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Abstract. The extrapolation theory of Rubio de Francia provides a tool to obtain Ap
weighted estimates on Lp spaces for every 1 < p <∞, starting from information at a single
1 < p0 < ∞. However, the endpoint case p = 1 cannot be reached in general. Classical
extrapolation arguments in the sense of Yano can be added to this setting to deduce results
close to L1 without weights. In this paper, we present different approaches that produce
endpoint estimates with respect to the whole A1 class. We give applications to the Carleson
operator and maximally modulated singular integrals among others.

1. Introduction and motivation

In 1984, J. L. Rubio de Francia [38] presented one of the most important extrapolation
results in the context of weighted Lp spaces. Recall that, given a measure space (Ω, µ) and
1 ≤ p <∞, we define Lp(µ) as the set of µ-measurable functions satisfying

‖f‖Lp(µ) =

(∫
Ω
|f(x)|pdµ(x)

)1/p

<∞.

When Ω = Rn and the measure dµ = wdx is given by a non-negative, locally integrable
function w (that we call weight), then we write Lp(w). Rubio de Francia’s extrapolation
theorem can be stated as follows:

Theorem 1.1 (Rubio de Francia, 1984). Given a sublinear operator T , if for some 1 ≤ p0 <
∞ and every w ∈ Ap0,

T : Lp0(w) −→ Lp0(w)

is bounded, then, for every 1 < p <∞ and every w ∈ Ap,
T : Lp(w) −→ Lp(w)

is also bounded.

The classes of weights appearing in Theorem 1.1 are the so-called Ap weights, introduced
by B. Muckenhoupt [34] in 1972. For 1 < p <∞, we say that w ∈ Ap whenever

‖w‖Ap = sup
Q

w(Q)

|Q|

(
w1−p′(Q)

|Q|

)p−1

<∞,

and u ∈ A1 if
Mu(x) ≤ Cu(x), a.e. x ∈ Rn,
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with ‖u‖A1 being the least constant C ≥ 1 that can be taken in such an inequality. The
operator M involved is the Hardy-Littlewood maximal operator, defined on locally integrable
functions f by

Mf(x) = sup
Q3x

1

|Q|

∫
Q
|f(y)|dy,

where the supremum is taken over all cubes Q ⊆ Rn containing x. In fact, as shown by
Muckenhoupt in the same paper, these Ap classes characterize the Lp boundedness of M .
More precisely, when 1 < p <∞,

M : Lp(w) −→ Lp(w)

is bounded if and only if w ∈ Ap, and

M : L1(u) −→ L1,∞(u)

is bounded if and only if u ∈ A1.
Since 1984, Theorem 1.1 has been improved in different directions (see [16, 17, 22] for

further details). For instance, it can be shown that the result is still true for general operators
(not necessarily sublinear), or if we change the strong-type estimates by weak-type ones. Also,
the following quantitative version of Theorem 1.1 was given by Dragičević, Grafakos, Pereyra
and Petermichl in [20] (see also [22]):

Theorem 1.2 (DGPP, 2005). Given an operator T , if for some 1 < p0 < ∞ and every
w ∈ Ap0,

T : Lp0(w) −→ Lp0(w)

is bounded with constant ϕ(‖w‖Ap0 ), with ϕ an increasing function on (0,∞), then, for every
1 < p < p0 and every w ∈ Ap,

T : Lp(w) −→ Lp(w)

is bounded with constant controlled by

(1.1) C1ϕ

C2‖w‖
p0−1
p−1

Ap

(p− 1)p0−1

 , as p→ 1+.

Here C1 and C2 are two positive constants independent of p and w.

At this point we should emphasize that, under the hypotheses of Theorem 1.2, it is
not possible to extrapolate down to p = 1, not even if we are only seeking a weak-type
estimate without weights. To illustrate this limitation, we can consider the composition
M2 = M ◦ M . Clearly, M2 : Lp(w) → Lp(w) for every 1 < p < ∞ and w ∈ Ap, but
M2 : L1(Rn) 9 L1,∞(Rn). Therefore, finding enpoint estimates (close to L1) for operators
under the assumptions of Rubio de Francia’s Theorem 1.2 becomes an interesting goal.

Now, looking at Theorem 1.2, one can immediately see that, if T satisfies its hypotheses
with ϕ(t) = ts for some s > 0, then

(1.2) T : Lp(Rn) −→ Lp(Rn), ‖T‖Lp(Rn)→Lp(Rn) ≤
C

(p− 1)s(p0−1)
.
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The problem of approaching the endpoint L1 only from information in Lp for p > 1 such
as the one obtained in (1.2) is the starting point of another extrapolation theory, initiated
by S. Yano in 1951. His original result [42] can be stated as follows:

Theorem 1.3 (Yano, 1951). Fix (Ω, µ) a finite measure space, p0 > 1 and m > 0. If T is a
sublinear operator such that, for every 1 < p ≤ p0,

T : Lp(µ) −→ Lp(µ)

is bounded with norm essentially controlled by (p− 1)−m, then,

T : L(logL)m(µ) −→ L1(µ)

is bounded.

Recall that L(logL)m(µ) ( L1(µ) is the space of µ-measurable functions such that

‖f‖L(logL)m(µ) =

∫ ∞
0

f∗µ(t)

(
1 + log+

(
1

t

))m
dt <∞,

where, as usual, log+ denotes the positive part of the logarithm and f∗µ is the decreasing
rearrangement of f with respect to µ defined by

f∗µ(t) = inf{y > 0 : λµf (y) ≤ t}, λµf (t) := µ({x ∈ Ω : |f(x)| > t}).

Theorem 1.3 can be extended to σ-finite measures and, also, improved in order to have
weaker hypotheses and a better range space. See [7, 8] for more details on this extension.
Before we make its statement precise, let us recall that, given 1 ≤ p < ∞ and 0 < q < ∞,
the Lorentz spaces Lp,q(µ) are defined as the set of µ-measurable functions such that

‖f‖Lp,q(µ) =

(
p

∫ ∞
0

(tλµf (t)1/p)q
dt

t

)1/q

=

(∫ ∞
0

(t1/pf∗µ(t))q
dt

t

)1/q

<∞,

and

‖f‖Lp,∞(µ) = sup
t>0

tλµf (t)1/p = sup
t>0

t1/pf∗µ(t).

Notice that if p = q, then Lp,p(µ) = Lp(µ), and for every 1 ≤ p <∞, we have the following
chain of continuous inclusions:

Lp,q1(µ) ⊆ Lp,q2(µ) ⊆ Lp,∞(µ), 0 < q1 < q2 <∞.
We will also need to consider general log-type spaces. For simplicity, we will adopt the

following notation:

log1(x) = 1 + log+(x) and logk(x) = log1 logk−1(x), for k > 1.

For natural numbers 1 ≤ j1 < j2 < · · · < jn and positive real numbers m1, ...,mn > 0, we
define the space

L(logj1 L)m1 · · · (logjn L)mn(µ)

as the set of µ-measurable functions such that

‖f‖L(logj1 L)m1 ···(logjn L)mn (µ) =

∫ ∞
0

f∗µ(t) logm1
j1

(
1

t

)
· · · logmnjn

(
1

t

)
dt <∞.

This is the modern version of Theorem 1.3 that we will use:
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Theorem 1.4 ([7, 8]). Given a σ-finite measure µ and m > 0, if a sublinear operator T
satisfies that

T : Lp,1(µ) −→ Lp(µ)

is bounded with constant less than or equal to (p− 1)−m for every 1 < p ≤ p0, then

T : L(logL)m(µ) −→ Em(µ)

is also bounded where Em(µ) is the space of µ-measurable functions such that

‖f‖Em(µ) = sup
t>0

tf∗∗µ (t)

logm1 t
<∞,

and f∗∗µ (t) := 1
t

∫ t
0 f
∗
µ(s)ds.

Remark 1.5. Let us just emphasize that the constant of the operator T on L(logL)m(µ) in
the previous theorem may depend on p0 but not on µ or T . This is the standard situation in
all Yano type results that will appear in the paper (see Theorems 2.6 and 2.16).

Therefore, as a consequence of (1.2) and Theorem 1.4, we can immediately deduce the
following endpoint result for Rubio de Francia operators:

Corollary 1.6. Let 1 < p0 <∞, s > 0 and let T be a sublinear operator such that

T : Lp0(w) −→ Lp0(w)

is bounded for every w ∈ Ap0 with constant ‖w‖sAp0 . Then,

T : L(logL)s(p0−1)(Rn) −→ Es(p0−1)(Rn)

is also bounded.

Estimates of the type (1.2) (or similar ones when p→∞) for operators satisfying the hy-
potheses of Theorem 1.2 with ϕ(t) = ts have appeared in different situations in the literature
(see, for example, [19, 23, 33]). In particular, in [33], a converse argument can be used to
find optimal values of s.

However, as we shall see in this paper, there is still much more to say. Our main goal is
to obtain endpoint results close to L1(u) for Rubio de Francia operators with respect to A1

weights. To this end, we will combine several variants of both Rubio de Francia and Yano
extrapolation theories, and then study under which Rubio de Francia condition on T we can
obtain the best endpoint estimate.

Before going on, and following the suggestion of the referee, we include a list of the prop-
erties of Ap weights that are going to be important for our purposes. Most of them can be
found in Chapter 7 of [21].

i) Coifman-Rochberg characterization of A1 weights: Every weight u in the class A1 is of the
form u(x) = k(x)(Mf)δ where k, k−1 ∈ L∞, f ∈ L1

loc and 0 ≤ δ < 1. Moreover, if the funcion
k(x) = 1, then

(1.3) ‖(Mf)δ‖A1 ≤
C

1− δ
,

with C some universal constant independent of δ and f .
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ii) P. Jones factorization theorem: A weight w is in the class Ap if and only if there exist two

weights u0 and u1 in A1 so that w = u1−p
0 u1. Moreover,

(1.4) ‖u1−p
0 u1‖Ap ≤ ‖u0‖p−1

A1
‖u1‖A1 .

iii) Clearly, if u ∈ A1, then u ∈ Ap and ‖u‖Ap ≤ ‖u‖A1 .

iv) By Hölder’s inequality, if u ∈ A1 and δ < 1, then uδ ∈ A1 and

(1.5) ‖uδ‖A1 ≤ ‖u‖δA1
.

v) If u0, u1 ∈ A1 and 1 < p < p0, then up−p00 u1 ∈ Ap0 and

(1.6) ‖up−p00 u1‖Ap0 ≤ ‖u0‖p0−1
A1
‖u1‖A1 .

To see this, we observe that

up−p00 u1 =
(
u
p0−p
p0−1

0

)1−p0
u1.

Hence, by (1.4) and (1.5) and since ‖u‖A1 ≥ 1,

‖up−p00 u1‖Ap0 ≤ ‖u
p0−p
p0−1

0 ‖p0−1
A1
‖u1‖A1 ≤ ‖u0‖p0−pA1

‖u1‖A1 ≤ ‖u0‖p0−1
A1
‖u1‖A1 .

The paper is organized as follows: in Section 2 we present our main results for operators
under similar assumptions to those in Rubio de Francia’s theorem. Then we will see how
different types of operator norms associated with them blow up as p tends to 1, and how this
information can be exploited to extrapolate in the sense of Yano. Next, in Section 3 we im-
prove a particular endpoint estimate which is related to the extrapolation theory introduced
in [10]. Finally, in Section 4, we see how our results can be useful in different applications.

From now on, we will write x . y when there is a positive constant C > 0 such that
x ≤ Cy. If both x . y and y . x, then we write x ≈ y. The constants involved do
not depend on any parameter that is fixed in its context. Moreover, throughout the paper
constants such as C,C1, C2, ... will denote universal constants that may depend only on the
fixed parameters (such as p0 or µ). In the case dµ = u(x)dx, with u ∈ A1 fixed, we shall
indicate the behaviour of the constant in u whenever possible. Otherwise, we shall write Cu.

Finally, we want to thank the referee for his/her thorough report and for all the comments
and remarks that have improved the final version of this paper.

2. Endpoint estimates for Rubio de Francia operators

Given a sublinear operator T defined on the set of µ-measurable functions, we say that T
is of strong-type (p0, p0) if

T : Lp0(µ) −→ Lp0(µ).

It is of weak-type (p0, p0) if
T : Lp0(µ) −→ Lp0,∞(µ).

It is of restricted weak-type (p0, p0) if

T : Lp0,1(µ) −→ Lp0,∞(µ),

and finally, of strong weak-type (p0, p0) if

T : Lp0,∞(µ) −→ Lp0,∞(µ).
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In the top part of Table 1, we summarize the four basic cases that we will study in this
section. Notice that the assumptions (first row) will be some of the previous boundedness
at level p0 > 1 with respect to Ap0 weights, and with constant essentially controlled by a
power of ‖w‖Ap0 . From here, we will deduce the same boundedness but for every 1 < p < p0

with respect to a fixed weight in A1, keeping track of how the constant blows up when p→ 1
(second row). This information will then be used to extrapolate in the sense of Yano with a
suitable technique, and reach an endpoint space of logarithmic type with A1 weights (third
row). In the bottom part of the table, we also show what we obtain if we go from the
hypotheses of Subsection 2.3 to those in Subsection 2.4, and then extrapolate from there.

Subsection 2.1 Subsection 2.2 Subsection 2.3 Subsection 2.4

T : Lp0(w)→ Lp0(w) T : Lp0(w)→ Lp0,∞(w) T : Lp0,1(w)→ Lp0,∞(w) T : Lp0,∞(w)→ Lp0,∞(w)

‖T‖ . ‖w‖sAp0 ‖T‖ . ‖w‖σAp0 ‖T‖ . ‖w‖rAp0 ‖T‖ . ‖w‖αAp0

T : Lp(u)→ Lp(u) T : Lp(u)→ Lp,∞(u) T : Lp,p/p0(u)→ Lp,∞(u) T : Lp,∞(u)→ Lp,∞(u)

‖T‖ . Cu
(p−1)s(p0−1) ‖T‖ . Cu

(p−1)σ(p0−1) ‖T‖ . Cu
(p−1)r(p0−1) ‖T‖ . Cu

(p−1)α(p0−1)

L(logL)r(p0−1)+b log3 L(u)

L(logL)s(p0−1)(u) L(logL)σ(p0−1) log3 L(u) b = min(1, p0 − 1) [L(logL)α(p0−1)−1 log3 L(u)]1

(ε, δ)-atomic case: b = 0

Subsection 2.5

T : Lp0,1(w)→ Lp0,∞(w)

‖T‖ . ‖w‖rAp0

T : Lp0,∞(w)→ Lp0,∞(w)

‖T‖ . ‖w‖r+p
′
0−1

Ap0

[L(logL)r(p0−1) log3 L(u)]1

Table 1. In all the cases, w ∈ Ap0 , u ∈ A1 and 1 < p < p0.

For later purposes, let us mention that, using that

M : L1(u)→ L1,∞(u), ‖M‖L1(u)→L1,∞(u) . ‖u‖A1 ,

and that M is bounded on L∞ with constant 1, one can easily prove that, for every u ∈ A1,

(Mf)∗u(t) .
‖u‖A1

t

∫ t

0
f∗u(s)ds.

From here, it follows that

(2.1) ‖M‖Lp(u)→Lp(u) .
‖u‖A1

p− 1
, ‖M‖Lp,∞(u)→Lp.∞(u) .

‖u‖A1

p− 1
.
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Also, the sharp weak-type (p, p) estimate for M due to S. M. Buckley [6] states that

(2.2) ‖M‖Lp(w)→Lp,∞(w) . ‖w‖
1/p
Ap
.

2.1. From strong-type to strong-type. In this subsection, our starting hypothesis will
be the classical one in Rubio de Francia’s extrapolation theory. That is, for some 1 < p0 <∞
and every w ∈ Ap0 , T is of strong type (p0, p0) with respect to the weight w, with constant
ϕ(‖w‖Ap0 ).

From (1.1), we can see that, even if ϕ(t) = ts for some s > 0, the blow-up of the constant is
exponential except in the unweighted case, and thus Yano’s theory cannot be applied directly.
To avoid this problem, our first result is an easy modification of the proof of Theorem 1.2 in
[22]. We believe it is well-known to the experts in the topic but we have not found a proof
in the literature and hence we include it for the sake of completeness.

Theorem 2.1. Given an operator T , if for some 1 < p0 <∞ and every w ∈ Ap0,

T : Lp0(w) −→ Lp0(w)

is bounded with constant ϕ(‖w‖Ap0 ), where ϕ : [0,∞) → [0,∞) is an increasing function,
then, given u ∈ A1,

T : Lp(u) −→ Lp(u)

is bounded for every 1 < p < p0 with constant controlled by

(2.3) C1 min

[
ϕ

(
C2‖u‖p0A1

(p− 1)p0−1

)
,

(
‖u‖A1

p− 1

)1− p
p0

ϕ

(
C3‖u‖A1

(p− 1)p0−1

)]
.

Proof. In order to get the behavior of the constant, we shall proceed in two different ways:
1) Given u ∈ A1, let us consider the Rubio de Francia algorithm:

Rf(x) =
∞∑
k=0

Mkf(x)

2k‖Mk‖Lp(u)→Lp(u)
.

Then, clearly, f ≤ Rf , Rf ∈ A1 and using (2.1) we obtain that

‖Rf‖A1 ≤ 2‖M‖Lp(u)→Lp(u) .
‖u‖A1

p− 1
,

and
‖Rf‖Lp(u) ≤ 2‖f‖Lp(u).

Therefore,∫
|Tf(x)|pu(x)dx =

∫
|Tf(x)|p(Rf(x))

p
p0

(p−p0)
(Rf(x))

p
p0

(p0−p)u(x)dx

≤
(∫

|Tf(x)|p0(Rf(x))p−p0u(x)dx

) p
p0

(∫
(Rf(x))pu(x)dx

)1− p
p0

≤ 2
p(p0−p)
p0 ϕ(‖(Rf)p−p0u‖Ap0 )p

(∫
|f(x)|p0(Rf(x))p−p0u(x)dx

) p
p0

(∫
|f(x)|pu(x)dx

)1− p
p0

. ϕ(‖(Rf)p−p0u‖Ap0 )p
(∫

|f(x)|pu(x)dx

)
,
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and we obtain that T : Lp(u) → Lp(u) with constant less than or equal to the first term in
(2.3), since, by (1.6),

‖(Rf)p−p0u‖Ap0 . ‖Rf‖
p0−1
A1
‖u‖A1 .

‖u‖p0A1

(p− 1)p0−1
.

2) To get the second term in (2.3), we avoid the use of Rubio de Francia’s algorithm:∫
|Tf(x)|pu(x)dx =

∫
|Tf(x)|p(Mf(x))

p
p0

(p−p0)
(Mf(x))

p
p0

(p0−p)u(x)dx

≤
(∫

|Tf(x)|p0(Mf(x))p−p0u(x)dx

) p
p0

(∫
(Mf(x))pu(x)dx

)1− p
p0

.

Now, by (1.4) and (1.3), we have that w := (Mf)p−p0u ∈ Ap0 with

‖w‖Ap0 =

∥∥∥∥∥
[
(Mf)

p0−p
p0−1

]1−p0
u

∥∥∥∥∥
Ap0

≤
∥∥∥∥(Mf)

p0−p
p0−1

∥∥∥∥p0−1

A1

‖u‖A1(2.4)

.

(
p0 − 1

p− 1

)p0−1

‖u‖A1 .

Hence, we can use our assumption and (2.1) to deduce that∫
|Tf(x)|pu(x)dx

. ϕ(‖w‖Ap0 )p
(∫

|f(x)|p0(Mf(x))p−p0u(x)dx

) p
p0

((
‖u‖A1

p− 1

)p ∫
|f(x)|pu(x)dx

)1− p
p0

≤
(
‖u‖A1

p− 1

)p(1− p
p0

)

ϕ

(
C‖u‖A1

(p− 1)p0−1

)p(∫
|f(x)|pu(x)dx

)
,

and the result follows taking the minimum of both constants. �

We observe that, since we are interested in getting the slowest blow-up possible in terms
of p, the constant obtained by the first procedure is better for our purposes. However, in
standard cases (p0 = 2, ϕ(t) = t), it gives a worst exponent in ‖u‖A1 .

As a first consequence, we obtain the following extension of Corollary 1.6 for weights
u ∈ A1.

Corollary 2.2. Let 1 < p0 <∞, s > 0 and let T be a sublinear operator such that

T : Lp0(w) −→ Lp0(w)

is bounded for every w ∈ Ap0 with constant ‖w‖sAp0 . Then, for every u ∈ A1,

T : L(logL)s(p0−1)(u) −→ Es(p0−1)(u)

is also bounded with constant less than or equal to C‖u‖sp0A1
.

Remark 2.3. We shall keep the letter s for the exponent of ‖w‖p0 in the strong-type (p0, p0)
case.
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2.2. From weak-type to weak-type. In this subsection, the starting hypothesis will be a
weak type estimate at the p0-level for every weight in the Ap0 class. This information will
give us a weak type estimate at any level 1 < p < p0 for every weight u ∈ A1 and this new
information will finally lead us to the boundedness of our operator in a space near L1.

Theorem 2.4. Let T be an operator such that, for some 1 < p0 <∞ and every w ∈ Ap0,

T : Lp0(w) −→ Lp0,∞(w)

is bounded with constant ϕ(‖w‖Ap0 ), where ϕ : [0,∞) → [0,∞) is an increasing function.
Then, for every 1 < p < p0 and every u ∈ A1,

T : Lp(u) −→ Lp,∞(u)

is bounded with constant controlled by

C1‖u‖
1
p
− 1
p0

A1
ϕ

(
C2

(
p0 − 1

p− 1

)p0−1

‖u‖A1

)
.

Proof. Let γ > 0 and y > 0,

λuTf (y) ≤ λuMf (γy) + γp0−p
yp0

yp

∫
{|Tf |>y}

(Mf)p−p0(x)u(x)dx.

Then, by hypothesis, since w = (Mf)p−p0u we deduce that

λuTf (y) ≤ λuMf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp

∫
|f(x)|p0Mf(x)p−p0u(x)dx

≤ λuMf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp

∫
|f(x)|pu(x)dx.

Using (2.2), we have that

λuMf (γy) .
‖u‖A1

ypγp
‖f‖pLp(u).

Combining these two facts and multiplying by yp we obtain

ypλuTf (y) .

(
‖u‖A1

γp
+ γp0−pϕ(‖w‖Ap0 )p0

)
‖f‖pLp(u).

Finally, we can minimize the right-hand side with respect to γ > 0 by choosing γ =

‖u‖1/p0A1
ϕ(‖w‖Ap0 )−1, and taking supremum over y > 0, we get,

‖Tf‖pLp,∞(u) . ‖u‖
1−p/p0
A1

ϕ(‖w‖Ap0 )p‖f‖pLp(u).

This estimate, together with (2.4), completes the proof. �

Corollary 2.5. Under the hypotheses of Theorem 2.4, with ϕ(t) = tσ for some σ > 0, we
obtain that, for every u ∈ A1,

T : Lp(u) −→ Lp,∞(u)

is bounded with constant less than or equal to

C‖u‖
σ+ 1

p
− 1
p0

A1

(p− 1)σ(p0−1)
.
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At this point, we have to use the first variant of Yano’s extrapolation theorem concern-
ing weak-type spaces. In 1996, N. Yu Antonov [1] proved that there is almost everywhere
convergence for the Fourier series of every function in L logL log3 L(T). Even though he did
not write it explicitly, behind his ideas there was the following extrapolation argument (see
[2, 11, 12, 39] for more details):

Theorem 2.6. Let 1 < p0 <∞ and m > 0. If T is a sublinear operator such that

(2.5) T : Lp(µ) −→ Lp,∞(µ)

is bounded with constant controlled by (p− 1)−m for every 1 < p ≤ p0, then

T : L(logL)m log3 L(µ) −→ Rm(µ)

is also bounded, where Rm(µ) is the space of µ-measurable functions such that

‖f‖Rm(µ) = sup
t>0

tf∗µ(t)

logm1 (t)
<∞.

Corollary 2.7. Under the hypotheses of Theorem 2.4 with ϕ(t) = tσ, we obtain that, for
every u ∈ A1,

T : L(logL)σ(p0−1) log3 L(u) −→ Rσ(p0−1)(u)

is bounded with constant less than or equal to C‖u‖
σ+1− 1

p0
A1

.

Remark 2.8. We shall keep the letter σ for the exponent of ‖w‖p0 in the weak-type (p0, p0)
case. Clearly, for a given operator, σ ≤ s.

Remark 2.9. It is important to mention that, in order to prove Theorem 2.6, we only need
to assume that the sublinear operator T satisfies, for every function f such that ‖f‖∞ ≤ 1,

(2.6) ‖Tf‖Lp,∞(µ) .
1

(p− 1)m
‖f‖1/p

L1(µ)
.

From here, the boundedness on L(logL)m log3 L(µ) is obtained by expressing f as an appro-
priate linear combination of functions bounded by 1. This estimate (2.6) can be deduced from
(2.5), but it also follows from the weaker boundedness

T : Lp,1(µ) −→ Lp,∞(µ),

with constant (p− 1)−m.

2.3. From restricted weak-type to restricted weak-type. For many interesting oper-
ators, the hypothesis that we have is not of weak type, but a weaker condition such as a
restricted weak type estimate. That is, we only know the weak type inequality for functions
of the form f = χE . In this subsection we shall see that we can also obtain some boundedness
in a space near L1.

Theorem 2.10. Let T be an operator such that, for some 1 < p0 <∞ and every w ∈ Ap0,

T : Lp0,1(w) −→ Lp0,∞(w)

is bounded with constant ϕ(‖w‖Ap0 ) where ϕ : [0,∞) → [0,∞) is an increasing function.
Then, for every 1 < p < p0 and every u ∈ A1,

T : L
p, p
p0 (u) −→ Lp,∞(u)
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is bounded with constant controlled by

C1‖u‖
1
p
− 1
p0

A1
ϕ

(
C2

(
p0 − 1

p− 1

)p0−1

‖u‖A1

)
.

The proof follows the same pattern as in Theorem 2.4 with the obvious modifications.
However, since the result is not the one we can initially expect and we have to be careful
with the behavior of the constant, we include the details.

Proof. Let γ > 0 and y > 0. Then, if w = (Mf)p−p0u,

λuTf (y) ≤ λuMf (γy) + γp0−p
yp0

yp

∫
{|Tf |>y}

w(x)dx

. λuMf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp

∫ ∞
0

(∫
{|f |>z}

w(x)dx

)1/p0

dz

p0

.

But, since p − p0 < 0, we can bound w = (Mf)p−p0u ≤ zp−p0u on the set {|f | > z}, so we
conclude that

λuTf (y) . λuMf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp

∫ ∞
0

z
p
p0
−1

(∫
{|f |>z}

u(x)dx

)1/p0

dz

p0

≈ λuMf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp
‖f‖p

L
p,
p
p0 (u)

.

The result follows as in Theorem 2.4, using (2.2) and the fact that ‖f‖Lp(u) ≤ ‖f‖
L
p,
p
p0 (u)

.

�

Lemma 2.11. If T is a sublinear operator such that, for every 1 < p < p0,

T : L
p, p
p0 (µ) −→ Lp,∞(µ)

is bounded with constant less than or equal to (p− 1)−m, then:

(i) It holds that

T : Lp,1(µ) −→ Lp,∞(µ)

is bounded with constant less than or equal to C(p− 1)−m−1.
(ii) For every function f such that ‖f‖∞ ≤ 1,

‖Tf‖Lp,∞(µ) .
1

(p− 1)
m+

p0−1
p

‖f‖1/p
L1(µ)

.

Proof. (i) The first result is well-known since, for every measurable set E,

(2.7) ‖TχE‖Lp,∞(µ) .
1

(p− 1)m
µ(E),

and Lp,∞(µ) can be endowed with a norm ‖ · ‖∗ such that

‖f‖Lp,∞(µ) ≤ ‖f‖∗ ≤
1

p− 1
‖f‖Lp,∞(µ),
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and hence the above estimate over measurable sets can be extended to any function by adding
a factor 1

p−1 to the constant.

(ii) Let f be bounded by 1. Then

‖f‖
L
p,
p
p0 (µ)

=

(
p

∫ 1

0
λµf (t)1/p0t

p
p0
−1
dt

)p0/p
.

(∫ 1

0
λµf (t)dt

)1/p(∫ 1

0
t
p−p0
p0−1 dt

) p0−1
p

. ‖f‖1/p
L1(µ)

(
p0 − 1

p− 1

) p0−1
p

,

and the result follows. �

As a consequence of Theorem 2.10, Lemma 2.11 and Remark 2.9, we obtain the following
endpoint estimate:

Corollary 2.12. Let 1 < p0 <∞, r > 0 and let T be a sublinear operator such that

T : Lp0,1(w) −→ Lp0,∞(w)

is bounded for every w ∈ Ap0 with constant ‖w‖rAp0 . Then, for every u ∈ A1,

T : L(logL)β log3 L(u) −→ Rβ(u)

is also bounded with constant C‖u‖
r+1− 1

p0
A1

, where β = r(p0 − 1) + min(1, p0 − 1).

Remark 2.13. We shall keep the letter r for the exponent of ‖w‖p0 in the restricted weak-type
(p0, p0) case. Clearly, for a given operator, r ≤ σ ≤ s.
Remark 2.14. There is large class of operators (called (ε, δ)-atomic approximable, see Defi-
nition 3.2 and [9, 10]) for which an estimate of the form (2.7) implies that, for every function
f bounded by 1,

‖Tf‖Lp,∞(u) .
1

(p− 1)m
‖f‖1/p

L1(u)
.

Hence, by Remark 2.9, we obtain that if an operator T in this class satisfies the hypotheses
of Corollary 2.12, then

T : L(logL)r(p0−1) log3 L(u) −→ Rr(p0−1)(u).

2.4. From strong weak-type to strong weak-type. The motivation of this subsection
is the following: in [13], it was proved that one can improve the endpoint space obtained by
the classical Yano’s extrapolation or even by Antonov’s extrapolation by assuming a stronger
condition on T ; namely that the operator is of strong type on the bigger space Lp,∞. Hence,
we want to apply our technique to the case of operators when the starting hypothesis is
precisely to have a strong type estimate at level Lp0,∞ with respect to every Ap0 weight with
the hope of improving the final boundedness near L1. We shall see that this is the case.

Theorem 2.15. Let T be an operator such that, for some 1 < p0 <∞ and every w ∈ Ap0,

T : Lp0,∞(w) −→ Lp0,∞(w)

is bounded with constant ϕ(‖w‖Ap0 ), where ϕ : [0,∞) → [0,∞) is an increasing function.
Then, for every 1 < p < p0 and every u ∈ A1,

T : Lp,∞(u) −→ Lp,∞(u)
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is bounded with constant

C1ϕ

(
C2‖u‖p0A1

(p− 1)p0−1

)
.

Proof. We use Rubio de Francia’s algorithm as follows:

Rf(x) =

∞∑
k=0

Mkf(x)

2k‖Mk‖Lp,∞(u)→Lp,∞(u)
.

Then, clearly, f ≤ Rf , Rf ∈ A1 and using (2.1) we obtain that

‖Rf‖A1 ≤ 2‖M‖Lp,∞(u)→Lp,∞(u) .
‖u‖A1

p− 1

and

‖Rf‖Lp,∞(u) ≤ 2‖f‖Lp,∞(u).

Let γ > 0 and y > 0,

λuTf (y) ≤ λuRf (γy) + γp0−p
yp0

yp

∫
{|Tf |>y}

(Rf)p−p0(x)u(x)dx.

Then, by hypothesis, we deduce that if w = (Rf)p−p0u,

λuTf (y) ≤ λuRf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp
sup
z>0

zp0
∫
{|f |>z}

Rf(x)p−p0u(x)dx

≤ λuRf (γy) + γp0−p
ϕ(‖w‖Ap0 )p0

yp
sup
z>0

zp
∫
{|f |>z}

u(x)dx.

Using that

λuRf (γy) .
2p

ypγp
‖f‖pLp,∞(u),

we obtain

ypλuTf (y) .

(
1

γp
+ γp0−pϕ(‖w‖Ap0 )p0

)
‖f‖pLp,∞(u),

and the result follows minimizing with γ = ϕ(‖w‖Ap0 )−1 and using the estimate analogous

to (2.4) with R instead of M . �

The third variant of Yano’s extrapolation theorem we need is the following:

Theorem 2.16 ([13]). Let µ be a σ-finite, non-atomic measure, 1 < p0 <∞, m > 0, and let

T : Lp,∞(µ) −→ Lp,∞(µ)

be a bounded sublinear operator with constant controlled by (p− 1)−m for every 1 < p ≤ p0.
Then,

T :
[
L(logL)m−1 log3 L(µ)

]
1
−→ Rm(µ)

is bounded, where X =
[
L(logL)m−1 log3 L(µ)

]
1

is the set of measurable functions such that

‖f‖X = ‖f‖L1,∞(µ) +

∫ 1

0

supt≤y tf
∗
µ(t)

y

(
log1

(1

y

))m−1
log3

(1

y

)
dy <∞.



14 M. J. CARRO AND C. DOMINGO-SALAZAR

Remark 2.17. Here, we have to emphasize that

L(logL)m log3 L(µ) (
[
L(logL)m−1 log3 L(µ)

]
1
.

Thus, except for the log3 L factor, we can say that in order to obtain the best estimate from
a Yano’s extrapolation type theorem, it would be convenient to compute the best strong weak-
type (p, p) constant for T as p→ 1.

Corollary 2.18. Let 1 < p0 <∞, and let T be a sublinear operator such that

T : Lp0,∞(w) −→ Lp0,∞(w)

is bounded for every w ∈ Ap0 with constant ‖w‖αAp0 . Then, for every u ∈ A1,

T :
[
L(logL)α(p0−1)−1 log3 L(u)

]
1
−→ Rα(p0−1)−1(u)

is also bounded with constant less than or equal to C‖u‖αp0A1
.

Remark 2.19. We shall keep the letter α for the exponent of ‖w‖p0 in the strong weak-type
(p0, p0) case. Clearly, for a given operator, r ≤ σ ≤ α, but there is no clear relation between
α and s.

2.5. From restricted weak-type to strong weak-type. Taking into account Remarks
2.13 and 2.17, it is clear that a good way to obtain the best endpoint estimate would be to
seek good restricted weak-type estimates for T with respect to every weight in Ap0 (that is, a
small exponent r) and from here, try to find a good constant for the strong weak-type (p, p)
with respect to A1 weights. In other words, we want to find an optimal way to relate r and
δ in the following situation:

T : Lp0,1(w) −→ Lp0,∞(w), C‖w‖rAp0 =⇒ T : Lp,∞(u) −→ Lp,∞(u),
C

(p− 1)δ
.

To this end, we shall use the following interpolation result which is proved in the Appendix.

Lemma 2.20. Let 0 < s0, s1 ≤ 1 < q0 < q1 <∞ and let T be a sublinear operator such that,
for some weight u,

T : Lqj ,sj (u) −→ Lqj ,∞(u)

is bounded with constant Mj, for j = 0, 1. Then, for every 0 < θ < 1, if 1
q = 1−θ

q0
+ θ

q1
, we

have that
T : Lq,∞(u) −→ Lq,∞(u)

is bounded with constant controlled by BM1−θ
0 M θ

1 , where

B =

(
q0q

s0(q − q0)

)1/s0

+

(
q1q

s1(q1 − q)

)1/s1

+

(
q1

s1

)1/s1

Theorem 2.21. Let 1 < p0 <∞, and let T be a sublinear operator such that

T : Lp0,1(w) −→ Lp0,∞(w)

is bounded for every w ∈ Ap0 with constant ϕ(‖w‖Ap0 ), where ϕ : [0,∞) → [0,∞) is an
increasing function. Then, for every w ∈ Ap0

T : Lp0,∞(w) −→ Lp0,∞(w)
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is bounded with constant less than or equal to C1‖w‖
p′0−1
Ap0

ϕ(C2‖w‖Ap0 ).

Proof. From our hypothesis, we can write that, for every measurable set E ⊆ Rn and every
w ∈ Ap0 ,

‖TχE‖Lp0,∞(w) ≤ ϕ(‖w‖Ap0 )w(E)1/p0 .

This estimate can be extrapolated up by means of the modern version of Rubio de Francia’s
theorem (see its statement in [22]) and, given ε > 0, we obtain that

‖TχE‖Lp0+ε,∞(w) . ϕ(C‖w‖Ap0+ε)w(E)1/(p0+ε),

for w ∈ Ap0+ε. In particular,

(2.8) T : Lp0+ε,1(w) −→ Lp0+ε,∞(w),

for every w ∈ Ap0 and constant controlled by

ϕ(C‖w‖Ap0 )

p0 + ε− 1
. ϕ(C‖w‖Ap0 ).

Now we want to extrapolate down to p0 − ε. Fix w ∈ Ap0 and set ε = C(p0 − 1)‖w‖1−p
′
0

Ap0
in such a way that w ∈ Ap0−2ε and ‖w‖Ap0−2ε . ‖w‖Ap0 (see [29]). Now we proceed as in
Theorem 2.10. For every measurable set E ⊆ Rn, γ > 0 and y > 0,

λwTχE (y) ≤ λwMχE
(γy) + γεyε

∫
{|TχE |>y}

(MχE)−ε(x)w(x)dx.

But, using [22, Lemma 2.1],

‖(MχE)−εw‖Ap0 ≤ ‖(MχE)1/2‖2εA1
‖w‖Ap0−2ε . ‖w‖Ap0 ,

so we can use our hypothesis and (2.2) to deduce that

yp0−ελwTχE (y) .

(‖w‖Ap0
γp0−ε

+ γεϕ(‖w‖Ap0 )p0
)
w(E).

Minimizing in γ > 0 we conclude that

‖TχE‖Lp0−ε,∞(w) . ‖w‖
ε

p0(p0−ε)
Ap0

ϕ(‖w‖Ap0 )w(E)1/(p0−ε),

and hence

(2.9) T : Lp0−ε,1(w) −→ Lp0−ε,∞(w)

with constant

‖w‖
ε

p0(p0−ε)
Ap0

ϕ(‖w‖Ap0 )

p0 − ε− 1
. ϕ(‖w‖Ap0 ),

recalling that ε ≈ (p0 − 1)‖w‖1−p
′
0

Ap0
. Finally, we use Lemma 2.20 with (2.9) and (2.8) to

conclude that

T : Lp0,∞(w) −→ Lp0,∞(w)

with constant controlled by
Cϕ(C‖wAp0 )

ε ≈ Cp0‖w‖
p′0−1
Ap0

ϕ(C‖w‖Ap0 ). �
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Corollary 2.22. Let 1 < p0 <∞, and let T be a sublinear operator such that

T : Lp0,1(w) −→ Lp0,∞(w)

is bounded for every w ∈ Ap0 with constant ‖w‖rAp0 . Then, for every u ∈ A1,

T :
[
L(logL)r(p0−1) log3 L(u)

]
1
−→ Rr(p0−1)(u)

is also bounded with constant less than or equal to C‖u‖p
′
0+rp0
A1

.

3. A different class of weights

Very recently, the authors in [10] presented a different kind of extrapolation in the sense
of Rubio de Francia that allows us to reach the endpoint p = 1 at least when restricted to

characteristic functions. More precisely, they introduced a new class of weights Âp, closely
related to Ap, in such a way that, if an operator T satisfies

(3.1) T : Lp0,1(w) −→ Lp0,∞(w),

for some 1 < p0 <∞ and every weight w ∈ Âp0 , then we can conclude that

‖TχE‖L1,∞(u) . u(E),

for every u ∈ A1 and every measurable set E ⊆ Rn. The class Âp is obviously larger than Ap,
because otherwise we would have, again, M2 as a counterexample. However, it holds that,
for every 1 ≤ p <∞ and every ε > 0,

Ap ⊆ Âp ⊆ Ap+ε.

The precise definition of these classes is

Âp = {(Mf)1−pu : f ∈ L1
loc, u ∈ A1},

and they are a subclass of the so-called ARp weights, introduced in 1982 by R. Kerman and
A. Torchinsky [30] to characterize the boundedness (3.1) of the Hardy-Littlewood maximal
operator M . The extrapolation presented in [10] is more general, but the most interesting
part for our purposes can be stated as follows:

Theorem 3.1 ([10]). Let T be a sublinear operator such that, for some 1 < p0 < ∞ and

every w ∈ Âp0, it holds that

T : Lp0,1(w) −→ Lp0,∞(w).

Then, for every u ∈ A1,

(i) ‖TχE‖L1,∞(u) . u(E), E ⊆ Rn,
(ii) T : L(logL)ε(u) −→ L1,∞

loc (u), ε > 0.

It is known that, in general, the estimate (i) cannot hold for every function f ∈ L1(u).
Take, for instance, the operator

(3.2) Af(x) =

∥∥∥∥f(x+ y)

y

∥∥∥∥
L1,∞(R)

,
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which was introduced in [3] and is related to Bourgain’s return time theorems. It trivially
satisfies AχE ≤ MχE (and hence, the assumption of Theorem 3.1), but it is not of weak-
type (1, 1). However, it can be proved that, for a wide class of operators called (ε, δ)-atomic
approximable (see Definition 3.2 below), the estimate on characteristic functions (i) is in fact
equivalent to the weighted weak-type (1, 1).

Definition 3.2. Given δ > 0, a function a ∈ L1(Rn) is called a δ-atom if it satisfies the
following properties:

•
∫
Rn a = 0, and

• there exists a cube Q such that |Q| ≤ δ and supp a ⊆ Q.

With this, a sublinear operator T is (ε, δ)-atomic if, for every ε > 0, there exists δ > 0 such
that

‖Ta‖L1(Rn)+L∞(Rn) ≤ ε‖a‖L1(Rn),

for every δ-atom a, and T is said to be (ε, δ)-atomic approximable if there exists a sequence
{Tn}n of (ε, δ)-atomic operators such that, for every measurable set E, |TnχE | ≤ |TχE | and,
for every function f ∈ L1(Rn) with ‖f‖∞ ≤ 1,

|Tf(x)| ≤ lim
n

inf |Tnf(x)|, a.e. x ∈ Rn.

In [9], the author shows that this is not a strong property to assume on an operator. For
instance, it is checked that if

(3.3) Tf(x) = K ∗ f(x),

with K ∈ Lp(Rn) for some 1 ≤ p < ∞, then T is (ε, δ)-atomic, and if {Tn}n is a sequence
of (ε, δ)-atomic operators, then supn |Tnf(x)| is (ε, δ)-atomic approximable. See [9, 10] for
more examples.

Therefore, the conclusion (ii) of Theorem 3.1 is especially interesting for operators which
are not (ε, δ)-atomic approximable, since in this case, (ii) is the best endpoint result that
is not restricted to characteristic functions. In this section, we will see that this can be
improved to the larger space L log2 L(u).

Theorem 3.3. Let T be a sublinear operator such that, for some 1 < p0 < ∞ and every

w ∈ Âp0, it holds that

T : Lp0,1(w) −→ Lp0,∞(w)

is bounded. Then, for every u ∈ A1,

T : L log2 L(u) −→ L1,∞
loc (u)

is also bounded.

Proof. First, we apply Theorem 3.1, which yields

(i) ‖TχE‖L1,∞(u) . u(E),

(ii) T : L(logL)ε(u) −→ L1,∞
loc (u).

Since L1(u) ∩ L∞ is continuously embedded in L(logL)ε(u), from (ii) we deduce that,

(3.4) T : L1(u) ∩ L∞ → L1,∞
loc (u).
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Take now a non-negative function f = f0 + f1, with f0 = fχ{f≤1} and f1 = fχ{f>1}. By
sublinearity, we have that ‖Tf‖

L1,∞
loc (u)

. ‖Tf0‖L1,∞
loc (u)

+ ‖Tf1‖L1,∞
loc (u)

. For the term with f0,

we use (3.4) and ‖f0‖∞ ≤ 1 to get

‖Tf0‖L1,∞
loc (u)

. ‖f0‖L1(u) + ‖f0‖∞ ≤ ‖f‖L log2 L(u) + 1.

Now, to deal with f1, we need to resort to [40, Lemma 4], where the author presents the
following decomposition for non-negative functions:

(3.5) f1(x) =

∞∑
j=1

∑
k∈Z

2kχEk,j (x) a.e. x ∈ Rn,

where the sets Ek,j depend on f1 and are defined in such a way that, for every weight (in
particular u),

u(Ek,j) ≤ λuf1(2k+j).

For every N > 0, set fN1 to be the following truncated series:

fN1 (x) =
N∑
j=1

∑
|k|≤N

2kχEk,j (x).

Next, since it is a finite sum, we use the sublinearity of T and (i) in order to obtain

(3.6) ‖TfN1 ‖L1,∞
loc (u)

.
∞∑
j=1

log1(j)
∑
k∈Z

2k log1(|k|)λuf1(2k+j).

The logarithmic terms come from Stein and Weiss’ lemma for the L1,∞ quasinorm (see [41]).
Now, fix j ≥ 1 and split the inner sum into three pieces: I1

j + I2
j + I3

j . The first one will be

I1
j =

∑
k<−j

2k log1(|k|)λuf1(2k+j) ≤ ‖f‖L log2 L(u)

∞∑
k=j+1

2−k log1(k).

Here we used that, since f1 > 1, we have λuf1(2k+j) ≤ ‖f‖L log2 L(u) whenever k < −j, because
in this case,

λuf1(2k+j) = λf1(1) ≤ ‖f‖L log2 L(u).

The second term we need to consider is

I2
j =

0∑
k=−j

2k log1(|k|)λuf1(2k+j) = 2−j
0∑

k=−j
2k+j log1(|k|)λuf1(2k+j)

≤ 2−j‖f‖L log2 L(u)

j∑
k=0

log1(k).
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Here we just used that tλuf (t) ≤ ‖f‖L log2 L(u), for every t > 0. Finally,

I3
j =

∞∑
k=1

2k log1(k)λuf1(2k+j) ≤ 2−j
∞∑
k=1

2k+j log1(k + j)λuf1(2k+j)

. 2−j
∫ ∞

0
λuf (s) log2(s)ds . 2−j‖f‖L log2 L(u).

Now we go back to (3.6) and using the bounds for Imj , m = 1, 2, 3, we conclude that

‖TfN1 ‖L1,∞
loc (u)

. ‖f‖L log2 L(u)

∞∑
j=1

log1(j)

 ∞∑
k=j+1

2−k log1(k) + 2−j
j∑

k=0

log1(k) + 2−j


. ‖f‖L log2 L(u).

Therefore, we have that ‖TfN1 ‖L1,∞
loc (u)

. ‖f‖L log2 L(u). If we show that fN1 converges to

f1 in L log2 L(u), then we conclude ‖Tf1‖L1,∞
loc (u)

. ‖f‖L log2 L(u) and hence,

‖Tf‖
L1,∞
loc (u)

. ‖f‖L log2 L(u) + 1.

From here, we finish the proof changing f by αf and letting α tend to infinity. To show
that fN1 → f1 in L log2 L(u), we observe that the difference f1(x)− fN1 (x) decreases to zero
for almost every x ∈ Rn, since fN1 is a partial sum of a convergent series of positive terms
that coincides with f1 almost everywhere. In particular, its decreasing rearrangement with
respect to u satisfies that

(f1 − fN1 )∗u(t) −→ 0, a.e. t ∈ (0,∞).

On the other hand, |f1 − fN1 | can be pointwise controlled by f1 ∈ L log2 L(u), so∣∣∣∣(f1 − fN1 )∗u(t) log2

1

t

∣∣∣∣ ≤ (f1)∗u(t) log2

1

t
∈ L1(0,∞).

Therefore, by the dominated convergence theorem,

‖f1 − fN1 ‖L log2 L(u) =

∫ ∞
0

(f1 − fN1 )∗u(t) log2

1

t
dt −→ 0,

as N →∞, so we finish the proof. �

4. Examples and Applications

4.1. Composition of Rubio de Francia operators. Many times, we are interested in
operators T that can be expressed as a composition of other (simpler) ones, say T ≈ T1 ◦ T2.
It is clear that if we have boundedness information for T1 and T2, and it can be put together as
a composition, then we can draw conclusions for the original operator T . We will exemplify
this with Calderón-Zygmund operators, although the same argument can be carried out
with other operators for which their strong and weak-type (p, p) boundedness constants are
known. We will also present an application to the composition of commutators of general
linear operators.

A Calderón-Zygmund operator is an L2(Rn) bounded integral operator T whose kernel
satisfies certain standard growth and smoothness conditions. This definition includes the
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Hilbert, Beurling and Riesz transforms, among others, and it is well-known they are of strong-
type (p, p) for every 1 < p <∞ and every Ap weight. However, the sharp dependence of the
boundedness constant on the weight was the result of several years of research culminating in
[27]. In [28], the authors extended the result to maximal Calderón-Zygmund operators and
included the weak-type case. If K is the kernel of a Calderón-Zygmund operator T , then we
define

T∗f(x) = sup
0<ε<δ

∣∣∣∣∣
∫
ε<|y|<δ

K(x, y)f(y)dy

∣∣∣∣∣ ,
and the main result in [28] states that

• ‖T∗‖Lp(w)→Lp,∞(w) . ‖w‖Ap , 1 < p < 2,

• ‖T∗‖Lp(w)→Lp(w) . ‖w‖
1
p−1

Ap
, 1 < p < 2.

Calderón-Zygmund operators and their maximal versions are known to be of weak-type (1,1)
for A1 weights. However, if we consider a family {Ti}ki=1, with k ≥ 2, this need not be true
for the composition T1 ◦ · · · ◦ Tk. By iteration of the previous estimates, we have that

• ‖T1,∗ ◦ · · · ◦ Tk,∗‖Lp(w)→Lp,∞(w) . ‖w‖
1+ k−1

p−1

Ap
, 1 < p < 2,

• ‖T1,∗ ◦ · · · ◦ Tk,∗‖Lp(w)→Lp(w) . ‖w‖
k
p−1

Ap
, 1 < p < 2.

Using Corollary 2.7 on the weak-type estimate, we conclude the following:

Corollary 4.1. Given a family of Calderón-Zygmund operators {Ti}ki=1, with k ≥ 2, and
u ∈ A1, it holds that, for every ε > 0,

T1,∗ ◦ · · · ◦ Tk,∗ : L(logL)k−1+ε log3 L(u) −→ Rk−1+ε(u).

Notice that if we had used the strong-type estimate with Corollary 2.2, we would have
gotten boundedness on L(logL)k(u), which is a smaller space.

Our next example will seek endpoint estimates for the composition of commutators. First,
recall that a locally integrable function b : Rn → R is said to be in BMO if

‖b‖BMO = sup
Q

1

|Q|

∫
Q
|b(y)− bQ|dy <∞,

where bQ = 1
|Q|
∫
Q b is the average of b on the cube Q. Given an operator T and a BMO

function b, we define the commutator

[b, T ]f = bTf − T (bf).

We can also define the k-th order commutator as T kb = [b, T k−1
b ] for every k ≥ 1, being

T 0
b = T . The special case when T is a Calderón-Zygmund operator was first considered in

[15], and in [36] it was shown that [b, T ] is not of weak-type (1,1). This motivates the study
of endpoint estimates for commutators. In our case, however, we will deal with general linear
operators T and their commutators with BMO functions, in the spirit of [14]. More precisely,
we will make use of the following result, that can be found in [14, Corollary 3.2] for p0 = 2
and extended to 1 < p0 <∞ by obvious modifications. Also, the case k = 1 can be found in
[35].
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Theorem 4.2. Let T be a linear operator, 1 < p0 <∞ and b ∈ BMO. If

T : Lp0(w) −→ Lp0(w)

is bounded for every w ∈ Ap0 with constant C‖w‖sAp0 , then, for every k ≥ 1 and every

w ∈ Ap0,

T kb : Lp0(w) −→ Lp0(w)

is bounded with constant less than or equal to Ck‖b‖kBMO‖w‖
kmax

{
1, 1
p0−1

}
+s

Ap0
.

In view of this behavior, a direct application of Corollary 2.2 produces the following
weighted endpoint result for the k-th order commutator and A1 weights.

Corollary 4.3. Let T be a linear operator, 1 < p0 <∞ and b ∈ BMO. If

T : Lp0(w) −→ Lp0(w)

is bounded for every w ∈ Ap0 with constant C‖w‖sAp0 , then, for every k ≥ 1 and every u ∈ A1,

T kb : L(logL)kmax{p0−1,1}+s(p0−1)(u) −→ Ekmax{p0−1,1}+s(p0−1)(u)

is also bounded with constant less than or equal to Ck‖b‖kBMO‖u‖
kmax{p0,p′0}+sp0
A1

.

4.2. The Carleson maximal operator. Our next application will yield an A1 weighted
endpoint estimate for the Carleson operator, defined by

Cf(x) = sup
a∈R

∣∣∣∣∣ lim
ε→0

∫
|x−y|>ε

e2πiayf(y)

x− y
dy

∣∣∣∣∣ .
Our argument will be based on a restricted weak-type (p, p) estimate for C with respect to

A1 weights.

Proposition 4.4. Given 1 < p ≤ 2 and u ∈ A1, it holds that, for every measurable set
E ⊆ R,

‖CχE‖Lp,∞(u) ≤
Cu
p− 1

u(E)1/p,

for some Cu > 1 depending on the weight.

Proof. In [26], the authors prove the following good-λ inequality for C:
|{x ∈ Ij : Cf(x) > 3λ,Mpf(x) ≤ γλ}| ≤ C‖C‖pLp(R)→Lp,∞(R)γ

p|Ij |,

for every γ, λ > 0, p > 1, and with {Ij}j being a family of disjoint open intervals such that

{Cf > λ} =
⋃
j

Ij .

As usual, the operator Mp is defined by Mpf = (M(fp))1/p. If we only consider charac-
teristic functions f = χE , we can go over the proof in [26] and check that we can replace
‖C‖Lp(R)→Lp,∞(R) by C

p−1 , using the well-known estimate by R. Hunt [25]:

(4.1) ‖CχE‖Lp,∞(R) .
|E|1/p

p− 1
, 1 < p ≤ 2.
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Therefore, we get that, for every measurable set E ⊆ R,

|{x ∈ Ij : CχE(x) > 3λ,MχE(x) ≤ γpλp}| ≤ Cγp

(p− 1)p
|Ij |.

Now, define

B = {CχE > 3λ,MχE ≤ γpλp},
and pick γ > 0 in such a way that Cγp

(p−1)p = ε, for some ε > 0 to be chosen later. Then, we

can just write

|Ij ∩B| ≤ ε|Ij |.
Using the sharp Reverse Hölder property of A1 weights (see [37]), we know that, for δ =
1 + 1

2n+1‖u‖A1
,

u(Ij ∩B) ≤ uδ(Ij)1/δ|Ij ∩B|1/δ
′ ≤ 2u(Ij)|Ij |−1/δ′ |Ij ∩B|1/δ

′ ≤ 2ε1/δ′u(Ij).

With this estimate and recalling the definition of the intervals Ij , we have that

u({CχE > 3λ}) ≤
∑
j

u(Ij ∩B) + u({MχE > γpλp})

≤ 2ε1/δ′u({CχE > λ}) + u({MχE > γpλp}),

and hence,

‖CχE‖pLp,∞(u) ≤ 3p2ε1/δ′‖CχE‖pLp,∞(u) + 3pγ−p‖MχE‖L1,∞(u).

Now we choose ε > 0 such that 3p2ε1/δ′ = 1/2, and using (2.2),

‖CχE‖pLp,∞(u) ≤ 2 · 3pγ−p‖u‖A1u(E).

To conclude, we only need to recall the value of γ, ε and δ to write

‖CχE‖Lp,∞(u) ≤
C1/p21/p · 3(4 · 3p)

1+2n+1‖u‖A1
p ‖u‖1/pA1

p− 1
u(E)1/p =

Cu
p− 1

u(E)1/p.

�

Theorem 4.5. For every u ∈ A1, we have that

C : L logL log3 L(u) −→ R1(u)

is bounded.

Proof. First, notice that the Carleson operator C is (ε, δ)-atomic approximable. The easiest
way to check this is to recall that

Cf(x) ≈ f(x) + sup
R∈Q

∣∣∣∣∫ R

−R
f̂(ξ)e2πixξdξ

∣∣∣∣ = f(x) + sup
R∈Q
|SRf(x)|,

where SR is of convolution type with kernel in L2(R), for every R ∈ Q. Hence, by (3.3),
{SR}R∈Q is a sequence of (ε, δ)-atomic operators and we prove our claim. The result now
follows by Remarks 2.9 and 2.14 together with the estimate in Proposition 4.4. �
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Remark 4.6. Notice that, in Proposition 4.4, we could have worked with the good-λ inequality
for general functions (and hence, with the norm ‖C‖Lp(R)→Lp,∞(R)). In this case, we would
have gotten weak-type (p, p) estimates instead of restricted weak-type ones. However, the fact
that C is (ε, δ)-atomic approximable and that it satisfies (4.1) with a good constant, makes
that, in terms of extrapolation, it is more interesting to deal with characteristic functions.
Theorem 4.5 extends Antonov’s enpoint estimate [1] for C and shows that the Fourier integral
on R is pointwise convergent for every function f ∈ L logL log3 L(u) with u ∈ A1.

4.3. Maximally modulated singular integrals. In view of the previous subsection, we
can prove the following general result that only relies on a certain good-λ inequality. As we
shall see, a wide class of operators called maximally modulated singular integrals will fall
within the scope of this result (see [24, 19]).

Theorem 4.7. Assume that T is a sublinear operator such that, for an increasing function
ψ on [1,∞), it satisfies

|{x ∈ Qj : Tf(x) > 3λ,Mpf(x) ≤ γλ}| ≤ ψ
(

1

p− 1

)p
γp|Qj |,

for every γ, λ > 0, 1 < p ≤ p0, and with {Qj}j being a family of disjoint open cubes covering
{Tf > λ}. Alternatively, we can assume that the same holds only on characteristic functions
f = χE with a function ψr instead of ψ. Then, when u ∈ A1,

• T : Lp(u)→ Lp,∞(u) is bounded with constant controlled by Cuψ
(

1
p−1

)
.

• It holds that

‖TχE‖Lp,∞(u) ≤ Cuψr
(

1

p− 1

)
u(E)1/p.

Naturally, depending on the expression of ψ (or ψr), and whether T is (ε, δ)-atomic or
not, one can try to extrapolate these estimates for particular examples of T , as we did in
Theorem 4.5 for the Carleson operator C with ψr = Id. As we anticipated, other examples to
which we can apply Theorem 4.7 are the so-called maximally modulated Calderón-Zygmund
(maximal) operators. Following the presentation in [24], we recall that given a standard
Calderón-Zygmund operator T with kernel K and a family Φ = {φa}a∈A of measurable real-
valued functions indexed by an arbitrary set A, we can define the maximally modulated T
with respect to Φ:

TΦf(x) = sup
a∈A
|T (e2πiφa(·)f)(x)|.

This definition is motivated by the Carleson operator, for which T is the Hilbert transform
and Φ is given by φa(y) = ay, for every a ∈ R. Also, mimicking what we do with singular
integrals, we can define the maximal version of TΦ by

TΦ
∗ f(x) = sup

ε>0
sup
a∈A
|Tε(e2πiφa(·)f)(x)|,

where Tε is the truncated operator defined by

Tεf(x) =

∫
|x−y|>ε

K(x, y)f(y)dy.

In the proof of the main result in [24], if we keep track of the constants, the authors show
the following:
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Theorem 4.8. Let T be a Calderón-Zygmund operator and let Φ be a family of measurable
real-valued functions. Take T ∈ {TΦ, TΦ

∗ }. Assume that T maps Lp(Rn) into Lp,∞(Rn) for
p > 1 with norm ‖T ‖Lp(Rn)→Lp,∞(Rn). Then, T is under the hypotheses of Theorem 4.7 with

ψ

(
1

p− 1

)
= C‖T ‖Lp(Rn)→Lp,∞(Rn).

Alternatively, if we have an estimate on characteristic functions ‖T χE‖Lp,∞(Rn) ≤ Cp|E|1/p,
then T is under the hypotheses of Theorem 4.7 with

ψr

(
1

p− 1

)
= Cp.

Remark 4.9. Since T is a Calderón-Zygmund operator, we know that it satisfies Cotlar’s
inequality and one can readily show that TΦ

∗ f(x) .Mf(x)+M(TΦf)(x). With this, together
with the bounds ‖M‖Lp,∞(Rn)→Lp,∞(R) .

1
p−1 and ‖M‖Lp,∞(Rn)→Lp(R) ≤ C for p > 1, we get

that

‖TΦ
∗ ‖Lp(Rn)→Lp,∞(Rn) .

‖TΦ‖Lp(Rn)→Lp,∞(Rn)

p− 1
.

Therefore, one can always write a good-λ inequality for TΦ
∗ in terms of ‖TΦ‖Lp(Rn)→Lp,∞(Rn).

The combination of Theorems 4.7 and 4.8 is similar to the results presented in [19], where
the authors study weighted strong-type (p, p) estimates for maximally modulated singular
integrals TΦ that satisfy an a priori weak-type (p, p) inequality without weights. In the same
paper, the authors also show that, for 1 < p ≤ 2,

(4.2) ‖C‖Lp(R)→Lp,∞(R) .
log2

(
1
p−1

)
p− 1

,

and

(4.3) ‖Clac‖Lp(R)→Lp,∞(R) . log1

(
1

p− 1

)
.

Here Clac is the lacunary version of C, defined as a maximally modulated Hilbert transform
HΦ with Φ = {ay}a∈A, where the index set A ⊆ R is lacunary, in the sense that

inf
a6=a′∈A

|a− a′|
|a|

= C > 0.

As we pointed out in Remark 4.6, the use of (4.2) to obtain weighted (p, p) results and then
extrapolate does not offer an improvement of Theorem 4.5. However, let us see what we can
obtain for the lacunary Carleson operator:

Corollary 4.10. For every 1 < p ≤ 2 and u ∈ A1,

‖Clac‖Lp(u)→Lp,∞(u) ≤ Cu log1

(
1

p− 1

)
.

In particular,

Clac : L log2 L log4 L(u) −→ R1(u).
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Proof. The weak-type (p, p) estimates come from (4.3) together with Theorems 4.7 and 4.8.
The endpoint estimate can be obtained by a suitable modification of Antonov’s Theorem 2.6
so that it admits the logarithmic blow-up of the constant. �

In this lacunary case, the current best result for the Carleson operator Clac is boundedness
on L log2 L log4 L(T) (see [19, 31]), and in fact, it has been recently showed [32] that this is
the largest Lorentz space over T on which Clac can be bounded. Hence, what we obtain is an
analogue of this endpoint result on R and with respect to A1 weights.

4.4. The operator A. In this subsection, we shall deal with the operator

Af(x) =

∥∥∥∥f(x+ y)

y

∥∥∥∥
L1,∞(R)

.

We show a weighted endpoint result for A in the spirit of Theorem 3.3. In [18], the au-
thors prove that a version of A defined on the probability space ([0, 1], dx) is bounded on
L log2 L([0, 1]), and show that in the scale of Orlicz spaces, L log3 L([0, 1]) would be the best
possible result. We will show the following:

Theorem 4.11. For every u ∈ A1, it holds that

A : L log2 L(u) −→ L1,∞
loc (u).

Proof. Since AχE ≤MχE , the proof is essentially an application of Theorem 3.3. However,
we need to make sure that the lack of sublinearity of A is not a problem. The three properties
that will replace the missing hypothesis are:

• A is quasilinear: A(f + g) ≤ C(Af +Ag),
• A is monotone: |f | ≤ |g| ⇒ Af ≤ Ag,
• A is sublinear on functions with disjoint support.

Now, let us examine the proof of Theorem 3.3. Whenever we use sublinearity on a sum
of two functions, the quasilinearity of A suffices. The only step where we need it for an
arbitrary number of terms is in (3.5), and here quasilinearity is not enough. To get around
this problem, we replace (3.5) by the standard dyadic decomposition

(4.4) f ≈
∑
k∈Z

2kχ{2k<f≤2k+1}.

Since this is an equivalence instead of an equality, we require monotonicity to pass the
operator inside the sum. Once this is done, we use that the pieces of (4.4) have disjoint
support and A behaves as if it were sublinear. For the decomposition in (4.4) to be finite we
only have to start with bounded functions and at the end, add a density argument. �

5. Appendix

Proof of Lemma 2.20. The proof of this result can be found, for instance, in [5, Theorem
5.3.2], but we need to see how the constant behaves and this is not included in classical
books. We will proceed as in [10, Lemma 3.10]. By the real interpolation K-method (see [4,
Chapter 5]), we have that

T : (Lq0,s0(u), Lq1,s1(u))θ,∞ −→ (Lq0,∞(u), Lq1,∞(u))θ,∞,
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with constant less than or equal to M1−θ
0 M θ

1 , where

(A1, A2)θ,∞ =

{
f ∈ A1 +A2 : sup

t>0
t−θK(t, f ;A1, A2) <∞

}
,

and

K(t, f ;A1, A2) = inf {‖f0‖A1 + t‖f1‖A2 : f = f0 + f1, f0 ∈ A1, f1 ∈ A2} .
Therefore, it is enough to show that:

(i) ‖f‖Lq,∞(u) ≤ 2‖f‖(Lq0,∞(u),Lq1,∞(u))θ,∞ ,

(ii) ‖f‖(Lq0,s0 (u),Lq1,s1 (u))θ,∞ ≤ B‖f‖Lq,∞(u).

The proof of (i) goes as follows: define γ := q0q1
q1−q0 , fix t > 0 and let f = f0 + f1 be a

decomposition of f in Lq0,∞(u) + Lq1,∞(u). Then,

sup
y≤tγ

y1/q0f∗u(y) ≤ sup
y≤tγ

y1/q0
(

(f0)∗u

(y
2

)
+ (f1)∗u

(y
2

))
≤ sup
y≤tγ

21/q0‖f0‖Lq0,∞(u) + y
1
q0
− 1
q1 21/q1‖f1‖Lq1,∞(u)

≤2(‖f0‖Lq0,∞(u) + t‖f1‖Lq1,∞(u)).

Taking infimum over all possible decompositions of f , we conclude that

sup
y≤tγ

y1/q0f∗u(y) ≤ 2K(t, f ;Lq0,∞(u), Lq1,∞(u)),

and with this estimate,

2‖f‖(Lq0,∞(u),Lq1,∞(u))θ,∞ = sup
t>0

2t−θK(t, f ;Lq0,∞(u), Lq1,∞(u))

≥ sup
t>0

sup
y≤tγ

t−θy1/q0f∗u(y) = sup
y>0

y1/q0f∗u(y) sup
t≥y1/γ

t−θ

= sup
y>0

y
−θ
γ

+ 1
q0 f∗u(y) = ‖f‖Lq,∞(u).

For (ii), let f ∈ Lq,∞(u) and γ as before. For every t > 0, we write f = f0 + f1 with

f0 = fχ{|f |>f∗u(tγ)} and f1 = fχ{|f |≤f∗u(tγ)}.

Now,

‖f0‖Lq0,s0 (u) ≤
(∫ tγ

0
(f∗u(y)y1/q)s0y

s0
q0
− s0
q
−1
dy

)1/s0

≤ ‖f‖Lq,∞(u)
t
γ
(

1
q0
− 1
q

)
(
s0
q0
− s0

q

)1/s0

= tθ
(

q0q

s0(q − q0)

)1/s0

‖f‖Lq,∞(u),

by the definition of γ and θ = q0q1−qq1
qq0−qq1 . Also,

‖f1‖Lq1,s1 (u) ≤ f∗u(tγ)

(∫ tγ

0
y
s1
q1
−1
dy

)1/s1

+

(∫ ∞
tγ

f∗u(y)s1y
s1
q1
−1
dy

)1/s1

.
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For the first term, we multiply and divide by tγ/q, compute the integral and the bound we
get is

tθ−1

(
q1

s1

)1/s1

‖f‖Lq,∞(u).

For the second term, we proceed exactly as for ‖f0‖Lq0,s0 (u) and control it by

tθ−1

(
q1q

s1(q1 − q)

)1/s1

‖f‖Lq,∞(u).

Bringing the estimates together, we conclude that

‖f‖(Lq0,s0 (u),Lq1,s1 (u))θ,∞ = sup
t>0

t−θK(t, f ;Lq0,s0(u), Lq1,s1(u))

≤ sup
t>0

t−θ(‖f0‖Lq0,s0 (u) + t‖f1‖Lq1,s1 (u)) ≤ B‖f‖Lq,∞(u).

�
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Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona,
Spain.

E-mail address: carro@ub.edu
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