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Abstract

This paper studies the stability and controllability of a solar sail on displaced, high-amplitude vertical Lyapunov orbits
in the Sun-Earth system. In previous works, it was found that these orbits could be used for quasi-continuous coverage of
the poles of the Earth. However, these orbits are unstable and an active control is required to remain close to them. Here we
describe the types of instabilities for various orbits in the vertical Lyapunov family, and then propose two different station-
keeping strategies. One based on a linear quadratic regulator, and the other on the Floquet multipliers. We have selected three
orbits, with different characteristics, for this study. It results that both methods manage control the solar sail, in the vicinity
of the nominal orbits, and a comparison of the control requirements and performances is presented.

I. INTRODUCTION

The recent successful deployment of the sail performed by
JAXA’s IKAROS mission1 has finally validated the con-
cept of solar sailing for spacecraft propulsion. A solar sail,
by reflecting the photons from the Sun, offers the poten-
tial capability of delivering a continuous thrust without the
need of any propellant mass, and therefore for a potentially
unlimited amount of time.2

This capability is extremely interesting for long interplan-
etary transfers, but also opens up the way to missions re-
quiring the spacecraft to be in a displaced or artificial equi-
librium point3 or in a non-Keplerian orbit.4 In both cases, a
continuous acceleration is required to maintain the nominal
orbit conditions.

Extensive work is found in the literature on a wide range
of these Non-Keplerian orbits.5, 6 Recently it was proposed
the use of solar sails on large-amplitude eight-shaped verti-
cal Lyapunov orbits at Lagrangian points L1 and L2 of the
Sun-Earth system.7 These orbits naturally bend towards
the Earth for a range of amplitudes, and it was shown that
the use of a solar sail of modest lightness number displaces
these orbits further towards the Earth. Therefore, they con-
stitute a viable way to continuously cover the high-latitude
regions and the poles of the Earth, for polar weather fore-
cast, ice pack monitoring and ship routing. However, it

was also shown that these orbits are highly unstable, and
therefore a robust and reliable control strategy is essential
to exploit these orbits in a real mission scenarios, where
even small perturbations can potentially have extreme con-
sequences.

In this paper we want to study the controllability of these
kind of orbits. In Section III. we will briefly describe the
vertical family of Lyapunov orbits around L2 and their
main stability properties. In Section IV. we propose two
different station keeping strategies to control the instability
of these orbits. One is based on a linear quadratic regulator
(LQR)8 and the other is based on the Floquet multipliers.9

For both methods we will show how to derive a control
loop such that a solar sail remains close to a reference orbit
and test the two methods against three different orbits. It
will be shown that these strategies manage to successfully
control the trajectory of solar sail. Finally, we will compare
the main differences between them.

II. EQUATIONS OF MOTION

To describe the dynamics of a solar sail in the Earth - Sun
system we consider the Circular Restricted Three Body
Problem (CRTBP) adding the Solar Radiation Pressure
(SRP) due to the solar sail (CRTBPS). We assume that the
Earth and Sun are point masses moving around their com-
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mon centre of mass in a circular way, and that the solar sail
is a massless particle that is affected by the gravitational at-
traction of both bodies and the SRP. We normalise the units
of mass, distance and time, so that the total mass of the sys-
tem is 1, the Earth - Sun distance is 1 and the period of its
orbit is 2π. We use a synodic reference system with the
origin at the centre of mass of the Earth - Sun system and
such that the Earth and Sun are fixed on the x-axis (with its
positive side pointing towards the Earth), the z-axis is per-
pendicular to the ecliptic plane and the y-axis completes
an orthogonal positive oriented reference system (see Fig-
ure 1).

 

Y   X

Z

Sr
Er

1 



n̂

Fig. 1: Schematic representation of the position of the two
primaries and the solar sail in the rotating reference system.

The acceleration given by the solar sail depends on its ori-
entation and its efficiency. Here we consider the simplest
model for a solar sail, we assume it to be flat and per-
fectly reflecting, so the acceleration due to the solar radia-
tion pressure is in the normal direction to the surface of the
sail.2 Hence,

Fsail = β
1− µ
r2
S

〈r̂S, n̂〉2n̂,

where rS is the Sun - spacecraft vector, r̂S = rS/rS and
n̂ is the normal direction to the surface of the sail (unit
vector).

For a more realistic model one should account for the ab-
sorption of the photons by the surface of the sail. In this
case, an extra component in the transverse direction of the
sail must be added slightly changing the efficiency of the
sail and the direction of the acceleration vector.2

Within our assumptions, the equations of motion in the

synodic reference system are:

Ẍ − 2Ẏ =
∂Ω

∂x
+ β

(1− µ)

r2
S

〈r̂S, n̂〉2nX ,

Ÿ + 2Ẋ =
∂Ω

∂y
+ β

(1− µ)

r2
S

〈r̂S, n̂〉2nY ,

Z̈ =
∂Ω

∂z
+ β

(1− µ)

r2
S

〈r̂S, n̂〉2nZ ,

(1)

where Ω(X,Y, Z) =
1

2
(X2 + Y 2) +

1− µ
rS

+

µ

rE
. rS =

√
(X + µ)2 + Y 2 + Z2 and rE =√

(X − 1 + µ)2 + Y 2 + Z2 are the Sun - sail and Earth - sail
distances respectively; lastly, n̂ = (nX , nY , nZ).

III. VERTICAL LYAPUNOV FAMILY

It is a known fact that, when the effect of a solar sail is
added to the CRTBP, families of “artificial” equilibrium
points appear, replacing the five Lagrangian equilibrium
points L1,...,5.2 Moreover, some of these fixed points in-
herit the dynamics of the L1,...,5 and families of periodic
orbits can be found for different fixed sail orientations.6

For the particular case n̂ = [1, 0, 0] the three collinear La-
grangian points L1,2,3 are displaced towards the Sun due
to the effect of the Solar radiation pressure. The linear
dynamics around these three points is still centre × cen-
tre × saddle and two families of periodic, orbits each one
related to one of the two oscillations given by the linear
approximation. The orbits in these two families are know
as the planar and vertical Lyapunov orbits. They present
an interesting location and have already been used for dif-
ferent mission applications. A typical example are the well
know Halo orbits around L1 used for the SOHO mission.

In a recent work, Ceriotti and McInnes7 proposed to
use orbits in the L2 vertical Lyapunov family for quasi-
continuous polar observation. In fact, by choosing the ap-
propriate initial condition and lightness number, it is possi-
ble to find a number of orbits in which the spacecraft hov-
ers above one of the Earth’s poles for a considerable frac-
tion of its orbital period, and then, after crossing the eclip-
tic plane with high velocity, the spacecraft slows down to
hover above the other pole. In that work, it was found that
three spacecraft on the same orbit, phased 120 deg, are suf-
ficient to offer continuous coverage of both the north and
the south pole of the Earth.

All the orbits in the vertical Lyapunov family around the
displaced L1,2 are simultaneously symmetric with respect
to the {Y = 0} and {Z = 0} planes and have an eight-
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shape with two symmetric loops w.r.t. the {Z = 0} plane.
Using the different symmetries of the system, these fami-
lies of periodic orbits can easily be found using a continu-
ation scheme. All these orbits can be represented as fixed
points on the Poincaré section Γ = {Y = 0, Ẏ > 0}.
The initial condition for each of the periodic orbits on the
Poincaré section is [X0, 0, Z0, 0, VY,0, 0]T .
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Fig. 2: Bifurcation diagram for the periodic orbits in the
Vertical family around L2. Continuous lines are orbits with
a fixed β and the dashes lines are orbits with a fixed orbital
period.

In Figure 2 we show the X,Z coordinates of different
orbits in the vertical family on the Poincaré section, Γ.
The points in the continuous lines correspond to periodic
orbits in the vertical family around the displaced L2 for
a fixed value of β. Here we show the results for β =
0, 0.01, 0.02, 0.03 and 0.04. On the other hand, the points
in the dashed lines correspond to periodic orbits with a
fixed orbital period T = 3π/2, π, 2π/3 (i.e. 9, 6 and 4
months respectively). We note that each orbit in the dis-
continuous lines has a different value for the sail lightness
number β.

All the orbits presented here are linearly unstable; this
means that an active control must be applied to remain
close to the orbit. Nevertheless, we find two classes of lin-
ear dynamics around the periodic orbits: saddle × centre
orbits (blue lines) and saddle × saddle orbits (red lines).
This affects to the behaviour of the trajectories followed
by a solar sail close to a periodic orbit. In both cases the
trajectories will quickly escape from a small vicinity or-
bit due to their instability. Close to a saddle × centre orbit,
the trajectory will escape along the unstable direction given
by the saddle. Instead, for a saddle × saddle orbit, there
are two expanding directions, each one related to a saddle
plane. In many cases, one of the two expanding directions
is stronger than the other one, and the trajectories will es-

Fig. 3: Four orbits in the Vertical Lyapunov family around
L2 that present favourable visibility properties for a Polar
mission.

Table 1: Characteristics of the considered orbits.

Id β T X0 Z0 VY,0
A 0 3

2π 1.00049 0.01897 0.00740
B 0.02 3

2π 0.99215 0.01912 0.01200
C 0.026 π 0.99432 0.01138 0.01057
D 0.04 2

3π 0.99650 0.00837 0.00790

cape along the strongest direction. But when the instability
of the two saddles is comparable in terms of “strength”, we
will have a 2D family of escaping directions. In this case,
keeping the trajectory of a solar sail close to a reference
orbit can be harder, as there are more possible escape tra-
jectories. We recall that the “strength” of the instability is
related to the modulus of the real positive eigenvalues.

In the work by Ceriotti and McInnes7 four orbits were iden-
tified, due to their favourable visibility properties, as well
as period (sub-multiple of the year) and lightness number.
They are symmetric with respect to the ecliptic plane, and
therefore offer the same coverage of both poles. The orbits
were identified with the letters from A to D. These orbits
are plotted in Figure 3, and their main characteristics are
shown in Table 1, where T is the period of the orbit (in non-
dimensional time units, i.e. 2π is 1 year), and X0, Y0, VY,0
are the non-null components of the initial state. Orbit A
does not use a solar sail, and therefore a propulsion sys-
tem must be used for its station keeping. For this reason,
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the control of this orbit is beyond the scope of this paper.
Instead, the other three orbits – B, C, D – will be used
throughout the rest of this work.

IV. STATION KEEPING

As mentioned in the previous section, all the presented or-
bits are unstable, i.e. an arbitrary small perturbation in the
state leads to an exponential divergence from the nominal
orbit. Therefore, these orbits cannot be used for a rela-
tively long interval of time unless an active control is used
to keep the spacecraft close to the nominal orbit. In the fol-
lowing two subsections will investigate two different con-
trol strategies for this purpose. In section IV.I we propose
a control strategy using a linear quadratic regulator and in
section IV.II we use a control scheme based on the Floquet
modes. We also test the performance of both methods to
control a solar sail around orbits B, C and D described in
the previous section.

IV.I Control Strategy using LQR

The control loop used here is based on a linear quadratic
regulator (LQR),8 applied in a similar way as in Ceriotti et
al.10

As actuator for the control loop, we use the solar sail, as-
suming that we can steer it in the two directions, and also
that its lightness number β can vary (within some limits).
Therefore there are three control variables.

Steering a solar sail is a standard control method, which has
been investigated in the literature extensively. In addition
to the actuators commonly used on conventional space-
craft (inertia wheels, thrusters), sail steering can also be
achieved exploiting the sail itself. Several methods were
proposed, including shifting of the centre of mass with re-
spect to the centre of pressure through moving masses,11

deployment of control vanes at the edge of the sail,12 and
also differential change of reflectivity on opposite sides of
the sail through photo-chromic areas.13 These areas are
covered with a special material that can change its reflec-
tivity coefficient within a given range according to a cur-
rent that is applied to it.

To avoid singularities that can arise due to the use of an-
gles, the sail attitude is described here through Cartesian
components of the vector n̂ . We consider the following
reference frame:

r̂S ≡ rS
rS

θ̂ ≡ ẑ×r̂S
|ẑ×r̂S|

ϕ̂ ≡ ẑ× θ̂
(2)

and consider that in this frame, the sail normal is n̂ =[
nrs nθ nϕ

]T . Since n̂ is a unit vector, the second and
third components are sufficient to reconstruct the whole
vector, as:

nrs =
√

1− (n2
θ + n2

ϕ) (3)

where the sign is always positive, due to the sail pointing
away from the sun and therefore nrs > 0.

We also neglect any delay in the response of the actuator,
i.e. we assume that the sail normal can instantly point in
any direction, as if the sail has null moments of inertia.
This assumption is not completely unreasonable, provided
that the motion of the spacecraft along the orbit is rela-
tively slow (and therefore fast steering manoeuvres are not
necessary), and also that only small corrections in the sail
attitude are required (and so the slew manoeuvres can be
quick).

The change of lightness number is basically a way to throt-
tle the magnitude of the force provided by the sail, with-
out changing its direction. Strictly speaking, considering
the definition of the lightness number, and since the mass
of the spacecraft is constant, β can only be changed by
modifying the sail area. This can be achieved for example
through the use of the same reflecting control vanes used
for attitude control, but they would be deployed symmetri-
cally, such that the centre of pressure is not shifted. How-
ever, another method is possible. The area of the sail that
appears in the definition of β is in fact the reflective area.
This can be reduced by, for example, temporarily making
some portions of the sail (partially) non-reflective, again
using the photo-chromic materials mentioned before. To
be able to increase the lightness number with respect to the
reference, the sail area shall be slightly bigger than the ref-
erence value, and part of it covered with opaque material
that can then become transparent when needed.

A control vector can therefore be defined as:

u = [nθ, nϕ, β] (4)

For defining the control strategy, it is convenient to
rewrite the equations of motion (1) as a first-order
differential system, introducing the state vector s =
[X,Y, Z, VX , VY , VZ ]T :
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ṡ(t) = f(s, t) (5)

Let us assume, at a given instant of time t̄, that the space-
craft is at state s(t̄). At the same time, the reference state
and control are sr,ur respectively. The reference state de-
fines the reference orbit as function of time, as discussed
in the previous section. The reference control, along one
orbit, is constant. In an ideal condition, the real state co-
incides with the reference one. However, due to the insta-
bility of the trajectory, in general the real state may differ
from the reference one, and therefore the state error can be
defined as: δs = s−sr. The objective of the controller is to
find the additional component of control, δu (defined as the
feedback control) such that the total control u = ur + δu
brings the spacecraft states back to the reference states af-
ter some time.

To compute δu at each instant of time, we use here a
linear time-invariant approximation of the dynamical sys-
tem. Due to this approximation, the real state shall be in
the vicinity of the reference state. Furthermore, if we as-
sume that the dynamics of the reference trajectory is slow
enough, then we can approximate the time varying problem
as a sequence of time-invariant problems, and use classic
linear feedback control theory for computing the gain ma-
trix. However, the optimal control problem shall be solved
at each instant of time, and the gain matrix updated, as de-
scribed in the following. For the specific control problem
under consideration, the control vector u3×1 contains two
parameters for the attitude of the sail, and the third compo-
nent is the lightness number of the sail itself.

The linearisation is done in the following way:

A6×6 =
∂f

∂s

∣∣∣∣
sr,ur

; B6×3 =
∂f

∂u

∣∣∣∣
sr,ur

(6)

where the function f represents the flow reduced to a first-
order differential system of six equations, according to
Eq. (5). The derivatives of f with respect to states A and
controls B are found analytically (their expression is omit-
ted here), and then evaluated numerically. The dynamics of
the system in the vicinity of sr, ur can then be expressed
as:

δṡ = Aδs + Bδu (7)

This linear, time-invariant system approximates the real
system at a given time and in the vicinity of the reference
states and controls. It can be verified through the control-
lability matrix that the system in Eq. (7) is controllable.

However, non-linearities, as well as bounds on the con-
trols, will limit the applicability of this method to some
maximum displacement from the reference. The problem
is now to find the optimal feedback control history δu (t)
for any time t > t̄ such that the (linear) system of Eq. (7)
will settle to the reference state, i.e. δs = 0. We introduce
the following cost function:

J (δu) =

∫ ∞
0

(
δsTQδs + δuTRδu

)
dt (8)

which aims at minimising the state error and the feedback
control over an infinite amount of time, constrained to the
linear flow in Eq. (7). The matrices Q,R are weights that
quantify the relative cost of each state and control in the
cost function. For this problem, considering the normal-
isation of the variables introduced in the CR3BP, the fol-
lowing weights were used:

Q = diag
([

10 10 10 1 1 1
])

R = diag
([

10−4 10−4 10−1
]) (9)

The choice of these coefficients was done initially follow-
ing Bryson’s rule (Q, R diagonal with Qii = maximum
acceptable value of δs2

i , Rii = maximum acceptable value
of u2

i ), and then adjusted with a heuristic procedure.

We now assume a control proportional to the state error,
δu = −Kδs. Minimising Eq. (8) under this assump-
tion leads to the well-known algebraic Riccati equation,8

which can be solved analytically to compute the gain ma-
trix K3×6.

The total control can then be computed, and saturation is
applied, to enforce the maximum deflection of the sail with
respect to the Sun direction, and the maximum variation in
lightness number. The following intervals are considered
for each control variable:

nθ, nϕ : [−1,+1]
β : [βr − 0.002, βr + 0.002]

(10)

If a control variable is out of its interval, then it is set
equal to the closest bound. However, this is not sufficient
to guarantee a real solution for Eq. (3), so additionally, if√
n2
θ + n2

ϕ > 1, then the two components are rescaled di-

viding both of them by
√
n2
θ + n2

ϕ.

The resulting control is then fed into the integration of the
flow. At the next time step in the integration, the procedure
is restarted to update the feedback control.
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IV.I.I Results

This control method was implemented in MAT-
LAB/Simulink and applied to the orbits B, C, D. In
the following we will show, through test-cases, that not
only is the controller able to stabilise the non-linear
system, but also that it is able to bring the spacecraft
back to the reference states, when the initial state is
perturbed. This can be interpreted as the step response
of the controlled system, when the step is applied at time
t = 0, and therefore at the northern apex of the orbits. The
following plots represent, for each orbit, the results of the
controlled system. For orbit B, the controller can cope
with initial displacements of order 10−4 (about 15,000
km) in each position component and 10−3 (about 30 m/s)
in each velocity component simultaneously. For greater
displacements, the spacecraft diverges indefinitely from
the reference.

Figure 4 shows the reference trajectory, and the trajectory
followed when this initial displacement is applied to the
states, for both the controlled and the uncontrolled system
(i.e. keeping sail attitude and lightness number fixed to
reference values). It can be seen that the controlled sys-
tem winds onto the reference, while the uncontrolled sys-
tem quickly diverges from it within a fraction of the orbital
period. Figure 5 shows the state error δs (split into po-
sition and velocity components): it is clear that the sys-
tem reaches the reference conditions (null error) within
less than one orbital period. The control effort required is
shown in Figure 6. Instead of plotting the components of
n̂, which are used as control variables, the angular sail dis-
placement with respect to the reference is shown. Despite
this (scalar) angle does not fully characterise the attitude of
the sail, it can be used as a measure of the slew manoeu-
vre needed, and it is computed through arccos(〈n̂, n̂r〉),
where n̂r is the reference attitude, i.e. pointing towards the
x-axis.

Very similar results are obtained for orbit C, see Fig-
ures 7 and 8. The same maximum initial displacements can
be controlled, and again the reference states are reached
within one orbital period.

The control of orbit D, instead, is more difficult. With the
same settings of the controller, the maximum initial dis-
placements have to be halved with respect to orbits B and
C (to 5×10−5 and 5×10−4). At the same time, the system
is not completely settled to the reference within the first
period, as it can be seen from the figures, which are plot-
ted for two orbital periods. Despite the required maximum
sail tilt is about 20 deg, there is a sensible slew manoeuvre
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Fig. 4: Orbit B: reference (red), controlled trajectory
(blue), uncontrolled trajectory (black, dotted).

changing the attitude of the sail rapidly, at t = T/4: this
point corresponds to the spacecraft crossing the x-y plane.
At this point, the velocity is highest, and this is also re-
flected in a rapid change in the velocity state error. The
rapidly changing states at this point make the system diffi-
cult to control with an LQR, due to the approximation to a
linear, time-invariant system.

To conclude this section, some final remarks that apply to
all three cases. First, it can be seen that at the beginning
of the simulation, when the state errors are high, the light-
ness number reaches its minimum allowed. Despite the
linear controller loop would require a lower value of β,
this cannot be provided as saturation is reached. A wider
bound for β would certainly allow better control perfor-
mance, in terms of convergence time and initial displace-
ments allowed. However it can be difficult to implement
in practice. Finally, it is worth noting that, given the initial
displacement in position and velocity, the controller tries
to quickly drag the velocity error down, but this results in a
temporary increase in the position error. This is due to the
tight interdependence between position and velocity in the
non-linear flow.

IV.II Control Strategy using Floquet Modes (FM)

The control strategy used here is based on the ideas in
previous works by Gómez et al.9, 14 for the station keep-
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Fig. 5: Orbit B: state error with respect to reference trajec-
tory.
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ing around a Halo orbits with a “traditional” thrust and
by Farrés et al.15, 16 for the station keeping of a solar sail
around an equilibrium point. This kind of strategies have
already been tested successfully for the control of Halo or-
bits using a solar sail.17

For this control strategy we parameterise the sail orienta-
tion n̂ with two angles, α and δ, different from the ones
described for the previous control. In the literature we find
different definitions for these angles.2, 15, 18 Here we define
α as the angle between n̂ and the x-axis and δ the angle
between n̂ and the ecliptic plane. Hence,

nX = cosα cos δ, nY = sinα cos δ, nZ = sin δ. (11)

We note that all the periodic orbits found in Section III.
have been found taking n̂ = (1, 0, 0), i.e. using this defini-
tion α0 = δ0 = 0.
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Fig. 7: Orbit C: state error with respect to reference trajec-
tory.
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The main differences between the strategy that we present
here and the one described in section IV.I are: a) we only
use two control parameters for the actuator, α and δ the two
angles defining the sail orientation; and b) the parameters
vary in a discrete way along time (by this we mean that the
sail orientation is keep fixed for a certain amount of time
∆t1, then it changes to another fixed orientation for ∆t2
and successively). Moreover, the strategy presented here
maintains the trajectory of the solar sail close to the nomi-
nal orbit at all time, but never reaches the reference orbit as
in the previous control (see section IV.I). This should not
be a problem as in most cases the main goal is usually to
remain close to a reference orbit.

As in the previous control we also assume the the changes
on the sail orientation are done instantly. As we will see
these changes are small and the time between manoeuvres
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tory.
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Fig. 10: Orbit D: control.

is long compared to the time it would take to change the
sail orientation, hence it is a good approximation of the
real case.

To derive a control law for the orientation of the solar sail
we use information of the natural dynamics of the system
around the reference periodic orbit. As we have seen in
Section III. all the orbits in the vertical Lyapunov family
described here are unstable. But there are orbits where the
linear dynamics is centre × saddle and others where this
one is saddle × saddle. The strategy to follow in each case
is slightly different although in both cases we want to can-
cel out the instability given by the saddle(s).

In the case of centre × saddle orbits, when the sail is
close to a reference orbit with the sail orientation fixed at
α0 = δ0 = 0, the trajectory will escape along the unsta-
ble manifold. To control the instability given by the saddle

we need to find a new sail orientation (α1, δ1) that brings
the trajectory close to the stable manifold of the reference
orbit. Then we can restore the sail orientation (α0, δ0) and
let the dynamics act again. We can repeat this process over
and over so that the trajectory remains close to the nominal
orbit. Nevertheless, when we choose the new sail orienta-
tion we also need to take into account the projections of the
trajectory in the other directions. In some cases changes on
the sail orientation can result of an unbounded growth on
the centre or neutral directions, experiencing a drift from
the reference orbit and resulting with an escape trajectory.
The same dynamics is found around Halo orbits for a solar
sail.17

In the case of saddle × saddle orbits, the stable and unsta-
ble manifolds have larger dimensions, this can sometimes
play in our favour. In many cases one of the two expand-
ing directions will be much stronger than the other (spe-
cially close to bifurcation point in the family of periodic
orbits). Hence the trajectory will escape faster along one
of the two saddles and just focusing on the instability given
by the strong saddle suffices. Nevertheless, in both cases
the idea for the station keeping strategy is the same, at a
certain point when the sail is escaping along the unstable
manifold we change the sail orientation (α1, δ1) so that the
trajectory comes close to the stable manifold, and we re-
peat this process over and over. As in the previous case, to
decide the appropriate sail orientation we also need to take
into account the neutral direction so that this one does not
grow.

It is not obvious how to choose the appropriate new sail
orientation so that the trajectory remains close to the ref-
erence orbit. First of all we need to track at all time the
relative position between the sail’s trajectory and the stable
and unstable manifolds. We use the Floquet Modes, six T -
periodic functions ēi(τ), as a reference system around the
reference periodic orbit. The main advantage of the Flo-
quet modes is that the linear dynamics around the orbit is
expressed in a simple way by considering the 3 planes gen-
erated by the couples (ē2i(τ), ē2i+1(τ)). The first plane is
related to the linear approximation of the saddle (or the
strongest saddle when we have two saddles). The second
plane relates to the eigendirections with complex eigen-
values of modulus 1 and the dynamics on this plane is a
rotation around the periodic orbit (or the remaining saddle
when we have two saddles). The third plane will always
be related to neutral eigenvalues, one of them will be the
tangential direction to the orbit, and the other is along the
variation of the family of periodic orbits. A drift of the tra-
jectory in this third plane results on a drift along the family
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of periodic orbits and must be avoided. For details on how
to define the Floquet modes see the work by Gomez et al.9

Finally, to find the appropriate changes on the sail orien-
tation we will use the information given by the first order
variational flow. We recall that, if φ∆t(t0, x0, α0, δ0) is the
flow at time t1 = t0 + ∆t of the vector field in Eq. (1)
starting at t = t0 with (x = x0, α = α0, δ = δ0), then,

F(∆t,∆α,∆δ) = φ∆t(χ0) +
∂φ∆t

∂α
(χ0) ·∆α

+
∂φ∆t

∂δ
(χ0) ·∆δ.

(12)

is the first order approximation of φ∆t(t0, x0, α0 +
∆α, δ0 + ∆δ), where for χ0 = (t0, x0, α0, δ0).

Notice that F(∆t,∆α,∆δ) is a linear application that
given (t0, x0, α0, δ0) gives us an approximation of the po-
sition of the trajectory at time t = t0 + ∆t when a change
(∆α,∆δ) on the sail orientation has been applied at time
t = t0. This application will tell us what change (∆α,∆δ)
and for how long ∆t we have to apply it to bring the sail’s
trajectory close to the reference orbit.

For the control strategy we define 3 parameters (εmax,
dtmin and dtmax) which depend on the mission require-
ments and the dynamics around the reference orbit (N0(t)).
Here: εmax is the maximum distance to the stable direction
allowed, used to decide when we have to change the sail
orientation; and dtmin, dtmax are the minimum and maxi-
mum time allowed between manoeuvres.

To fix notation, if ϕ(t0) is the position and velocity of the
solar sail at time t0, then

ϕ(t0) = N0(t0) +

6∑
i=1

si(t0)ēi(t0),

where N0(t) is the reference periodic orbit we want to re-
main close and ēi(t) are the six Floquet modes.

When we are close to N0(t0) we set the sail orientation
α = 0, δ = 0. Due to the saddle(s) the trajectory will
escape along the unstable direction(s). When |s1(t1)| >
εmax (or |s3(t1)| > εmax in the case of two saddles),
we consider that the sail is about to escape so we need
to change the sail orientation. We use F(∆t,∆α,∆δ)
to find the new sail orientation α1, δ1 and time dt1 ∈
[dtmin, dtmax] so that by changing the sail orientation at
t = t1, then at t = t1 +dt1 the sail trajectory is close to the
stable manifold of the reference orbit. Finally, at t1 + dt1
we will restore the sail orientation to α = 0, δ = 0 and we
repeat this process during the mission lifetime.

IV.II.I Finding α1, δ1 and dt1

Let us briefly describe a way to find ∆α1,∆δ1 and dt1 so
that the flow at time t∗ = t1 + dt1 is close to the reference
orbit. We recall that we want the trajectory to come close
to the stable manifold, i.e. s1(t∗) = 0 (and s3(t∗) = 0
in the case of two saddles), and that the centre projection
(s3(t∗), s4(t∗)) (when present) and the neutral direction
(s5(t∗), s6(t∗)) do not grow. Essentially we want to find
a new sail orientation α1 and δ1 such that after a finite time
dt1 the trajectory is inserted into the stable manifold so that
then the trajectory naturally comes back to the reference
orbit. This might not always be possible, but trajectories
that come close to the stable manifold are also good for
our purpose.

To find α1, δ1 and dt1 we proceed as follows: We take
different times t̃i for i = 0, . . . , n, with ti ∈ [t1 +
dtmin, t1 + dtmax] defined as t̃i = t1 + dtmin + i · dt
and dt = (dtmax − dtmin)/n, and for each t̃i we compute
the variational map F(i · dt,∆α,∆δ).

(a) If the orbit is centre × saddle, for each t̃i we find
∆αi,∆δi such that, s1(t̃i) = s3(t̃i) = s4(t̃i) = 0.

Note that this reduces to solve a linear system with 2
unknowns and 3 equations, which we solve using the
least square method.

(b) If the orbit is saddle × saddle, for each t̃i we find
∆αi,∆δi such that, s1(t̃i) = s2(t̃i) = 0.

Note that this reduces to solve a linear system with 2
unknowns and 2 equations, which can be solved ex-
actly in the non-degenerate case.

Now we have a set of {t̃i,∆αi,∆δi}i=1,...,n found in
the previous step. We choose t̃j ,∆αj ,∆δj such that
||(s5(t̃j), s6(t̃j))|| is the smallest (i.e. the divergence in
the neutral direction is as small as possible).

Hence, the parameters that will bring the sail back to the
nominal orbit are:

α1 = ∆αj , δ1 = δ0 + ∆δj , dt1 = t̃j − t1. (13)

IV.II.II Results

This control method has been implemented in ANSI C and
applied to the orbits B, C, D described in Section III.. The
linear dynamics for orbits B and C is saddle × saddle and
orbit D is centre × saddle. So the algorithm for choosing
α1, δ1 and dt1 will be different according to the kind of
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orbits. For each orbit we have applied the station keeping
strategy during 10 orbital revolutions managing to main-
tain the solar sail trajectory close to the nominal reference
orbit. For all three orbits we have used the same control pa-
rameters εmax = 10−5 AU (≈ 1495.98 km), dtmin = 30
days and dtmax = 115 days.

Figure 11 shows the trajectory that the spacecraft follows
when the station keeping is applied for 10 orbital revolu-
tions for orbit B, as we can see it remains close to the ref-
erence orbit. In Figure 12 we plot the error in position and
velocity along time, where the error is computed as the dif-
ference between the reference orbit and the path followed
by the solar sail. Finally, in Figure 13 we show the varia-
tions on the sail orientation (α, δ) through time. We recall
that these changes are instantaneous.

Fig. 11: Orbit B: controlled trajectory.

Figures 14 and 15 present the results for the control ap-
plied to orbit C, the errors on position and velocity along
time and the variation of the sail orientation respectively.
Similarly, Figures 16 and 17 display the results for orbit D
after the control has been applied.

Notice that for all three orbits the trajectory remains
bounded thought out the 10 orbital periods. In Figures 12,
14 and 16 we see that how the errors in position and veloc-
ity oscillates along time but never exceeds 5 · 10−5 for the
error in position and 8 · 10−5 for the error in velocity.

To better understand how the changes the sail orientation
affect the trajectory of the solar sail and this one is forced
to come back to the reference orbit, we should have to look
at the projection of the trajectory in the Floquet modes ref-
erence frame ēi. There we would see how for orbits B and
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Fig. 12: Orbit B: state error with respect to reference tra-
jectory in AU.
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Fig. 13: Orbit B: control; variation in degrees of the sail
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C, the trajectory in the two saddle planes, changes on the
sail orientation make the trajectory come close to the sta-
ble manifold (i.e. s1(t∗), s3(t∗) ≈ 0). And for orbit D, the
trajectory on the saddle plane shows the same behaviours
as for orbits B and C, while in the centre projection the
trajectory is a sequence of rotations that remains bounded
though time. For all three orbits the dynamics in the neutral
plane (ē5, ebar6) also remains bounded.

If we look at the changes on the sail orientation, Figures 13,
15 and 17 we can see that these ones are discrete in time
and they are small (less than 1◦ in most of the cases). We
must mention that in this kind of strategies there is a strict
relation between how close you want to remain from the
reference orbit (εmax) and amplitude of the variations on
the sail orientation.

By choosing a larger value for εmax we would then have
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Fig. 14: Orbit C: state error with respect to reference tra-
jectory in AU.
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Fig. 15: Orbit C: control; variation in degrees of the sail
orientation α (top) and δ (bottom).

larger changes on the sail orientation. But, due to the fact
that we only use the information given by the linear dy-
namics of the system to make decisions, in some cases we
would not be able to control the trajectory. Preliminary
studies show that only for orbit B we could deal with larger
displacements and hence larger changes on the sail orien-
tation.

V. CONCLUSIONS

The paper presented a preliminary study on the controlla-
bility of the displaced vertical Lyapunov orbits with so-
lar sails. Two control strategies were studied: a linear
quadratic regulator (LQR) and a strategy based on Floquet
modes (FM).

Both strategies were able to control the orbits. The FM are
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Fig. 16: Orbit D: state error with respect to reference tra-
jectory in AU.
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Fig. 17: Orbit D: control; variation in degrees of the sail
orientation α (top) and δ (bottom).

able to control the system by only varying the sail attitude.
Instead, the LQR requires also β as a control parameter,
although the required variation is small. If β were not in-
cluded in the control vector the trajectory would diverge.

Moreover, it resulted that the FM uses extremely small
changes in attitude to control the system, which is defi-
nitely a good point. However, these manoeuvres are in-
stantaneous. Conversely, the LQR requires much bigger
slew manoeuvres, but the control law is smooth in time.

The results also highlighted that LQR guarantees conver-
gence with errors that are approximately one order of mag-
nitude bigger than the FM, and this is related to the advan-
tage of using an additional control parameter, as well as
larger angular displacements of the sail.

An interesting remark is that for both strategies the con-
vergence in the case of saddle × saddle orbits (orbits B
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and C) is better than for the case the centre × saddle or-
bits (orbit D). This is probably due to the fact that for the
former kind of orbits, the stable manifold is 3D while it
is 2D for the latter. Hence there are more natural trajec-
tories that asymptotically converge tot the reference orbit.
Further studies must be done to confirm this fact.

A more extensive study on the relation between both strate-
gies should be done, trying to relate in both cases the
changes on the sail orientation with the dynamical prop-
erties of the system. This might help understand the dif-
ferences between in the control between orbits B, C and D
in the LQR case. Including the sail lightness number β as
a control variable for the FM might also allow to consider
larger variations on the sail orientation.

Finally, it would be interesting to study how both meth-
ods could be combined, to generate a more robust control
scheme.
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