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In this paper we study the dynamics of the Rational Standard Map, which is a generalization of the
Standard Map. It depends on two parameters, the usual K and a new one, 0 < u < 1, that breaks
the entire character of the perturbing function. By means of analytical and numerical methods it is
shown that this system presents significant differences with respect to the classical Standard Map. In
particular, for relatively large values of K the integer and semi-integer resonances are stable for some
range of u values. Moreover, for K not small and near suitable values of wu, its dynamics could be
assumed to be well represented by a nearly integrable system. On the other hand, periodic solutions
or accelerator modes also show differences between this map and the standard one. For instance,
in case of K ~ 27 accelerator modes exist for x less than some critical value but also within very
narrow intervals when 0.9 < u < 1. Big differences for the domains of existence of rotationally
invariant curves (much larger, for © moderate, or much smaller, for u close to 1 than for the standard
map) appear. While anomalies in the diffusion are observed, for large values of the parameters, the
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system becomes close to an ergodic one.
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1. Introduction

One of the most studied area-preserving maps is the well
known standard map (SM hereafter) introduced by Chirikov in
[1,2] as a representative model of a multiplet of interacting non-
linear resonances. In the last fifty years many studies deal with
this system in order to understand several properties of twist
mappings (see for instance [3-8] and references therein). It is
defined as

y=y+K(x),

where K is the so-called perturbation parameter and x € S,y € R
or, alternatively, both state variables are considered in S. The SM
can be seen as a discrete representation of a Hamiltonian flow
with potential function V(x) = cosx such that —dV/dx = f(x).
But in order to have a Hamiltonian such that its time-277 map is
close to the SM it is necessary to produce an instantaneous jump
in y followed by a suitable increase of the value of x. This can be
achieved using a potential which is the product of V(x) by a 27 -
periodic § distribution, to be denoted as d,,. Then the modified

x=x+Yy,  f(x)=sinx,
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Hamiltonian has the form (see Appendix for details)

y? =

H(y,x,t) = . cos(x — nt). (1)

n=-—00

The dynamics of the SM has been studied in a lot of works for
many values of K. It is a nearly regular system for K <« 1, small
chaotic domains are created when increasing K, the transition to
large chaos (rotationally invariant curves do not exist) occurs for
K ~ 1 as well as the global chaotic dynamics when K > 1. In
the nearly full chaotic regime small stability domains persist and
inhibit the system to behave as ergodic, even for large values of K.
The well known accelerator modes and other high-periodic solu-
tions prevent the free diffusion leading to an anomalous transport
process. In a broad sense it could be said that the dynamics of the
SM is well known.

In this paper we investigate the full dynamics of a gener-
alization of the SM, the so-called Rational Standard Map (RSM
hereafter) using, instead of f(x), a function f(x; u) which is no
longer entire in C and which depends on a parameter 0 < u < 1,
given by

fxn) =

This generalization of the SM was already considered in
[9-11] where the map depends on an additional parameter which
destroys the odd character of f(x; w). It could be regarded as an

sin(x)
1 — pcos(x)’


https://doi.org/10.1016/j.physd.2020.132661
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132661&domain=pdf
mailto:pmc@fcaglp.unlp.edu.ar
mailto:carles@maia.ub.es
https://doi.org/10.1016/j.physd.2020.132661

2 P.M. Cincotta and C. Simé / Physica D 413 (2020) 132661

alternative representation of the non-linear map introduced, for
instance, in [12] to investigate, in the case of a multidimensional
model, the Arnol’d diffusion [13].

The main difference between the SM and the RSM, as we
shall discuss in Section 2, is the appearance of the full harmonic
spectrum in the corresponding Hamiltonian leading to a quite
interesting dynamics. Letting © — 0 the RSM reduces to the SM
and we recover all the well known results.

A naive interpretation of this modified SM would be that the
introduction of the denominator 1 — u cosx could enhance the
perturbation parameter leading to a system where the chaotic
regime should prevail even for K < 1. As we shall see along this
work, this expected behavior does not apply and the dynamics of
the RSM turns out to be much more stable than the SM, even for
K ~ 1 and moderate values of . Moreover, we will show that the
RSM presents noticeable differences with respect to the SM for
a wide range of values of the perturbation parameter whenever
i # 0. On the other hand even for moderate or small values of
K but u close to 1, the RSM is nearly ergodic.

Therefore throughout this paper we investigate in detail the
dynamics of the RSM by means of analytical and numerical meth-
ods. Concretely in Section 2 beyond expansions of H for the
RSM, we give details on fixed and periodic points and accelerator
modes and comment on the differences with the SM.

In Section 3 we look at the role of resonances in the global
structure of the dynamics and at the domain of existence of
rotationally invariant curves (RICs from now on). We also com-
ment on the role played by values of the parameters for which
homoclinic tangencies appear concerning when these invariant
curves appear relatively close to the x axis, and how they organize
the amount of chaos for nearby parameters. We also look at the
anomalies in the behavior of the diffusion due to accelerators
modes and at the Shannon entropy. In all cases suitable numerical
simulations allow to illustrate the different observed phenomena.

2. The rational standard map

The RSM generalizes the SM and for y € R, x € [0, 27), it is
defined as
sinx

y=y+K@xp).  x=x+y. fEp)=———.
— L COSX

where 0 < p < 1, K > 0. See for instance [9-11]. Models of
multiharmonic SMs have been studied in several papers, like the
seminal works of Ketoja and MacKay [14,15]. See also [16,17] and
references therein.

The main difference between the RSM and the SM is the
O(K) resonances set with coefficients which depend on 1. Indeed,

f(x; u) has as potential function,
1

Vo(x; ) = ——In(1 — p cos x),
N

dVo(x,
fx: 1) = —%, L £0.

As it is shown in the Appendix, Vp(x; u) can be Fourier expanded
as

(3)

Volx; ) = ) Ci(u) cos(Ix),
=1

where the constant term has been neglected and the expression
for C;(w) is given in the Proposition included in Appendix. Recall-
ing that the equations of motion leading to the map (2) involve
the 27 -periodic §,,(t) (see Appendix, Eq. (29))

. .y
V=Kf(x; u)dax(t), Xx= 7
g

(4)

3F

Fig. 1. Separatrix of the Hamiltonian Hk ,(x, y) for several values of u, including
n=0,for K=1.

the full potential satisfying (4) is V(x, t; i) = Vo(x; £)82,(t). Per-
forming the product and by means of elementary trigonometric
relations we arrive to the following Hamiltonian

2 K
H. %, 0) = 2= 4 S-V(x, 1 o)

4T 2w

o oo (5)

Vix,t; u) = Z ZC, cos(Ix + mt).

m=—o0 [=1

A simple comparison of the Hamiltonian leading to the RSM with
the one of SM (1) reveals the differences between both functions.
See also the Appendix for smooth modifications of V(x, t; i) such
that can be integrated with standard integrators of ODE and the
time-27 map is a good approximation of the RSM.

Although the potential (3) seems to be physically unrealistic,
(5) shows that the Fourier expansion includes all the harmonics
in x. The RSM represents a pendulum model with small oscillation
frequency +/KC;(u)/27 acted upon by a perturbation with a full
Fourier spectrum which in fact is a more realistic scenario than
the SM where only a single harmonic appears.

The separatrix of the Hamiltonian Hy ,,(x,y) = V2 /24+KVo(x; 1)
(energy level for the maximum of KVy(x; )) is shown in Fig. 1
for K = 1 and different values of u (to be compared with the
manifolds of the origin for the RSM map to be shown in Fig. 8).
The width of the separatrix, (Ay)s, largely increases with . For
X # 2nm, K > 0, lim,_,1(Ay)s = oo.

Next we present some simple facts about fixed or periodic
points and accelerator modes. Using the differential map of the
RSM

_(1+Kf(xpn) 1 .
D RSM = ( Kf'(x ) 1) being

COSX — [
(1 — pcosx)?’

[l )= (6)
it turns out that (xg, yo) = (0, 27rm) is always unstable while for
(%0, Yo) = (7, 2rm) we get

K <41+ p), (7

as stability condition, revealing that for i # 0 the stability border
for the integer resonances is wider than in case of the SM.

We can look at stable points such that y jumps, when we
consider y € R, but they appear as fixed or periodic when we
consider y mod 27 (accelerator modes) that satisfy

Kf (xo; ) = 27n, nez\ {0}, —4 < Kf'(xo; 1) < 0. (8)

Analytical approximations can be obtained in case of small
and large K. Accelerator modes play an essential role in the
observed anomalous diffusion in the SM (see for instance [5,8]
and references therein).
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In the limit when © — 0 the xo values that satisfy (8)
are close to the ones of the SM for K ~ 2|n|m,|n] > 1,
Xo ~ mw/2 4+ 8x9,3m/2 — 6% with 0 < 6x9 <« 1. Therefore
1 — mcosxyg ~ 1+ wéxp ~ 1 and then the inequality in (8)
reduces to —4/K 4+ pu < cosxg < u, with 1 <« K < 4/u. So
|cos xg| should be small and from the above condition we assume
that O(u) ~ O(|cosxg|). Therefore we can expand f(xq; 1) and
f/(xo; ) in powers of 1 cos Xo up to O(u?) or O(u cos Xg) and thus
the stability condition (8) becomes

47°n% < K*(1 4+ u?) < 4n*n? + 16.

In the sequel we use, eventually, some scaled variables. Con-
cretely we keep using x for the value modulus 27, y denotes
either the value in R or modulus 27 (being clear depending on
the context). We introduce

K X y
= —, U= —, v=—.
21 2 2

(9)

Fixed points and accelerator modes.
In terms of the parameter k the stability condition reads

4
n? <k2(1+u2)<n2+7, (10)
T

which is similar to the domain of existence of accelerator modes
in the SM, just replacing k? by k?(1 + u?). Therefore we observe
that for a given value of u # 0, but small, the RSM presents
accelerator modes for slightly smaller values of k than in case
of the SM (1« = 0). However a more general expression of the
range of existence of the nth accelerator mode for a given value
of u € [0, 1) can be derived (see below).

It is interesting to observe from (7), with K = 2xk, that for
a given k the integer resonances are stable when u > u.(k) =
wk/2 — 1 provided that k < 4/ (u < 1). Therefore, for instance
in case of k like in (10), k &~ |n|, the latter condition holds for
k ~ 1 and thus if © > 7/2 — 1 =~ 0.571, the phase space of the
RSM for these (u, k) values would present large domains of stable
motion, i.e., the integer resonances.

On the other hand for k = |n| and from (10), valid for small
i, accelerator modes of period 1 seem to exist whenever yu <
2/(|n|m). Therefore as long as k increases these periodic solutions
are restricted to very small values of u, for instance 0 < u <
0.2122 for k = 3. Anyway, very narrow stability intervals appear
for relatively small k and large values of w. This is our next goal.

Using variables as in (9) we rewrite the RSM in (2) as

Y sin(2mu)
flus ) = 1— pcos(2ru)’
(11)

b=v+kfup), d=u+7,

Let us consider a given accelerator mode such that the point
(u*, 0) jumps to (u*, n) for a given u and a suitable value of k.
The minimal value of k for which this happens appears when
k= kM = n(1—pu?)"?, i.e. n divided by the maximum of f(u; ).
From the derivative of f given in (6), this maximum is attained at
u* such that cos(2ru*) = u.

We consider u* < 1/4 and for the symmetric point 1 — u* the
results that we mention are affected by this symmetry. Looking
at that point and v = 0 (mod 1), it is a fixed point with a double
eigenvalue equal to 1. Increasing k a bifurcation occurs and two
fixed points appear when taking v (mod 1). One on the left,
hyperbolic, and one on the right, elliptic. Around the elliptic point
there are invariant curves which are broken at some distance
from the fixed point giving rise to Cantori. The iterates of initial
points lying in a chaotic zone can enter inside the Cantori, remain
there for long time, due to the steepness of the invariant curves
inside them, until they escape from the Cantori. After each iterate

0

0 0.2 0.4 0.6 0.8 1

Fig. 2. Stability intervals in the parameter space (u, k) for the accelerator modes
obtained numerically for n =1, ..., 4 (from bottom to top). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

inside the Cantori v increases by ~ n, producing an anomaly in
the diffusion. See [5], for instance.

Increasing again k we get a value such that the elliptic point
has changed to parabolic and has a double eigenvalue equal
to —1. Then a new bifurcation is produced, giving rise to an
hyperbolic point with reflection, an eigenvalue less than —1,
and a period-two elliptic orbit. Therefore invariant curves arise
including inside the period-two elliptic orbit and the hyperbolic
point and also Cantori around them, which play the same role as
before. Hence, accelerator modes keep existing after this second
bifurcation. It occurs when kf (u; «) = n and kf’(u; u) = —4. Both
equations can be written as polynomials in k, u and cos(2wu). The
resultant after eliminating the terms in cos(2wu) is

2 2
- wrk® + (annz +u? - 1) K2
4 4
7.[2

+ (= pitmk 4 (= Pt = 0. (12)
The value of k associated to the bifurcation, for given values of u
and n, is the unique real positive root of (12). Denote this root as
k) that will depend on p and n as it does k). Thus accelerator
modes exist for given values of u and n > 0 which are centered
at (u*, 0) with u* < 1/2 and, due to the antisymmetry of the RSM
they appear inu = 1—u* with n < 0.

The amplitude Ak = k@ — k) also depends on (u, n).
Replacing in (12) k by k™ + Ak, using k¥ = n(1 — u?)"/? we
get a equation of degree 4 for Ak with coefficients that depend
on u and n. Though easy, the corresponding expression is longer
than (12). For n large, the dominant terms are the ones of degree
0 and 1, and thus an approximation for Ak can be derived,

2332
Ak ~ 32 a-w)r (13)
b4 n
In particular the maximal relative error of this approximation for
u € [0, 1) is below 0.1 or 0.01 for n > 7 and n > 64, respectively.
Note that if we use (10) to estimate Ak for small y, it leads to
Ak 2~ 2(1 — u?)/(r?n), close to (13) if u < 1.

As mentioned, for k > k?)(u, n) accelerator modes still exist.
The range of k can be obtained numerically. A simple method
is to take a point very close to the unstable manifold of the
related hyperbolic point with reflection and check if the iterates
are confined in a vicinity of the fixed point when using v (mod 1)
and a large number of iterates. Fig. 2 shows for u € [0, 1)and n =
1,2, 3,4 (from bottom to top) the ranges [k(V(u, n), k®(u, n)]
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in different colors and where the black lines correspond to the
extreme values. For small u (say, up to i & 0.25) the amplitudes
are inversely proportional to n. In the case n = 1 we have also
added in red the range of stability observed numerically for k >
k@), n). It is very narrow and hard to see. This has been also
computed for the other values of n but the ranges are narrower.

It is worth to note that the values of kf'(u; u) = —4 at k@,
are very close to —4.085 when all the invariant curves around
the accelerator mode are destroyed for n = 2, 3 and 4, except
in a narrow range near 4 = 1. In the case n = 1 the same is
true except in the range, roughly n € (0.3, 0.8), where the values
increase up to —4.0475 to decrease again near —4.085.

Period 2 points.

Now let us consider the periodic points of period 2, that is
when x; < x;. First we look at the RSM in T?. From (2) it is
easy to show that for y € [0, 27r), the phase values satisfy

f(xo; )+ f(x15, u) =0, (14)
whose solutions are x; = —Xg, ¥y1 = —Yo (both mod 27) or
the trivial one xp; = 0,7,y0 = y1 = . In the first case
(X1 = —Xp, y1 = —Yo) the coordinates of the periodic point

(X0, Yo) should satisfy (mod 27)
4xo + Kf(xo; #) =0,  yo = 2xq. (15)

The stability condition for these period two orbits, from the
product of the corresponding differentials, is

— 4 < K*f'(x0; w)f (x15 ) + 2K(f'(x05 ) + f'(x1; 1)) < 0, (16)

that in case of f'(xg; ) = f’(x1; u) reduces to the second relation
in (8) which applies when xy = —x;.
It is clear from (15) that one has to solve the equation,

sinx

E(x,K,u)=4x +K =0 (mod 27),

1—pcosx
for xg as a function of K, u, discarding the trivial solutions xo = 0,
Xo = 7 which correspond to fixed points.

For concreteness we bound our domain of interest to K < 4.
According to (7), for larger values of K there exist values of u
such that the fixed point at (7, 0) becomes unstable and when
K increases, keeping u fixed, it gives rise to a 2-periodic orbit
having one of the points in xg, satisfying E(x, K, u) = 27 and
Yo = 2Xo — 27.

For 4 = 0 it is clear that the unique solution of 4x +
Ksin(x)/(1 — pwcosx) = 2m, withx € (0,7/2) for 0 < K <
4, decreases monotonically when K increases. Increasing . this
behavior subsists until a large value of u, u*, for which there
exists a value K* of K such that 4x+K* sin(x)/(1— u* cosx) = 27
has a triple zero.

To look for these values we use the equations E = 27, E' =
0, E” = 0. From E” = 0, skipping non-zero factors, we get p as
a function of x, and from E’ = 0 we can write K as a function of
x and u:

_ cosx + A/costx +8 K —

4 COSX — [L

_ 2
u(x) 4(1 JL COS X)

and thus E(x, K, i) reduces to an equation which only depends
on x
1 — pu(x)cosx)sinx
oy (- ucosysing  x _
u(x) — cosx 2

It has the unique solution x* =~ 0.5606513881 and therefore
w* = 0.9498521661, K* ~ 1.4860378253.

For u* < w < 1 there are ranges of K with three 2-periodic
solutions, say Xp.1 < Xo2 < Xo3 and the corresponding values
of y: yoi = 2Xp;,1 = 1,2,3. Let us denote as [K(1u), K?(11)]

15¢

05}

0

0 0.2 0.4 06 08 p 1

Fig. 3. Parameter space (u,K) where (15) has only one stable solution is
depicted in red; a triple zero at u* ~ 0.9498, K* ~ 1.4860 lying at the end
of the black region inside the red one; while three roots (xo;,i = 1, 2, 3) exist,
the ones labeled by i = 1, 3 are stable in the black zone while in the blue region
only xo 3 is stable. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the range of existence of these three solutions for a given value
of w. For ;1 = p* we have K¢ = K? = K*. When p increases
towards 1, K¢ — 0 while K” approaches the value K? ~ 1.305.
At K = K the solutions with i = 1, 2 are created by an elliptic-
hyperbolic bifurcation. When u© — 1, definingé = 1— u — 0,
the value of K and the corresponding coordinate x satisfy x =
V2840(8), K = 2 x+0O(x%). For every  in the above mentioned
range the solution (g 3, Yo, 3) is stable in the range [K*, K", the
(X0,2, Yo,2) is unstable in the same range and (x¢ 1, yo,1) is stable
in the same range for w close to u* and then it becomes stable
only in a small range close to K% with a width range that tends
to zero as u — 1.

If we look at the full domain u € [0, 1), K € (0, 4] for the
set of values for which there is at least one stable solution of this
type, we find a large domain which is connected. It is bounded
by K = 0, by a smooth curve whose tangent at (0, 0) has slope
4, as it is easy to derive, and has a quadratic maximum at u ~
0.757696, K ~ 2.24437. Then it decreases until it reaches the
values of K” mentioned above. Fig. 3 illustrates all this stability
analysis in parameter space for period two trajectories.

On the other hand, for the trivial solutions at yo = y; =
m,X = 0,x; = m, for u <« 1 the centers of the semi-integer
resonances appear. In this case f'(xo; u) = 1/(1 — u), f'(x1; n) =
—1/(1+ p) and from (16) being K > 0, u < 1, we get

4u <K <201+ p), (17)

showing that the semi-integer resonances of the RSM are stronger
than in the SM, their centers are stable even for K > 2 provided
that 4 > 0. Note that another difference in the behavior of the
semi-integer resonances of the RSM with respect to the SM is that
the K values are bounded from below. Thus, even for small wu,
always exists a narrow interval 0 < K < 4u where the two fixed
points at y; =y, = 7, Xo = 0, x; = 7 are hyperbolic.

If instead we consider the RSM in the cylinder the condi-
tion (14) should be replaced by f(xo; ) + f(x1; ) =2nl, l € Z
and thus much more possibilities of two periodic solution or
accelerator modes are present. In a similar fashion it would be
possible to find solutions of period 3, 4 and so on.

3. Numerical results
Several of the estimates given in Section 2 are for small x and

just for some particular periodic orbits. Therefore this section is
devoted to investigate by numerical means the dynamics of the
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Fig. 4. Left: Phase space of the RSM for K = 2, u = 0.45. Right: Similar to the figure on the left but for K = 0.042, x = 0.978. The plots are displayed in the (u, v)

variables.

RSM. In what follow in this Section we use either (u, v) or (x, y)
as variables, and either K or k as parameter. It is clear from the
context.

Fig. 4 illustrates the phase space of the RSM for different values
of K and pu, on the left K = 2, u = 0.45 while K = 0.042, u =
0.978 on the right panel. As discussed in the previous section,
the parameter u plays a crucial role in the dynamics of the RSM.
Indeed, for relatively large values of K (in comparison with the
SM) and moderate values of x the motion is mostly stable, chaos
is almost restricted to the chaotic layers around the separatrix
of the main resonances. Moreover, as it can be seen in the left
plot, an invariant curve that intersects x = 0 and x = 1 at
y ~ 0.2 confines the motion close to the resonance y = 0, the
fixed point at (x,y) = (1/2,1/2) is stable accordingly to (17)
(u < K/4) and thus the integer and semi-integer resonances
do not overlap. On the other hand, for a small value of K but
large w, as shown on the right plot, the (1/2, 1/2) fixed point
becomes hyperbolic leading to two new elliptic fixed points near
(1/4,1/2),(3/4,1/2) and a comparatively large stability domain
appears. For these particular values of the parameters, the system
looks globally chaotic although the main high order resonances
are not destroyed by overlap. At least solutions up to period 10
are clearly distinguishable as small (or not so small) stability
islands as well as their associated homoclinic tangles (see below).
It is a curious fact that all the chaotic dynamics seen in the right
plot can be obtained taking an initial condition on (0,0.07) and
performing a very large number of iterates.

Using the Hamiltonian (5) the coefficient C of a given har-
monic is (K/(2m)) times the corresponding value of C; (given in
the Appendix). The half-amplitude of the resonance is 2+/C. It is
checked that for K = 2, u = 0.45 these half-amplitudes exceed
0.01 up to the fifth harmonic, while for K = 0.042, u = 0.978,
the half-amplitudes exceeding 0.01 go up to the tenth harmonic.
These results agree with the resonances that can be clearly seen
in the phase space of RSM given in Fig. 4. After these harmonics
the successive half-amplitudes decrease in an exponential way,
of the form ~ exp(—0.761) in the first case and ~ exp(—0.14l) in
the second one.

3.1. Transition to chaos

In this subsection we focus on the transition from mostly
stable motion to global chaos, when a major overlap of reso-
nances takes place. While the stability border by means of the
overlap criterion of different resonances could be derived from
the Hamiltonian (5), several restrictions appear. It is an easy task
to compute the amplitudes of each resonance, C;, but, on the other

hand, the overlap criterion does not include the distortion of the
separatrix due to resonance interaction as well as the width of
the chaotic layer around the latter. Therefore, in order to get an
accurate stability border we perform numerical experiments.

Let us consider 0 < u < 0.999 and 0.001 < K < 2.5
both parameters with step 0.001 and an ensemble of 10 initial
conditions within a fundamental domain of the unstable manifold
at the fixed point (0, 0), W, at distances from the origin less than
0.001. We iterate them first up to 107 and if for a given value of
the pair (K, t) and Nir < 107 one has |v| > 1 the computation
is stopped since a transition to global chaos occurs, the system
moves freely between the integer resonances.

On the other hand, for those values of the action such that after
107 iterates still one has |v| < 1, presumably a RIC C exists that
intersects u = 0, 1 at some value |v| = v* with 0 < v* < 1/2
since f(u; w) is antisymmetric. Therefore we look for the values of
the action v = v,;; whenever u < 0.001 or 1—u < 0.001 (for some
particular values of K, u we take u < 107%, 1 —u < 107%). In
case |vy| > 1/2, C does not exist, these nearby initial conditions
though look bounded up to 107, they will not be confined and
for larger times they will escape. After this procedure, the initial
ensemble gives evidence of confinement for about 1.23 x 10° of
the 2.5 x 10° values of (K, i) used in the simulations.

In order to refine the border of stability in parameter space,
let (i,j) = (1000K, 1000) be the parameter indexes for those
values of (K, u) for which the system seems to be stable. For a
given pair (i, j), define the set I; = [i — 1,i4+ 1] x [ —1,j + 1. If
an initial ensemble with parameter indexes in I is not confined,
then we take again the parameter indexes (i, j) and the 10 initial
conditions are iterated up to 10°. In case the action values remain
bounded, i.e, |v,| < 1/2 we assume that for these values of the
parameters the ensemble is confined. This procedure is repeated
for each I;; and finally we obtain near 1.22 x 10° values of (K, )
for which one has numerical evidence of the existence of a RIC C.

Fig. 5 presents in red the region of the (K, w) space, X, where
the numerical evidence suggests that the iterates of initial data
taken on Wy remain bounded by an invariant curve. We also
include in the figure the stability interval for the two-periodic
orbits given by (17). Note that the border of stability of the RSM
is not smooth (fractal structures are clearly observed, see for
instance [ 14-17] for related discussions), a large stability domain
appears for K values at both sides of the line K = 4u when
n < 0.6. At u = 0 we obtain the expected value of K = K, ~
0.9716354 (Greene’s value) and only for u > 0.75 the stability
border in K lies below K.. From these results it becomes evident
that the change in the stability properties of the period 2 orbit
starting at (1/2, 1/2) plays a crucial role in shaping this border.
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Fig. 5. Parameter space region, X}, for which an initial ensemble of nearby
initial conditions on W{ is bounded by a RIC around the integer resonance
v = 0. The green lines corresponds to the stability interval 4u < K < 2(1+ p)
for the centers of the semi-integer resonances.

We can compare these results for the RSM with the ones
that one obtains for the SM with two harmonics, say SM2h. For
instance with the ones presented as an example in [17]. There
the function f in SM2h depends on a parameter « and is given by
f(x, &) = cos(2mwa)sin(x) 4 sin(2w ) sin(2x). Due to symmetries
it is enough to consider « € (—1/4,1/4]. For « = 0 one
recovers the classical SM and for « = 1/4 one recovers also
the classical SM with K, x,y replaced by 2K, 2x, 2y. According
to [17] the maximal values of K for which a RIC exist are K =
K. ~ 0.9716354 for « = 0, K = K./2 for « = 1/4, and the
extreme values appear for (o, K) ~ (0.0232, 1.8887), the global
maximum of K, and for («, K) ~ (—0.1620, 0.3298), the global
minimum. In contrast, for the RSM the maximum appears for
(u, K) ~ (0.515, 2.384), a value of K much larger than the one
for the SM2h. For that value of u there are relevant harmonics
in f(x, u) (say, with amplitude > 1073) until the sixth one. On
the other hand for a given i the maximal value of K tends to 0
as 4 — 1. As an example, the number of relevant harmonics for
w = 0.999 is 169.

For all (K, u) in X}, a RIC C exists and intersects the v axis
at vy < 1/2 (see Fig. 4 left panel). Thus we focus on those
invariant curves that confine the motion close to the separatrix
of the resonance v = 0, that is when the chaotic layer is very
thin and thus the amount of unstable chaotic motion is small.
Considering the numerical simulation that leads to Fig. 5, we
look for the maximum values of the action whenever u < 0.001
and such that vy <« 1/2, that is the largest action value where
C intersects the v axis very close to the origin. Adopting the
intervals 0.1/2%" < 27vy < 0.1/2,1 = 0,1,...,4and 0 <
2mvy < 0.1/2° the results are shown in Fig. 6 (left panel).
Notice the particular filament structure that appears around what
it seems to be invariant curves in parameter space that minimize
the width of the chaotic layer at u = 0. As far as the authors know
this has not been observed in the SM2h.

Another comparison of the RSM with the SM2h (which in-
cludes the SM) is the following. To produce Fig. 4 right one can
take initial points with u = 0 and M equispaced values of v
(e.g. M = 100). Then one can do N iterates for each of them
(e.g. N = 10°) and plot every a large prime number (like 113).
The orbits such that some iterate, if we consider v € R, goes
away from [0, 1] are neglected. In this way Fig. 4 right can be
produced. The used (K, n) parameters are at a distance ~ 0.01
from the border of X,

The same method has been applied to more than 1000 val-
ues of the parameters (K, «) of the SM2h inside the domain of

existence of RICs and close to the boundary. There are major
differences with respect to the RSM like:

e The domains associated to the different resonances are near
horizontal in Fig. 4 right, while in the SM2h have a shape like
a+bsin(2wu) or a+b sin(4ru) for suitable values of a and b.
Furthermore in the SM2h case the domain associated to the
period 2 islands is larger than in the RSM, while the size of
the higher order periodic islands is smaller, much smaller
for period 7 or higher and almost not visible for period 9
or higher. This is due to the fact that for the RSM there are
many harmonics of relatively large size, while in the SM2h
only two harmonics play a role, except if « is a multiple of
1/4.

e In the RSM case the RICs are located very close to v = 0 and
v = 1, and no more such curves exist. In the SM2h the lower
and upper ones are not so close to v = 0 or v = 1 and many
other appear for intermediate cases like, typically, the ones
which appear before and after the resonant zone of period
2.

e For the SM2h one detects periodic points with one of the
points in u = 0 which have islands of visible size. This type
of islands are almost invisible in the RSM case. The fact that
at u = 0 the differential of RSM contains terms of the form
1+ K/(1 — w) plays a relevant role.

In order to understand this curious structure we proceed as
follows. For a given u > uo > 0 we look for the value of vy
for a given K, say Ky, which is much smaller than the values of
vy corresponding to the eight neighboring K < Ky and K > Ky
values using the lattice in (K, «) described before. In other words,
we search in parameter space for those values of (K, ) for which
the closest C to the separatrix of the resonance v = 0 appears. The
results are given in Fig. 6 (right panel) where one can see points
which give evidence of the existence of several smooth curves
which follow the filament pattern observed in the left panel. It
turns out that this particular structure in X}, is indeed due to the
presence of these “minimal” invariant curves. Later we shall look
for geometrical reasons of this filament pattern.

Just to complement the above results and letting 0.01 < K <
6.4 and u in the same interval as before, we compute the largest
Lyapunov exponent and we look for the region of the parameter
space where the fraction of chaos, o, is small. Given a grid of
400 x 400 values of the parameters in the above defined interval
and after 2 x 10* iterates we get the results shown in Fig. 7
left panel, where red corresponds to 0.01 < o < 0.1, green
to 0.001 < o < 0.01 and so on. We observe that a nearly
stable, integrable motion in parameter space takes place along
these filaments, revealing that the curves shown in Fig. 6 left
panel are indeed invariant curves that bound the motion close
to the separatrix of the integer resonance. The small amount of
chaos is thus mostly confined to a small neighborhood around the
separatrix of the resonance y = 0.

Stable and unstable manifolds.

Let us focus now on the homoclinic tangle of the integer
resonance. Since the motion near any y = 2m resonances for
not too large can be reduced to a driven pendulum, as discussed
in the previous section, then very close to the separatrix the
change in the energy due to the perturbation is given by the
Melnikov integral (see [2] for instance)

An(1) = /oo dt cos (gq)(t) - u) ,

—0o0

o(t) = 4arctane’,

for any real m and where the integration domain involves the full
motion on the unperturbed separatrix, i.e. from the unstable fixed
points (x,y) = (0, 0) and (27, 0) at t = Foo respectively. Since
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Fig. 6. Left panel: Values of 0.1/2*! < 27vy < 0.1/2,1=0,1, ..
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.,4 and 0 < 2wy < 0.1/2° in the parameter space, where the palette color is given in red for

0.05 < 2wvy < 0.1 and similarly in green, blue, magenta, cyan and yellow respectively. Right panel: Evidence of the existence of smooth curves in parameter space
(K, ) for which u > o > 0 and vy for a given K = Kp is much smaller than the values of vy corresponding to the eight neighboring, K < Ky and K > Ky values.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Left: Fraction of chaos, o, in parameter space (u, K), in red 0.01 < o < 0.1, in green 0.001 < o < 0.01, in blue 0.0001 < o < 0.001, in magenta o < 0.0001.
Center: Values of (uo, Ko) in parameter space where the invariant manifolds W' and Wy are tangent at the central homoclinic point, located on x = 7. Right: The
splitting function against x within a fundamental domain for uo = 0.4, K = K, = 1.89062177 and K = 1.88, 1.90 in red, blue and magenta respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the above integral is symmetric with respect to t = 0(x = m), the
contribution of the unstable manifold W fromx = 0tox = 7
to the above integral is the same as that of the stable manifold
W arriving at x = 27 from x = 7. Then at x = 7 the perturbed
whiskers W{ and W; coincide in an homoclinic point h.

Les us consider some pair (K, 1) in X}, shown in Fig. 5, for
which the motion is bounded by a RIC. We compute the linear
approximation to W§ and W;, wg, wj respectively, considering
distances to the origin less than 10~!® (the computations are
carried out in quadruple precision). Since W' and W; intersect
at x = m, we numerically obtain this homoclinic point h at
(x,y) = (mr, yn) and by using the tangent map (direct and inverse
in case of W{' and W, respectively) the eigenvectors at the origin
(w§, w), are transported to the homoclinic point h. Let (w", w®)
be the normalized eigenvectors at h, then ||[w" x w®|| ~ «, where
« is the angle between w" and w® at x = 7 and it is clear that
wg, wy, wY, w*, o depend on K and .

Defining the splitting function spl(x) = W"(x)— W?*(x) (looking
at the manifolds as graphs, at least locally), then o = spl'(x)|x=»
where prime denotes derivative with respect to x. For a given
i = uo we look for those values of K = Ky for which «() = 0,
i.e, where the splitting function presents an extreme value at
x =  and therefore at this particular homoclinic point spl(x) has
at least a double zero. Therefore the amplitude of the splitting
function is expected to be small.

The results for those values of the parameters in X}, (Ko, i40),
where o = «(Kp, o, w) = 0 are shown in Fig. 7 center panel.
It is interesting to notice that the values of the parameters for
which a tangency between W and W?* at the homoclinic point
occurs are identical to those (K, u) shown in Fig. 6 at the right

for the “minimal” curves. Both results provide then stronger
evidence that when (K, u) € X invariant curves very close to
the homoclinic tangle of the integer resonance actually exist. See
at the end of this subsection for a concrete example.

In the same direction, we also compute the splitting function
and we observe that, indeed, its amplitude in a fundamental
domain of the homoclinic tangle around x = x is quite small,
as Fig. 7 right panel illustrates for some special values of the
parameters. In the figure spl(x) for K = Ko = 1.89062177 (in
red) corresponds to a point of the first curve from above in the
figure at the center panel for = 0.4. For these particular values
of (K, u), as expected spl(zr) = 0, where x = 7 is a triple zero
for K = Ky while it becomes a single zero when K = 1.90 with
spl'(w) < 0. In general, when varying K away from the critical
value Kj such that K € (Ko — AK, Ky + AK) with 0 < AK < 1,
the triple zero at x = 7 bifurcates to three simple zeros, one of
them also at x = & while the remainder appear at both sides of
the latter, as the curve with K = 1.88 shows. For different values
of (Ko, o) and closer (in K) the results are similar to the ones pre-
sented here, the most significant differences are the amplitudes
of the splitting function and the size of AK when considering
parameter values on different curves « = (Ko, po, w) = 0.
Indeed, AK and the amplitude of the splitting function decrease
in ~ 1072 and ~ 1073 respectively, when (Ky, io) are taken in
two neighboring curves.

In Fig. 8 we display for K = 1 and different values of u the
beginning of the upper branches of the unstable/stable manifolds
(WH, W9) of the origin under the RSM. There are significant
changes with respect to the separatrices of the related Hamilto-
nian system, displayed in Fig. 1. The values of x considered are
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Fig. 8. The unstable manifold (in blue) and the stable manifold (in red) of the origin (0, 0)(mod 27 ) for K = 1 and « = 0, 0.3, 0.6 (top), © = 0.8, 0.9, 0.98 (bottom),
from left to right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the same as the ones in Fig. 1 with the addition of u = 0.9 to see
how significant changes between p = 0.8 and © = 0.98 start to
appear.

If we compare with Fig. 5 we check that for u = 0 one can
clearly see the splitting. This is related to the fact that K = 1 is
larger than Greene’s value for & = 0. On the other hand K = 1 for
u = 0.3 is well inside the red domain in Fig. 5 and for u = 0.6 is
still inside but close to the boundary. For these two values of u
the splitting is rather small. Between, say, x = 7 /2 and x = 37 /2
the manifolds seem visually coincident. For © = 0.8 the value
K = 1 lies outside the intervals of existence of RICs and the
splitting is quite visible again, of the order of magnitude of the
case u = 0. On the other hand for ©x = 0.9 and u© = 0.98 we
are far and very far, respectively, from the boundary of the red
domain in Fig. 5.

The points marked as P are homoclinic points and we denote
as Q the image of P under the RSM. The arc from P to Q is a
fundamental domain. In the case 4 = 0.8 there are two homo-
clinic points in a fundamental domain (i.e., there is an additional
homoclinic between P and Q, as it should be at least, because the
map is not only conservative but it is also orientation preserving).
But for 4 = 0.9 and, a fortiori, for ©x = 0.98 there are four
homoclinic points in such domain. For a value of u between
w = 0.8 and n = 0.9 a cubic tangency of W* and W* appears
at one of the homoclinic points, like it is shown in Fig. 7 right.
This produces the creation of two additional homoclinic points in
a fundamental domain.

All these results explain the ones shown in Fig. 5. For instance
the upper invariant curve in Fig. 7 center leads to the structure
of X} at both sides of the line K = 4u. In conclusion, for values
of the parameters in X}, that is when no significant overlap
of resonances takes place, the dynamics of the RSM could be
assumed to be well represented by a nearly integrable system.

As an example of the role of the homoclinic tangency we have
taken a value of (u«, K) in the third line, from top to bottom, of the
central plot in Fig. 7. For u = 0.5 one has K = 0.43906. For these
values of the parameters we computed a large number of iterates
starting at a point, close to the origin, in WY, It shows a small
chaotic domain. Then we took initial points on the x axis and in
the y axis, whose orbits give evidence of being invariant curves.
On the other hand we use the same value of u, but changing K
tor 0.43 and 0.45. In both cases the iterates of a point in W" show
a comparatively larger chaotic domain as Fig. 9 reveals. Similar
facts have been checked for other points in the curves of Fig. 7,
center.

3.2. The dynamics of the RSM for large K

In this subsection we investigate the dynamics of the RSM for
K > 2m (k > 1) since according to (10) obtained for small u,
accelerator modes corresponding to one periodic solutions (when
we look at them in T?) are present at k &~ |n].

In the SM for large values of the perturbation parameter (see
for example [4-7,18,19]), periodic solutions and/or accelerator
modes appear at particular values of the parameter k such that
when reducing the map to the torus T? they show up as small
stability islands embedded in the large chaotic sea. Except for
integer or semi-integer values of k, the SM approximates to a
random system, so the variance of the action grows linearly with
time, the diffusion being normal and the diffusion coefficient
is well approximated by the theoretical expected one in this
stochastic limit as it was shown in for instance [5]. Accelerator
modes at k = n,n + 1/2 lead to a linear variation of the action
with time, while the dynamics is confined near an accelerator
mode, and thus superdiffusion occurs, the variance scaling with a
square law with time. When we take into account that the iterates
of a set of initial conditions spend some time near an accelerator
mode, then escape from it and behave in a random way for some
iterates, can be captured again by an accelerator mode, etc., the
long term values of the variance increase as t? for some b € (1, 2).

It is well known that if we use v and k as in (11), and we
assume that the successive values of v are uncorrelated, the
diffusion coefficient, defined as the linear rate of evolution of the
mean square value {Av?), takes the value Dy (k) = k?/2 if u = 0.
In the general case one has the following result.

Proposition. For the RSM with parameters k, u and assuming
random motion, the theoretical diffusion coefficient is given by

1
Drsu(k, i) = k2 . (18)
1 _ l’LZ + /‘1 _ /'LZ
Proof. As defined,
1 2 2
Desu(k, ) = (Av?) =2 — [ — 0% g (19)
27 Jo (1 — wcosx)?

and letting aside the factor k%, we need to evaluate the integral
in (19). Using the integrals

/‘” cos 2x dx
o (1—2acosx+a?)?’

/” dx
o (1—2acosx+a?)?’
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Fig. 9. For u = 0.5 the plots, from left to right, show a part of the dynamics for K = 0.43, 0.43906 and 0.45, respectively. In red we display points obtained
from a large number of iterates of a point in W". In blue, for the central plot, iterations of initial points in the x and y axes giving rise to invariant curves. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

as given in [20] pp. 391-392, formula 3.616(2/10),and a = /(14
/1 — u?), one obtains (18). O

Clearly Dgsyy — oo when u — 1. To be more precise, setting

again 6 = 1 — u we get
) 1

Drsu(k, 1 —8) =k («/ﬁ 1+ O(JS)) (20)
when & approaches zero.

For the diffusion numerical experiments we consider 10°
nearby initial conditions in a fundamental domain of W" at the
origin with a maximum distance of 10~%. We iterate them up to
a final time t = N = 107 for each value of k with 0 < k < 5 with
a step Ak = 0.0005 and three particular values of u. For every
value of k the ensemble variance (Av?)(t) is computed and it is
sampled at equispaced values of t with At = 1000. Then for each
k we look for a power law of the form

(AV?) (k) = D(k)t"™®), (21)

The results are shown in Fig. 10, both for the exponent b(k)
and the coefficient D(k), for three representative values of u. For
every k the fit is done looking for a least squares linear relation
In({Av?)(t)) = InD 4+ bInt. In the right plot the theoretical value
for the diffusion coefficient for © = 0.95 given by (20) is also
included just for comparison.

We observe that for comparatively small i departures from
normal diffusion appear at k ~ |n|, (2|n| 4+ 1)/2 while for large w,
this is only observed when k < 1, consistent with the discussion
given after Eq. (10). Indeed, in case k ~ 1 one-period accelerator
modes exist whenever u© < 2/7 ~ 0.63 and in very narrow
intervals around large values of p as Fig. 2 reveals. Beyond this
value, the centers of the integer resonances are stable just for
k ~ 1 and when reducing the map to the torus, these resonances
should be the only relevant stability domains. For larger values of
k and mk/2 — 1 < p < 1 the integer resonances are destroyed
and thus no appreciable stable motion is expected in phase space
of the RSM (see below for a more detailed discussion).

When considering a large ensemble of n initial conditions
rather than a single one, the value of {(A"v)?) cannot be easily
averaged since expressions of the form kf (27 (u + v + kf (27 (u +
...)))) appear leading to the observed oscillations in the com-
puted values of the diffusion coefficient. This effect is also present
in the SM (see [5]) and since in this case f = sin(x) = sin(27u),
the above expression can be expanded in k by means of sums
of Bessel functions and therefore the numerical values of the
diffusion coefficient can be corrected. This explains the oscillation
in the red and green curves when k increases.

Deviations from the expected value of the exponent b < 2
at the values of k = |n| are due to several factors being the
most relevant: (i) roundoff errors when v takes very large values,
say v > 10% while f(2mru) ~ ©O(1); (ii) a finite number N of

iterates induces a lack of balance between those trajectories in
the ensemble that are trapped by a given accelerator mode and
those that escape. In the limit when N — oo one expects that
the balance holds. In other words, assuming that for a relatively
small number of iterates most of the points are not captured by an
accelerator mode, then a relevant fraction of them is captured and
remains near the accelerator for a large number of iterates. Thus
the fit to determine b and D can lead to values of b larger than 2
but at the same time D is rather small. The plot in Fig. 10 right
gives also evidence of this second fact.

In order to illustrate this let us consider ©w = 0.5 and k =
1.835 where we obtained an exponent b &~ 2.08 (see Fig. 10 left).
Repeating the procedure to determine b but considering an en-
semble of 10° nearby initial conditions and N = 10° iterates for
all of them we get b ~ 2.73. How to explain these unexpected
results?

The answer is clear: this can be due to roundoff errors. Assume
that for given (k, ) values some iterate of an initial condition
approaches an accelerator mode passing through a hole of a
Cantor set, moving there slowly, when we use (11) (mod 1), until
it escapes from the vicinity of the mode also through a hole of a
Cantor set. It can happen that in some (exact) iterate the point
moves in phase by a rather small quantity (say, of the order of
10719). But if v is very large (say, of the order of 10® or larger)
when we compute u as u 4+ v and reduce mod 1 to have it in
[0, 1) many digits are lost. Say, of the order of one half if we work
in double precision. That is, we only keep, say, the first 8 decimal
digits. It can happen then that these digits for (i, v) coincide with
the ones of (u, v). Due to roundoff the point is seen as a fixed
point and it never escapes from the vicinity of the accelerator
mode.

To decrease the roundoff errors one can use the scaled vari-
ables in (9) and the formulation in (11) but we replace the
variable v € R by the sum of an integer p and the decimal part of
v in [0, 1), that we denote again as v. Then we express the RSM
as

vt = v+ kf(u; ),

* * 0o— y* — ﬂ *
v u u+v*, uUu=u oor(u*), (22)
v = v* — floor(v*), *

p = p + floor(v™).

Note that it is essential to keep p if we are interested in the
variance of v (the scaled y). Otherwise we can skip it.
Proceeding in this way and using (22) instead of (11) for
the values of (k, i) that gave this strange behavior, we get an
exponent b =~ 1.285. This implies an exponent for the related
increase of the standard deviation which is 1.285/2, close to the
values obtained in [5] for different examples with the SM.
Around these values of © = 0.5, k = 1.835 the accelerator
mode corresponding to |n| = 2 appears, and we investigated the
dynamics of the RSM using (22) and the variables u, v. In fact, for
1 = 0.5 this accelerator mode appears when k = |n|(1—pu?)? =
/3. The bifurcation gives rise to an elliptic point that becomes
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in blue. Just for comparison, the theoretical diffusion coefficient Dgsy for p = 0.95 is also included in black in the right panel. For k > 1 the blue and black lines
are almost identical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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unstable at k ~ 1.8219066 leading to a 2-periodic elliptic orbit
surrounded by invariant curves. For k = 1.835 islands of period 4
exist around each one of two points of period 2 and the invariant
curves that surrounded both points are destroyed. We take initial
conditions near one of the points of period 2, say P, and iterate
them. For moderate times the trajectories remain close to P under
the square of the map, but for large times they escape if we do not
start very close to P. These orbits are depicted in Fig. 11 in red.
On the other hand, if we take initial conditions close to P and also
close to the center of some of the islands of period 4 around it,
the iterates remain bounded around the periodic points and they
are drawn in blue. Of course, there is a similar pattern when we
consider the image under the RSM, but we show just one of the
parts. The point P is located at the center of the very small set of
blue curves near the center of the plot.

We see that although it would be expected a similar dynamics
for all these nearby trajectories, those that appear in blue are
bounded to a small neighborhood of the periodic points, while
those in red, after a very large number of iterations, they escape.

3.3. The Shannon entropy

In order to show up all periodic solutions of the RSM for large
k, following [8,21] we take advantage of the Shannon entropy
to measure phase correlations. Theoretical background on the
Shannon entropy can be found, for instance, in [22,23]. However
a different approach to the entropy in dynamical systems is
presented for example in [24].

Let us summarize here the analytical formulation applied to
the RSM defined in the torus T?, ie, x,y € B = S. Let « be a
partition of B,

a={a;i=1,...,q}, (23)

a collection of q intervals or one-dimensional cells that cover B.
The elements a; are assumed to be measurable and disjoint.

For a given finite trajectory y = {(y;, x;) € BxB,i=1,...,N}
of the RSM, let y, = {x; € B,i =1, ..., N} C y. If n, denotes the
number of phase values in ai, then its measure is n;/N and the
entropy reads

1 Ny Ny 1 1
S(ye, @) = —Z(ﬁ>ln (ﬁ) —InN — Nanlnnk. (24)

k=1 k=1

For the partition (23) and any y, it is 0 < S(yx, @) < Ingq.
The minimum occurs when all the phase values are restricted to
a single element of « implying full phase correlation and thus
S = 0. On the other hand, the maximum entropy appears when
all the elements have the same measure, N/q, therefore S = Ingq.

In [8,21] it was shown that if ny follows a Poissonian distribu-
tion with mean N/q > 1, then the entropy (24) for uncorrelated
motion, say yy, reduces to

SOf . @)~ Ing — % (25)
Since we are dealing with the entropy of the phase values of
a given orbit of the RSM for large k, it is expected that all the
elements of the partition have a positive measure.
Notice that for random motion |S —Inq| = O(N~!) being
N > 1 the total number of iterates of the map, so for any finite
partition such that g/N <« 1 the entropy reduces to

S(yy» @)~ Inq.

Assuming that the approximation (25) partially holds for any
chaotic trajectory y but n; following a different non-Poissonian
distribution, the entropy of y, can be written as

q
S(yx, ) = Inq — ﬁR’

R>1, (26)
and if y, presents weak phase correlations, R ~ 1.
Introducing the information as
S(Vm 0[)

1 e (27)

I(yx, o) = Ing

1 In case of a partition in phase space, B x B, for any trajectory y, except for
random motion, only qo < q cells will have non-zero measure.
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Fig. 12. Information Z given by (27) for 1 < k <5 and different values of u. The peaks reveal the existence of small regular islands that correspond to accelerator

modes or high periodic solutions. The location of the peaks agrees with (10).

and using (25) and (26) the information becomes

' =7(y!], a) & ,
(- @) 2NIng -
oK (28)
I(yx, @) = =RT,
(v, ) 2NIng

Therefore the information thus defined measures deviations of
chaotic motion in the RSM with respect to a random system.
This result is the key point in revealing periodic solutions and/or
accelerator modes in the RSM.

In [8] the same approach was introduced to investigate peri-
odic solutions in the SM for large k, computing the entropy not
only for the phases but for the full trajectory on phase space
and in any case the analytical and numerical results were quite
similar.

We compute then the Shannon entropy/information (27) of
the phase values of the RSM for an ensemble of n, = 1000
random initial conditions centered at (u,v) = (1074, 1074) of
size 107* for N = 10° iterates. The parameters are such that
k € [1, 5] with Ak = 0.0005 and four different w values. Since in
the estimates given in (28) N denotes the total number of iterates,
in the present experiments N — n,N. We adopt a partition of
q = 5000 cells of the unit interval, so the condition n,N/q > 1
clearly holds.

The results are shown in Fig. 12 where we include the ex-
pected value for random motion where the information is given
by Z" defined in (28) and corresponds to a lower bound for the
information that, for the adopted values of the parameters, is
I" ~ 3 x 1077, For comparatively small values of u the peaks
arising at k(1+u) ~ |n|, (2|n|4 1)/2 could be identified, as in the
SM, with accelerator modes of period one and four respectively.
Some other peaks would correspond to trajectories of period two.

As discussed above, accelerator modes of period one appear for
(k, ) in the interval n? < k2(1+u2) < n?>+4/72, valid for small
(Fig. 2 provides an accurate stability interval for all w). Therefore
for k = |n| we can estimate a bound of u for the existence of these
periodic solutions, u© < ug, = 2/(|n|w) ~ 0.637/|n|, this value
of w4 is close to the actual threshold for w that can be derived

from Fig. 2 for instance for k = 1. However very thin stability
intervals arise at large values of u, u© > 0.9 that accumulate
towards u =1,k = 0.

For the p values considered at the top panel of the figure,
n = 0.15, 0.5, this inequality clearly holds in case of u = 0.15
whenever n < 4. For © = 0.5, the actual bounds are given in
Fig. 2.

On the other hand, the center of the integer resonances are
stable provided that k < 4/7 and such that © > pu. = wk/2 — 1.
Thus for k = |n| both conditions are fulfilled provided that k =
In| ~ 1 and thus u, = 7 /2 — 1~ 0.571, larger than the u values
adopted in the two figures at the top panel.

The opposite situation occurs for the figures at the bottom
panel where © = 0.75, 0.95, the center of the integer resonances

become again stable but only for k = 1and pu. < pu < 1.
Accelerator modes of period one only exist for k < 1 and u large
enough.

In the figure corresponding to © = 0.75, the large smooth
maximum at k = 1 is due to the stability domain of the integer
resonance and the small peaks observed for k > 1 are certainly
due to high periodic solutions and/or accelerator modes as Fig. 3
reveals. Remarkably is the result for 4 = 0.95, just a wide stable
region arising at k = 1 due to the integer resonance is the
dominant structure, no other relevant stable periodic solutions
seem to exist for k > 1 as predicted.

Now let us compute the entropy/information fixing k = 1, 2
and 0 < u < 1, for 2000 w values and considering the same
ensemble and parameters than in the previous experiments. The
results are shown in Fig. 13 where we observe that for k = 1 and
< 0.637 period one accelerator modes should exist (as well
as other high period solutions) and they would be responsible
of the particular structure observed in Z for u© < 0.6. For larger
values, u > 0.68 the information increases in a smooth way with
 as long as the integer resonance becomes wider. In the interval
0.571 < p < 0.637 both accelerator modes for k = 1 and the
integer resonances coexist as stable domains and within a similar
interval 0.5 < u < 0.68, it is observed a transition between
both regimes in the information. For k = 2 one period accelerator
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)
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Fig. 13. Z as a function of p for two particular values of k. The red line
corresponds to the random reference level given by z". (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

modes only exist for 4 < 7! & 0.32 and this threshold value
is observed in the figure. The remainder structures present in 7
should be attributed to high-periodic solutions of the RSM, since
the integer resonances are destroyed for any w at this value of k.
Indeed, from Fig. 3 we see that period 2 solutions are stable for
k=2and 0.6 < <0.9.

In order to visualize the phase space structure of the RMS for
k = 1 and u = 0.15,0.75 revealed by Z, instead of plotting
the iterates of some initial conditions as in Fig. 5, we proceed as
follows. We consider 2000 x 2000 initial values of 0 < u, v < 1.
Each initial condition is iterated under the RSM together with the
differential map up to N = 100 and the value of a fast dynamical
indicator at N = 100 is computed, in this case the conditional en-
tropy (see [25] for details). The (symmetric) conditional entropy
of nearby orbits, is such that it goes as BSAZNZ « 1 for regular,
stable motion, where A is the linear rate of divergence of nearby
quasi-periodic orbits and §y <« 1, is the initial of the norm of the
deviation vector. On the other hand, it behaves as 83 exp(20N) for
chaotic motion, where o is the maximum Lyapunov exponent of
a given trajectory. This fast dynamical indicator turns out to be
very useful when considering small number of iterates since it is
quadratic in the solution of the variational equations.

1

\'
0.8
0.6

0.4

0.2

0

08 U 1

0 0.2 0.4 0.6

Fig. 14 presents contour plots of the conditional entropy where
light blue colors denote highly chaotic, almost random motion
while dark blue represents stability. In the figure at the left,
where = 0.15 < u., the most relevant stable domains are the
one-period accelerator modes around v = 0, 1 and the period
two trajectory centered at vy = 0.5, up = 0.25, 0.75, the latter
values, after the scaling u — x, are the solutions of (15) for
k = 1,u = 0.15. For X = /2,37 /2 (up = 0.25,0.75) the
stability interval (16) reduces to ku < 2/7 and thus the centers
are stable for k = 1 and u < 0.637. On the other hand, for the
period two orbit at vg = 0.5, ug = 0, 0.5 one has instability as
follows from (16).

As mentioned, the period 2 orbit which appears at (0.25, 0.5)
and (0.75, 0.5) is stable. For concreteness consider the point P =
(0.25, 0.5). Around P one finds invariant curves such that moving
away from P they approach a last curve which is close to a right-
angled triangle. Close to what could be seen, in some sense, at
the vertices of this triangle there are three points in a period-3
unstable orbit around P (under the square of the map, of course).
Globally one has a period-6 unstable orbit. One of the points on it
is ~ (0.25586307, 0.50308448). This orbit is hyperbolic and the
filaments that one can guess in the plot, tending to (0.25, 0.5) (3
of them) and to (0.75, 0.5) (the other 3), are nothing else that
points rather close to the branches of the stable manifold of the
period-6 orbit. They appear in dark colors because most of the
iterates remain close to the period-6 orbit.

In the figure at the right, that corresponds to u = 0.75 > u.,
we observe a large domain of stable motion that corresponds to
the integer resonances, since k < 2(1+ w)/m. On the other hand
period one accelerator modes do not exist because u > 4. The
observed small islets of stability are due to high periodic solutions
of the map as revealed by Fig. 3.

Thus all these “ordered” dynamical structures that appear in
the phase space of the RSM for these particular values of the
parameters induce strong correlations that was measured by the
entropy.

As an additional information, we mention that in case of k =
1,4 = 0.5, starting from P = (0.222, 0.5) after 10° iterations
of the map, the iterates cover completely the chaotic component
while if instead we follow the iterates from Q = (0.223,0.5),
invariant curves appear around the 2-periodic trajectory. For any
starting point lying outside the stability zones, the corresponding
iterates also fill up almost uniformly the full chaotic region. For a

1

\"
0.8
0.6

0.4

0.2

0
08 U 1

0 0.2 0.4 0.6

Fig. 14. Phase space of the RMS for k = 1 and p = 0.15 (left) and p = 0.75 (right) where light blue colors denote highly chaotic motion while dark blue represent
stable motion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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grid of 200 x 200 pixels, 680 of them appear empty (stable zones),
546 present only a few iterates (around the stable zones) while
in the remainder 38 774 pixels, the average number of iterates is
25594.3 with a standard deviation of 161.3. In case of & = 0.6
a similar behavior is observed but for P = (0.225,05) and Q =
(0.227,0.5).

Therefore we observe that the phase space of the RSM for large
values of k is nearly ergodic whenever the latter takes values
outside of any stability interval. On the other hand, if k adopts
values within a stability interval the phase space presents two
components, a small one corresponding to islets of stability and
a large chaotic component with a nearly uniform distribution.

4. Conclusions

Along this paper we investigate the dynamics of the RSM. We
show that this system has many differences with respect to the
SM. Indeed, its associated Hamiltonian possesses all the Fourier
spectrum at order K in both x and t, with bounded amplitudes
that depend on w. This fact leads to several unexpected con-
sequences. For instance, most of the resonances are stable for
comparatively large values of K and therefore the system could be
well approximated by an integrable one for suitable values of .
We also have, among many other peculiarities, that for moderate
values of u RICs exist for values of K much larger than for the SM
and even for the SM with two harmonics.

On the other hand for large values of K, even if p has a
moderate value, and for u close to 1, even if K is moderate, the
RSM approaches an ergodic system.

All results are supported by analytical estimates as well as
many numerical experiments, some of them required quadru-
ple precision. The implementation of the Shannon entropy to
measure phase correlations allow us to show the location of all
periodic solutions and therefore to get a clear picture of the
dynamics of the RSM in the chaotic regime.
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Appendix. The § distribution and related topics

Assume we have a simple map of the form

y=y+fx),

being f a 2m-periodic function. It can be seen as one of the
possible discretizations of the flow x = y, y = f(x), Hamiltonian
in the present case, with Hamiltonian H(x, y) = y*/2 —h(x), being
h a primitive of f. To try to represent the map as the time-2x
flow of a Hamiltonian we can use a periodic § distribution. We
denote as 8,,(t) the distribution which consists on the sum of §
distributions at all the multiples of 2. Then we can rewrite the
equations as X =y, y = f(x)8,,(t). Note that if at t = 0 the values
of (x, y) are (Xg, yo), we want to have the image (x1, y1) under the
map as y1 = Yo+f (o), X1 = xo+y1. Using y = f(x)82-(t) produces
the desired jump in y, but then x is increasing with velocity y;
during time 27 instead of time 1. We can modify the equations
and the Hamiltonian as
.y . ¥
x=o-—,  y=f(X)a(t),  H(xy,t)=>— —h(x)5(t).

2 47

Why are we interested in introducing 8, (t)?

The idea is that we can use the Fourier expansions of h(x) (or
of f(x)) and of §,,(t) to try to identify resonances. This is used in
Section 3 to compare the amplitudes of the resonances in some
numerical examples. To this end we recall the expansion

X=x+y,

1 1 1 —
82 (t) = o + P ;cos(mt) =5 m;oo cos(mt). (29)

We recall that for the RSM, the functions f and h, that were
denoted as f(x; i) and KVy(x; ), are

sinx

1
fx, u)=K Vo(x; 1) = ——In(1 — p cosx),
"

1—pcosx’

last one for u # 0. As Vp(x; p) is an even function, the Fourier
expansion only contains cosines functions and a constant term,
which is irrelevant. Concretely we can write

Volx: ) = ) () cos(Ix). (30)
=1

Proposition. For | > 1 one has

2,%171

T+ )

for the coefficients in (30).

G(u) (31)

Proof. According to [20] p. 391, for a*> < 1, n > 1 one has

. . .
/ sinnx sinx d za“”
0

X =
1 — 2acosx + a2 2

Using a = u/(1 + /1 — p?) one obtains the coefficients of the
expansion for f(x; u)/K and then, by integration, the values in
(31) follow. O

Multiplying Vo (x; i) by 82, (t) one obtains the potential V(x, t;
) given in (5).

Remarks.

e We note that the first coefficient of sinx/(1 — wcosx) is
Ci(n) = 2/(1 + /1 — u?) while the Ith coefficient is

Ci(p)(p/(14+/1 — u2))=1. That is, they decrease geometri-
cally. As an example, the maximum of sinx/(1 — p cosx)

is equal to 1/4/1 — u? and is attained when x = x* =
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cos~!(u), x* € (0, w/2). If we want to see how many terms
are needed to have in x* a value larger than 0.99 of the
maximum, one needs 5, 16 and 51 terms for © = 0.9, 0.99
and 0.999, respectively. This is in contrast with the SM with
two harmonics, where depending of one parameter the ratio
is arbitrary. See, e.g., [17] Section 6.
It is worth to comment on what happens if we use a trun-
cation of the Fourier series of §,,(t) and integrate the cor-
responding ODE. This allows to use standard integration
routines with step-size control. Let us denote as Sﬂ(t) the
truncation of the series using |m| < M. It is easy to obtain
the identity

M .
Z cos(mt) = L sin((2M + 1)t/2)

1
M —_
S2n(t) = 27 sin(t/2)

2
m=-—M
if t # 0 and which tends to the maximum (2M + 1)/(27)
whent — 0(mod 2x).In [0, 27] it decreases from the max-
imum to zero in [0, 27t /(2M+-1)] and increases from O to the
maximum in [272M /(2M 4 1), 27 ]. The function is bounded
by the curves 1/(2m sin(t/2)) and —1/(27x sin(t/2)), being
tangent to them at the points of the form (2k 4+ 1)7 /(2M +
1), k = 0,...,2M for k even and odd, respectively. For
M large the function has fast oscillations between the two
zeros mentioned above.
But looking at the time-27 map, when t goes from 0 to 2z,
in the ODE x = y,y = f(x)8) (t) half of the change in y
comes around t = 0, essentially nothing until the vicinity
of the last zero before 277, and the other half of the change
comes around t = 2. Hence the time-277 map in that case
can be written as (x, y) — (X, y) where, approximately,

Yax =Y +fX)/2, X=x+Yax =x+y+f(x)/2,
Vy=y+fX)/2+flx+y+f(x)/2)/2,

which can be far from what we want.

A possible solution consists in having the total jump of y at
the beginning. For this we can apply a shift to ¢ in 8} (t).
We can look for a value of s > 0, close to zero, such
that ffs 8’2"7'T(t)dt = 1. Then the jump in y near t = 0 is
close to f(x) getting y and, as f52”_5 8M (£)dt = 0 no more
changes are produced until t = 27 —s. In a similar way the
speed of change of x is, approximately, y/(27) in the range
[—s,27 —s] and we get x = x + .

Hence, the equation for y can be changed to y = f(x)83! (t —
s). It is clear that s depends on M but one can check that the
product s(2M+1) tends to &~ 3.8529 when M — oo, with er-
rors O(M~2). As an example, we use (i, K) = (0.978, 0.042)
like in Fig. 4 right, and start at (x, y) = (0, 0.07 x 2). After
108 iterates and keeping data after every 1000 iterates, the
plots using iterations of the map and of the time-27 flow,
with M = 50, look almost identical. The only differences are
small variations in the density of points.

As an additional example weused K = 1, « = 0.1, 0.2, ...,
0.9 and a 100 x 100 lattice for (x, y) € [0, 27 )?. Comparing
iterations of the map and the time-27 flow one has maxi-

mal differences of the order of 1073. It has been checked for
values of M equal to several hundreds.
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