## **Master: Functional Analysis and PDE**

## October 2015, List 2

Comment: You have to present at least 7 exercises of the list. These exercises have to be presented before the class of Monday 9 of November. Do not send the exercises by mail.

Remark: On Wednesday 4 of November, you will have a "Solving problem by yourself" class with Prof. Carlos Domingo. On Monday 9, we shall have the last theoretical class of this second part.

- 1) Compute both the classical and the derivative in the sense of distribution of the following functions:
- i)  $f(x) = \log|3x 5|, x \in \mathbb{R}$
- ii)  $f: (-1, 1) \to \mathbb{R}$  defined by  $f(x) = x^2 \sin(1/x^2)$  if  $x \neq 0$  and f(0) = 0.
- 2) Which of the following maps define a distribution?
- a)  $(\Lambda_1, \varphi) = \sum_{k=0}^{\infty} \varphi(k)$ .
- b)  $(\Lambda_2, \varphi) = \sum_{k=0}^{\infty} \varphi^{k}(\sqrt{2}).$

- c)  $(\Lambda_3, \varphi) = \sum_{k=0}^{\infty} \frac{\varphi^k(k)}{k}$ . d)  $(\Lambda_4, \varphi) = \int_{\mathbb{R}} \varphi^2(x) dx$ . e)  $f_{\alpha}(x) = \frac{1}{|x|(1+\log^2|x|)^{\alpha}}, \alpha \in \mathbb{R}$ .
- 3) Compute the following limits in  $D'(\mathbb{R})$ :
- a)  $\lim_{t\to\infty}t^2x\cos(tx)$
- b)  $\lim_{t\to\infty}t^2|x|\cos(tx)$ .
- 4) Compute the following limit in  $D'(\mathbb{R})$ :

$$\lim_{t\to\infty}\frac{\sin(tx)}{x}.$$

- 5) Find a distribution in  $\Lambda$  in  $D'(\mathbb{R}^3)$  such that  $\partial_x \partial_y \partial_z \Lambda = \delta_{(2,4,6)}$ .
- 6) Let n > 3 and let  $E(x) = |x|^{2-n}$ . Prove that:
- a) E is a distribution.
- b) For every  $\varphi \in \mathcal{D}$ ,

$$\lim_{\varepsilon\to 0}\int_{B(0,\varepsilon)}E(x)\varphi(x)dx=0,$$

- 7) Prove that if  $\Lambda_i \to \Lambda$  in  $D'(\Omega)$  and  $g_i \to g$  in  $C^{\infty}(\Omega)$ , then  $(g_i\Lambda_i) \to g\Lambda$  in  $D'(\Omega)$ .
- 8) Prove whether the following maps define a distribution:
- a)  $f(x) = \frac{1}{x}$  with  $\Omega = \mathbb{R}$ .
- b)  $\Lambda(\varphi) = \int_0^\infty \frac{\varphi(x) \varphi(-x)}{x} dx$ .
- 9) Let  $f_j \in L^1_{loc}(\mathbb{R})$  and assume that  $\lim_j f_j(x) = f(x)$  at almost every point. Suppose that, for every compact set K, there exists  $g_K \in L^1$  such that  $|f_j(x)| \le g_K(x)$  at almost every  $x \in K$ . Prove that  $f_j$  converges to f in the sense of distributions and that  $f \in L^1_{loc}$ .
- 10) a) Is  $\sum_{n=1}^{\infty} \delta_{2^{-n}}$  a well-defined distribution?

- b) Show that the distribution  $\sum_{n=1}^{\infty} \frac{1}{n^2} \delta_{2^{-n}}$  is well-defined and determine its primitive with support in  $[0, \infty)$ . Which is its support?
- 11) Compute the Fourier transform of the distribution  $p.v\frac{1}{x}$  and deduce that the Hilbert transform define by  $Hf = p.v\frac{1}{x}*f$  is bounded in  $L^2$ .
- 12) If u is a tempered distribution such that  $\Delta u = \delta$ . Prove that  $\hat{u}(\xi) = -|\xi|^{-2}$  in  $\mathbb{R}^n$  with  $n \geq 3$  and show that u is in fact a function in  $L^{\infty} + L^2$ .
- 13) Let  $n \ge 3$  and let  $E(x) = |x|^{2-n}$ . Prove that:
- a) E is a tempered distribution.
- b) Compute  $\Delta E$  whenever exists.
- c) Show that  $\Delta E = \delta$  in the sense of distributions.

Recall Green's identity: If R is a bounded domain with smooth boundary S and f and g are  $C^1$  functions on  $\mathbb{R}$ , then:

$$\int_{R} (f\Delta g - g\Delta f) dx = \int_{S} (f\delta_{\nu}g - g\delta_{\nu}f) d\sigma,$$

where  $\delta_V$  is the directional derivative with respect to the outward normal vector to R.

- **14)** Given  $g \in L^1(\mathbb{R})$ , set  $f(x) = \int_{-\infty}^x g(t) dt$ .
- (i) Prove that f is a distribution.
- (ii) Compute f' in the sense of distributions.
- **15)** Given a function  $\rho \in C_c(\mathbb{R}^n)$  such that  $\int \rho = 1$ , compute the following limit in the sense of distributions  $\lim_{\varepsilon \to 0} \varepsilon^{-n} \rho(x/\varepsilon)$ .