABLE

We want: $40 \ge 45$ or $40 \le 35$, for instance

PROTECTED TABLE

	Z_1	Z_2	Z_3	TOTAL
E ₁	15	24	33	72
E_2	43	38	35	116
E_3	40	39	42	121
TOTAL	98	101	110	309

< □ > < □ > < □ > < □ >

• CTA is a recent method

< ロ > < 同 > < 回 > < 回 >

- CTA is a recent method
- CTA is being considered by European NSIs

< = > < = > < = >

- CTA is a recent method
- CTA is being considered by European NSIs
- MILP problem
- Approximate solutions using LP subproblems

- CTA is a recent method
- CTA is being considered by European NSIs
- MILP problem
- Approximate solutions using LP subproblems
- Specialized IP algorithms useful:
 - Example of 100 × 100 × 50 table (500K cells)
 - ★ CPLEX: 900 seconds
 - * Specialized IP algorithm: 7 seconds

- TAU-ARGUS: http://neon.vb.cbs.nl/casc/tau.html
- Developed within CASC European Union Project
- D.EIO-UPC has contributed to TAU-ARGUS with a heuristic for Cell Suppression
- CTA being developed within a national project
- CTA has still to be added to TAU-ARGUS

- Exact algorithms for MILP CTA formulation
- Heuristic algorithms for MILP CTA formulation
- Solution of large scale LP relaxations
- Models for correlated tables
- And eventually, software for NSI's reals problems

THANKS

Jordi Castro

http://www-eio.upc.es/~jcastro

GNOM (UPC)

Consolider Computing

▶ < ≣ > ≣ ৩৭৫ 15 Nov 2006 13 / 13

イロト イヨト イヨト イヨト