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Remembering Jürgen Moser 90 years after his birth

1 Introduction

Jürgen Moser, one of the greatest mathematicians of the XXth century, did a lot of works
concerning quasi-periodic aspects of the dynamics. Beyond the persistence of invariant curves
in perturbations of integrable area-preserving maps [13] (equivalent to persistence of tori in
some Hamiltonian systems), when the frequency on the curves satisfies suitable Diophantine
conditions, a non-degeneracy condition is satisfied and the perturbation is small enough, he
produced a huge amount of papers, books and contributions to books concerning many other
aspects of quasi-periodic phenomena. See, e.g., [14].

In this paper we deal with a related problem. We study the splitting of separatrices of a
periodically perturbed integrable system that depends on a small parameter, say ν, for which,
due to a combination of a frequency of the integrable problem and the one of the periodic
perturbation, the splitting shows quasi-periodicity.

In [9] one has considered as model a Hamiltonian-Hopf bifurcation of a fixed point, that we
assume located at the origin, in a Hamiltonian system of two degrees of freedom. As it is well
known, before the bifurcation the point is totally elliptic with eigenvalues ±ω1i ,±ω2i being ω1

and ω2 rather close. Then, at the bifurcation the eigenvalues become ±ωci double and after
the bifurcation the systems has a complex-saddle fixed point at the origin, which eigenvalues
±ν ± ωi , being ω close to ωc and ν > 0 small. Using the Sokolskii normal form around the
fixed point, truncated at order four and with suitable sign of the four order terms, its stable and
unstable manifolds are compact and coincide, the homoclinic solutions tend to the fixed point
as sech(νt) and have periodic factors with frequency close to ωc. After a suitable normalization
we can consider that these factors have unit frequency. Then the effects of a perturbation with
a factor which depends periodically on time with frequency γ are studied. See Sect. 2 for a
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summary on this model and Sect. 3 for a sample of results. In the present study the parameters
which appear in the perturbation are kept constant. The relevant small parameter will be the
real part ν of the eigenvalue at the origin. See [9] for changes associated to some variations of
the parameters which appear in the perturbation.

A Hamiltonian-Hopf bifurcation appears in problems related to physical phenomena. As
a recent example we refer to [15] where the problem of the dynamics of the hydrogen atom
in a circularly polarized microwave field is shown to display such bifurcation. For a detailed
description of the behavior of the electron and simulations of the phase space structure see [1].

It is well known that if only one angle plays a role and its frequency is fixed, say equal to 1
after suitable scaling, the splitting depends on one angle and the amplitude is, generically, of the
order of exp(−c/ν). This is clearly an averaging effect. But in the quasi-periodic case, if beyond
that frequency there is another one equal to γ /∈ Q, then combinations like k1 + k2γ, k1, k2 ∈ Z,
appear as frequencies. They can be small, specially if (k1, k2) is selected as (Nk,−Dk) where
Nk/Dk is a best approximant (BA) of γ. In such case the averaging effect is worse [18] and
one can expect an splitting amplitude of the order of exp(−c/√ν) or similar. See again [9] and
Appendix B in particular.

It is reasonable to expect that the harmonics associated to best approximants of γ (HBA for
short) give the largest contributions to the splitting. But this depends on the amplitudes of the
related coefficients. If they are zero or very small, the contribution will be negligible. Hence,
one can make assumptions on the rate of decay of the coefficients of the harmonics which appear
in the perturbation. In Sect. 4 we take into account this fact and assume an exponential decay,
say of the form exp(−|k1|ρ1 − |k2|ρ2), ρ1 > 0, ρ2 > 0, for the harmonic with frequency k1 + k2γ.
See also Remark 5.2. at the end of Sect. 5 for comments on other cases.

The HBA are expected to be the dominant harmonics for some ranges of ν. One can question
if there are HBA which are never the dominant ones. One can say that they are “hidden”. This
has been observed in [9] for some of the considered values of γ. The main goal of the present
work is to characterize the presence of hidden HBA and how this depends on the arithmetic
properties of γ. The results concerning this topic are in Sect. 5.

The values of γ considered in Sect. 3 are either quadratic irrationals or numbers whose
continued fraction expansion (CFE) has very special properties. These CFE do not satisfy some
of the “typical” properties which appear for sets of irrational numbers of full measure. In Sect. 6
we consider several examples (chosen in a rather arbitrary way), we check that there is a strong
numerical evidence that they satisfy these typical properties and then we look at some curious
property concerning the distribution of hidden HBA.

The same kind of phenomena appears in another context in many papers, related to the
exponentially small splitting of the invariant manifolds of whiskered tori in any dimension.
The existence of the splitting was studied in detail in [16] and the results were summarized
in [17], where different values of the ratio of frequencies γ are studied numerically in some
examples. The first three examples concern values of γ of constant type (the quotients in the
CFE are bounded). Last example is not of constant type, but is satisfies a bound of the form
|p− qγ| > c log(log(q))/(q log(q)) for c > 0 and all q ≥ 3 (see Lemma 7.3 in [9] for a proof). For
cases in which one considers also the existence of resonant frequencies in the ones which appear
in the splitting of whiskered tori we refer to [12]. Several other papers are concerned with the
splitting, transversality and continuation of transverse homoclinic orbits, using different types
of frequency ratios (see [6, 7, 3, 4, 5]). The numerical simulations which appear in some of these
papers show also evidences of the existence of hidden HBA.

Before ending the Introduction we should add some comments on the fact that the exponen-
tially small character is due to averaging properties. In [18] one considers the averaging of fast
quasi-periodic forcing in a general setting, giving rough upper bounds, looking at the effects on
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a perturbed pendulum and presenting numerical examples showing the changes on the dominant
harmonics which show up. A careful theoretical study with good estimates appears in [8]. In [19]
one considers the effect of the splitting in the classical Arnold’s example of diffusion with two
equal parameters. The reader can ask why a term with frequency Nk − γDk, where Nk/Dk is a
best approximant of γ should be considered as a “fast” frequency because, in fact, it can be very
small. The reason is that in the present problem the rate of increase of the distance from the
fixed point behaves rather slowly, as exp(νt). If one changes time to a new time t̂ = νt the the
rate is the usual exponential. But the change of the time scale means that the “slow” frequencies
should be multiplied by 1/ν. According to the results in Section 4, trying to minimize (9), for
the approximant Nk/Dk which becomes dominant for a given value of ν, it turns out that the
scaled frequency is of the order of ν−1/2 in the case of constant type γ and can be larger in the
other cases. So, they can be considered as “fast” frequencies.

2 The model and a first perturbation

Consider a Hamiltonian-Hopf bifurcation which is produced at a fixed point, located at the
origin, of a Hamiltonian with two degrees of freedom. When the fixed point is of complex-saddle
type, keeping terms in the normal form up to degree 4, selecting the sign of the terms of degree
4 so that the invariant manifolds of the origin become bounded, and scaling in a suitable way,
one has the integrable Hamiltonian

H0(x1, x2, y1, y2) = Γ1 + ν(Γ2 − Γ3 + Γ2
3), (1)

where ν > 0, Γ1 = x1y2 − x2y1, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2. The functions
G1 = Γ1 and G2 = Γ2 − Γ3 + Γ2

3 are first integrals of the system, functionally independent
almost everywhere and in involution. They are equal to zero along the invariant manifolds of
the origin for H0. In this paper we shall consider the variations of G1 along the manifolds, due
to a perturbation. The variations of G2 are quite similar, see [9]. We recall that the eigenvalues
at the origin are ±ν ± i .

The invariant manifolds W u/s(0) are given by {H0 = 0} ∩ {Γ1 = 0}. They are foliated by
homoclinic orbits Φψ0

(t) = (x1(t), x2(t), y1(t), y2(t)) given by

x1(t)=−R1(t) cos(ψ), x2(t)=−R1(t) sin(ψ), y1(t)=R2(t) cos(ψ), y2(t)=R2(t) sin(ψ), (2)

being ψ= t+ψ0, R1(t) =
√
2 sech(νt) tanh(νt), and R2(t) =

√
2 sech(νt). The value of ψ0 is an

initial phase. In particular, Φψ0
(t) has singularities at t = (2n + 1)i π/2ν, n ∈ Z. See [9] for

details. In particular, if we restrict the attention to the R1 and R2 variables, one recovers the
well known separatrix of Duffing’s model.

Then, following again [9], one adds a perturbation εH1 of the form

H1(x1, x2, y1, y2, t) = g(y1)f(θ), g(y1) =
y51

d− y1
, f(θ) =

1

c− cos(θ)
, θ = γt+ θ0, (3)

where θ0 is a phase. This choice of H1 keeps the terms up to order four in H = H0 + εH1

unchanged. In particular the fixed point of the perturbed problem is still the origin. We note
that, when evaluated along the unperturbed homoclinic orbits, H1 contains harmonics with
argument k1ψ + k2θ for all the values of k1 and k2. For concreteness one has used fixed values
d = 7, c = 5 and ε = 10−3 and then ν is considered as the perturbative small parameter. We
shall mention later the values of γ that have been used. The expressions in (3) show that in the
Taylor (resp. Fourier) expansion of g (resp. f) one passes from one term to the next one by
dividing the coefficient by d (resp. by ρc = c+

√
c2 − 1).

The perturbation produces changes in W u/s(0) leading to splitting: the manifolds do not
longer coincide. For concreteness we look at the splitting in a Poincaré section, Σ. It is convenient
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to define Σ as the place where R2 reaches a maximum or, equivalently, whereR2
2 = y21+y

2
2 reaches

a maximum. In the unperturbed case this would be R2 =
√
2. In the parametrization given for

R2 this corresponds to t = 0. The intersection of W u(0) with Σ can be seen as a graph on a 2D
torus where the angles correspond to two phases ψ1, θ1 ∈ [0, 2π), which are the values of ψ, θ for
a point in W u(0) when it reaches Σ. The same happens for W s(0). The splitting is given by
the difference of the functions describing the graphs.

For simplicity we present here the splitting effect produced in the first integral Γ1. A similar
method can be used for any other independent first integral, see [9]. To compute the splitting
two different approaches have been considered:

1. A numerical approach. We begin with W u(0) for the perturbed problem. One starts
at a local approximation near the origin with values of the initial phases ψ0, θ0 ∈ [0, 2π) in
an equispaced lattice (in practice we use 512× 512 points). Then the equations of motion
are integrated using a high order Taylor method until the solutions reach Σ.

To have a nice representation of the values of Γ1 when we reach Σ, say F̃ u1 , we would
like to have values of ψ, θ, to be denoted as ψ1, θ1, also in an equispaced lattice. This is
achieved using Newton method.

In this way F̃ u1 is seen as a graph in Σ. A similar thing is done for W s(0), getting the
intersection with Σ as the graph of F̃ s1 . The splitting is given by ∆F̃1 = F̃ u1 − F̃ s1 .

2. An analytic approach. To this end we use the first order variational equation wrt ε,
that is the first order Poincaré-Melnikov method. This first order splitting is given by

∆F
(1)
1 = ε

∫ ∞

−∞

{Γ1,H1} ◦ Φ(s) ds, (4)

where we recall that Φ denotes the homoclinic solutions for H0. Due to the shape of the
perturbation one has in (4) that {Γ1,H1} = y2

dg
dy1

(y1)f(θ). To be able to compare with

∆F̃1, the initial phases in the angle ψ in Φ and in the angle θ are taken equal to ψ1 and
θ1, respectively.

Due to the powers of cos(ψ) and cos(θ) which appear in H1 (and also the term in sin(ψ)
due to y2) the integral in (4) contains harmonics of the form sin(k1ψ1−k2θ1), for arbitrary
integer values of k1 and k2, with numerical factors Fk1,k2 that follow from the integrals.
The fact that no terms in cos(k1ψ1 − k2θ1) appear is due to the parities of the functions

in {Γ1,H1}. These numerical factors involve the integrals I1(s, ν, n) =

∫

R

cos(st)

(cosh(νt))n
dt,

where n ≥ 1, s = k1 − k2γ, and factors decreasing as negative powers of d and ρc. See [9]

for analytic expressions for I1(s, ν, n) and the explicit sums that give the value of ∆F
(1)
1 .

In the argument of the harmonics, k1ψ1−k2θ1, it is not restrictive to assume k1 > 0. Also the
harmonics that will be more interesting should have k2 > 0 for small values of ν. The reason is

that the associated frequencies in the computation of ∆F
(1)
1 should be (relatively) small. Large

frequencies average very well and they have small contributions to the splitting. Even more, as
it will be discussed in Sect. 5 the relevant contributions come from k1 and k2 such that k1/k2 is
a best approximant of γ.

To have a feeling about how W u(0) change under the effect of the perturbation one should
recur to a high dimensional plot, because of the 4 variables and the effect of time. The manifolds
are three-dimensional, one variable measuring the distance to the origin near the fixed point and
the two angles ψ, θ. A simpler way could be to plot the projection on the (x1, y1) variables when
x2(t) = 0. With the parameters d, c and ε used for the perturbation, the plot is extremely close
to the manifolds of Duffing’s problem. It can be checked in several figures in [9] that, even for
relatively large values of ν (e.g. ν = 1/16) the difference with the figure eight Duffing’s manifolds
is below 10−3.
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3 A sample of results

Initially we have restricted the study of the splitting to the value of γ equal to the golden mean
(
√
5− 1)/2.

The results obtained using both approaches in Sect. 2 have been compared for values of ν
not too small (i.e., for ν ≥ 2−7) using values with step 0.005 in log2 scale. For the numerical
approach quadruple precision has been used and this range is feasible in a reasonable CPU time.

It is relevant to remark that, concerning the analytical approach for a concrete value of
ν, there are infinitely many terms in the Poincaré-Melnikov expressions. One has selected
harmonics such that their contribution is larger than 10−10 times the largest contribution. For
values of ν < 10−3 at most three harmonics satisfy this criterion (for values of the order of
0.1 this number increases to 50 or more). Furthermore, in turn, every harmonic comes from

infinitely many terms in ∆F
(1)
1 , but only a moderate number of them plays a role. This number

can be just 1 for ν < 10−4. See [9] for full details.

The first evidence is that, looking at the maximal value of the splitting in the domain
ψ1, θ1 ∈ [0, 2π), the results using both approaches are essentially coincident.

Next point of interest is what happens for smaller values of ν. Typically only one harmonic
plays a role for some range of ν, then a second harmonic has also a relevant contribution when
ν decreases, and a new decrease of ν implies that this second harmonic becomes dominant and
the contribution of the first one is less relevant.

To illustrate this fact one has considered several values of γ: γ0, γ1, γ2, γ3, γ4, where γ0 is the
golden mean, γ4 = e−2 and the other values are variants of γ0 concerning the CFE. Concretely,
the CFE used for these 5 values of γ are

γ0 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .],
γ1 = [0; 10 × 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, 1, . . .],
γ2 = [0; 10 × 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 . . .],
γ3 = [0; 10 × 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .],
γ4 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . .],

(5)

where 10× 1 means 10 consecutive quotients equal to 1.

The Fig. 1 shows the amplitudes of the harmonics of the splitting associated to best approx-
imants of γ (HBA), and how they evolve as a function of ν for small values of ν. This is done for
the five values of γ given before. The horizontal variable in the plots is log10(ν), while the ver-
tical variable displays the logarithm of the amplitude after a suitable scaling (see the caption).
See Sect. 4 for the justifications of the scalings used in the different cases. For concreteness if the
CFE of γ is [q0; q1, q2, q3, . . .] the k-th approximant is denoted as Nk/Dk = [q0; q1, q2, q3, . . . , qk].
The related HBA is of the form exp((Nkψ1 −Dkθ1) i ).

In the plots the best approximants related to the dominant harmonic (i.e., the ones giv-
ing a larger contribution, larger vertical coordinate in the figure) going from right to left are:
from 233/377 to 317811/514229 for γ0; from 89/144 to 43627/70588 for γ1; from 89/144 to
146794/237511 for γ2; from 144/233 to 67774/109663 for γ3, and from 334/465 to 286565/398959
for γ4.

Consider two different best approximants of γ, Nk/Dk and Nl/Dl. Then the value of ν for
which the amplitudes of the related HBA coincide will be denoted as νk,l. We shall see later in
Sect. 5 that, under suitable conditions stated in Sect. 4, this value is unique.

In the case of γ0 we see that the maxima tend to a constant and that the differences between
log(νk−1,k) and log(νk,k+1) also tend to a constant. Both things are proved in [9]. The fact
that the maxima in the five cases tend to a constant when ν → 0 is due to the scalings used
in the plots. For γ1 also all the HBA dominate in some range of ν but the ones such that next
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Figure 1: Plots of the contributions FNk ,Dk
to the splitting of harmonics associated to different

best approximants, Nk/Dk, of γ. On the top row the results for γ0, γ1 and γ2 are shown from
left to right. On the bottom one they are shown for γ3 and γ4 also from left to right. The
horizontal variable is log10(ν) in all the plots while the vertical variable is a scaled version of
log(FNk ,Dk

). Concretely, in the top row one plots
√
ν log(|FNk ,Dk

|/ε), while in the bottom row
one plots

√

ν log(1/ν) log(|FNk ,Dk
|/ε). See the text for comments on these results and the reason

for the different scalings.

quotient is qk+1 = 10 dominate in a larger range and the maxima are much higher. In contrast
for γ2 there are HBA which are never dominant. They are “hidden” and correspond to quotients
qk = 10 which are followed by a quotient equal to 1. For γ3 and γ4 all HBA dominate in a range
of ν but for γ4, as it happens in the case of γ1, for some of the harmonics the range in log(ν) is
rather short. The fact that for these harmonics, which dominate in short ranks of ν, the maxima
are decreasing is due to the scaling used in the plot.

Summarizing, several questions appear. Why some HBA are hidden and never dominate for
any value of ν? Which conditions should satisfy? How is this related to the quotients in the
CFE of γ? In the next section we state the assumptions to carry out the analysis and in Sect.
5 we present the results. The existence of hidden HBA was already reported in [?] in the case
of a non-quadratic frequency γ of constant type.

4 Some conditions on a family of perturbations

For concreteness and to have simple representations of the coefficients of the harmonics which
appear in the splitting, obtained from (4), we shall make some assumptions. They are essentially
satisfied, when ν is small enough, in the case presented in sections 2 and 3. As it was considered
in the model, see (3), we assume that the perturbation is a product of two functions. One of
them depends on (x1, x2, y1, y2) and, therefore, when evaluated on the unperturbed homoclinic
trajectories, it tends to zero when t → ±∞ and depends periodically on ψ, see (2). The other
function is periodic in θ.

• The homoclinic connections tend to zero when t → ±∞ like the R2 function before, i.e.,
like sech(νt) or similar.

• The part of the perturbation which depends on the angle ψ appearing in the homoclinic
connections, say P1(t, ψ), is of the form

∑

j≥1Aj(t) sin(jψ), with ψ = t + ψ1, and the
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coefficients Aj depend on powers of sech(νt) and ||Aj || behaves as exp(−jρ1), for t real,
with ρ1 > 0.

• The periodic part of the perturbation which depends on the angle θ and has frequency γ,
say P2(θ), is of the form B

∑

j≥1 exp(−jρ2) cos(jθ), B ∈ R, with θ = γt+ θ1 and ρ2 > 0.

Then the contribution to (4) which appears multiplying sin(k1ψ1−k2θ1) requires, essentially,
to evaluate terms of the form

εC exp(−k1ρ1 − k2ρ2)I1(s, ν, n), I1(s, ν, n) =

∫ ∞

−∞

cos(st)

(cosh(νt))n
dt, (6)

where s = |k1 − k2γ|, C contains the factor B and some combinatorial numbers depending on
k1, k2. Other terms cancel because the integrand is odd or can be neglected because the related
frequency is k1 + k2γ and averages much better. The integrals I1(s, ν, n) can be obtained from
I1(s, ν, 1) = (π/ν) sech(sπ/(2ν)) and I1(s, ν, 2) = (sπ/ν2) cosech(sπ/(2ν)) by recurrence.

Taking logarithms in (6) and neglecting the contribution of log(ν), log(ki), i = 1, 2, of con-
stant terms and terms relatively exponentially small in ν in front of dominant terms, one can
assume that the largest contributions to the logarithm of the expression (4) are of the form

− k1ρ1 − k2ρ2 −
sπ

2ν
. (7)

Being interested in the largest values of (7) it is advisable to take k1/k2 as a best approximant
Nk/Dk of γ, to minimize s. Furthermore, Nk in front of ρ1 can be approximated by γDk with
negligible errors O(D−1

k ). We can replace −Nkρ1 −Dkρ2 by −Dk(γρ1 + ρ2). For simplicity we
introduce ν̂ = 2ν(γρ1 + ρ2)/π and, immediately, we rename ν̂ as ν again. Finally we recall that
s can be expressed, using CFE, as

sk =
1

Dkck
, ck = c+k +

1

c−k
, c+k = [qk+1; qk+2, qk+3, . . .], c−k = [qk; qk−1, qk−2, . . . , q1] (8)

(see [9] for details). In particular this shows that a large value of qk+1 implies that Nk/Dk is a
very good approximant of γ.

Hence, we are interested in minimizing

T (ν,Dk) = Dk +
sk
ν

= Dk +
1

νDkck
. (9)

Given a value of ν the approximate value of Dk minimizing T (ν,Dk), and therefore giving the
largest amplitude of the contribution to the splitting of this HBA, depends on the arithmetic
properties of γ.

From the expression of ck one has qk+1 < ck < qk+1 + 2. Let us consider several cases for
γ. If it satisfies |p − qγ| ≥ c/qτ , for some τ ≥ 1, c > 0 and for all q > 0, p ∈ Z (a typical
Diophantine condition, including the constant type numbers when τ = 1) then a bound of
T (ν,Dk) is O(1/ν1/(τ+1)) in agreement with the upper bounds in [18]. Note that in that case
one has qk+1 = O(Dτ−1

k ). The plots on the top row of Fig. 1 are examples for which τ = 1.
This is what suggests to scale multiplying by

√
ν.

We can consider another type of condition, like |p − qγ| ≥ c/(q(log(q))σ), again for some
σ ≥ 1, c > 0 and for all q > 1, p ∈ Z. In that case a bound of T (ν,Dk) is O((ν(log(1/ν))σ)−1/2).
This is very close to the cases in the bottom row of Fig. 1 using σ = 1. The difference is the
appearance of an additional factor in log(log(1/ν)), changing very slowly. This is what suggests
to scale multiplying simply by

√

ν log(1/ν).

We remark that the set of irrational numbers which satisfy the mentioned conditions, either
|p − qγ| ≥ c/qτ , with τ > 1, or |p − qγ| ≥ c/(q(log(q))σ), with σ > 1, for some c > 0, is of full
measure. See [10] for a general setting.
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5 The “hidden” best approximant harmonics

To study the hidden character of some HBA we shall assume that ν is small enough and,
therefore, the related denominators are large and the approximation of Nk by γDk is sufficiently
good. That is, minus the logarithm of the contribution of the best approximant Nk/Dk to the
splitting, with a suitable linear scaling of ν as explained, is given by (9).

The functions T (ν,Dk), for a fixed value of Dk, are monotonically decreasing in ν. A change
from the best approximant Nk/Dk to Nl/Dl, l > k, is produced for a value of ν = νk,l such that
T (ν,Dk) = T (ν,Dl). This value of ν is unique and given by

νk,l =
sk − sl
Dl −Dk

. (10)

It is clear that the denominator is positive. To see that the value of νk,l is positive (so that for all k
and l>k there is a change), one must have sk−sl>0. To prove this it is enough to show sk>sk+1.

Recall from (8) the expressions of sk, ck, c
+
k and c−k . In particular one has c−k = qk +1/c−k−1

and c+k = qk+1+1/c+k+1. To prove sk > sk+1 is equivalent to prove Dk+1ck+1 > Dkck. Using the

fact that Dk+1 = Dk(qk+1 + 1/c−k ) = Dkc
−
k+1, one can divide by Dk both sides of the inequality

and get that it is enough to show c−k+1ck+1 > ck. Simple computations give

c−k+1ck+1 = c−k+1(c
+
k+1 + 1/c−k+1) = c−k+1c

+
k+1 + 1 = c+k+1(c

−
k+1 + 1/c+k+1), (11)

and also
ck = c+k + 1/c−k = qk+1 + 1/c+k+1 + 1/c−k = c−k+1 + 1/c+k+1. (12)

As c+k+1 > 1 the inequality is proved. In particular this shows that for k < l while if ν is large
one has T (ν,Dk) < T (ν,Dl), for ν approaching zero one has T (ν,Dk) > T (ν,Dl).

Assume now that for a given value of ν the dominant HBA (that is, the one such that
T (ν,Dk) is minimum) is the k-th one. As it has been just proved, all the νk,l, l > k, are unique
and positive. It can happen that νk,k+1 < νk,k+2 and, therefore, when decreasing ν, the passage
to dominance from the k-th HBA to the (k + 1)-th one, occurs after the passage from the k-th
to the (k+2)-th one. Hence, the (k+1)-th HBA will never be dominant. It is “hidden”. Figure
2 shows two simple examples of this fact.
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k

k+1

k+2
νk+1,k+2

νk,k+1
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Figure 2: Plots of log(T (ν,Dj)), with T as given in (9), as a function of log(ν) for three
consecutive values of j: in red for j=k, in blue for j=k+1 and in magenta for j=k+2. One has
νk+1,k+2 > νk,k+2 > νk,k+1, corresponding to the points in black. If the k-th HBA is dominant
in some range of ν starting at νk,k+2 then the (k+2)-th HBA is dominant in some range ending
in νk,k+2. The (k + 1)-th HBA is never dominant. The left data correspond to γ2 (compare
with the top right plot in Fig. 1), and the right one to a small modification, in order to see
in a cleaner way the intersection of the blue and magenta curves, of a case which appears for
γ = π − 3.

Now we state the main result concerning hidden HBA.
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Theorem 5.1 Assume that minus the logarithm of the amplitude of the contribution of a HBA
to the splitting is given by (9) and that for some range of ν the k-th HBA is dominant. Then if
the (k + 1)-th HBA is hidden, i.e., is not dominant for any value of ν, the following properties
hold:

1. It is isolated, i.e., the (k+2)-th HBA is not hidden. That is, no two consecutive HBA can
be hidden.

2. The next quotient, qk+2, should be equal to 1.

Remark 5.1. We note that the change of scale of ν introduced just before (8) is not changing
the order of the νk,l introduced in (10).

Proof. First we assume qk+2 ≥ 2. We will prove that the (k + 1)-th HBA is not hidden, i.e.,
νk,k+1 > νk,k+j, or equivalently (sk − sk+1)/(Dk+1 − Dk) > (sk − sk+j)/(Dk+j − Dk), for all
j ≥ 2. Later on we shall consider the case qk+2 = 1.

Assume qk+2 ≥ 2. We will check that Dk+j−Dk > 2(Dk+1−Dk) and sk−sk+j < 2(sk−sk+1)
for j ≥ 2. We recall that, as a function of k, Dk is strictly increasing and sk is strictly decreasing.
For the first inequality, using that Dk+2 = qk+2Dk+1 +Dk, we get

Dk+j −Dk ≥ Dk+2 −Dk = qk+2Dk+1 > 2(Dk+1 −Dk), j ≥ 2.

Since sk+j < sk, to prove the second inequality it is enough to check that sk > 2sk+1. Using
sk = 1/(Dkck) and Dk+1 = Dkc

−
k+1 the latter inequality is equivalent to ck+1c

−
k+1 > 2ck and,

using (11) and (12), it is also equivalent to c−k+1(c
+
k+1 − 2) + 1− 2/c+k+1 > 0. Now, this follows

immediately from c+k+1 = qk+2 + 1/c+k+2 > 2.

Now we pass to the case qk+2 = 1. We plan to prove νk,k+2 > νk,k+j for all j ≥ 3. It can
happen that νk,k+1 > νk,k+2, in which case the (k + 1)-th HBA is dominant in some range of ν
or νk,k+1 ≤ νk,k+2 in which case the (k + 1)-th HBA is hidden. But only one is hidden because
then the (k + 2)-th one is dominant. And if the (k + 1)-th HBA is hidden the next quotient,
qk+2, is equal to 1. To have qk+2 = 1 is a necessary but not sufficient condition to have the
(k + 1)-th HBA hidden. This will complete the proof of the theorem.

To prove the inequality we shall follow a scheme similar to the case qk+2 > 1, that is, we plan
to prove that Dk+j −Dk ≥ 2(Dk+2 −Dk) and sk − sk+j < 2(sk − sk+2) hold for all j ≥ 3. For
the first one of these inequalities it is clear that it is enough to show Dk+3−Dk ≥ 2(Dk+2−Dk)
and to note that the worst case appears when qk+3 = 1. In this case, from Dk+2 = Dk+1 +Dk

and Dk+3 = 2Dk+1 +Dk one has Dk+3 −Dk = 2(Dk+2 −Dk), as desired.

To prove sk − sk+j < 2(sk−sk+2) for all j ≥ 3 it is enough to show sk < 2(sk−sk+2), that is
sk>2sk+2, similar to what has been done if qk+2>1. As before, using the expressions of sk, sk+2

this is equivalent to prove 2Dkck < Dk+2ck+2. To this end we express Dk and Dk+2 as functions
of Dk+1 using c−k+1 and c−k+2 and we put ck, ck+2 in terms of the c+∗ and c−∗ expressions, taking
into account qk+2 = 1. Concretely, after simplifying the common factor Dk+1, we should prove

2ck/c
−
k+1 < c−k+2(c

+
k+2 + 1/c−k+2) = c−k+2c

+
k+2 + 1.

For the left hand side we use

2ck/c
−
k+1 = 2(c+k + 1/c−k )/c

−
k+1 = 2(c−k+1 + 1/c+k+1)/c

−
k+1 = 2 + 2/(c+k+1c

−
k+1).

Hence, we should prove
2/(c+k+1c

−
k+1) < c−k+2c

+
k+2 − 1,

and, using the recurrence for c+k+1, c
−
k+2, with qk+2 = 1,

2c+k+2/((c
+
k+2 + 1)c−k+1) < c+k+2(c

−
k+1 + 1)/c−k+1 − 1,
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which can be simplified to

2/(c+k+2 + 1) < (c−k+1 + 1)− c−k+1/c
+
k+2.

Summarizing we are led to show c−k+1(1− 1/c+k+2)− 2/(c+k+2 + 1) + 1 > 0. This follows from

the fact that c−k+1 and c+k+2 belong to (1,∞). This finishes the proof. ✷

Remark 5.2. At the beginning of Sect. 4 we assumed that the effect of the perturbation on
the unperturbed invariant manifolds contains the product of two analytic functions, P1(t, ψ)
and P2(θ) whose Fourier coefficients decrease in an exponential way. One can question what
happens if one of the functions or both of them are entire. We recall that if

∑

n≥0 αnz
n is entire

then − log(|αn|)/n tends to ∞ when n→∞. If one of the two functions, or both of them are
entire, that is, instead of the coefficients exp(−jρ1) and/or exp(−jρ2) they have aj and/or bj,
decreasing as αj above, the expression in (9) is replaced by a similar one

T ∗(ν,Dk) = DkLk +
sk
ν
.

The coefficient Lk comes from a combination of − log(|aNk
|)/Nk and − log(|bDk

|)/Dk (or of one
of them and the corresponding ρi of the other, see (7)) and tends to ∞ as k → ∞. As before
we approximate Nk by γDk. Then, for l > k, instead of (10) we are led to

ν∗k,l =
sk − sl

DlLl −DkLk
.

We want to show that the results of the theorem still hold if Lk increase in a monotone way
(perhaps not strictly). For qk+2 ≥ 2 the bounds sk − sk+j < 2(sk − sk+1), for j > 1, and for
qk+2 = 1 the bounds sk − sk+j < 2(sk − sk+2), for j > 2, hold true as before, because they do
not depend on the Lk. To show Dk+2Lk+2 −DkLk > 2(Dk+1Lk+1 − DkLk) for qk+2 ≥ 2 it is
enough to use Dk+2Lk+2 ≥ (2Dk+1 +Dk)Lk+2 > 2Dk+1Lk+2 ≥ 2Dk+1Lk+1.

If qk+2 = 1 let us consider first the case qk+3 ≥ 2. Then Dk+3 > 2Dk+2 which implies
Dk+3Lk+3 > 2Dk+2Lk+2 and, hence, Dk+3Lk+3 −DkLk > 2(Dk+2Lk+2 −DkLk).

In the remaining case, qk+2 = qk+3 = 1, one should proceed in a different way. Instead
of ν∗k,k+j = (sk − sk+j)/(Dk+jLk+j −DkLk) one can use, for the comparisons, the expressions
ν̂k,k+j = (sk − sk+j)/Dk+j . Indeed, the bounds ν̂k,k+j1 > ν̂k,k+j2 imply ν∗k,k+j1 > ν∗k,k+j2.

Concretely, it is enough to show that max{ν̂k,k+1, ν̂k,k+2} > ν̂k,k+3. To this end we note that,
using qk+2 = qk+3 = 1, all the terms in the last inequality can be expressed as simple functions
of Dk, qk+1 ∈ N+, c

+
k+3 > 1 and c−k > 1. Both ν̂k,k+1− ν̂k,k+3 and ν̂k,k+2− ν̂k,k+3 become simple

rational expressions in qk+1, c
+
k+3 and c−k with a common factor D−2

k . One has ν̂k,k+1−ν̂k,k+3>0

in all cases and also ν̂k,k+2 − ν̂k,k+1 > 0 if c+k+3<qk+1 + 1/c−k . That is, if the k-th HBA is not
hidden, either the (k+1)-th or the (k+2)-th one are not hidden, and if one of them is hidden
the next quotient is equal to 1.

This ends the proof of the validity of the theorem in the entire case if Lk is increasing.

However we note that it is very easy to produce examples in which the results are not true
in the entire case if, despite Lk tends to ∞, there are ranges in which Lk decreases. Concretely,
assume the k-th HBA is not hidden and, given j ≥ 3, consider values Lk+1, . . . , Lk+j−1 which are
identical or increase slowly. Then assume Lk+j smaller, such that Dk+jLk+j −DkLk is positive
but rather small. The next dominant HBA after the k-th one will be the (k + j)-th one, and
j − 1 consecutive HBA will be hidden.

6 On the behavior of some transcendental numbers

In Sect. 3 we have looked at the behavior of the HBA for the values γj, j = 0, . . . , 4. The results
were illustrated in Fig. 1. Only in the case of γ2 there appear hidden HBA. But it is clear that
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the CFE of these values of γ are quite exceptional. Hence, it seems natural to look for what
happens for “typical” γ ∈ (0, 1), γ /∈ Q.

This leads to the question about what means “typical”. One can assume that a number γ is
typical if it satisfies properties which hold for a set of numbers of full measure. Let us recall a
couple of them (see [10] for details).

• The geometric mean of the quotients of the CFE tends to the so-called Khinchin constant
KC ≈ 2.6854520010653064 (see, e.g., https://oeis.org/A002210 for more digits) or,
equivalently, the arithmetic mean of the logarithms of the quotients tends to log(KC) ≈
0.9878490568338104.

• The rate of increase of the denominators of the best approximants Nk/Dk of γ satisfies
limn→∞ log(Dn)/n→ LC, the Lévy constant, LC = π2/(12 log(2)) ≈ 1.1865691104156255.
Equivalently, the denominators tend to behave as Dk ≈ (exp(LC))k, where exp(LC) ≈
3.2758229187218112.

Another property follows from the fact that the Gauss map in (0, 1) : x 7→ 1/x − E[1/x],
where E[·] denotes the integer part, has (1 + x)−1/ log(2) as ergodic invariant measure, see
[11]. This gives that the probability to have k as quotient is P (k) = log2(1 + 1/(k2 + 2k)), the
Gauss-Kuzmin law.

It is important to remark, from this law, that the apparition of the different quotients is not
random: the successive events are not independent. As a first example, the probability of having
1 as quotient is P (1) = log2(4/3). But the probability of having two consecutive quotients equal
to 1 is P (1, 1) = log2(10/9) and one has P (1, 1) < P (1)2. In general, the probability to have k
and l as consecutive quotients (or vice versa) is P (k, l) = log2(1+1/(((k+1)l+1)((l+1)k+1))).
One has P (k, l) > P (k)P (l) only if k = 1, l > 2 or if k = 2 and 2 ≤ l ≤ 5 (or if the roles of k and
l are exchanged), as it is easy to prove. In all other cases one has the converse inequality. This
is independent of how many quotients appear before the couple (k, l). It is immediate to obtain
the expression for P (k, l) if they are the first two quotients. But if they appear after m previous
quotients, the set of numbers having k and l as the (m+ 1)-th and (m+ 2)-th quotients is the
m-th preimage under the Gauss map of the set in which they appear as the first ones.

Note also that if one generates successive quotients with the Gauss-Kuzmin law in an inde-
pendent way, Khinchin property will be satisfied, but Lévy one will not be guaranteed.

To do some tests we have chosen, in a completely arbitrary way, 6 values of γ : γ∗j ∈ (0, 1),
j = 1, . . . , 6, as follows:

γ∗1 =π−3, γ∗2 =exp(g)−1, γ∗3 =exp(
√
2)−4, γ∗4 =exp(

√
3)−5, γ∗5=exp(

√
5)−9, γ∗6=exp(

√
7)−14,

(13)
where g = (

√
5 − 1)/2, the golden number. Different aspects have been considered. For all of

them, to proceed with the required accuracy, one has used the package [2] .

• We have looked for the initial quotients of the CFE for the γ∗j , j = 1, . . . , 6. Assume
that we compute n quotients. Let P ∗(k) be the fraction of quotients equal to k while
P (k) is the theoretical value. From this one can compute the cumulative distribution
function CDF (k) =

∑k
j=1 P (k) and, in a similar way, we compute CDF ∗(k) for a given

γ∗j . To compare both CDF we use the Kolmogorov-Smirnov test KS= maxk |CDF ∗(k)−
CDF (k)|. If n = 107 and consider just quotients up to qk = 104, the maximum of the
values of KS for γ∗j , j = 1, . . . , 6 is 0.00028. Using n = 5 × 107 for γ∗1 and γ∗2 (and again

qk ≤ 104) the maximum is 0.00009. These are very small values to pass the KS test.

• As an additional check we compute the autocorrelation of the quotients. Given the quo-
tients q1, . . . , qk, . . . we look for the correlation when the indices have been shifted by m
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units, m = 1, 2, 3, . . .. As it can be expected from the lack of independence of the events,
there is some autocorrelation. The autocorrelation has been computed up to m = 1000
and the results are shown, for all the γ∗j together, in Fig. 3, left.
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Figure 3: Left: Plots of autocorrelation coefficient ρ as a function of the shift, m, of the indices.
All the γ∗j are displayed and almost coincide. For m ≥ 6 the values satisfy |ρ| < 0.0013 for

all the γ∗j . Right: Differences between log(Dn)/n and LC for γ∗5 and n between 106 and 107,

plotted with step 104 in n. The horizontal variable is n/106. See the text for more information.

• Now we comment on the experimental tests related to Khinchin and Lévy constants.
After computing n quotients and denominators one can check the behavior of the ratios
RKC(n) := (

∑n
k=1 log(qk))/n and RLC(n) := log(Dn)/n, both as functions of n. The

Fig. 3, right, shows the evolution of RLC(n) for 106 ≤ n ≤ 107 for γ∗5 . The evolution
for RKC(n) is similar. With small variants (larger differences wrt the expected limit for
some n, smaller for other) similar things happen for the other γ∗j . Furthermore, it has

been checked that for 45 × 106 ≤ n ≤ 50 × 106 the differences |RKC(n) − log(KC)| and
|RLC(n)− LC| are less than 0.000298 for γ∗1 and even less than 0.000048 for γ∗2 . All this
gives good evidence that the γ∗j seem to be in agreement with the expected Khinchin and
Lévy limits.

• Another item is which kind of Diophantine condition is satisfied by a given γ. As dis-
cussed in Sect. 4 when considering the scalings, we can check if these frequencies satisfy
a condition of the form |Nk − γDk| = (Dkck)

−1 > c/(Dk(log(Dk))
σ) for c > 0, σ > 1. We

report on some results for γ∗1 = π − 3. For the other γ∗j there are similar results.
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Figure 4: Results displayed for γ∗1 . Left: Values of ∆k := skDk log(Dk) as a function of k, using
log10 scale for both variables, plotting only the values of k such that ∆k < 1. Right: For the
same values of k we display σ to have sk = 1/(Dk(log(Dk))

σ), that is, asking for c = 1. The
plot is also in log10 scale for both variables.

12



To fix ideas we assume c = 1 and then compute σ. One could reduce σ at the price of
taking c rather small, not convenient for small divisors estimates. From the data computed
for γ∗1 we look first to the indices k < 2 × 107 such that ∆k := skDk log(Dk) is less
than 1. These will be the ones which require σ > 1. The data that we compute are
complemented with data provided by Eric W. Weisstein (see https://oeis.org/A033089
and https://oeis.org/A033090) based on the computation of the first 15×109 quotients
of the CFE of π, which give k and qk for large qk. From these data, using qk to estimate
ck−1 and log(Dk−1) ≈ LC × (k − 1), one can compute the related values of σ. But they
play a small role. The results are shown in Fig. 4.

The large values of σ for k = 1 and k = 3 (≈ 4.177771 and ≈ 3.657928, respectively),
which are seen in the right plot, are due to the “classical” approximations of π: 22/7 and
355/113. Letting them aside the worst case appears for k = 430, with q431 = 20776, and
gives σ ≈ 1.601339. This value can be used up to k∗ = 15× 109, excluding the “classical”
approximants. We also note that when k increases, the maxima that appear are smaller.
After k = 430, for all k ≤ k∗, one can use σ ≈ 1.253475 which appears for k = 11504929.
If we look at all the γ∗j , j = 1, . . . , 6, one has that from k = 102, 103 and 106 on, values of
σ = 1.7215, 1.2944 and 1.1283, respectively, are enough for all of them. Perhaps bounds
of the form |Nk − γDk| > c/(Dk log(Dk)(log(log(Dk)))

δ) with δ > 1 and c > 0 not too
small can also be found. This condition is also satisfied by a set of γ of full measure.

The previous items give strong evidences that the γ∗j , j = 1, . . . , 6, behave as one should
expect for a set of γ of full measure. However, to prove that they satisfy Khinchin and Lévy
limits and Gauss-Kuzmin distribution seem to be not easy questions.

Finally we turn to the hidden HBA. As a first thing, we have checked in all the cases that
no two consecutive best approximants are hidden and that, when one is hidden, next quotient is
equal to 1, in agreement with the theorem. Furthermore it has been checked that this happens
even when the denominators Dk are small. If the k-th best approximant is hidden one has that
the probability to have a quotient, qk, which is small (say, 1, 2, 3) is less than the theoretical
probability P (k) of the Gauss-Kuzmin law.

Next point will be to see how the hidden HBA are found on the average. To this end we
concentrate again on π − 3 and proceed as follows. First we detect all the hidden HBA which
appear up to the 107-th best approximant. We have 2785810 of them. Then we consider blocks
of 1000 consecutive BA, i.e., between 1 and 1000, between 1001 and 2000, etc, up to a total of
10000 blocks. In each block we look for how many hidden HBA are found. The minimum and
maximum are 242 and 317, which appear only once, but the value 278 appears 438 times.

From these data one can construct the cumulative distribution function, CDF ∗, of the hidden
HBA which appear in blocks of 1000 consecutive BA. It turns out that the CDF ∗ is extremely
close to the CDF of a normal law (see Fig. 5, left). One checks that the maximum of the
differences in absolute value of both functions is small and this ensures that the sample passes
the Kolmogorov-Smirnov test (see Fig. 5, right). The mean m and standard deviation s have
been slightly tuned, with respect to the ones of the sample, to have a smaller maximal amplitude
of the differences. Looking at all the γ∗j , j = 1, . . . , 6, one has done similar computations up to

the best approximant of order 4× 106 (i.e., just 4000 blocks). The maxima of |CDF ∗ − CDF |
is, in all cases, less than 0.0068, still very good taking into account the reduction of the size of
the sample. Similar values of m, s have been used in all cases.

Therefore it seems natural to formulate the following conjecture for systems giving rise to
quasi-periodic splitting under assumptions similar to the ones in Sect. 4.

Conjecture 6.1. For a set of ratios of two frequencies of full measure, the distribution of the
the hidden best approximant harmonics follows a normal law.
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Figure 5: Left: Cumulative distribution function, CDF ∗, of the hidden HBA for γ∗1 . If l is the
number of hidden HBA in blocks of 1000 consecutive BA, the horizontal variable is x = (l−m)/s
where m = 279.118, s = 9.604. The experimental values CDF ∗ are plotted as red points. The
curve in blue is the CDF of the normal law N(0, 1). Right: Using the same horizontal variable
as in the left part, the plot shows |CDF ∗(x)− CDF (x)|. The maximum is ≈ 0.0041.

7 Conclusions

The paper has clarified the existence of hidden HBA under suitable assumptions, which explains
the results of numerical simulations. We have also done several computations using frequencies
such that there is numerical evidence that they behave in a typical way. For the simple system
that we have considered the numerical evidence supports that more than one fourth of the
harmonics associated to best approximants are hidden.

The methodology can be applied to general problems, perhaps depending on several param-
eters. We hope that these ideas could be useful to identify the relevant near-resonances for the
behavior of the splitting in concrete physical systems. This has, in turn, important consequences
on the dynamics of the system.

One can ask many natural related questions. Among them we can mention:

Question 1. If we consider the variations of both first integrals G1 and G2 due to splitting, one
can check that for some ranges of ν the splittings of both functions are close to be proportional:
∆F̃2 ≈ α∆F̃1. Then G2 − αG1 would act as a kind of additional first integral. Which is the
effect on the local diffusive properties?

Question 2. In the case of three or more frequencies, which are the dominant harmonics in
the splittings? How they evolve as a function of ν? Which is the influence of the arithmetic
properties of the involved frequencies?
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