
Using taylor

Software for the numerical integration of ODE by
means of high-order Taylor methods (III)

Àngel Jorba
angel@maia.ub.es

University of Barcelona

Advanced Course on Long Term Integrations

1 / 22

Using taylor

Outline

1 Using taylor
Extended precision calculations
Speed comparisons
A comparison with ADOL-C
Computation of small quantities

2 / 22

Using taylor

Usage: ./taylor

[-name ODE_NAME]

[-o outfile]

[-doubledouble | -qd_real | -dd_real | -gmp -gmp_precision PRECISION]

[-main | -header | -jet | -main_only]

[-step STEP_CONTROL_METHOD]

[-u | -userdefined] STEP_SIZE_FUNCTION_NAME ORDER_FUNCTION_NAME

[-f77]

[-sqrt]

[-headername HEADER_FILE_NAME]

[-debug] [-help] [-v] file

3 / 22

Using taylor

Main C call:

int taylor_step_ODE_NAME(MY_FLOAT *time,
MY_FLOAT *xvars,
int direction,
int step_ctrl_method,
double log10abserr,
double log10relerr,
MY_FLOAT *endtime,
MY_FLOAT *stepused,
int *order)

4 / 22

Using taylor

Main Fortran 77 call:

void taylor_f77_ODE_NAME__(MY_FLOAT *time,
MY_FLOAT *xvars,
int *direction,
int *step_ctrl_method,
double *log10abserr,
double *log10relerr,
MY_FLOAT *endtime,
MY_FLOAT *stepused,
int *order,
int *flag)

5 / 22

Using taylor

Extended precision calculations

Next, we will perform long term integrations on the spatial RTBP,
but now using gmp.

6 / 22

Using taylor

Extended precision calculations

We will integrate the same initial condition as before, for 106 units
of time.

The goal is to check the propagation of roundoff errors when the
basic arithmetic is changed.

7 / 22

Using taylor

Extended precision calculations

value of H at the initial condition: -0.1336207158e1
numerical integration starts...
1 0.183827140545086 174 -0.82041748043202e-153
2 0.374344795509428 174 -0.59666725849601e-153
3 0.574965855180706 174 -0.67125066580801e-153
4 0.789299521404807 174 -0.14916681462400e-153
5 1.000000000000000 174 -0.22375022193600e-153
iterates: 5 final time: 1.000000e+00

Numerical integration using gmp with a 512 bits mantissa and
asking for a relative error of 10−150.

8 / 22

Using taylor

Extended precision calculations

value of H at the initial condition: -0.1336207158e1
numerical integration starts...
1 0.180071007388544 346 0.124236998889749e-303
2 0.366492191198110 346 0.678258138919457e-303
3 0.562476214016376 346 0.878726168201663e-303
4 0.771527181403796 346 0.921848099579533e-303
5 0.997166681972274 346 0.106043126217200e-302
6 1.000000000000000 346 0.106043682485665e-302
iterates: 6 final time: 1.000000e+00

As before, but using a 1024 bits mantissa and asking for a relative
error of 10−300.

9 / 22

Using taylor

Speed comparisons

We want to compare our implementation of Taylor method against
a few well known methods.

A characteristic of these methods is that they have a freely
available implementation, which is the one we have used. These
implementations are coded in FORTRAN77, which adds an extra
difficulty on the comparisons, since the observed differences may
come from the different compilers.

Therefore, to help the readers with these comparisons, the package
includes the code for all the examples, so that they can be run on
any combination of compiler/computer for comparisons.

These tests have been done in a GNU/Linux workstation, with an
Intel Pentium III processor running at 500 MHz. We have used the
GNU compilers gcc and g77, version 2.95.4.

10 / 22

Using taylor

Speed comparisons

The methods considered are

dop853, an explicit Runge-Kutta code of order 8,

odex, an extrapolation method of varying order based on the
Gragg-Bulirsh-Stoer algorithm.

Both methods are documented in the book by Hairer, Nørsett and
Wanner (2000), and the code we have used can be downloaded
from

http://www.unige.ch/math/folks/hairer/software.html

We note that extrapolation methods are similar to Taylor in the
sense that they can use arbitrarily high orders, so they are the
natural methods to compare with.

11 / 22

Using taylor

Speed comparisons

For the tests, we have used three vector fields: the RTBP, the
Lorenz system, a periodically forced pendulum, and the RTBP.
The equations for the Lorenz system are

ẋ = 10(y − x),

ẏ = x(28− z)− y ,

ż = xy − 8

3
z ,

and the equations for the forced pendulum are

ẋ = y ,

ẏ = − sin(x)− 0.1y + 0.1 sin(t)

12 / 22

Using taylor

Speed comparisons

Given an initial condition, we compute the corresponding orbit
during, say, 16 units of time and to compare the final point with
the true value to obtain the real absolute error.

The true value has been obtained from an integration with the
Taylor method using the gmp arithmetic with mantissas of 128 and
256 bits.

In the next tables we show the computer time and final error for
the three methods, using different thresholds for the step size
control. To have a measurable running time, the program repeats
the same calculation 1000 times.

13 / 22

Using taylor

Speed comparisons

Lorenz
dop583 odex taylor

ε time error ε time error ε time error
1.e-10 7.01 5.9e-03 1.e-10 8.73 6.2e-02 1.e-10 7.61 3.1e-06
1.e-11 8.91 5.0e-04 1.e-11 10.11 3.3e-03 1.e-11 7.99 4.4e-07
1.e-12 11.65 4.3e-05 1.e-12 11.54 2.0e-04 1.e-12 8.40 4.8e-08
1.e-13 15.31 3.7e-06 1.e-13 12.74 5.8e-06 1.e-13 8.80 3.3e-08
1.e-14 20.19 1.2e-06 1.e-14 15.04 6.4e-06 1.e-14 9.22 3.4e-08
1.e-15 26.76 8.9e-07 1.e-15 17.81 3.7e-06 1.e-15 9.75 9.2e-09
1.e-16 35.51 9.5e-07 1.e-16 50.47 1.9e-06 1.e-16 10.75 7.5e-09

14 / 22

Using taylor

Speed comparisons

Perturbed pendulum
dop583 odex taylor

ε time error ε time error ε time error
1.e-10 0.62 3.4e-11 1.e-10 1.49 6.9e-10 1.e-10 0.38 2.8e-13
1.e-11 0.78 3.6e-12 1.e-11 1.70 4.9e-11 1.e-11 0.42 2.1e-14
1.e-12 1.03 3.1e-13 1.e-12 1.93 1.7e-12 1.e-12 0.44 7.6e-15
1.e-13 1.38 2.7e-14 1.e-13 2.17 9.1e-14 1.e-13 0.47 1.2e-15
1.e-14 1.83 2.3e-15 1.e-14 2.36 4.4e-15 1.e-14 0.48 8.7e-16
1.e-15 2.45 2.1e-15 1.e-15 2.68 3.1e-15 1.e-15 0.52 5.8e-16
1.e-16 3.24 3.2e-15 1.e-16 3.09 1.1e-14 1.e-16 0.59 3.8e-16

RTBP
dop583 odex taylor

ε time error ε time error ε time error
1.e-10 1.43 1.1e-09 1.e-10 1.74 1.8e-09 1.e-10 1.68 6.2e-12
1.e-11 1.84 9.4e-11 1.e-11 2.02 9.2e-11 1.e-11 1.86 4.6e-13
1.e-12 2.44 8.6e-12 1.e-12 2.43 2.4e-11 1.e-12 2.08 4.4e-14
1.e-13 3.24 8.0e-13 1.e-13 2.74 3.7e-13 1.e-13 2.27 7.2e-15
1.e-14 4.32 7.5e-14 1.e-14 3.14 1.5e-13 1.e-14 2.50 4.2e-15
1.e-15 5.73 9.9e-15 1.e-15 3.71 2.4e-13 1.e-15 2.82 1.7e-15
1.e-16 7.63 2.0e-15 1.e-16 4.85 1.3e-13 1.e-16 3.26 5.8e-15

15 / 22

Using taylor

A comparison with ADOL-C

ADOL-C is a public domain package for automatic differentiation.
The main differences between the automatic differentiation of our
package and ADOL-C are:

ADOL-C is a general purpose package, while taylor is
specifically designed for the numerical integration of ODEs.

The input of ADOL-C is a C/C++ function (with some
restrictions in the grammar used), while taylor has its own
input grammar, which is a bit more restrictive.

ADOL-C does not include code for the step size control. This
means that ADOL-C can only be used to generate the Taylor
coefficients and the user must supply code for the order and
step size control. For this reason, we will only test the speed
of the generation of the Taylor coefficients.

16 / 22

Using taylor

A comparison with ADOL-C

As before, the tests have been done on an Intel Pentium III
running at 500 MHz, using ADOL-C version 1.8.7. The examples
considered are the Lorenz system, RTBP, the Lorenz system and a
periodically forced pendulum. To measure the time, we have
computed the jet of derivatives 100,000 times.

degree Lorenz Pendulum RTBP

ADOL-C 40 92.82 140.57 403.22

Taylor 40 3.59 3.43 14.75

ADOL-C 20 24.44 34.82 87.99

Taylor 20 1.13 1.07 4.65

ADOL-C 10 9.13 11.58 26.20

Taylor 10 0.41 0.39 1.62

17 / 22

Using taylor

A comparison with ADOL-C

As before, the tests have been done on an Intel Pentium III
running at 500 MHz, using ADOL-C version 1.8.7. The examples
considered are the Lorenz system, RTBP, the Lorenz system and a
periodically forced pendulum. To measure the time, we have
computed the jet of derivatives 100,000 times.

degree Lorenz Pendulum RTBP

ADOL-C 40 92.82 140.57 403.22

Taylor 40 3.59 3.43 14.75

ADOL-C 20 24.44 34.82 87.99

Taylor 20 1.13 1.07 4.65

ADOL-C 10 9.13 11.58 26.20

Taylor 10 0.41 0.39 1.62

17 / 22

Using taylor

Computation of small quantities

Here we will illustrate one of the uses of extended arithmetic: the
computation of small quantities defined as the difference of very
close numbers.

Let us consider the dynamical system

ẍ − sin(x) = µ sin
(t

ε

)
,

where µ and ε are small parameters. When µ = 0, x = 0 and
x = 2π are hyperbolic points such that the stable and unstable
manifolds of x = 0 coincide with the unstable and stable manifolds
of x = 2π. For µ > 0 and small, the points x = 0 and x = 2π
become hyperbolic periodic orbits and their invariant manifolds do
not coincide but intersect transversally

18 / 22

Using taylor

Computation of small quantities

Here we will illustrate one of the uses of extended arithmetic: the
computation of small quantities defined as the difference of very
close numbers.

Let us consider the dynamical system

ẍ − sin(x) = µ sin
(t

ε

)
,

where µ and ε are small parameters. When µ = 0, x = 0 and
x = 2π are hyperbolic points such that the stable and unstable
manifolds of x = 0 coincide with the unstable and stable manifolds
of x = 2π. For µ > 0 and small, the points x = 0 and x = 2π
become hyperbolic periodic orbits and their invariant manifolds do
not coincide but intersect transversally

18 / 22

Using taylor

Computation of small quantities

It is usual to take the section t = 0 mod 2πε so that the ODE
becomes a conservative 2-D map, with hyperbolic fixed points near
x = 0 and x = 2π.

Due to the symmetries of the problem, the unstable manifold of
x = 0 intersects transversally the stable manifold of x = 2π at
x = π.

Here we will compute the intersection angle of these manifolds for
µ = ε = 0.04. The methods used here will be quite simple, since
the only goal is to illustrate the capabilities provided by taylor.

19 / 22

Using taylor

Computation of small quantities

First, we use taylor to produce a time stepper for the ODE.

It is not difficult to write the 2-D map defined by the stroboscopic
section t = 0 mod 2πε. The differential of this map is given by
the numerical integration of the variational flow, again by means of
the Taylor method.

We have asked taylor to call the dq library for the arithmetic,
using the qd real type (it provides nearly 64 decimal digits).

Next, we code a Newton method to obtain the two hyperbolic
fixed points near x = 0 and x = 2π, and the eigenvalues and
eigenvectors of the differential of the map at these points (in fact,
due to the symmetries of the problem, it is enough to perform
these computations for one of them).

20 / 22

Using taylor

Computation of small quantities

The next step is to use the eigenvalues as a (linear) approximation
to the manifolds and to grow them till they cut the line x = π. At
this point we have used two different procedures:

To obtain a table of values of the two manifolds on a mesh of
points xj around x = π, and to use numerical differentiation
(with 3 steps of extrapolation) to approximate the intersection
angle between the two manifolds.

To compute an initial point p, at an approximated distance of
10−25 from the fixed point, that it is mapped on the line
x = π after a certain number of iterates. Then we have used
the corresponding eigenvector at the fixed point as the tangent
vector to the manifold at the initial point p . Then we have
iterated this point and the vector to obtain an approximation
to the tangent vector of the manifolds at x = π.

21 / 22

Using taylor

Computation of small quantities

The agreement between the two approaches allows to conclude
that the intersection angle is 2.769781155284039017022× 10−17

(we only write the common digits).

We note that the computation is not difficult provided one has an
efficient procedure to integrate ODEs in extended precision.

22 / 22

	Using taylor
	Extended precision calculations
	Speed comparisons
	A comparison with ADOL-C
	Computation of small quantities

