
Using taylor

Software for the numerical integration of ODE by
means of high-order Taylor methods (II)

Àngel Jorba
angel@maia.ub.es

University of Barcelona

Advanced Course on Long Term Integrations

1 / 26

Using taylor

Outline

1 Using taylor
Errors in energy
Extended arithmetics

2 / 26

Using taylor

The software can be retrieved from
http://www.maia.ub.es/~angel/taylor/

It installs in a GNU/Linux system.

It requires the packages flex and bison.

Now we will see how it works.

3 / 26

Using taylor

/* ODE specification: rtbp */
mu=0.01;
umu=1-mu;
r2=x1*x1+x2*x2+x3*x3;
rpe2=r2-2*mu*x1+mu*mu;
rpe3i=rpe2^(-3./2);
rpm2=r2+2*(1-mu)*x1+(1-mu)*(1-mu);
rpm3i=rpm2^(-3./2);

diff(x1, t)= x4+x2;
diff(x2, t)= x5-x1;
diff(x3, t)= x6;
diff(x4, t)= x5-(x1-mu)*(umu*rpe3i)-(x1+umu)*(mu*rpm3i);
diff(x5, t)=-x4-x2*(umu*rpe3i+mu*rpm3i);
diff(x6, t)=-x3*(umu*rpe3i+mu*rpm3i);

4 / 26

Using taylor

To produce a numerical integrator for this vector field, assume that
the previous code is in the file rtbp.in
Then, you can type

taylor -name rtbp -o taylor_rtbp.c -step -jet -sqrt rtbp.in
taylor -name rtbp -o taylor.h -header rtbp.in

to produce two files:

taylor_rtbp.c: The time stepper

taylor.h: Header to define the arithmetic used

5 / 26

Using taylor

Usage: ./taylor

[-name ODE_NAME]

[-o outfile]

[-doubledouble | -qd_real | -dd_real | -gmp -gmp_precision PRECISION]

[-main | -header | -jet | -main_only]

[-step STEP_CONTROL_METHOD]

[-u | -userdefined] STEP_SIZE_FUNCTION_NAME ORDER_FUNCTION_NAME

[-f77]

[-sqrt]

[-headername HEADER_FILE_NAME]

[-debug] [-help] [-v] file

6 / 26

Using taylor

Main C call:

int taylor_step_ODE_NAME(MY_FLOAT *time,
MY_FLOAT *xvars,
int direction,
int step_ctrl_method,
double log10abserr,
double log10relerr,
MY_FLOAT *endtime,
MY_FLOAT *stepused,
int *order)

7 / 26

Using taylor

Main Fortran 77 call:

void taylor_f77_ODE_NAME__(MY_FLOAT *time,
MY_FLOAT *xvars,
int *direction,
int *step_ctrl_method,
double *log10abserr,
double *log10relerr,
MY_FLOAT *endtime,
MY_FLOAT *stepused,
int *order,
int *flag)

8 / 26

Using taylor

Let us see an example of numerical integration by selecting the
initial condition x1=-0.45, x2=0.80, x3=0.00, x4=-0.80,
x5=-0.45 and x6=0.58.

We will perform a numerical integration with the standard double
precision of the computer, for 1 unit of time.

As a first test, we will check the preservation of the Hamiltonian.

We have coded a small main program that uses this initial
condition to call the Taylor integrator till the time has advanced in
one unit.

9 / 26

Using taylor

Next run takes εa = εr = 10−16

value of H at the initial condition: -1.3362071584596453
numerical integration starts...

0.24011923241902 20 -1.00000
0.49521588761001 20 0.00000
0.76536594703474 20 0.00000
1.00000000000000 20 -1.00000

10 / 26

Using taylor

Errors in energy

It is also interesting to run the program for a longer time span.

It is possible to check (statistically) that the variation of the
energy behaves like a random walk.

Let Hj be the value of H at the step number j of the numerical
integration and, instead of consider Hj − H0, let us focus on the
local variation Hj − Hj−1.

11 / 26

Using taylor

Errors in energy

ε = 10−14 ε = 10−15 ε = 10−16 ε = 10−17 ε = 10−18

-4 0 0 0 0 0

-3 45 2 7 5 6

-2 32,904 21,155 21,377 21,372 21,662

-1 772,723 745,668 760,755 768,334 777,760

0 1,970,571 2,084,758 2,134,729 2,157,287 2,174,276

1 765,519 744,438 760,183 767,596 776,776

2 32,444 21,174 21,576 21,696 21,949

3 42 6 5 3 5

4 0 0 0 0 0

Local variation of the energy during 106 units of time. The first
column denotes multiples of the machine precision and the
remaining columns contain the number of integration steps for
which the local variation of energy is equal to the multiple of eps
in the first column.

12 / 26

Using taylor

Errors in energy

To do an standard statistical analysis, let us assume that the
sequence of errors Hj − Hj−1 is given by a sequence of
independent, identically distributed random variables, and we are
interested in knowing if its mean value is zero or not.

Therefore, we will apply the following test of significance of the
mean. The null hypothesis assumes that the true mean is equal to
zero.

If k denotes a multiple of eps and νk the number of times that this
deviation has occurred (in our case, νk = 0 if k > 4), we define

n =
∑
|k|≤4

νk , m =
1

n

∑
|k|≤4

kνk , s =

√√√√ 1

n2

∑
|k|≤4

(k −m)2νk ,

where s stands for the standard error of the sample mean m.

13 / 26

Using taylor

Errors in energy

Under the previous assumptions (independence and
equidistribution of the observations), the value

τ =
m

s

must behave as a N(0, 1) standard normal distribution.

To test the null hypothesis (i.e., zero mean) with a confidence level
of 95%, we have to check for the condition |τ | ≤ 1.96.

14 / 26

Using taylor

Errors in energy

ε = 10−14 ε = 10−15 ε = 10−16 ε = 10−17 ε = 10−18

-4 0 0 0 0 0

-3 45 2 7 5 6

-2 32,904 21,155 21,377 21,372 21,662

-1 772,723 745,668 760,755 768,334 777,760

0 1,970,571 2,084,758 2,134,729 2,157,287 2,174,276

1 765,519 744,438 760,183 767,596 776,776

2 32,444 21,174 21,576 21,696 21,949

3 42 6 5 3 5

4 0 0 0 0 0

τ -6.0613 -0.9160 -0.1383 -0.0735 -0.3141

The last row shows the value of τ for the different integrations. It
is clear that for ε = 10−14 we must reject that the drift has zero
mean, and it is also clear that this hypothesis cannot be rejected in
the other cases.

15 / 26

Using taylor

Errors in energy

A comparison with a Runge-Kutta-Fehlberg 7-8

We ask the rk78 for an accuracy of 10−16.

The error in H after 106 units of time, in number of multiples of
the machine epsilon, is −13412 for the rk78, and −217 for the
Taylor method.

The time taken for the rk78 was of 9m and 34s, while the Taylor
method needed 4m and 4s.

If we ask the rk78 for an accuracy of 10−14 then the time taken
goes down to 4m and 58s, but the final error is 649368 times the
epsilon of the machine (that is, 1.44× 10−10).

16 / 26

Using taylor

Errors in energy

This is a second benchmark using the standard quadruple precision
of a HP 9000/712 computer, with a 100 MHz PA-RISC 1.1
processor.

We have used the vector field of the Restricted Three-Body
Problem, with the same initial condition and mass parameter as
before.

The integration time has been restricted to 10 units, to avoid long
testing times. We have asked for a local error of 10−32 for the
rk78, and of the 10−33 for the Taylor method.

The total cpu time for the rk78 is of 3m 48s, while the Taylor
method only takes 4.1 seconds.

17 / 26

Using taylor

Extended arithmetics

Next, we will discuss the capabilities of taylor to use different
arithmetics.

When taylor generates the code for the jet of derivatives and/or
the step size control, it declares all the real variables with a special
type called MY FLOAT, and each mathematical operation is
substituted by a suitable macro call (the name of these macros is
independent from the arithmetic).

18 / 26

Using taylor

Extended arithmetics

The definition of the type MY FLOAT and the body of the macros is
contained in a header file. This file is produced invoking taylor
with the flag -header plus a flag specifying the arithmetic wanted.
For instance, to multiply two real numbers (z = xy), taylor
outputs the code

MultiplyMyFloatA(z,x,y);

19 / 26

Using taylor

Extended arithmetics

If we call taylor with the -header flag and without specifying
the desired arithmetic, it will assume we want the standard double
precision and it will generate a header file with the lines,

typedef double MY_FLOAT;

to define MY FLOAT as double. We will also find the line

/* multiplication r=a*b */
#define MultiplyMyFloatA(r,a,b) (r=(a)*(b))

20 / 26

Using taylor

Extended arithmetics

If we use the flag -gmp to ask for the GNU multiple precision
arithmetic (see below), we will get

#define MY_FLOAT mpf_t

and

/* multiplication r=a*b */
#define MultiplyMyFloatA(r,a,b) mpf_mul(r,(a),(b))

Here, mpf mul is the gmp function that multiplies the two numbers
a and b and stores the result in r. Then, the C preprocessor will
substitute the macros by the corresponding calls to the arithmetic
library.

21 / 26

Using taylor

Extended arithmetics

The package includes support for several extended precision
arithmetics: doubledouble, dd real, dq real and gmp (the
GNU Multiple Precision Library).

If a library does not contain implementation of trigonometric
functions and/or transcendental functions, we note that they can
be defined by means of differential equations. Therefore, if an
ODE includes some of these functions, we can enlarge the system
of ODEs by adding the differential equation for the special function
and to integrate the whole system.

22 / 26

Using taylor

Extended arithmetics

None of these floating point libraries is included in our package.
They can be downloaded from the internet and are only needed if
extended precision is required.

Note that to use an arithmetic different from the ones provided
here we only have to modify the header file (for more details, see
the manual...).

23 / 26

Using taylor

Extended arithmetics

Next, we are going to use extended precision (more concretely, the
gmp library) to compute the error of the double precision version.

To measure the error, we have computed the relative difference
between these two approximations. For instance, for the x
coordinate, the operations we have implemented are,

e(x) = 1− x̃

x
,

where x is the extended precision approximation and x̃ is the
double precision result. All the computations have been done in
double precision. The result is written in multiples of the machine
precision.

24 / 26

Using taylor

Extended arithmetics

value of H at the initial condition: -0.1336207158e1
numerical integration starts...
1 0.183827140545086 174 -0.82041748043202e-153
2 0.374344795509428 174 -0.59666725849601e-153
3 0.574965855180706 174 -0.67125066580801e-153
4 0.789299521404807 174 -0.14916681462400e-153
5 1.000000000000000 174 -0.22375022193600e-153
iterates: 5 final time: 1.000000e+00

Numerical integration using gmp with a 512 bits mantissa and
asking for a relative error of 10−150.

25 / 26

Using taylor

Extended arithmetics

value of H at the initial condition: -0.1336207158e1
numerical integration starts...
1 0.180071007388544 346 0.124236998889749e-303
2 0.366492191198110 346 0.678258138919457e-303
3 0.562476214016376 346 0.878726168201663e-303
4 0.771527181403796 346 0.921848099579533e-303
5 0.997166681972274 346 0.106043126217200e-302
6 1.000000000000000 346 0.106043682485665e-302
iterates: 6 final time: 1.000000e+00

As before, but using a 1024 bits mantissa and asking for a relative
error of 10−300.

26 / 26

	Using taylor
	Errors in energy
	Extended arithmetics

