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What is a Solar Sail ?

e Solar Sails are a new concept of spacecraft propulsion that takes advantage of
the Solar radiation pressure to propel a satellite.

e The impact of the photons emitted by the Sun on the surface of the sail and
its further reflection produce momentum on it.

e Solar Sails open a wide new range of possible missions that are not accessible
by a traditional spacecraft.
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There have recently been two successful deployments of solar sails in space.

e IKAROS: in June 2010, JAXA managed to deploy the first solar sail in space.

e NanoSail-D2: in January 2011, NASA deployed the first solar sail that would
orbit around the Earth.
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The Solar Sail

We have considered a flat and perfectly reflecting Solar Sail. Hence, the force due
to the solar radiation pressure is in the normal direction to the surface of the salil

(7).

The force due to the sail is defined by the sail’s orientation and the sail’s lightness
number.

e The sail’s orientation is given by the normal vector to the surface of the sail,
. It is parametrised by two angles, « and 9.

e The sail’s lightness number is given in terms of the dimensionless parameter
(. It measures effectiveness of the sail.

Hence, the force is given by:

= ms . 2o
Fsail = 575<r5, n>2n-
ras
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The Dynamical Model

We use the Restricted Three Body Problem (RTBP) taking the Sun and Earth as
primaries and including the solar radiation pressure to model the motion of the sail.
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Equations of Motion

The equations of motion are:

. . — +1-— 1—w,, .
X = 2y—|—X—(1—/.L)X H—/.,LX 3 'LL"',B 2M<rs,n>2nx:
Ips I'pe Ips
. . 1-— 1—w,, .
y o= —2x+y- ( £y ﬁ) y+ B (7 )ny,
r3 r. Is
z = — 1—p + +ﬂ (rs ﬁ)2nz
rps I’3 ) )
where,
ne = cos(¢(x,y)+ a)cos(¥(x,y,z) +0),
ny = sin(¢(x,y,z) +a)cos(y(x,y,z) +9),
n; = Sin(w(X5y7z)+5)a

with ¢(x,y) and ¥(x,y, z) defining the Sun - Sail direction in spherical coordinates

(F; = Tps/ Ips )
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Dynamics of a Solar Sail in the RTBP
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Equilibrium Points (1)

e The RTBP has 5 equilibrium points (L;). For small 3, these 5 points are
replaced by 5 continuous families of equilibria, parametrised by « and §.

e For a fixed small value of 3, we have 5 disconnected family of equilibria around
the classical L;.

e For a fixed and larger 3, these families merge into each other. We end up
having two disconnected surfaces, S; and S;,. Where S; is like a sphere and
S, is like a torus around the Sun.

o All these families can be computed numerically by means of a continuation
method.
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Equilibrium Points (Il)

Family of Equilibria on the {X, Y} plane.
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Equilibrium Points (I11)

Family of Equilibria on the {X, Y} plane (Zoom close to the Earth).
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Equilibrium Points (1V)

Family of Equilibria on the {X, Z} plane.
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Stability of the Equilibrium Points

We can classify the equilibrium points by their stability (i.e. the eigenvalues of the
linearisation of the flow). Almost all of the equilibrium points belong to these two
different classes:

o T1: Three pairs of complex eigenvalues (v12 3 & iw; 23). Correspond to the
blue points.

e T,: One pair of real eigenvalues (A; > 0, A\» < 0) and two pairs of complex
eigenvalues (12 £ iws 2). Correspond to the red points.

It can be seen that:

e close to L 5 3 the equilibria are of the type 7, with |v;| << |A;|, hence the
main instability is given by the saddle component.

e close to Lg 5 the equilibria are of the type T; with |v;| << 1, hence the
instability due to the positive real part is very mild.

A. Farrés, A. Jorba (uB, UB) Solar Sails the Earth - Sun System



Equilibrium Points

Equilibrium points in the XY plane
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We must restrict ourselves to the case: o =0 and § € [-7/2,7/2] to find
bounded motion around equilibria (i.e. only move the sail vertically w.r.t. the
Sun - sail line):

V4

> 3=0 5>0

O
¥

e The system is time reversible Vd by R: (x,y,z,x,y,z,t) = (x,—y, z, =X, y, —2z, —t)
and Hamiltonian only for 6 = 0, £7/2.

e There are 5 disconnected families of equilibrium points parametrised by §, we
call them FL; 5 (each one related to one of the Lagrangian points Ly . s).

o Three of these families (FL; 2 3) lie on the Y = 0 plane, and the linear
behaviour around them is of the type saddle x centre x centre.

o The other two families (FLs 5) are close to L4 s and are not fixed by R. The
behaviour is of the type sink x sink X source or sink X source X source.
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We will focus on the family of equilibrium points from the FL; family for
B = 0.051689 (i.e. Lightness number for the Geostorm Mission).

Sun
A m ® /\B
SLs\/

(schematic representation of the equilibrium points on' Y =0)

e We will describe the non-linear dynamics around different equilibrium points
close to SLy (they correspond to a fixed sail orientation &« = 0 and § = 0).

e We will describe some of the numerical tools that have been developed to
describe the non-linear dynamics.

[1] A. Farrés and A. Jorba, “Periodic and Quasi-Periodic motions of a Solar Sail close to
SL; in the Earth - Sun system.”, Celestial Mechanics and Dynamical Astronomy Vol.
107, pp. 233-253, 2010.
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Periodic Motion (1)

As the system is reversible, the Devaney - Lyapunov Centre Theorem ensures us
the existence of periodic motion around the equilibrium points on the families

Theorem (Devaney - Lyapunov)

Let x = f(x), with f € C? and x € R?" be an autonomous R-reversible dynamical
system, where dim(Fix(R)) = n. Let py be a fixed point such that R(po) = po,
and with +iw, £X,,..., £\, as eigenvalues.

Then, if Y\; we have that iw/\; ¢ Z, there exists a one-parametric family of
periodic orbits emanating from po, where the period of these orbits tends to
27 /w when approaching py.

Around each equilibrium point on the FL; > 3 families there are two different
families of periodic orbits. Each one related to one of the frequencies w; and wy.
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Periodic Motion (11)

If we linearise around a certain equilibrium point for a fixed §:

Aofcos(wit + 1)Va + sin(wit + 1) 1]
Bo[COS(UJzt 4 ’(/)2)\72 =4 sin(wzt + 1/)2)[72]
CoeAtVA + Doeikt\_/'_)\

(1)

+ + 1l

From the Devaney - Lyapunov Centre Theorem, if wy/wy ¢ Z then we have two
families of periodic orbits.

The periodic orbits emanating from w, have a larger vertical oscillation than ws.

e We call P - Family, to the family emanating from ws.

e We call V - Family, to the family emanating from ws.

We have computed by means of a continuation method these two families, for
different values of §.
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Periodic Orb.

P - Family of Periodic Orbits (1)

We have computed the planar family for § = 0. (i.e. sail perpendicular to

Sun - line direction).
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P - Family of Periodic Orbits (Il)

We have computed the planar family for § = 0.01. (i.e. sail is no longer
perpendicular to Sun - line direction).
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P - Family of Periodic Orbits (Ill)

Continuation scheme for different values of ¢ (in this plot, from ¢ = 0 to 6 = 0.01.
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ic Orb.

P - Family of Periodic Orbits (IV)

Periodic Orbits for § = 0.
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Periodic Orb.

P - Family of Periodic Orbits (V)

Periodic Orbits for § = 0.01.

Main family of periodic orbits for § = 0.01
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Periodic Orb.

P - Family of Periodic Orbits (VI)

Periodic Orbits for § = 0.01.
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Periodic Orb.

V - Family of Periodic Orbits
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Nonlinear Dynamics around Equilibria

e We want to understand the dynamics in an extended neighbourhood of an
equilibrium point. We are interested in the trajectories that remain close to
the equilibrium point.

e Due to the instability of the fixed point, we cannot take arbitrary initial
conditions and integrate them numerically, as they will quickly escape from
the vicinity of the fixed point.

e For this reason we will perform the reduction to the centre manifold, an
invariant manifold tangent to the two centre directions. Although it is not
unique, its Taylor expansion around the equilibrium point is well defined and
unique.

e The main idea is to decouple up to high order the elliptic from the hyperbolic

behaviour, and use this high order approximation of the centre manifold to
understand the dynamics.
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Reduction to the Centre Manifold

Using an appropriate linear transformation, the equations around the fixed point
can be written as,

x = Ax+f(x,y), x€R*

y = By+glxy), yeR,

where A is an elliptic matrix and B an hyperbolic one, and f(0,0) = g(0,0) =0
and DF(0,0) = Dg(0,0) = 0.

e We want to obtain y = v(x), with v(0) = 0, Dv(0) = 0, the local expression
of the centre manifold.

e The flow restricted to the invariant manifold is

X = Ax + f(x, v(x)).

A. Farrés, A. Jorba (uB, UB) Solar Sails the Earth - Sun System 5th Novem
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Approximating the Centre Manifold

To find y = v(x) we substitute this expression on the differential equations.
Hence, v(x) must satisfy,

Dv(x)Ax — Bv(x) = g(x, v(x)) — Dv(x)f(x, v(x)). (1)

We take,
v(x) = Z viex®, k € (NU{0})*,

[k|=2

its expansion as power series. Then we solve equation (1) to find the coefficients
vk up to high degree (|k| = N).

N
e U(x) = > vx"is a high order approximation of the centre manifold.
[k|=2
e X = Ax + f(x,V(x)) gives a high order approximation of the motion on the
centre manifold.
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Dynamics on the Centre Manifold

We have computed the centre manifold around different equilibrium points of the
FL; family up to degree 16.

o After this reduction we are in a four dimensional phase space (x1, x2, X3, X4)
that is difficult to visualise.

e We need to perform suitable Poincaré sections to reduce the phase space
dimension and help us visualise the phase space.

e For § = 0 the system is Hamiltonian and we have a first integral. We will use
it to reduce the phase space dimension.

e For § #£ 0 the system is no longer Hamiltonian. We will take a function that
varies little along the trajectories as an “approximate first integral”, and use
it to visualise the phase space.
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Dynamics for 6 = 0

Here the first integral is:

Je=(X2+ Y24+ 22— 2Q(X,Y,2).

e We fix a Poincaré section x3 = 0 to reduce the system to a three dimensional
phase space. (Taking x3 = 0 is like taking Z =0).

e We fix the energy level to determine x4 and reduce the system to a two
dimensional phase space that is easy to visualise. (Taking xa(Jc, x) is like
taking Z(Jc, x)).

e \We have taken several initial conditions and computed their successive
images on the Poincaré section.

A. Farrés, A. Jorba (uB, UB) Solar Sails the Earth - Sun System 5th November 2012




Dynamics for 6 =0 (x3 = 0 section)

Jo = -2.895937

J. =-2.895920
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Dynamics for 6 # 0

Here we take an “approximated first integral” :

o Z
Jo=(X2+ Y2+ 2%) - 2Q(X,Y,Z) + B(1 - u)rTrz cos? §sin
PS

e We fix a Poincaré section x3 = 0 to reduce the system to a three dimensional
phase space. (Taking x3 = 0 is similar to taking Z = Z*).

e We fix J. to determine x4 and reduce the system to a two dimensional phase
space that is easy to visualise. (Taking x4(Jec, x) is like taking Z(J, x)).

e We have taken several initial conditions and computed their successive
images on the Poincaré section.
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Quasi-Periodic Orb.

Dynamics for 6 = 0.01 (x3 = 0 section)

Jo =-2.895937

Jo =-2.895920
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A different Poincaré section: x, = 0

Notice that x3 = 0 is not the only section one can take.

e Now we fix the Poincaré section x, = 0 to reduce the system to a three
dimensional phase space. (Taking xo = 0 is similar to taking Y =0).

e We fix J. to determine x; and reduce the system to a two dimensional phase
space that is easy to visualise. (Taking x1(Jc, x) is similar to taking Y (Jc, x)).

e We have taken several initial conditions and computed their successive
images on the Poincaré section.
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Dynamics for 6 =0 (x; = 0 section)
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Dynamics for 6 = 0.01 (x, = 0 section)
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Mission App.

Cool Mission Applications for Solar Sails
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Mission App.

Interesting Missions Applications (1)

Observations of the Sun provide information of the geomagnetic storms, as in the
Geostorm Warning Mission.

z
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Observations of the Earth’s poles, as in the Polar Observer.
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Interesting Missions Applications (I1)

To ensure reliable radio communication between Mars and Earth even when the
planets are lined up at opposite sides of the Sun.
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Interesting Missions Applications (11l)

Observations of the Earth’s poles, as in the Polar Observer.
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