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Abstract. In this paper, we prove a weighted estimate for the Bochner-Riesz operator
at the critical index that is stronger than the weak-type (1,1) for A1 weights, in the
sense that the latter can be obtained via extrapolation arguments from the former.
In addition, this estimate can be transferred to averages in order to deduce weighted
weak-type (1,1) results for general radial Fourier multipliers.

1. Introduction

Let us start by giving the general definition of a Bochner-Riesz operator:

Definition 1.1. Given λ > 0 and r > 0, we define the Bochner-Riesz operator Br
λ on

Rn by

B̂r
λf(ξ) = (1− |rξ|2)λ+f̂(ξ).

Notice that the term (1 − |rξ|2)λ+ restricts the support of f̂ to the ball B(0, 1/r).
However, the larger the value of λ, the smoother this truncation is, and thus, the better
the operator Br

λ will behave. More precisely, it is easy to see that if λ > n−1
2 , then Br

λf
is essentially controlled by the Hardy-Littlewood maximal operator M (see, for instance,
[14, Sec. 10.2]). However, for the so-called critical index λ = n−1

2 , we do not have such
a control. We will focus on this critical case with r = 1, so for the sake of simplicity, we
will drop the indices λ or r whenever they are n−1

2 or 1 respectively.
Despite the fact that B is no longer controlled by the Hardy-Littlewood maximal

operator, when it comes to its boundedness on weighted Lp-spaces, it satisfies the same
estimates as M . Namely, in 1988, M. Christ [5] showed that B is of weak-type (1,1) with
respect to the Lebesgue measure. Later on, in 1992, X. Shi and Q. Sun [24] proved that
it was of strong-type (p, p) for every weight in Ap and every 1 < p < ∞, and finally, in
1996, A. Vargas [28] extended the weak-type (1,1) estimate to A1 weights. The main
purpose of this paper is to show that B satisfies a certain restricted weak-type (p, p)
estimate that, in particular, will imply its weak-type (1,1) for A1 weights. The main
advantage of this new estimate is that it will allow us to use extrapolation arguments on
operators that can be written as an average of Bochner-Riesz operators {Br}r>0. The
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extrapolation that we will need follows the ideas in [3], but with a weaker assumption,
especially aimed at obtaining estimates for the endpoint p = 1.

Let us recall that a locally integrable function u > 0 is said to be an A1 weight if
Mu(x) ≤ Cu(x) almost everywhere, and its A1-constant ‖u‖A1 is the infimum of all
possible C > 0 in such an inequality. This class characterizes the weighted weak-type
(1, 1) for the Hardy-Littlewood maximal operator M , as shown by B. Muckenhoupt in
[20], and for every f ∈ L1(u), it holds that:

‖Mf‖L1,∞(u) . ‖u‖A1‖f‖L1(u).

This paper is organized as follows. In Section 2, we prepare the framework and prove
the key lemmas that will be needed in Section 3, where we present our main result for
the Bochner-Riesz operator B. Namely, we shall prove that, for every u ∈ A1, there
exists 1 < p0 <∞ such that, for each measurable set E ⊆ Rn,

(1.1) ‖TχE‖Lp0,∞((MχE)1−p0u) . ϕp0(‖u‖A1)u(E)1/p0 ,

where T = B (Theorem 3.2) and T = Br (Corollary 3.3). Moreover, in this second case
the constant is uniform in r > 0. Then, in Section 4, we introduce the extrapolation
technique and prove (Theorem 4.1) that if an operator T satisfies condition (1.1) then,
for every u ∈ A1 and every measurable set E ⊆ Rn,

‖TχE‖L1,∞(u) ≤ ‖u‖
1− 1

p0
A1

ϕp0(‖u‖A1)u(E).

Finally, in Section 5, we will transfer the weighted estimate (1.1) from T = B1/s to
radial Fourier multipliers Tm by means of the following relation:

(1.2) Tmf(x) =

∫ ∞
0

B1/sf(x)Φm(s)ds, Φm ∈ L1(0,∞),

and using the crucial fact that, contrary to what happens with L1,∞, the space Lp,∞ is
a Banach space for p > 1 and Minkowski’s integral inequality holds. Then, using the
extrapolation argument from Section 4 we obtain weighted results at the endpoint p = 1
for the operator Tm. The condition that we will require on m so that Φm is integrable
and (1.2) holds will be ∫ ∞

0
t
n−1
2 |D

n+1
2 m(t)|dt <∞,

where D
n+1
2 is a suitable definition of fractional derivative. Before tackling this problem,

we will illustrate the method by applying it to Fourier multipliers on R, where the role
of the Bochner-Riesz operator in (1.2) will be played by the Hilbert transform instead.

As usual, the symbol f . g will indicate the existence of a constant C > 0 so that
f ≤ Cg. When both f . g and g . f , we will write f ≈ g. The implicit constants may
depend on the dimension n and on values of p, but never on the weights, functions or
sets involved. In all our results, we will make explicit the dependence on the weights of
the constants, although we will not be concerned about their sharpness.
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2. Preliminaries and lemmas

Let us consider the classical decomposition of B. Arguing as in [5], it is enough to
study the operator (which we will call again B):

f 7−→
( ∞∑
j=1

Kj

)
∗ f,

where

Kj(x) = η

(
x

|x|

)
ψ(x)ϕ(2−jx)|x|−n,

and:

• η is a fixed element from a finite C∞ partition of the unity on the sphere Sn−1,
which we can assume to have very small support.
• ψ(x) = cos(2π|x| − π(n− 1)/4).
• ϕ ∈ C∞(Rn), real-valued, radial, supported on {x ∈ Rn : |x| ∈ [1/4, 1]}, and such

that ∑
j∈Z

ϕ(2jx) ≡ 1, on Rn \ {0}.

The only properties of the kernels Kj that we will explicitly use have to do with their
size and support, although at some point we will also need some estimates from [5] for
which the author needs a deeper understanding of them. Namely, we will use that for
every j ≥ 1,

(2.1) |Kj(x)| . 2−njχB(0,2j)(x).

This is a direct consequence of their definition, and trivially implies a uniform bound for
the associated convolution operators by the Hardy-Littlewood maximal operator:

(2.2) |Kj ∗ f(x)| .Mf(x).

Once we have settled the decomposition of the kernel, we will need three lemmas to
reach our goal. The first one will allow us to decompose a measurable set E by means
of a simplified Calderón-Zygmund decomposition.

Lemma 2.1. Let 0 < α < 1. Let E ⊆ Rn be a measurable set. Then there exists a
family of pairwise disjoint dyadic cubes {Qi}∞i=0 such that

|E ∩Qi|
|Qi|

≈ α,

and E ⊆
⋃∞
i=0Qi.

Remark 2.2. Based on this lemma, given 0 < α < 1 and E ⊆ Rn, we can define for
every k ≥ 0,

Ek := E ∩

( ∞⋃
i=0

Qki

)
,
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where {Qki }∞i=0 is the subfamily of cubes of size |Qki | = 2nk if k > 0, and |Q0
i | ≤ 1. Since

the set E is contained in the union of all the cubes {Qki }∞i,k=0, we have that

E =
∞⋃
k=0

Ek,

and for every k, i ≥ 0:

|Ek ∩Qki |
|Qki |

=
|E ∩Qki |
|Qki |

≈ α.

We will also need the following property for weights of the form (Mh)α when α < 0
(see [4, 8]):

Lemma 2.3. Given a locally integrable function h and α < 0, we have that for every
cube Q ⊆ Rn,

sup
x∈Q

(Mh)α(x) .
1

|Q|

∫
Q

(Mh)α(y)dy.

In particular, if Q ⊆ Q′,
1

|Q|

∫
Q

(Mh)α(y)dy .
1

|Q′|

∫
Q′

(Mh)α(y)dy.

The next lemma will be the cornerstone of our argument, and is inspired by the ideas
in [28]. For technical reasons regarding interpolation, not only will we need estimates for
E, but also for subsets G ⊆ E. Notice that if Gk = G ∩ Ek, we still have the inequality
|Gk∩Qki |
|Qki |

. α, and this will suffice to get the right estimates.

Lemma 2.4. Let 0 < α < 1 and let E =
⋃∞
k=0Ek be a measurable set decomposed as in

Remark 2.2. Let G ⊆ E be a measurable subset and define for every k ≥ 0, Gk = G∩Ek.
Then for every 1 ≤ s <∞:

(a) ∥∥∥∥ ∞∑
j=s

Kj ∗ χGj−s

∥∥∥∥2

2

. 2−s
n−1
2 α|G|.

(b) For every weight u ∈ A1,∥∥∥∥ ∞∑
j=s

Kj ∗ χGj−s

∥∥∥∥2

L2(u)

. ‖u‖2A1
αu(G).

(c) ∥∥∥∥ ∞∑
j=s

Kj ∗ χGj−s

∥∥∥∥2

L2((MχE)−1)

. |G|.

Proof. The proof of (a) is exactly the same as that of [5, Estimate (3.1)], where the author
proves an estimate for the bad part of a Calderón-Zygmund decomposition without using
its cancellation property (which allows us to adapt it to our case). In fact, this estimate
is conveniently stated in [28, Section 2, Lemma 2] in the following way:
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• Let v =
∑

Q∈F vQ, where F is a family of disjoint dyadic cubes, with supp vQ ⊆ Q

and
∫
|vQ| . α|Q|. Define Fk = {Q ∈ F : |Q| = 2nk} for k ≥ 1, F0 = {Q ∈ F : |Q| ≤ 1}

and Vk =
∑

Q∈Fk vQ. Then∥∥∥∥ ∞∑
j=s

Kj ∗ Vj−s
∥∥∥∥2

2

. 2−s
n−1
2 α‖v‖1.

For our purposes, take the function v = χG, the family F = {Qki }∞k,i=0, the subfamily

Fk = {Qki }∞i=0, and (a) follows.
Let us prove (b). Writing the left-hand side as an inner product in L2(u) and using

its bilinearity and symmetry, we get that it can be essentially majorized by

∞∑
j=s

j∑
i=s

∫
|Kj ∗ χGj−s(x)||Ki ∗ χGi−s(x)|u(x)dx.

Since χGk =
∑∞

l=0 χGk∩Qkl
for every k ≥ 0, we can write the previous expression as

(2.3)
∞∑
j=s

∞∑
l=0

(
j∑
i=s

∞∑
m=0

∫
|Kj | ∗ χGj−s∩Qj−sl

(x)|Ki| ∗ χGi−s∩Qi−sm
(x)u(x)dx

)
.

Now, let us look at the term in parentheses, where Qj−sl is fixed. Using (2.1), we know
that the support of the first convolution is contained in

Qj−sl +B(0, 2j) ⊆ Ql,

where |Ql| = 2(j+2)n, and

|Kj | ∗ χGj−s∩Qj−sl
(x) ≤ 2−jn|Gj−s ∩Qj−sl |.

Similarly, for every s ≤ i ≤ j and every m ≥ 0, the support of the second convolution is
contained in Qm with |Qm| = 2(i+2)n and Qi−sm ⊆ Qm. Moreover, since x ∈ Ql (for the
first convolution to be non-zero), we have that

|Ki| ∗ χGi−s∩Qi−sm
(x) =

∫
Gi−s∩Qi−sm

|Ki(x− z)|dz =

∫
Gi−s∩Qi−sm ∩2Ql

|Ki(x− z)|dz

≤ 2−in|Gi−s ∩Qi−sm ∩ 2Ql| ≤ 2−in|Gi−s ∩Qi−sm |,

keeping in mind that we only need to consider the cubes Qi−sm ⊆ 4Ql. Here we used
again (2.1) to see that z ∈ Ql + B(0, 2i) ⊆ 2Ql and |Ki| ≤ 2−in. Summing up, we have
the following:

• x ∈ Ql ∩Qm,

• |Kj | ∗ χGj−s∩Qj−sl
(x) ≤ 2−jn|Gj−s ∩Qj−sl |,

• |Ki| ∗ χGi−s∩Qi−sm
(x) ≤ 2−in|Gi−s ∩Qi−sm |,

•
⋃j
i=s

⋃∞
m=0Q

i−s
m ⊆ 4Ql.
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With this, we can finish the proof of (b). We bound the expression in parentheses in
(2.3) by

2−jn|Gj−s ∩Qj−sl |
j∑
i=s

∞∑
m=0

|Gi−s ∩Qi−sm |
u(Ql ∩Qm)

2in

. α2−jn|Gj−s ∩Qj−sl |
j∑
i=s

∞∑
m=0

|Qi−sm |
u(Qm)

2in

≤ α‖u‖A12−jn|Gj−s ∩Qj−sl |
j∑
i=s

∞∑
m=0

u(Qi−sm ) ≤ α‖u‖A12−jn|Gj−s ∩Qj−sl |u
(
4Ql
)

≤ α‖u‖2A1
u(Gj−s ∩Qj−sl ),

recalling that |Gi−s ∩Qi−sm | . α|Qi−sm | and that |Qm| ≈ 2in, |4Ql| ≈ 2jn. Finally, we can
plug it into (2.3) to get the sought-after estimate:

α‖u‖2A1

∞∑
j=s

∞∑
l=0

u(Gj−s ∩Qj−sl ) = α‖u‖2A1

∞∑
j=s

u(Gj−s) = α‖u‖2A1
u(G).

Exactly as in (b), to show (c) it is enough to bound

(2.4)

∞∑
j=s

∞∑
l=0

(
j∑
i=s

∞∑
m=0

∫
|Kj | ∗ χGj−s∩Qj−sl

(x)|Ki| ∗ χGi−s∩Qi−sm
(x)(MχE)−1(x)dx

)
,

where the expression in parentheses is controlled by

2−jn|Gj−s ∩Qj−sl |
j∑
i=s

∞∑
m=0

|Gi−s ∩Qi−sm |
(MχE)−1(Ql ∩Qm)

2in
.

Now, since Qi−sm ⊆ 4Ql, |Ql| = 2(j+2)n and |Qm| = 2(i+2)n, we deduce that Qm ⊆ 5Ql,
and hence by Lemma 2.3,

(MχE)−1(Qm)

2in
.

(MχE)−1(5Ql)

2jn
.

Using this, we obtain

(2−jn)2(MχE)−1(5Ql)|Gj−s ∩Q
j−s
l |

j∑
i=s

∞∑
m=0

|Gi−s ∩Qi−sm |.

Assuming without loss of generality that G∩4Ql has positive measure, we use the AR2 con-

dition of the weight (MχE)−1 with the subset G∩4Ql ⊆ 5Ql, and that
⋃j
i=s

⋃∞
m=0Q

i−s
m ⊆

4Ql to get to

|G ∩ 4Ql)|−1|Gj−s ∩Qj−sl ||G ∩ 4Ql|.
Finally we can simplify and sum over s ≤ j <∞ and l ≥ 0 to obtain that the expression
in (2.4) is majorized by |G|, as we claimed. �
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The third and last lemma will be an interpolation argument on the estimates in Lemma
2.4 that will yield the right control of the L2 norm with respect to the desired weights.
Let us just remark that the first estimate will be used to prove the second one, so in this
case we still need to consider subsets G ⊆ E.

Lemma 2.5. Let 0 < α < 1 and let E =
⋃∞
k=0Ek be a measurable set decomposed as in

Remark 2.2. Let G ⊆ E be a measurable subset and define for every k ≥ 0, Gk = G∩Ek.
Then for every 1 ≤ s <∞ and every u ∈ A1:

(d) ∥∥∥∥ ∞∑
j=s

Kj ∗ χGj−s

∥∥∥∥2

L2(u)

. ‖u‖2A1
2−sεαu(G),

with ε = n−1
2

(
1

1+2n+1‖u‖A1

)
.

(e) ∥∥∥∥ ∞∑
j=s

Kj ∗ χEj−s

∥∥∥∥2

L2((MχE)−θu)

. ‖u‖2A1
2−sβα1−θu(E).

with θ = 1
1+2n+1‖u‖A1

and β = n−1
2

(
2n+1‖u‖A1

(1+2n+1‖u‖A1
)2

)
Proof. For a, b > 0, define wa,b(x) = min{au(x), b}. Fix t > 0 and write

B1 = {x ∈ Rn : ‖u‖2A1
u(x) ≤ 2−s

n−1
2 t},

and B2 = Rn \B1. For every k ≥ 0, we set Gk = G1
k∪G2

k, where Gik = Gk∩Bi ⊆ Ek and
Gi =

⋃∞
k=0G

i
k = G∩Bi, for i = 1, 2. Using (a) and (b) in Lemma 2.4 and the definitions

we just introduced, we get∥∥∥∥ ∞∑
j=s

Kj ∗ χGj−s

∥∥∥∥2

L2(w1,t)

.

∥∥∥∥ ∞∑
j=s

Kj ∗ χG1
j−s

∥∥∥∥2

L2(u)

+ t

∥∥∥∥ ∞∑
j=s

Kj ∗ χG2
j−s

∥∥∥∥2

2

. ‖u‖2A1
αu(G1) + 2−s

n−1
2 tα|G2| = αwa,bt(G),

with a = ‖u‖2A1
and b = 2−s

n−1
2 . Now, we integrate both sides with respect to t ∈ (0,∞)

equipped with the measure dt
tθ+1 , where 0 < θ < 1. Using Fubini and the definition of

the weight, we obtain∥∥∥∥ ∞∑
j=s

Kj ∗ χGj−s

∥∥∥∥2

L2(u1−θ)

. αa1−θbθu1−θ(G).

But we know (see [21]) that if u ∈ A1 and r = 1 + 1
2n+1‖u‖A1

, then ur ∈ A1 and

‖ur‖A1 . ‖u‖A1 , so applying what we have shown to ur and choosing θ = (r − 1)/r, we
obtain ∥∥∥∥ ∞∑

j=s

Kj ∗ χGj−s

∥∥∥∥2

L2(u)

. ‖u‖
2n+2‖u‖A1

1+2n+1‖u‖A1
A1

2
−sn−1

2

(
1

1+2n+1‖u‖A1

)
αu(G).
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Notice that the exponent in ‖u‖A1 is always less than or equal to 2, so we conclude (d).
To prove (e), define va,b(x) = min{au(x), b(MχE)−1(x)}. Fix t > 0 and write

C1 = {x ∈ Rn : α‖u‖2A1
2−sεu(x) ≤ (MχE)−1(x)t},

C2 = Rn \ C1. Now we decompose for every k ≥ 0, Ek = E1
k ∪ E2

k , with Eik = Ek ∩ Ci
and Ei =

⋃∞
k=0E

i
k = E ∩ Ci, for i = 1, 2. To finish the proof, we argue as in (d), but

this time interpolating estimates (c) in Lemma 2.4 and (d). �

3. Main result

Before stating our main result, let us recall some definitions and properties concerning
weights that will be needed in what follows. For every 1 ≤ p <∞, we define ARp weights
w by

‖w‖ARp = sup
F⊆Q

|F |
|Q|

(
w(Q)

w(F )

)1/p

<∞,

where the supremum is taken over all cubes Q ⊆ Rn and all measurable sets F ⊆ Q.
R. Kerman and A. Torchinsky [16] showed that this class characterizes the restricted
weak-type (p, p) for the Hardy-Littlewood maximal operator and, for every measurable
set E ⊆ Rn:

(3.1) ‖MχE‖Lp,∞(w) . ‖w‖ARp w(E)1/p.

When p = 1, this class coincides with A1 = AR1 , entailing that the weighted weak-
type and restricted weak-type (1,1) for M are equivalent. In [3], the authors prove the
following result:

Proposition 3.1 ([3, Corollary 2.8]). For every u ∈ A1, every positive and locally
integrable function f and every 1 ≤ p <∞, the weight (Mf)1−pu ∈ ARp and

‖(Mf)1−pu‖p
ARp
. ‖u‖A1 .

We shall also need the weighted strong-type result in [24] for B but with the depen-
dence on the weight. A simple argument to obtain this result is using [5, Lemma 3.1] to
show that, for every j > 0,

‖Kj ∗ f‖2 . 2−
n−1
4
j‖f‖2,

and that (2.2) and the classical boundedness for M give

‖Kj ∗ f‖L2(w) . ‖Mf‖L2(w) . ‖w‖A2‖f‖L2(w), w ∈ A2.

Interpolation with change of measure and the sharp Reverse Hölder property of A2

weights in [21] allow us to sum in j > 0 and conclude that, for w ∈ A2:

(3.2) ‖Bf‖L2(w) . ‖w‖2A2
‖f‖L2(w).

Now we are ready to present our main result for B:

Theorem 3.2. Given n > 1, the Bochner-Riesz operator at the critical index B satisfies
that, for every u ∈ A1, there exists 1 < p0 < ∞ depending on u such that, for each
measurable set E ⊆ Rn,

(3.3) ‖BχE‖Lp0,∞((MχE)1−p0u) . ‖u‖
4/p0
A1

u(E)1/p0 .
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More precisely, the exact dependence is p0(‖u‖A1) = 1 + 1
1+2n+1‖u‖A1

.

Proof. Let θ ∈ (0, 1) be as in (e) from Lemma 2.5. If α ≥ 1, then we use (3.2) for the A2

weight wθ := (MχE)−θu:

α1+θwθ ({x : |BχE(x)| > α}) ≤ α2wθ ({x : |BχE(x)| > α}) ≤ ‖BχE‖2L2(wθ)

. ‖wθ‖4A2
‖χE‖2L2(wθ) . ‖u‖

4
A1
u(E).

In the last inequality we used the classical properties for Ap weights (see [14, Chap. 9])
and the fact that 0 < θ = 1

1+2n+1‖u‖A1
≤ 1

1+2n+1 < 1 is bounded away from 1:

‖wθ‖A2 ≤ ‖(MχE)θ‖A1‖u‖A1 ≈
‖u‖A1

1− θ
≈ ‖u‖A1 .

If 0 < α < 1, we decompose E as in Remark 2.2 and

α1+θwθ ({x : |BχE(x)| > α}) . α1+θwθ

( ∞⋃
i,k=0

3Qki

)

+ α1+θwθ

({
x /∈

∞⋃
i,k=0

3Qki : |BχE(x)| > α

})
.

For the first term, we use that wθ ∈ AR1+θ and by Proposition 3.1, ‖wθ‖1+θ
AR1+θ

. ‖u‖A1 .

Also, recall that wθ = u on E:

α1+θwθ

( ∞⋃
i,k=0

3Qki

)
. α1+θ‖u‖A1

∞∑
i,k=0

wθ(Q
k
i )

≈ ‖u‖A1

∞∑
i,k=0

wθ(Q
k
i )

u(Ek ∩Qki )

(
|Ek ∩Qki |
|Qki |

)1+θ

u(Ek ∩Qki )

. ‖u‖2A1
u(E).

On the other hand, looking at the intersection of the supports of Kj and χEk , it is easy

to see that if x /∈
⋃∞
i,k=0 3Qki , then

BχE =
∞∑
j=1

∞∑
k=0

Kj ∗ χEk =
∞∑
k=0

∞∑
j=k+1

Kj ∗ χEk =
∞∑
s=1

∞∑
j=s

Kj ∗ χEj−s ,

so using Chebyshev and (e) in Lemma 2.5:

α1+θwθ

({
x /∈

∞⋃
i,k=0

3Qki : |BχE(x)| > α

})
≤ α1+θwθ

({
x :

∣∣∣∣ ∞∑
s=1

∞∑
j=s

Kj ∗ χEj−s

∣∣∣∣ > α

})

≤ αθ−1

∥∥∥∥ ∞∑
s=1

∞∑
j=s

Kj ∗ χEj−s

∥∥∥∥2

L2(wθ)

≤ αθ−1

( ∞∑
s=1

∥∥∥∥ ∞∑
j=s

Kj ∗ χEj−s

∥∥∥∥
L2(wθ)

)2

. αθ−1

( ∞∑
s=1

‖u‖A12−s
β
2 α

1−θ
2 u(E)1/2

)2

≈ ‖u‖2A1
(2β/2 − 1)−2u(E) . ‖u‖4A1

u(E),
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since (2β/2 − 1)−2 ≈ ‖u‖2A1
. So taking supremum over α > 0, we have shown that (3.3)

holds for p0 = 1 + 1
1+2n+1‖u‖A1

> 1. �

For later purposes, we will need the following fact stating that Theorem 3.2 holds for
Br uniformly in r > 0. This is an easy computation that we shall omit. The only detail
that needs to be pointed out is that the dependence on u of the p0 coming from Theorem
3.2 is in terms of ‖u‖A1 . Hence, if ur(x) = rnu(rx), we have that ‖ur‖A1 = ‖u‖A1 and
the same p0 also works for ur.

Corollary 3.3. For every weight u ∈ A1, there is some 1 < p0 <∞ such that, for each
measurable set E ⊆ Rn,

‖BrχE‖Lp0,∞((MχE)1−p0u) . ‖u‖
4/p0
A1

u(E)1/p0 ,

uniformly in r > 0.

4. Extrapolation results

As mentioned in the introduction, our goal in this section is to prove that a condition
of the type (3.3) can be extrapolated to obtain a weak-type (1, 1) estimate for every
weight in A1. We shall follow the ideas in [3, 4] where, motivated by Proposition 3.1,
the authors introduced the subclass

Âp =
{
w : w = (Mf)1−pu, for some f ∈ L1

loc and u ∈ A1

}
⊆ ARp ,

and proved that if we have a sublinear operator T that is of restricted weak-type (p0, p0)

for some 1 < p0 <∞ and every weight w ∈ Âp0 , then it is of restricted weak-type (p, p)

for every weight w ∈ Âp and every 1 ≤ p <∞. At this point we should emphasize that,
unlike the classical Rubio de Francia extrapolation for Ap weights, this theory yields
estimates at the endpoint p = 1. For more details on the classical Rubio de Francia
theory, we refer to its modern presentation in [7, 11]. The following result states that
if T satisfies a restricted weak-type estimate but only for a very particular subclass of

Âp0 , then we obtain the analogous estimate for the whole range of 1 ≤ p < ∞, and at
p = 1, we still recover the whole A1 class. We will also drop the sublinearity condition
on T , since for the weight we are considering, we can avoid the interpolation step in the
original result of [3].

Theorem 4.1. Let 1 < p0 < ∞. If an operator T satisfies that, for every measurable
set E ⊆ Rn and every weight u ∈ A1,

‖TχE‖Lp0,∞((MχE)1−p0u) ≤ ϕ(‖u‖A1)u(E)1/p0 ,

with ϕ an increasing function on (0,∞), then for every 1 ≤ p <∞,

‖TχE‖Lp,∞((MχE)1−pu) . ϕp(‖u‖A1)u(E)1/p,

with

ϕp(t) =

{
t
1
p
− 1
p0 ϕ(t), if 1 ≤ p ≤ p0,

t
p+1
pp0

p−p0
p−1 ϕ(t), if p0 < p <∞.
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Proof. Let us start with the case 1 ≤ p < p0. Following the ideas in [3, Theorem 3.10],
we fix the weight w = (MχE)1−pu, a parameter γ > 0, and it holds that∫
{|TχE |>y}

w(x)dx ≤
∫
{MχE>γy}

w(x)dx+ γp0−p
yp0

yp

∫
{|TχE |>y}

(MχE)p−p0(x)w(x)dx

=

∫
{MχE>γy}

w(x)dx+ γp0−p
yp0

yp

∫
{|TχE |>y}

(MχE)1−p0(x)u(x)dx.

Now, we apply (3.1), Proposition 3.1 and our hypothesis to deduce that

yp
∫
{|TχE>y|}

w(x)dx ≤ ‖u‖A1u(E)

γp
+ γp0−pϕ(‖u‖A1)p0u(E).

Finally, we take supremum over y and infimum over γ > 0, which is attained essentially

at γ = ‖u‖
1
p0
A1
ϕ(‖u‖A1)−1, to conclude that

(4.1) ‖TχE‖Lp,∞((MχE)1−pu) . ‖u‖
1
p
− 1
p0

A1
ϕ(‖u‖A1)u(E)1/p.

The case p0 < p <∞ is a little more involved. We shall follow [4, Theorem 3.1]. Choose
β satisfying

1 < β <
p′0
p′
, and β ≤ 1 +

1

2n+1‖u‖A1

,

which by [21] ensures that uβ ∈ A1 and ‖uβ‖A1 . ‖u‖A1 . Let 0 < θ < 1 such that

β
p0 − 1

p− 1
+ θ

p− p0

p− 1
= 1.

Now, as in [4], we get that for every y > 0,∫
{|TχE |>y}

(MχE)1−p(x)u(x)dx ≤
∫
{|TχE |>y}

(MχE)1−p0(x)v(x)dx,

with

v(x) = u(x)
β
p0−1
p−1

(
M(uθ(MχE)1−pχ{|TχE |>y})(x)

) p−p0
p−1 ∈ A1,

and ‖v‖A1 . ‖u‖A1 (using [4, Lemma 2.12] for this last fact). With this, our hypothesis
yields ∫

{|TχE |>y}
(MχE)1−p(x)u(x)dx .

1

yp0
ϕ (‖u‖A1)p0 v(E).

Finally, we need to estimate v(E). This goes exactly as in the original proof, just recalling
that MχE ≡ 1 on E, so skipping the details, we get that

‖TχE‖pLp,∞((MχE)1−pu)
. Cp,θ((MχE)1−pu)

p(p−p0)
p0(p−1)ϕ (‖u‖A1)p u(E),

where the constant Cp,θ(·) is the one appearing in [4, Lemma 2.6]. Using that in our case
1
p′ < θ < 1, we can choose the best possible value for θ so that

Cp,θ((MχE)1−pu) . ‖u‖
p+1
p

A1
.



12 M. J. CARRO AND C. DOMINGO-SALAZAR

If we plug this into the previous estimate, we finish the proof:

‖TχE‖Lp,∞((MχE)1−pu) . ‖u‖
p+1
pp0

p−p0
p−1

A1
ϕ (‖u‖A1)u(E)1/p.

�

Notice that the most interesting feature of this result is that the conclusion at p = 1
holds for the whole A1 class. In fact, if our goal is just to reach the endpoint, we
can make yet another simplification. Namely, we can obtain the restricted weak-type
(1,1) estimate for A1 weights starting from a restricted weak-type (p0, p0) assumption in
which p0 may depend on the weight u. The key fact is that we always have 1 = p < p0.
Therefore, regardless of the value of p0, we must argue as for the first case in the proof
of Theorem 4.1. Notice that in this case, to prove the estimate at level p = 1 for a fixed
weight u ∈ A1, we use the assumption at level p0 with exactly the same weight u, so the
dependence p0(u) does not affect the argument. The conclusion is (4.1) with p = 1, as
we state in the following corollary. Here we make the dependence of ϕ on p0 explicit,
since it represents dependence on u and might need to be taken into account:

Corollary 4.2. Let T be an operator. For every weight u ∈ A1, if there is some 1 <
p0 <∞ such that

‖TχE‖Lp0,∞((MχE)1−p0u) ≤ ϕp0(‖u‖A1)u(E)1/p0 ,

then

‖TχE‖L1,∞(u) ≤ ‖u‖
1− 1

p0
A1

ϕp0(‖u‖A1)u(E).

Even though the results presented above only yield restricted weak-type estimates, it
is known that for a large class of operators (as it happened for the Hardy-Littlewood
maximal function M), this is equivalent to being of weak-type (1,1). We will need to
define a notion introduced in [2] that gives a sufficient condition for operators to be of
weak-type (1,1) just from a restricted weak-type estimate.

Definition 4.3. Given δ > 0, a function a ∈ L1(Rn) is called a δ-atom if it satisfies the
following properties:

(i)
∫
Rn a = 0, and

(ii) there exists a cube Q such that |Q| ≤ δ and supp a ⊆ Q.

Moreover, a sublinear operator T is (ε, δ)-atomic if, for every ε > 0, there exists a δ > 0
such that

‖Ta‖L1+L∞ ≤ ε‖a‖1,
for every δ-atom a.

In [2], it was shown that this is not a strong property to assume on an operator. For
instance, it is checked that if

(4.2) Tf(x) = K ∗ f(x),

with K ∈ Lp(Rn) for some 1 ≤ p < ∞, or K measurable and uniformly continuous on
Rn, then T is (ε, δ)-atomic. Many times we will not have (ε, δ)-atomic operators, but
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they will be approximable in some sense by them, which will be enough for our purposes.
The result concerning the boundedness of this kind of operators is the following:

Theorem 4.4. Let T be a sublinear operator (ε, δ)-atomic and let u ∈ A1. Then, if there
exists a constant Cu > 0 such that, for every measurable set E,

‖TχE‖L1,∞(u) ≤ Cuu(E),

we have that
T : L1(u) −→ L1,∞(u)

with constant 2nCu‖u‖A1.

This result was proved in [2] in the unweighted case, and extended to A1 weights in [3].
Notice that by Plancherel’s theorem, K ∈ L2(Rn) and thus, B is (ε, δ)-atomic by (4.2).
Therefore, Corollary 4.2 and Theorem 4.4 yield that the weighted estimate in Theorem
3.2 can be used to deduce A. Vargas [28] result:

Corollary 4.5. Given n > 1, the Bochner-Riesz operator at the critical index B is of
weak-type (1, 1) for every weight in u ∈ A1.

Finally, the applications we will present are based on the transference of known esti-
mates to operators that can be written as an average, in order to use extrapolation and
get endpoint results. This idea will become clear after the following general proposition:

Proposition 4.6. Let (Ω, µ) be a measure space and let {Tω}ω∈Ω be a collection of
sublinear operators indexed by ω ∈ Ω and such that, for every u ∈ A1 there is some
1 < p0 <∞ so that, for each E ⊆ Rn measurable set

‖TωχE‖Lp0,∞((MχE)1−p0u) . ϕp0(‖u‖A1)u(E)1/p0 ,

uniformly on ω ∈ Ω. Then, if Φ ∈ L1(Ω, |µ|), the operator (that we assume to be well-
defined)

Tf(x) =

∫
Ω
Tωf(x)Φ(ω)dµ(ω)

is of restricted weak-type (1, 1) for every u ∈ A1 with constant

‖u‖
1− 1

p0
A1

ϕp0(‖u‖A1)‖Φ‖L1(Ω,|µ|).

If T is in addition (ε, δ)-atomic, then it is of weak-type (1, 1) for every u ∈ A1 with
constant

‖u‖
2− 1

p0
A1

ϕp0(‖u‖A1)‖Φ‖L1(Ω,|µ|).

Proof. Given u ∈ A1, take its associated 1 < p0 = p0(u) < ∞ and by Minkowski’s
inequality

‖TχE‖Lp0,∞((MχE)1−p0u) ≤
∫

Ω
‖TωχE‖Lp0,∞((MχE)1−p0u)|Φ(ω)|d|µ|(ω)

. ϕp0(‖u‖A1)‖Φ‖L1(Ω,|µ|)u(E)1/p0 .

Then, we apply Corollary 4.2 to obtain the restricted weak-type (1, 1) estimate with the
right constant. If T is (ε, δ)-atomic, by Theorem 4.4 we complete the proof. �
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Remark 4.7. Notice that if we only had uniform restricted weak-type (1, 1) estimates
for the family {Tω}ω∈Ω, then the average operator T would not necessarily inherit that
property, since L1,∞ is not a Banach space. The fact that we can transfer estimates from
Tω to T at level p0 > 1 (where Minkowski’s inequality is allowed) and then extrapolate
down to p = 1, is the key ingredient in this result.

5. Applications to Fourier multipliers

5.1. Fourier multipliers on R. The first application will illustrate our technique with
a very simple example. The weighted result that will play the role of Theorem 3.2 is the
following:

Proposition 5.1. Given 1 < p < ∞ and a weight w ∈ ARp , the Hilbert transform H
satisfies the restricted weak-type estimate

‖Hf‖Lp,∞(w) . ‖w‖
p+1
ARp
‖f‖Lp,1(w).

This result has an easy proof based on the pointwise domination of Calderón-Zygmund
operators by the so-called sparse operators, and is actually true for any operator with such
a control, not just the Hilbert transform. The best known result in terms of domination
by sparse operators is contained in [19], and includes all Calderón-Zygmund operators
with a Dini-type condition on the modulus of continuity of the kernel. The first result
concerning Fourier multipliers that we present is the following:

Theorem 5.2. Let m be a function of bounded variation on R. Then, the operator Tm
defined by

T̂mf(ξ) = m(ξ)f̂(ξ)

is of weak-type (1, 1) for every weight u ∈ A1 and with constant controlled by ‖dm‖·‖u‖3A1
,

where ‖dm‖ denotes the total variation of the measure dm.

Proof. Since m is of bounded variation on R, the limit of m(t) as t→ −∞ exists, so by
adding a constant to m if necessary, we can assume this limit to be zero. Let {ϕj}j be a
non-negative approximation to the identity as j →∞. It holds that ‖ϕ̂j‖∞ ≤ ‖ϕj‖1 = 1,
and we can furthermore assume that the total variation ‖dϕ̂j‖ ≤ 2 (take for instance
the approximation associated with the Poisson kernel, which essentially satisfies ϕ̂j(t) =

e−|t|/j and has this property). For every j > 0, define

mj(t) = m(t)ϕ̂j(t).

This function is of bounded variation with ‖dmj‖ ≤ 3‖dm‖, since

‖dmj‖ ≤ ‖m‖∞‖dϕ̂j‖+ ‖ϕ̂j‖∞‖‖dm‖ ≤ 3‖dm‖.
We still have that mj vanishes at −∞, so we can write the Lebesgue-Stieltjes integral

mj(ξ) =

∫
R
χ(t,∞)(ξ)dmj(t).

The multiplier associated with χ(t,∞) is

f(x) 7−→ 1

2
(e2πitxH(e−2πit ·f)(x)− f(x)),
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which is essentially a modulated Hilbert transform that we will denote by Ht (see [10,
Estimate (3.9)]). Then,

(5.1) Tmjf(x) =

∫
R
Htf(x)dmj(t).

Now we use Proposition 5.1 with the weight w = (MχE)1−pu, for some u ∈ A1 and
1 < p <∞, and Proposition 3.1, to conclude

‖HtχE‖Lp,∞((MχE)1−pu) ≈ ‖H(e2πit·χE)‖Lp,∞((MχE)1−pu)

. ‖u‖
1+ 1

p

A1
‖χE‖Lp,1((MχE)1−pu) = ‖u‖

1+ 1
p

A1
u(E)1/p,

uniformly in t ∈ R. Therefore, the family {Ht}t is under the hypotheses of Proposition
4.6. Also, for every j > 0, the operator Tmj is (ε, δ)-atomic (since mj is integrable and
hence, its associated convolution kernel is uniformly continuous as in (4.2)). With this,
we conclude that Tmj is of weak-type (1, 1) for every weight in A1 with constant

‖u‖
2− 1

p

A1
‖u‖

1+ 1
p

A1
‖dmj‖ . ‖dm‖‖u‖3A1

.

Finally, since {ϕj}j is an approximation to the identity, at least for Schwartz functions
f , there is a subsequence such that

Tmj(i)f(x) = ϕj(i) ∗ Tmf(x)
i−→ Tmf(x) a.e. x.

With this, we use the estimate for Tmj and Fatou’s lemma to finish the proof:

‖Tmf‖L1,∞(u) ≤ lim inf
i→∞

‖Tmj(i)f‖L1,∞(u) . ‖dm‖‖u‖3A1
‖f‖L1(u).

�

The idea of transferring estimates on Banach spaces from H to Tm based on (5.1)
is not new. In [10, Corollary 3.8], this method is used to show that Tm is bounded
on Lp(R) for all 1 < p < ∞. The only difference here is that the Banach estimate
that we transfer from H to Tm is a weighted one, and this allows us to extrapolate and
deduce a weak-type (1, 1) result for Tm that could not be obtained by means of (5.1) and
Minkowski’s inequality. These multipliers are closely related to the ones appearing in
the Marcinkiewicz multiplier theorem (see [10, Theorem 8.13]). In that case, the result
claims that if m has uniformly bounded variation on each dyadic interval in R, then Tm
maps Lp(R) into itself for every 1 < p < ∞. This is obtained by means of Littlewood-
Paley theory, and can be extended to the weighted setting to prove the same result for
Ap weights [17]. However, it is known that there are operators under the hypotheses of
Marcinkiewicz’s theorem that fail to be of weak-type (1,1), even in the unweighted case
(see [25] for sharp results near L1). Therefore, we know that our assumption for m to
be of bounded variation on R cannot be relaxed to uniform bounded variation on dyadic
intervals.

The next subsection will follow the same argument but using the estimate for the
Bochner-Riesz operator in Theorem 3.2 to draw conclusions about radial Fourier multi-
pliers on Rn.
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5.2. Radial Fourier multipliers on Rn. For this part, we will need to recall frac-
tional integration and derivation, in the sense of Weyl. The idea of using fractional
calculus to obtain results for radial Fourier multipliers was already introduced in [26]
and subsequently used in [9, 13], among others.

Definition 5.3. Given 0 ≤ δ < 1 and w > 0, we define the truncated fractional integral
of order 1− δ of a locally integrable function f on R by

I1−δ
w f(t) :=

1

Γ(1− δ)

∫ w

−w
(s− t)−δ+ f(s)ds, t < w,

and 0 if t ≥ w. Moreover, if α = [α] + δ > 0, with [α] being its integer part and δ its
fractional part, we define the fractional derivative of f of order α by

Dαf(t) := −
(
d

dt

)[α]

lim
w→∞

d

dt
I1−δ
w f(t),

whenever the right-hand side exists. In particular, if f has compact support, then

Dαf(t) := −
(
d

dt

)[α]+1

I1−δ
∞ f(t).

Now we are ready to state the main result of this section. Before making its statement
precise, let us briefly summarize how it is related to other results in the literature. The
integrability condition that we will require on m will be

(5.2)

∫ ∞
0

t
n−1
2 |D

n+1
2 m(t)|dt <∞,

and we will obtain a weak-type (1, 1) estimate with respect to every weight in A1 for
the Fourier multiplier with symbol m(|ξ|2). This type of condition (5.2) on m is not
new. For instance, in the unweighted setting, [9, 22] use Weyl’s fractional calculus to
obtain strong-type (p, p) and weak-type (1, 1) results for maximal operators associated
with quasiradial Fourier multipliers. The condition that they require on m is also an
integrability condition for tα−1Dαm, but with α > n+1

2 (see [22, Corollary 1]).
Another similar result to the one we present can be found in [18]. Here the authors

deal with weights, but they consider general Fourier multipliers on Rn, not necessarily
radial ones. In terms of differentiability requirements, the condition that they need on m
to get the weak-type (1, 1) for every weight in A1 is up to order n. In our case, we only
work with radial multipliers and require order n+1

2 instead. In the classical Hörmander
theorem [15] without weights, it is enough to have differentiability up to order strictly
larger than n

2 , which is essentially optimal even in the radial case (see [6]). Therefore,
the differentiability assumption in our result is not that far from the optimal order for
the unweighted case. Another important reference is [1], where one can find sufficient
conditions for radial Fourier multipliers to be bounded on Lp(R2) for 4/3 ≤ p ≤ 4. This
limitation in the range of p (which totally excludes the endpoint p = 1) allows the authors
to lower the order of differentiability of m to α > 1/2, which corresponds to n−1

2 in R2.
The precise statement of our result is the following. ACloc will denote the space of

functions which are absolutely continuous on every compact subset of (0,∞).
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Theorem 5.4. Fix n ≥ 2 and α = n+1
2 . Let m be a bounded, continuous function on

(0,∞) which vanishes at infinity and satisfies that

Dα−jm ∈ ACloc ∀j = 1, ..., [α].

Then, if D
n+1
2 m exists and

Φ(t) = tα−1Dαm(t) ∈ L1(0,∞),

the operator Tm defined by

T̂mf(ξ) = m(|ξ|2)f̂(ξ), ξ ∈ Rn,

is of weak-type (1, 1) for every weight u ∈ A1 with constant controlled by C‖Φ‖L1(0,∞)‖u‖5A1
.

Proof. First, we will use [27, Lemma 3.14] to write

m(t) =
(−1)[α]

Γ(α)

∫
R

(s− t)α−1
+ Dαm(s)ds = Cα

∫ ∞
t

(s− t)α−1Dαm(s)ds,

which is valid under our hypotheses for m. With this identity, we prove that

(5.3) Tmf(x) =

∫ ∞
0

B1/sf(x)Φ(s)ds, x ∈ Rn,

with Φ ∈ L1(0,∞). It is enough to check that for every ξ ∈ Rn,

(5.4) m(|ξ|2) =

∫ ∞
0

(
1− |ξ|

2

s2

)α−1

+

Φ(s)ds,

but this follows by the change of variables s = r2 and taking t = |ξ|2,

m(|ξ|2) =2Cα

∫ ∞
|ξ|

(r2 − |ξ|2)α−1Dαm(r2)rdr

=2Cα

∫ ∞
0

r2α−1

(
1− |ξ|

2

r2

)α−1

+

Dαm(r2)dr.

which is (5.4) with Φ(r) = Cαr
2α−1Dαm(r2) and ‖Φ‖L1(0,∞) ≈ ‖Φ‖L1(0,∞). The second

ingredient in the proof is the uniform bound given in Corollary 3.3. More precisely, that

(5.5) ‖B1/sχE‖Lp0,∞((MχE)1−p0u) . ‖u‖
4/p0
A1

u(E)1/p0 ,

uniformly in s ∈ (0,∞). To conclude the argument, if K1/s is the kernel associated with

B1/s, define, for every j > 0,

Kj(x) =

∫ j

0
K1/s(x)Φ(s)ds =

∫ ∞
0

K1/s(x)Φj(s)ds,

with Φj(s) = Φ(s)χ(0,j)(s) ∈ L1(0,∞) and ‖Φj‖L1(0,∞) ≤ ‖Φ‖L1(0,∞). Clearly, Kj ∈
L2(Rn) and by (4.2),

T jf(x) = Kj ∗ f(x) =

∫ ∞
0

B1/sf(x)Φj(s)ds
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is an (ε, δ)-atomic operator. Now, we use Proposition 4.6 and (5.5) to deduce that T j is
of weak-type (1, 1) for every u ∈ A1 and with constant

‖u‖
2− 1

p0
A1
‖u‖

4
p0
A1
‖Φj‖L1(0,∞) ≤ ‖u‖5A1

‖Φ‖L1(0,∞) ≈ ‖u‖5A1
‖Φ‖L1(0,∞),

independently of j > 0. Using Fatou’s Lemma and (5.3), we conclude that for every
f ∈ L1(u),

‖Tmf‖L1,∞(u) ≤ lim inf
j→∞

‖T jf‖L1,∞(u) . ‖Φ‖L1(0,∞)‖u‖5A1
‖f‖L1(u).

�

Let us finish this section by giving a particular example of application of Theorem 5.4.
It will be related to the following conjecture stated in [23]:

Conjecture 5.5. Assume that ϕ is a C∞ function with compact support contained in
(−1/2, 1/2) and, for every 0 < δ < 1, set

hδ(s) := ϕ

(
1− s
δ

)
.

Then, for every 1 < p < 2n
n+1 , the operator Thδ defined by

T̂hδf(ξ) = hδ(|ξ|2)f̂(ξ)

satisfies:

(5.6) ‖Thδ‖Lp(Rn)→Lp(Rn) . δ
−λ(p), with λ(p) = n

(
1

p
− 1

2

)
− 1

2
.

The result we present is the following:

Corollary 5.6. Given n ≥ 2, the operator Thδ is of weak-type (1,1) for every weight
u ∈ A1 and

‖Thδ‖L1(u)→L1,∞(u) . δ
−(n−1

2 )‖u‖5A1
.

To prove this, it is enough to apply Theorem 5.4 (hδ is under its hypotheses) together
with the following computation at α = n+1

2 :

Lemma 5.7. Given α > 0, it holds that for Φ(t) = tα−1Dαhδ(t),

‖Φ‖L1(0,∞) ≤ Cϕ,αδ−α+1.

Proof. First, we compute Dαhδ. It can be easily checked from the definition that

Dαhδ(t) =
1

δα
Dαϕ̃

(
t− 1

δ

)
,

with ϕ̃(s) = ϕ(−s) being the reflection of ϕ on R. Now,∫ ∞
0
|Φ(t)|dt = δ−α

∫ ∞
0

tα−1

∣∣∣∣Dαϕ̃

(
t− 1

δ

)∣∣∣∣ dt = δ−α+1

∫ ∞
−1/δ

(rδ + 1)α−1|Dαϕ̃(r)|dr.

Since ϕ̃ has compact support in (−1/2, 1/2), it is easy to see that |Dαϕ̃(r)| is zero for
r > 1/2 and decays as Cϕ,α/|r|α+1 when r → −∞. Using this decay when r ∈ (−1/δ,−1)
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and that |Dαϕ̃(r)| is bounded when r ∈ (−1, 1/2), we conclude the proof by showing
that ∫ ∞

−1/δ
(rδ + 1)α−1|Dαϕ̃(r)|dr . Cϕ,α.

�

Notice that λ(1) = n−1
2 , and hence, Corollary 5.6 is the endpoint weighted weak-type

version of estimate (5.6). The same result but with an ε loss in the exponent of δ can be
derived from [12, Lemma 5.2], where the authors prove that for every ε > 0,

|Thδf(x)| ≤ Cεδ−(n−1
2

+ε)Mf(x).
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