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“All we have to decide is what to do
with the time that is given to us”

Sembla ser que la tradició marca que els agraïments es comencin donant les gràcies
al director de la tesi. En el meu cas, us puc assegurar que la tradició no hi juga cap
paper, perquè independentment del que digui, no podria ser de cap altra manera. María
Jesús, el apoyo que he recibido durante estos años por tu parte se merecería páginas y
páginas. Eso no podrá ser, pero sí que te puedo dedicar un pequeño trocito. Podríamos
decir que nuestro primer contacto fue hace casi diez años, cuando empecé la carrera.
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grabado! El resto de encuentros de licenciatura ya fueron menos embarazosos, pero no
fue hasta que me adoptaste para hacer el trabajo final de máster sobre una transformada
de Hilbert “algo más complicada” que no nos empezamos a conocer. Un año después,
más unos cuantos meses de guerra con becas y ministerios, me convertí en tu alumno de
tesis. Matemáticamente, has sido toda una guía, escogiendo temas, proponiendo caminos,
siendo estricta pero sabiendo dar empujoncitos en los momentos oportunos para que todo
tirase adelante. Todavía conservo aquel pdf que se titulaba Helping Carlos. Y a nivel más
personal, que voy a decir... ha sido otro placer! Muchas gracias por todos los consejos, la
paciencia que has tenido y por ser tan comprensiva, especialmente cuando accediste a que
trabajase un tiempo a distancia sin pensártelo dos veces. Es cierto que luego se convirtió
en una estancia oficial de lo más fructífera, pero en el momento en que subí a hablar
contigo y te lo propuse, eso no lo sabíamos, y aun así, no dudaste en aceptar. Significó
mucho para mi.

Está claro que también quiero agradecer el apoyo a Javi, pues yo creo que todo esto
empezó cuando aceptaste mi propuesta de hacer un TAD sobre “algo de Análisis Fun-
cional”. Gracias por creer en mí entonces, guiarme junto con Pedro durante aquel último
año de carrera y continuar reuniéndote conmigo al principio del máster hasta pasar el
testigo a María Jesús. Y por supuesto, muchas gracias también por revisar esta tesis y

v



Agraïments

aportar consejos que nos han permitido llegar a esta versión final. De la misma manera
quiero agradecer a cada uno de los miembros del GARF y allegados por los congresos que
hemos compartido, las reuniones (seguidas del puntual almuerzo a la una en la Flauta) y
sobre todo, por hacerme sentir como uno más en todo momento: Carmen, Eduard, Elona,
Nadia, Joan, Joaquim, Pedro, Pilar, Salva y Santi. Moltes gràcies també a tot el depar-
tament de Matemàtica Aplicada i Anàlisi, on he estat com a casa durant aquests anys,
i en especial a la Ino, per estar sempre disposada a donar un cop de mà amb qualsevol
tràmit o problema (la majoria amb la Xerox ) que pogués sorgir. Finally, I would like
to thank everyone who, in their own manner, made my two research stays great. Jon
Bennett, for creating the perfect working environment while I was in Birmingham, David,
whose couch served me as a bed on my first nights there, Jose, Magda, Mari Carmen,
Susana y Teresa, que convirtieron los ratos libres en los mejores momentos del día. Y
sí, en gran parte me refiero a las knitting nights de las que, contra todo pronóstico, salió
una bufanda estupenda! Leo, Tania y Uli, el trío mexicano que desde el primer momento
que pisé la facultad me acogió como si nos conociéramos de toda la vida y me enseñó el
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Cockentrice! The rest of the Georgia Tech analysis people, Brett, Rob, Scott... and the
non-analysis ones. I evidentment, l’aaawesome Pere, l’Àstrid i en Marc, perquè amb ells
compartíem aquells cafès a la Highland Bakery, el hoppy taste de les IPAs, i molts altres
moments que, malgrat ser d’essència totalment americana, ens feien sentir com si fóssim
a casa.

També vull dedicar unes paraules a tots els que han format part de la meva formació
al llarg de la vida i que han posat el seu granet de sorra perquè arribés fins aquí. En
especial a en David Obrador, que sense cap mena de dubte és el culpable (en el bon sentit
de la paraula) que jo ara mateix sigui matemàtic. Amb ell vaig endinsar-me en el món
del rigor de les matemàtiques a través de les L i R-figures del meu treball de recerca de
batxillerat. També vull mencionar a en Jordi Taixés i l’Elisenda Feliu, que no només van
ser dos genials docents durant la carrera, sinó que a més van resultar ser dues persones
amb qui poder parlar de moltes altres coses més enllà de les assignatures que ensenyaven.

Seguim! Ara els hi toca als companys de la facultat amb qui he compartit tantes
estones. Dinars, cafès, capsuletes al sofà, seminaris SIMBa seguits de la seva SIMBeer,
partits, vídeos de tesi, ferrades i tot tipus de SIMBactivities (sí nois, això del SIMBa
va donar per molt!). A tots ells, l’Àlex, l’Andratx, l’Ari, l’Arturo, en Dani, l’Eloi, la
Giulia, en Jordi, en Marc, la Marta, la Meri, la Nadia, en Narcís, en Roc, en Simone,
en Tommaso (equipo!), en Zubin... i als meus companys de despatx, l’Adriana, l’Albert,
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els meus pares, per fer-me créixer amb valors d’esforç i de respecte, sent exigents perquè
tragués el millor de mi, però sempre recolzant-me i respectant les decisions que he anat
prenent. En resum, moltes gràcies a tots els responsables de què, amb les meves virtuts i
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Introducció en Català

A l’Anàlisi Harmònica, la pregunta de si un operador està acotat a Lp sorgeix de manera
natural en molts problemes. Definim els espais Lp respecte d’una mesura positiva i abso-
lutament contínua wpxqdx (que anomenem pes), com el conjunt de funcions mesurables f
tals que

}f}Lppwq “
ˆ

ª

Rn

|fpxq|pwpxqdx
˙

1{p
† 8.

Treballarem en el rang p ° 1, i el cas p “ 1 és el que anomenem l’extrem. L’acotació a
L1 no s’espera que sigui anàloga als casos p ° 1, i per a provar-la, s’acostuma a fer servir
tècniques específiques. Prenem, per exemple, l’operador maximal de Hardy-Littlewood

Mfpxq “ sup

QQx

1

|Q|
ª

Q

|fpyq|dy, (1)

on el suprem es pren sobre cubs Q Ñ Rn que contenen el punt x. Fins i tot en el cas més
senzill, quan w “ 1, sabem que, per a tot p ° 1,

M : Lp ›Ñ Lp,

però que, en canvi, això ja no és cert si p “ 1. De fet, l’única funció f P L1 per a la qual
Mf pertany a L1 és f “ 0. Si volem que M estigui acotat d’L1 en algun altre espai, hem
d’introduir l’anomenat espai L1-dèbil, que es denota per L1,8. Per a un p • 1 qualsevol,
definim Lp,8pwq com el conjunt de funcions f tals que

}f}Lp,8pwq “ sup

t°0

t wptx P Rn
: |fpxq| ° tuq1{p † 8.

La desigualtat de Chebyshev ens dóna automàticament que Lp,8 és més gran que Lp, i
ara sí, es pot provar que

M : L1 ›Ñ L1,8.

Per a l’operador de Hardy-Littlewood, les acotacions amb pesos M : Lppwq Ñ Lppwq
per a p ° 1 i L1pwq Ñ L1,8pwq han estat totalment caracteritzades des del 1972, quan
B. Muckenhoupt [94] va introduir les classes de pesos Ap amb aquestes propietats per
a p ° 1 i p “ 1 respectivament. No obstant això, hi ha altres operadors per als quals
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l’estimació a l’extrem ha resultat ser molt més difícil que la resta dels casos. Prenem, per
exemple, la funció g˚

2

definida per

g˚
2

fpxq “
˜

ª

Rn`1

`

tn`1

pt ` |x ´ y|q2n |rupy, tq|2dydt
¸

1{2

,

on u és l’extensió harmònica d’f al semiespai superior Rn`1

` i ru és el seu vector gradient
(vegeu les Definicions 4.1 i 4.20). Aquest operador apareixerà al Capítol 4 i juga un paper
important en problemes relacionats amb multiplicadors i espais de Sobolev (vegeu el llibre
de referència d’E. Stein [112]). Al 1974, B. Muckenhoupt i R. Wheeden [97] van provar
que, per a tot p ° 1 i tot w P Ap,

g˚
2

: Lppwq ›Ñ Lppwq.
En canvi, pel que sabem, l’estimació a l’extrem g˚

2

: L1 Ñ L1,8 continua oberta, fins i
tot en un context sense pesos. Una de les majors diferències entre l’extrem i la resta dels
casos rau precisament en l’espai L1,8 en si. Al contrari d’L1, Lp o fins i tot Lp,8 amb
p ° 1, l’espai L1,8 no es pot normar per a esdevenir espai de Banach. Totes aquestes
singularitats de l’extrem són el motiu pel qual una teoria d’extrapolació és de gran interès
per a moltes aplicacions. En termes generals, el nostre objectiu és obtenir informació
a p “ 1 (o en algun espai proper a L1) només partint d’hipòtesis a p ° 1. Per això,
estudiarem dues teories d’extrapolació, una de Rubio de Francia i l’altra de Yano.

Sobre l’extrapolació de Rubio de Francia
La primera d’aquestes teories es remunta a l’any 1984, i és deguda a J. L. Rubio de
Francia [102]. Suposa acotació per a un únic p

0

però respecte tota una classe de pesos
(l’anteriorment citada classe Ap

0

) que ens permet treure conclusions per a tot 1 † p † 8.
La definició d’aquestes classes Ap no és important en aquest moment, però es pot trobar
a la Secció 1.1. El resultat original de Rubio de Francia diu així1:

Teorema 1.1 (Rubio de Francia, [102]). Donat un operador sublineal T , si per a un cert
1 § p

0

† 8 i per a tot w P Ap
0

,

T : Lp
0pwq ›Ñ Lp

0pwq
està acotat, aleshores, per a tot 1 † p † 8 i tot w P Ap,

T : Lppwq ›Ñ Lppwq
també està acotat.

1La numeració dels teoremes dins d’aquesta introducció coincidirà amb la del text. Tot i així, per
motius de claredat en la presentació, els enunciats poden variar una mica.
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La primera cosa que hem de remarcar és que el cas p “ 1 no es pot assolir en general,
ni tan sols si només volem que T porti L1 en L1,8 sense pesos (prenem, per exemple,
M2 “ M ˝ M com a contraexemple). Val a dir, però, que el propòsit original d’aquest
resultat era deduir estimacions per a 1 † p † 8 només a partir de desigualtats a L2. Tot i
això, avenços recents duts a terme per M. J. Carro, L. Grafakos i J. Soria [28] han provat
que si canviem la classe de pesos a les hipòtesis, hi ha una manera d’assolir l’extrem.
Aquest nou resultat es troba enunciat al Teorema 1.7 d’una forma més general, però la
part més interessant de cara a aquesta introducció és la següent:

Teorema 1.7 (Carro - Grafakos - Soria, [28]). Donat un operador T , si per a un cert
1 † p

0

† 8 i tot w P pAp
0

, tenim

}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn,

aleshores, per a tot u P A
1

,

}T�E}L1,8puq § C}�E}L1puq, E Ñ Rn. (2)

La notació �E representa la funció característica del conjunt E, i la classe de pesos
d’aquest resultat es defineix com

pAp “ tpMhq1´pu : h P L1

loc

, u P A
1

u,

on M és l’operador maximal de Hardy-Littlewood de (1). La classe pAp està íntimament
relacionada amb la classe Ap del Teorema 1.1 per les inclusions

Ap Ñ pAp Ñ Ap`",

per a tot 1 § p † 8 i tot " ° 0. Malgrat que l’estimació a l’extrem (2) que s’aconsegueix
només es pot tenir (en general) sobre funcions característiques, a la Secció 1.4 recordem
que, per a una àmplia classe d’operadors, això és equivalent a l’acotació

T : L1puq ›Ñ L1,8puq.
El nostre primer objectiu serà debilitar les hipòtesis del Teorema 1.7 tant com sigui
possible sense perdre informació a l’extrem p “ 1. L’avantatge d’una extrapolació d’aquest
tipus, que serà el pilar central d’aquesta tesi, és doble. D’una banda, quan s’aplica a
un operador T , ens dóna una demostració de la seva acotació d’L1 a L1,8, i de l’altra,
constitueix una estimació a un cert nivell p

0

° 1 on els espais involucrats són de Banach.
Passem a explicar els resultats principals que hem obtingut en relació a aquesta teoria

i com estan organitzats a la tesi. Tractarem de donar les idees principals tot evitant
detalls tècnics, pel que si el lector troba que necessita més detalls sobre algun concepte,
l’índex al final hauria de resultar útil per a localitzar la seva definició dins del text.
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L Al Capítol 1 proporcionem totes les eines d’extrapolació que es necessitaran.
Després de presentar en més detall la teoria clàssica de Rubio de Francia i la seva variant
més nova de [28], a la Secció 1.3 millorem la segona d’aquestes ad hoc per a obtenir
estimacions a l’extrem. El resultat principal d’aquest capítol es pot enunciar de la següent
manera:

Teorema 1.11. Sigui T un operador, E Ñ Rn un conjunt mesurable i u P A
1

. Si hi ha
un cert 1 † p

0

† 8 tal que

}T�E}Lp

0

,8ppM�
E

q1´p

0uq § C}�E}Lp

0 ppM�
E

q1´p

0uq,

aleshores
}T�E}L1,8puq § C}�E}L1puq.

Si el comparem amb el Teorema 1.7, observem el següent:

• Donat que els pesos Ap
0

es defineixen com aquells de la forma pMhq1´p
0u, amb

h P L1

loc

i u P A
1

, la primera simplificació que veiem al Teorema 1.11 respecte del
Teorema 1.7 és que no ens cal provar l’acotació per a tot pes d’ pAp

0

. N’hi ha prou
amb provar l’estimació quan h és exactament la funció característica �E a la que
estem aplicant T .

• La segona simplificació és que no necessitem un 1 † p
0

† 8 universal. Per a cada
pes u P A

1

podem trobar un valor diferent de p
0

° 1. Això serà essencial per als
nostres objectius.

L Al Capítol 2 presentem la primera aplicació del Teorema 1.11. L’operador que
estudiarem és el de Bochner-Riesz a l’índex crític. Aquest operador es pot definir com a
multiplicador de Fourier a Rn de la següent manera:

xBfp⇠q “ p1 ´ |⇠|2qn´1

2

` pfp⇠q, (3)

on a` “ maxta, 0u és la part positiva d’a P R, i pf denota la transformada de Fourier
d’f . El resultat que presentarem per a B és el Teorema 2.9, i bàsicament afirma que
l’operador de Bochner-Riesz es troba exactament sota les hipòtesis de l’extrapolació del
Teorema 1.11:

Teorema 2.9. Per a tot u P A
1

, existeix 1 † p
0

† 8 tal que, per a cada conjunt mesurable
E Ñ Rn,

}B�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, (4)

on w “ pM�Eq1´p
0u.

Sobre aquest resultat, hem de destacar que:
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• L’operador B es troba a la classe d’operadors que es descriuen a la Secció 1.4, i per
tant, l’extrapolació del Teorema 1.11 de fet implica que B està acotat d’L1puq en
L1,8puq per a tot u P A

1

.

• La desigualtat L1 Ñ L1,8 ja havia estat establerta per M. Christ [35] en el cas sense
pesos i per A. Vargas [124] per a pesos d’A

1

. Tot i així, l’estimació d’extrapolació
(4) que provem per a B, no només és més forta que la de L1 Ñ L1,8, sinó que també
té l’avantatge que té lloc entre espais de Banach. Aquest fet el farem servir en el
proper capítol.

L Tal i com acabem d’anticipar, al Capítol 3 presentem algunes aplicacions del
Teorema 2.9. El resultat principal tracta de multiplicadors radials i, ometent alguns
detalls, es pot resumir així:

Teorema 3.10. Fixem n • 2 i ↵ “ n`1

2

. Sigui m una funció acotada a p0,8q tal que,
per a una definició de derivada fraccionària D↵ adient,

t↵´1D↵mptq P L1p0,8q.
Aleshores, el multiplicador de Fourier radial Tm definit com

yTmfp⇠q “ mp|⇠|2q pfp⇠q
està acotat d’L1puq a L1,8puq, per a tot pes u P A

1

.

A continuació, expliquem la tècnica que fem servir per a provar aquest resultat, ja
que il·lustra un dels principals avantatges de l’estimació d’extrapolació del Teorema 1.11.
Aquests són els passos:

• Escrivim Tm com a mitjana d’operadors que es comporten com el multiplicador de
Bochner-Riesz. Més concretament,

Tm�Epxq “
ª 8

0

Bs�Epxq�psqds, amb � P L1p0,8q,

on els operadors tBsus°0

satisfan la mateixa estimació que B al Teorema 2.9, uni-
formement en s ° 0.

• Fem servir la desigualtat integral de Minkowski per a l’espai de Banach Lp
0

,8pwq
per transferir l’estimació d’extrapolació (4) de Bs a Tm, tot deduint que

}Tm�E}Lp

0

,8pwq § C}�}L1p0,8q}�E}Lp

0 pwq.

• Finalment, extrapolem Tm fins a p “ 1 pel Teorema 1.11 i completem la demostració.

xiii



Introducció en Català

Cal fer notar que la conclusió per a Tm no es pot deduir només d’una estimació
L1 Ñ L1,8 per a la família tBsus°0

, donat que el rang és un espai quasi-Banach. Per a
concloure el capítol, a la Secció 3.4, estudiem multiplicadors generals de tipus Hörmander
a Rn. En aquest cas, no fem servir la tècnica de les mitjanes que acabem d’explicar, sinó
que ataquem el problema directament. El resultat que obtenim per a aquests operadors
es pot enunciar de la següent manera:

Teorema 3.26. Fixem 1 † s § 2 i prenem m : Rn Ñ R una funció acotada de classe
CnpRnzt0uq tal que

sup

r°0

ˆ

r2|↵|´n

ª

r§|x|§2r

ˇ

ˇ

ˇ

ˇ

ˆ B
Bx

˙↵

mpxq
ˇ

ˇ

ˇ

ˇ

s

dx

˙

1{s
† 8, |↵| § n.

Aleshores, el multiplicador associat yTmfp⇠q “ mp⇠q pfp⇠q satisfà que, per a tot u P A
1

,
existeix 1 † p

0

† 8 tal que

}Tm�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn,

on w “ pM�Eq1´p
0u.

Les principals contribucions presentades en aquests tres primers capítols es troben
recollides a [24], i han estat enviades a publicació.

L Al Capítol 4 estudiem els diferents ingredients d’una teoria de Littlewood-Paley
adaptada als pesos pAp. Aquesta teoria va ser iniciada als anys trenta per Littlewood
i Paley en un seguit d’articles [89, 90, 91] sobre sèries de Fourier i potències, però des
d’aleshores, les seves idees han resultat ser molt útils quan es treballa amb multiplicadors
de Fourier Tm. Més concretament, en el nostre cas estarem interessats en dos tipus de
desigualtats, que anomenarem estimacions inferiors i superiors, respectivament:

paq }f}Lp,8pwq § C}G
1

f}Lp,8pwq,

pbq }G
2

�E}Lp,8pwq § }�E}Lppwq.

Considerarem pesos w P pAp, i estudiarem diferents operadors G
1

i G
2

, anomenats funcions
quadrat, que ja apareixien a la teoria clàssica. Provar estimacions inferiors i superiors per
a funcions quadrat és interessant de per si, però a més a més, si es combinessin amb una
relació del tipus

pcq }G
1

pT�Eq}Lp,8pwq § C}G
2

�E}Lp,8pwq,

per a un cert operador T , donarien una estimació en la línia del Teorema 1.11. Nosaltres
estudiarem diverses funcions quadrat. Per exemple, a la Secció 4.2 obtenim la desigualtat
paq per a la funció d’àrea clàssica de Lusin

Sfpxq “
ˆ

ª

|x´y|†t

|rupy, tq|2dydt
tn´1

˙

1{2
,
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on, com abans, u és l’extensió harmònica d’f al semiespai superior Rn`1

` . Un altre exemple
es pot trobar a la Secció 4.3, on fem servir la recent tècnica presentada a [88] per A. Lerner
i F. Nazarov sobre majoració per operadors sparse per obtenir la desigualtat pbq per a la
funció quadrat

G↵fpxq “
˜

ª 8

0

ˇ

ˇ

ˇ

ˇ

B
BtB

t
↵fpxq

ˇ

ˇ

ˇ

ˇ

2

tdt

¸

1{2

.

Aquí
yBt
↵fp⇠q “ p1 ´ |t⇠|2q↵` pfp⇠q

no és res més que una generalització de l’operador de Bochner-Riesz B definit a (3).

Sobre l’extrapolació de Yano
La segona teoria d’extrapolació que estudiarem és deguda a S. Yano [127], i està rela-
cionada més aviat amb l’Anàlisi Real. En aquest cas, suposem una certa acotació Lp

per a p ° 1, respecte d’una mesura fixada i amb un cert control sobre les normes Cp de
l’operador quan p s’apropa a 1

`. A partir d’aquí, deduïm que l’operador està acotat en
un cert espai que és més a prop d’L1 que qualsevol altre espai Lp. Aquest és el resultat
original de S. Yano del 1951:

Teorema 5.6. Fixem espais de mesura finita pX,µq, pY, ⌫q, p
0

° 1 i m ° 0. Si T és un
operador sublineal tal que, per a tot 1 † p § p

0

,

T : Lppµq ›Ñ Lpp⌫q
està acotat amb norma més petita o igual a C

pp´1qm , aleshores,

T : LplogLqmpµq ›Ñ L1p⌫q
també està acotat.

L’espai LplogLqmpµq Ñ L1pµq és el conjunt de funcions µ-mesurables tals que
ª

X

|fpxq|p1 ` log` |fpxq|qmdµpxq † 8.

Aquest resultat s’ha millorat i estès posteriorment a altres tipus d’acotació. Un dels
resultats més recents és degut a M. J. Carro i P. Tradacete [33] i tracta amb operadors

T : Lp,8pµq ›Ñ Lp,8p⌫q,
amb norma que es comporta com 1

pp´1qm quan p s’apropa a 1.
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L Al Capítol 5 presentem alguns resultats sobre la teoria de Yano motivats per la
seva relació amb l’extrapolació de Rubio de Francia presentada al Capítol 1. Recordem
que un operador T sota les hipòtesis del Teorema 1.1 no necessàriament està acotat d’L1

a L1,8. Malgrat això, les normes Lp Ñ Lp òptimes trobades a [48] (vegeu també [50]) ens
permeten fer servir l’extrapolació de Yano per a obtenir estimacions a prop d’L1. Més
concretament, sabem que si, per a un cert 1 † p

0

† 8, un cert � ° 0, i tot w P Ap
0

, T és
un operador sublineal tal que

T : Lp
0pwq ›Ñ Lp

0pwq
està acotat amb norma Cp

0

}w}�A
p

0

, aleshores

T : LppRnq ›Ñ LppRnq
està acotat per a tot 1 † p † p

0

amb norma essencialment controlada per

1

pp ´ 1q�pp
0

´1q , quan p Ñ 1

`.

Amb això, l’extrapolació de Yano assegura que T està acotat a LplogLq�pp
0

´1qpRnq, tal i
com enunciem al Teorema 5.22. La conclusió només és vàlida per a la mesura de Lebesgue,
ja que, en cas contrari, veurem que la norma Lp Ñ Lp explota massa ràpidament. Tot
i així, al Teorema 5.23, aconseguim treure conclusions a prop d’L1puq per a tot u P A

1

mitjançant un argument d’extrapolació diferent. Aquesta idea de buscar una bona forma
de relacionar les teories d’extrapolació de Rubio de Francia i Yano per tal d’obtenir
estimacions a l’extrem amb pesos ha estat recollida i desenvolupada més enllà del contingut
d’aquesta tesi a [25].

L’altre escenari on podem aplicar l’extrapolació de Yano prové de la teoria de pesos
pAp. Recordem que a [28] els autors proven el Teorema 1.7, i l’estimació a l’extrem que en
dedueixen és

}T�E}L1,8puq § C}�E}L1puq, u P A
1

. (5)

Tot i així, quan T és sublineal, es poden dir més coses. També demostren que en aquest
cas, malgrat que no podem esperar tenir T : L1puq Ñ L1,8puq en general, el que sí que
tenim és la següent acotació, que tampoc està restringida a funcions característiques:

Teorema 1.7 (Carro - Grafakos - Soria, [28]). Sigui T un operador sublineal tal que, per
a un cert 1 † p

0

† 8 i tot w P pAp
0

, tenim

}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn. (6)

Aleshores, per a tot u P A
1

, a més de (5), es compleix que

T : LplogLq"puq ›Ñ L1,8
loc

puq, " ° 0. (7)
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Òbviament, aquesta acotació és interessant quan l’operador T no es troba a la classe
d’operadors pels que (5) implica acotació d’L1puq a L1,8puq, ja que

LplogLq"puq à L1puq.
Un altre objectiu del Capítol 5 és millorar aquesta estimació a l’extrem (7) de tipus
logarítmic mitjançant la teoria d’extrapolació introduïda a [33]. Primer, ens cal calcular
la norma Lp,8 Ñ Lp,8 d’aquests operadors. Això es troba al següent resultat:

Teorema 5.5. Sigui T un operador sublineal tal que, per a un cert 1 † p
0

† 8 i tot
w P pAp

0

, tenim
}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn.

Aleshores, per a cada pes u P A
1

fixat i cada 1 † p † p
0

, es compleix que

T : Lp,8puq ›Ñ Lp,8puq
està acotat amb norma essencialment controlada per

log

ˆ

1

p ´ 1

˙

1

p ´ 1

, quan p Ñ 1

`. (8)

Un cop tenim aquest càlcul, estenem el resultat de [33] de tal manera que admeti
constants amb termes logarítmics com a (8). Amb això, al Corol·lari 5.25 som capaços de
provar que un operador que satisfà (6) està acotat en un cert espai Xpuq tal que, per a
tot " ° 0,

LplogLq"puq à Xpuq.
Això ja millora l’estimació a l’extrem (7) de [33], però també ens adonem que si fem
servir més informació sobre T (bàsicament, que satisfà (5) sobre funcions característiques),
podem obtenir una auto-millora d’aquest resultat i deduir-ne el següent:

Corol·lari 5.29. Sigui T un operador sublineal tal que, per a un cert 1 † p
0

† 8 i tot
w P pAp

0

, tenim
}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn.

Aleshores, per a tot u P A
1

, es compleix que

T : L log logLpuq ›Ñ L1,8
loc

puq.
Actualment, aquest és el millor resultat a l’extrem (no restringit a funcions caracterís-

tiques) per a operadors sublineals que satisfan les hipòtesis del Teorema 1.7, ja que

LplogLq"puq à Xpuq à L log logLpuq.
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A part d’aquests resultats relacionats amb el Capítol 1, al Capítol 5 també presentem una
extensió de la teoria de Yano als espais de Lorentz Lp,q. Per a p † q † 8, els espais Lp,q

són espais intermedis entre Lp i Lp-dèbil:

Lp Ñ Lp,q Ñ Lp,8.

Els resultats d’extrapolació que obtenim tracten d’operadors que porten

T : Lppµq ›Ñ Lp,qp⌫q, o T : Lp,qpµq ›Ñ Lp,qp⌫q,
quan p és proper a 1 i 1 † q † 8 és fix. Això es presenta als Teoremes 5.16 i 5.19, i
completa la teoria de Yano en el context d’espais de Lorentz.

L Finalment, al Capítol 6, donem un seguit de resultats que ja no estan relacionats
amb la teoria de pesos Ap que ha estat present durant tots els capítols. Aquí fem servir
les idees de l’extrapolació de Yano adaptada a funcions decreixents per tal d’obtenir cotes
puntuals per a operadors integrals de la forma

TKfpxq “
ª 8

0

Kpx, tqfptqdt,

amb K un nucli positiu. El principal resultat és el Teorema 6.5, i es pot aplicar a diver-
sos operadors com la transformada d’Abel, l’operador de Riemann-Liouville, operadors
iteratius, etc. Aquestes aplicacions es troben a la Secció 6.3. El contingut d’aquest últim
capítol ha estat acceptat per a publicació a [23].
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Introduction

In Harmonic Analysis, the question of whether an operator is bounded on Lp arises nat-
urally in many problems. We define Lp spaces with respect to a positive, absolutely
continuous measure wpxqdx (that we call weight), as the set of measurable functions f
such that

}f}Lppwq “
ˆ

ª

Rn

|fpxq|pwpxqdx
˙

1{p
† 8.

We will work on the range p • 1, and the case p “ 1 is what we call the endpoint.
Boundedness on L1 is not normally expected to be analogous to the cases p ° 1, and
to establish it, one usually requires specific techniques. Take, for instance, the Hardy-
Littlewood maximal operator

Mfpxq “ sup

QQx

1

|Q|
ª

Q

|fpyq|dy, (1)

where the supremum is taken over cubes Q Ñ Rn containing x. Even in the easiest case,
when w “ 1, we know that, for every p ° 1,

M : Lp ›Ñ Lp,

but this is no longer true when p “ 1. In fact, the only function f P L1 for which Mf
belongs to L1 is f “ 0. If we want M to be bounded from L1 into some other space, we
need to introduce the so-called weak-L1 space, denoted by L1,8. For general p • 1, we
define Lp,8pwq as the set of measurable functions f such that

}f}Lp,8pwq “ sup

t°0

t wptx P Rn
: |fpxq| ° tuq1{p † 8.

Chebyshev’s inequality readily shows that Lp,8 is bigger than Lp, and it can be checked
that, now,

M : L1 ›Ñ L1,8.

For the Hardy-Littlewood maximal operator, the weighted estimates M : Lppwq Ñ Lppwq
for p ° 1 and L1pwq Ñ L1,8pwq have been completely characterized since 1972, when
B. Muckenhoupt [94] introduced the classes of weights Ap having these properties for

1
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p ° 1 and p “ 1, respectively. However, there are other examples for which the endpoint
estimate has proved to be much more difficult than the rest of the cases. Take, for instance,
the g˚

2

function defined by

g˚
2

fpxq “
˜

ª

Rn`1

`

tn`1

pt ` |x ´ y|q2n |rupy, tq|2dydt
¸

1{2

,

where u is the harmonic extension of f to the upper half-space Rn`1

` and ru is its
gradient vector (see Definitions 4.1 and 4.20). This operator will appear in Chapter 4
and it plays an important role in problems related to multipliers and Sobolev spaces (see
Stein’s reference book [112]). In 1974, B. Muckenhoupt and R. Wheeden [97] showed that,
for every p ° 1 and every w P Ap,

g˚
2

: Lppwq ›Ñ Lppwq.
However, as far as we know, the endpoint estimate g˚

2

: L1 Ñ L1,8 remains open, even in
the unweighted setting. One of the main differences between the endpoint and the other
cases stems precisely from the space L1,8 itself. Unlike L1, Lp or even Lp,8 when p ° 1,
the space L1,8 cannot be normed to become a Banach space. All these singularities about
the endpoint are the reason why a theory of extrapolation is of great interest in many
applications. Roughly speaking, our goal is to obtain information at p “ 1 (or on some
space close to L1) only from assumptions at p ° 1. To this end, we will study two different
extrapolation theories, one of Rubio de Francia and the other of Yano.

On Rubio de Francia’s extrapolation
The first of these theories goes back to 1984 and is due to J. L. Rubio de Francia [102].
It assumes boundedness for a single p

0

but with respect to a whole class of weights (the
aforementioned Ap

0

class) that allows us to draw conclusions for every 1 † p † 8. The
definition of these Ap classes is not important at the moment, but it can be found in
Section 1.1. The original result by Rubio de Francia reads as follows2:

Theorem 1.1 (Rubio de Francia, [102]). Given a sublinear operator T , if for some fixed
1 § p

0

† 8 and every w P Ap
0

,

T : Lp
0pwq ›Ñ Lp

0pwq
is bounded, then, for every 1 † p † 8 and every w P Ap,

T : Lppwq ›Ñ Lppwq
is also bounded.

2Theorem numbering within this introduction will coincide with the one in the text. However, for the
sake of clarity, the presentation of the results may differ.
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The first thing we need to remark is that the case p “ 1 cannot be reached in general,
even if we only seek an L1 Ñ L1,8 boundedness without weights (take, for instance,
M2 “ M ˝ M as a counterexample). It is fair to say, though, that the original purpose
of this result was to deduce Lp estimates for every 1 † p † 8 just from L2 inequalities.
However, recent developements made by M. J. Carro, L. Grafakos and J. Soria [28] have
shown that if we change the class of weights in the assumption, there is a way to reach
the endpoint. This new result is stated in Theorem 1.7 in a more general fashion, but the
most interesting part for this introduction is the following:

Theorem 1.7 (Carro - Grafakos - Soria, [28]). Given an operator T , if for some fixed
1 † p

0

† 8 and every w P pAp
0

, it holds that

}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn,

then, for every u P A
1

,

}T�E}L1,8puq § C}�E}L1puq, E Ñ Rn. (2)

The notation �E stands for the characteristic function of the set E, and the class of
weights in this result is defined by

pAp “ tpMhq1´pu : h P L1

loc

, u P A
1

u,
where M is the Hardy-Littlewood maximal operator from (1). The pAp class is closely
related to the classical Ap class in Theorem 1.1 by the inclusions

Ap Ñ pAp Ñ Ap`",

for every 1 § p † 8 and every " ° 0. Even though the endpoint estimate (2) that we
obtain can only be expected to hold (in general) on characteristic functions, in Section 1.4
we recall that, for a large class of operators, it is equivalent to the boundedness

T : L1puq ›Ñ L1,8puq.
Our first goal will be to weaken the hypotheses in Theorem 1.7 as much as possible without
losing information at the endpoint p “ 1. The advantage of such an extrapolation, which
will be the cornerstone of this thesis, is twofold. On the one hand, when applied to an
operator T , it provides a proof of its boundedness from L1 to L1,8, and on the other, it
constitutes an estimate at a certain level p

0

° 1 where the spaces involved are Banach
spaces.

Let us explain the main results that we obtain related to this theory and how they are
organized in this thesis. We will try to convey the main ideas avoiding technicalities, so
if the reader needs further details on some notion, the index at the end should be useful
to locate its definition within the text.
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L In Chapter 1 we provide all the extrapolation tools that will be needed. After
presenting in more detail the classical theory of Rubio de Francia and its newer variant in
[28], in Section 1.3 we improve the latter ad hoc to obtain endpoint estimates. The main
result of this chapter can be stated as follows:

Theorem 1.11. Let T be an operator, E Ñ Rn a measurable set and u P A
1

. If there is
some 1 † p

0

† 8 such that

}T�E}Lp

0

,8ppM�
E

q1´p

0uq § C}�E}Lp

0 ppM�
E

q1´p

0uq,

then
}T�E}L1,8puq § C}�E}L1puq.

Comparing it to Theorem 1.7, we observe the following:

• Since pAp
0

weights were defined to be pMhq1´p
0u, with h P L1

loc

and u P A
1

, the
first simplification that we see in Theorem 1.11 with respect to Theorem 1.7 is
that we do not have to show boundedness for every weight in pAp

0

. It is enough to
prove the estimate when h is exactly the characteristic function �E to which we are
applying T .

• The second simplification is that we do not need a universal 1 † p
0

† 8. For every
weight u P A

1

, we can find a different value of p
0

° 1. This will be essential for our
purposes.

L In Chapter 2 we present the first application of Theorem 1.11. The operator that
we will study is the Bochner-Riesz operator at the critical index. It can be defined as a
Fourier multiplier on Rn as follows:

xBfp⇠q “ p1 ´ |⇠|2qn´1

2

` pfp⇠q, (3)

where a` “ maxta, 0u is the positive part of a P R, and pf denotes the Fourier trans-
form of f . The result that we will obtain for B is Theorem 2.9, and it basically states
that the Bochner-Riesz operator is exactly under the assumptions of the extrapolation in
Theorem 1.11:

Theorem 2.9. For every u P A
1

, there exists 1 † p
0

† 8 such that, for each measurable
set E Ñ Rn,

}B�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, (4)

where w “ pM�Eq1´p
0u.

About this result, we should emphasize that:
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• The operator B falls within the class of operators described in Section 1.4, and
hence, the extrapolation in Theorem 1.11 actually yields that B is bounded from
L1puq to L1,8puq for every u P A

1

.

• The L1 Ñ L1,8 inequality had already been established by M. Christ [35] in the
unweighted case and A. Vargas [124] for A

1

weights. However, the extrapolation
estimate (4) that we prove for B, not only is stronger than the L1 Ñ L1,8 one, but
it also has the advantage that it takes place between Banach spaces. We will use
this fact in the next chapter.

L As we just anticipated, in Chapter 3 we present some applications of Theorem 2.9.
The main result deals with radial Fourier multipliers and, omitting some details, it can
be summarized as follows:

Theorem 3.10. Fix n • 2 and ↵ “ n`1

2

. Let m be a bounded function on p0,8q such
that, for a suitable definition of fractional derivative D↵,

t↵´1D↵mptq P L1p0,8q.
Then, the radial Fourier multiplier Tm defined by

yTmfp⇠q “ mp|⇠|2q pfp⇠q
is bounded from L1puq into L1,8puq, for every weight u P A

1

.

Let us explain the technique we use to prove this result, since it illustrates one of the
main advantages of the extrapolation estimate in Theorem 1.11. These are the steps:

• We write Tm as an average of operators behaving like the Bochner-Riesz multiplier.
More precisely,

Tm�Epxq “
ª 8

0

Bs�Epxq�psqds, with � P L1p0,8q,

where the operators tBsus°0

satisfy the same estimate as B in Theorem 2.9, uni-
formly in s ° 0.

• We use Minkowski’s integral inequality for the Banach space Lp
0

,8pwq to transfer
the extrapolation estimate (4) from Bs to Tm, deducing that

}Tm�E}Lp

0

,8pwq § C}�}L1p0,8q}�E}Lp

0 pwq.

• Finally, we extrapolate Tm down to p “ 1 by Theorem 1.11 and complete the proof.
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Notice that the conclusion for Tm cannot be drawn just from an L1 Ñ L1,8 estimate
for the family tBsus°0

, given the quasi-Banach nature of the range. To conclude the
chapter, in Section 3.4, we study general multipliers of Hörmander-type on Rn. In this
case, we do not use the aforementioned averaging technique, but rather a direct approach.
The main contribution for these operators can be stated as follows:

Theorem 3.26. Fix 1 † s § 2 and let m : Rn Ñ R be a bounded function in CnpRnzt0uq
such that

sup

r°0

ˆ

r2|↵|´n

ª

r§|x|§2r

ˇ

ˇ

ˇ

ˇ

ˆ B
Bx

˙↵

mpxq
ˇ

ˇ

ˇ

ˇ

s

dx

˙

1{s
† 8, |↵| § n.

Then, the associated multiplier yTmfp⇠q “ mp⇠q pfp⇠q satisfies that, for every u P A
1

, there
exists 1 † p

0

† 8 such that

}Tm�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn,

where w “ pM�Eq1´p
0u.

The main results presented in these first three chapters are gathered in the preprint
[24], already submitted for publication.

L In Chapter 4 we study the different ingredients in a Littlewood-Paley theory
adapted to pAp weights. This theory was initiated in the thirties by Littlewood and Paley
in a series of papers [89, 90, 91] about Fourier and power series, but since then, their ideas
have proved to be really useful when dealing with Fourier multipliers Tm. More precisely,
in our case we are interested in two types of inequalities, that we will call lower and upper
estimates respectively:

paq }f}Lp,8pwq § C}G
1

f}Lp,8pwq,

pbq }G
2

�E}Lp,8pwq § }�E}Lppwq.

We will consider weights w P pAp, and study different operators G
1

and G
2

, known as
square functions, that already appear in the classical theory. Establishing upper or lower
estimates for square functions is interesting in its own right, but moreover, if combined
with a relation of the form

pcq }G
1

pT�Eq}Lp,8pwq § C}G
2

�E}Lp,8pwq,

for some operator T , they would yield an estimate in the spirit of Theorem 1.11. We will
study various square functions. For instance, in Section 4.2 we obtain inequality paq for
the classical Lusin area function

Sfpxq “
ˆ

ª

|x´y|†t

|rupy, tq|2dydt
tn´1

˙

1{2
,

6
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where, as before, u is the harmonic extension of f to the upper half-space Rn`1

` . Another
example can be found in Section 4.3, where we use the recent technique presented in [88]
by A. Lerner and F. Nazarov of majorization by sparse operators to obtain inequality pbq
for the square function

G↵fpxq “
˜

ª 8

0

ˇ

ˇ

ˇ

ˇ

B
BtB

t
↵fpxq

ˇ

ˇ

ˇ

ˇ

2

tdt

¸

1{2

.

Here
yBt
↵fp⇠q “ p1 ´ |t⇠|2q↵` pfp⇠q

is just a generalization of the Bochner-Riesz operator B that we defined in (3).

On Yano’s extrapolation
The second extrapolation theory that we will study is due to S. Yano [127], and it is related
to the field of Real Analysis. In this case, we assume some kind of Lp boundedness for
p ° 1, with respect to a fixed measure and with some control on the operator norms Cp

as p tends to 1

`. From here, we deduce that the operator is bounded on a certain space
which is closer to L1 than any other Lp space. This is the original result by S. Yano from
1951:

Theorem 5.6 (Yano, [127]). Fix pX,µq, pY, ⌫q a couple of finite measure spaces, p
0

° 1

and m ° 0. If T is a sublinear operator such that, for every 1 † p § p
0

,

T : Lppµq ›Ñ Lpp⌫q
is bounded with norm less than or equal to C

pp´1qm , then,

T : LplogLqmpµq ›Ñ L1p⌫q
is also bounded.

The space LplogLqmpµq Ñ L1pµq is the set of µ-measurable functions such that
ª

X

|fpxq|p1 ` log` |fpxq|qmdµpxq † 8.

This result has subsequently been improved and extended to other types of boundedness.
One of the latest results is due to M. J. Carro and P. Tradacete [33] and deals with
operators mapping

T : Lp,8pµq ›Ñ Lp,8p⌫q,
with norm behaving like 1

pp´1qm when p is close to 1.
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L In Chapter 5 we present some results about Yano’s theory motivated by its
relation to the extrapolation of Rubio de Francia presented in Chapter 1. Recall that an
operator T under the hypotheses of Theorem 1.1 need not be bounded from L1 to L1,8.
However, the sharp Lp Ñ Lp norms that were derived in [48] (see also [50]) allow us to use
Yano’s extrapolation to obtain endpoint estimates close to L1. More precisely, we know
that if, for some 1 † p

0

† 8, some � ° 0, and every w P Ap
0

, T is a sublinear operator
such that

T : Lp
0pwq ›Ñ Lp

0pwq
is bounded with norm Cp

0

}w}�A
p

0

, then

T : LppRnq ›Ñ LppRnq
is bounded for every 1 † p † p

0

with norm essentially controlled by

1

pp ´ 1q�pp
0

´1q , as p Ñ 1

`.

With this behavior, Yano’s extrapolation yields that T is bounded on LplogLq�pp
0

´1qpRnq,
as stated in Theorem 5.22. The conclusion is only valid for the Lebesgue measure, because
otherwise, we will see that the blow-up of the Lp Ñ Lp norm is too fast. However, in
Theorem 5.23, we succeed in drawing conclusions close to L1puq for every u P A

1

by means
of a different extrapolation approach. This idea of finding a suitable way to relate the
theories of Rubio de Francia and Yano in order to obtain weighted endpoint estimates
has been gathered and developed beyond the scope of this thesis in [25].

The other setting where Yano’s extrapolation can be applied comes from the theory
of pAp weights. Recall that in [28] the authors prove Theorem 1.7, and that the endpoint
estimate that they obtain is

}T�E}L1,8puq § C}�E}L1puq, u P A
1

. (5)

However, when T is sublinear, there is more to it than that. They also show that, despite
the fact that we cannot expect to have T : L1puq Ñ L1,8puq in general, what we do have is
the following endpoint estimate, which is not restricted to characteristic functions either:

Theorem 1.7 (Carro - Grafakos - Soria, [28]). Let T be a sublinear operator such that,
for some 1 † p

0

† 8 and every w P pAp
0

, it holds that

}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn. (6)

Then, for every u P A
1

, in addition to (5), we have that

T : LplogLq"puq ›Ñ L1,8
loc

puq, " ° 0. (7)

8
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Obviously, this boundedness is interesting when the operator T is not in the class of
operators for which (5) implies boundedness from L1puq into L1,8puq, since

LplogLq"puq à L1puq.

Another goal of Chapter 5 is to improve this endpoint estimate (7) of logarithmic type
for operators under the hypotheses of Theorem 1.7 by means of the extrapolation theory
introduced in [33]. First, we need to compute the Lp,8 Ñ Lp,8 norm of such operators.
This is done in the following result:

Theorem 5.5. Let T be a sublinear operator such that, for some 1 † p
0

† 8 and every
w P pAp

0

, it holds that

}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn.

Then, for every fixed u P A
1

and every 1 † p † p
0

, we have that

T : Lp,8puq ›Ñ Lp,8puq

is bounded with norm essentially controlled by

log

ˆ

1

p ´ 1

˙

1

p ´ 1

, as p Ñ 1

`. (8)

Once we have this computation, we extend the result in [33] in such a way that it
admits constants with logarithmic terms as in (8). With this, we are able to show in
Corollary 5.25 that an operator satisfying (6) is bounded on a certain space Xpuq such
that, for every " ° 0,

LplogLq"puq à Xpuq.
This already improves the endpoint estimate (7) from [28], but we also check that, by using
further information about T (basically, that it satisfies (5) on characteristic functions),
we can self-improve this result and deduce the following:

Corollary 5.29. Let T be a sublinear operator such that, for some 1 † p
0

† 8 and every
w P pAp

0

, it holds that

}T�E}Lp

0

,8pwq § C}�E}Lp

0 pwq, E Ñ Rn.

Then, for every u P A
1

, we have that

T : L log logLpuq ›Ñ L1,8
loc

puq.

9
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So far, this is the best endpoint estimate (not restricted to characteristic functions)
for general sublinear operators satisfying the hypotheses of Theorem 1.7, given that

LplogLq"puq à Xpuq à L log logLpuq.
In addition to these results related to Chapter 1, in Chapter 5 we also present an extension
of Yano’s theory to Lorentz spaces Lp,q. For p † q † 8, these are intermediate spaces
between Lp and weak-Lp:

Lp Ñ Lp,q Ñ Lp,8.

The extrapolation results that we obtain deal with operators mapping

T : Lppµq ›Ñ Lp,qp⌫q, or T : Lp,qpµq ›Ñ Lp,qp⌫q,
when p is close to 1 and 1 † q † 8 is fixed. This is presented in Theorems 5.16 and 5.19
and completes the theory of Yano in the setting of Lorentz spaces.

L Finally, in Chapter 6, we show a series of results that are no longer related to the
weighted Ap theory that has been present throughout the chapters. Here we make use of
Yano’s extrapolation ideas adapted to decreasing functions in order to obtain pointwise
bounds for integral operators of the form

TKfpxq “
ª 8

0

Kpx, tqfptqdt,

with K a positive kernel. The main result is contained in Theorem 6.5, and it can be
applied to several integral operators such as the Abel transform, the Riemann-Liouville
operator, iterative operators, etc. These applications are all gathered in Section 6.3. The
content of this chapter has been accepted for publication in [23].
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Chapter 1

Weighted Extrapolation Theory

1.1 The theory of Rubio de Francia
Let us start by recalling the definition of general Lp spaces, which will constantly appear
throughout this thesis. Given a measure space pX,µq, for every 1 § p † 8, Lppµq will
denote the space of µ-measurable functions satisfying

}f}Lppµq :“
ˆ

ª

X

|fpxq|pdµpxq
˙

1{p
† 8,

and L8pµq will be the space of µ-measurable, bounded µ-a.e functions on X. On many
occasions, and especially in the first four chapters, we will take X “ Rn equipped with
an absolutely continuous measure µ. That is, µ will satisfy dµpxq “ wpxqdx, where w is a
non-negative, locally integrable function called weight. For these weighted Lp-spaces, we
will write Lppwq, and if w “ 1 (i.e. µ is just the Lebesgue measure), we will use LppRnq or
simply Lp. Also, recall that the weak Lp-spaces Lp,8pµq consist of µ-measurable functions
satisfying

}f}Lp,8pµq :“ sup

t°0

t�µf ptq1{p † 8,

where
�µf ptq :“ µptx P X : |fpxq| ° tuq

is the distribution function of f with respect to µ. As usual, µpEq denotes the µ-measure
of the set E, and if µ is the Lebesgue measure, then we write µpEq “ |E|. A generalization
of these spaces are the so-called Lorentz spaces. Given 1 § p † 8 and 1 § q † 8, we
define Lp,qpµq as the set of µ-measurable functions such that

}f}Lp,qpµq :“
ˆ

p

ª 8

0

pt�µf ptq1{pqq dt
t

˙

1{q
† 8.
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It is immediate to check that Lppµq “ Lp,ppµq and if 1 § q § 8, we have the following
chain of inclusions:

Lp,1 Ñ Lp,q Ñ Lp,8.

From now on, we will write x À y when there is a positive constant C ° 0 such that
x § Cy. If both x À y and y À x, then we write x « y. The constants involved are
universal in their context. If there is an important dependence on some variable, we will
note it with a subindex (À˚,«˚).

The extrapolation theory that we will present in this chapter will follow the ideas of
Rubio de Francia [102]. First of all, let us recall the classical results. Let M be the
Hardy-Littlewood maximal operator, introduced by Hardy and Littlewood [66] in 1930:

Mfpxq “ sup

QQx

1

|Q|
ª

Q

|fpyq|dy, (1.1)

where Q Ñ Rn is a cube and f is a locally integrable function. In 1972, B. Muckenhoupt
[94] proved the following characterization for 1 † p † 8:

M : Lppwq ›Ñ Lppwq
is bounded if, and only if w P Ap, where Ap is the class of weights such that

}w}A
p

“ sup

Q

wpQq
|Q|

ˆ

w1´p1pQq
|Q|

˙p´1

† 8.

Whenever an operator maps Lppwq into itself, we will say that it is of strong-type pp, pq
with respect to w. Therefore, in other words, Muckenhoupt’s result states that Ap weights
characterize the strong-type pp, pq of the maximal operator M . The case p “ 1 has to be
treated separately. It is clear that we cannot expect to have a strong-type p1, 1q estimate
of any kind for M , since Mf is only integrable when f “ 0. However, we do have a
weaker estimate [94]:

M : L1puq ›Ñ L1,8puq (1.2)
is bounded if, and only if u P A

1

. This class1 is defined by those weights u such that

Mupxq § Cupxq, a.e. x P Rn,

and }u}A
1

is the least constant C ° 0 that can be taken in such an inequality. In general,
an operator mapping Lppwq into Lp,8pwq will be called of weak-type pp, pq with respect
to w, and hence, one could say that A

1

weights characterize the weak-type p1, 1q of the
maximal operator M . One can easily see that Ap Ñ Aq whenever 1 § p † q. Indeed,
given w P Ap, when p “ 1,

ˆ

w1´q1pQq
|Q|

˙q´1

§ sup

xPQ
wpxq´1 “

ˆ

inf

xPQ
wpxq

˙´1

À
ˆ

wpQq
|Q|

˙´1

,

1For convenience, we will try to keep the notation u only for weights in A1.
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and the case p ° 1 is just Hölder’s inequality. In view of these inclusions, it is natural to
denote by A8 the union

A8 “
§

1§p†8
Ap.

This class first appeared in [95] and [38], and can be characterized (see also [49, Corollary
7.6]) by those weights w for which there exists � ° 0 such that

sup

EÑQ

ˆ |Q|
|E|

˙� wpEq
wpQq † 8,

where the supremum is taken over all cubes Q and all measurable sets E Ñ Q. Even
though we will not use them, we should mention that several characterizations of A8 can
be found in the literature, such as the one by N. Fujii [59] or the one by S. Hruščev [71]
(and independently, by J. García-Cuerva and J. L. Rubio de Francia [60]). We also refer
to the survey on this topic in [53].

The classes of Ap weights have been broadly studied ever since they were introduced
by B. Muckenhoupt. A basic property is that they satisfy a Reverse Hölder inequality
(see, for instance, [63, Theorem 9.2.2]). More precisely, there exists an " ° 0, depending
on p, }w}A

p

, and the dimension n, such that

ˆ

w1`"pQq
|Q|

˙

1

1`"

À wpQq
|Q| .

In particular, from here one can easily show that, given w P Ap:

• If 1 § p † 8, there exists " ° 0 such that w1`" P Ap.

• If 1 † p † 8, there exists " ° 0 such that w P Ap´".

This, in some sense, represents the “openness” of these classes, an essential property
in Ap-theory. Another consequence of the Reverse Hölder inequality is the following
characterization of A

1

weights, introduced by R. Coifman and R. Rochberg in [41]: A
weight u belongs to A

1

if, and only if, there exist a locally integrable function f and
0 § � † 1 such that

u « pMfq�. (1.3)

The last property that we want to recall about Ap weights is P. Jones’s factorization [73],
which states that w P Ap if and only if there is a couple of A

1

weights u
0

, u
1

such that

w “ u
0

u1´p
1

. (1.4)

However, the most important feature of Ap weights for us is that they are behind Rubio
de Francia’s extrapolation theorem [102]. In its original version, it reads as follows:
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Theorem 1.1. Given a sublinear operator T , if for some 1 § p
0

† 8 and every w P Ap
0

,

T : Lp
0pwq ›Ñ Lp

0pwq
is bounded, then, for every 1 † p † 8 and every w P Ap,

T : Lppwq ›Ñ Lppwq
is also bounded.

Later on, simpler proofs and improvements of this result appeared. For instance, it
was shown that it is still true if we have the boundedness estimates for general couples
of functions pf, gq instead of pf, Tfq, with T being a sublinear operator. Also, there is a
weak-type version of this result. More precisely, if we have a weak-type pp

0

, p
0

q estimate
for some 1 § p

0

† 8 and every weight in Ap
0

, then we deduce the weak-type pp, pq for
every 1 † p † 8 and every weight in Ap. Moreover, in the case of sublinear operators, we
can use classical interpolation to show that in fact, we have strong-type pp, pq. However,
in all this setting, it is not possible to extrapolate down to p “ 1, in the sense that there
are operators under Rubio de Francia’s hypotheses which are not of weak-type p1, 1q.
Take, for instance, the composition M2 “ M ˝ M . This operator trivially maps Lppwq
into itself for every w P Ap and 1 † p † 8, but it is not of weak-type p1, 1q, even in the
unweighted case. For further details on Rubio de Francia’s extrapolation theorem and its
modern variants, see [42], [43] or [50].

1.2 A new extrapolation to reach the endpoint p “ 1

As we have seen, one of the drawbacks of the classical theory of extrapolation is that we
cannot reach the endpoint p “ 1 just from information at p ° 1. In [28], however, the
authors realized that if we change the class of weights in the extrapolation assumptions,
there is a way to get estimates at level p “ 1. Before we can introduce these weights and
the extrapolation itself, we will need some definitions.

Definition 1.2. Assume that we have an arbitrary weight w on Rn. Given 1 § p † 8,
we say that an operator T is of restricted weak-type pp, pq with respect to w if, for every
measurable set E,

}T�E}Lp,8pwq § Cp}�E}Lppwq “ CpwpEq1{p. (1.5)

In other words, if T is of weak-type pp, pq when restricted to characteristic functions.

When 1 † p † 8 and T is sublinear, it can be shown that (1.5) is equivalent to saying
that

T : Lp,1pwq ›Ñ Lp,8pwq (1.6)
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is bounded, and sometimes this is taken as a definition. However, when p “ 1, it is not
true that (1.5) is equivalent to T : L1pwq Ñ L1,8pwq, as we shall discuss in Section 1.4.
In fact, it holds that when p ° 1 is close to 1, if we have (1.6), then (1.5) trivially holds
with the same constant, but if we have (1.5), then

}T }Lp,1pwqÑLp,8pwq À Cp

p ´ 1

.

For the time being, this dependence on p of the constants will not be important to us
and we will study restricted weak-type estimates using (1.5) or (1.6) indistinctively when
p ° 1. However, we make it explicit since we will need to take it into account when
studying Yano’s extrapolation theory in subsequent chapters. In this context of restricted
weak-type estimates, in 1982 R. Kerman and A. Torchinsky [76] characterized the weights
for which M satisfied (1.5), including the case p “ 1. More precisely, they proved that,
for 1 § p † 8,

}M�E}Lp,8pwq À }w}AR
p

wpEq1{p (1.7)

if, and only if, w P AR
p , where the so-called restricted Ap class is the set of weights w

such that

}w}AR
p

“ sup

EÑQ

|E|
|Q|

ˆ

wpQq
wpEq

˙

1{p
† 8,

and the supremum is taken over all cubes Q and all measurable sets E Ñ Q. When p “ 1,
this class coincides with A

1

“ AR
1

, entailing that in this particular case of the maximal
operator M , the weighted weak-type and restricted weak-type (1,1) are equivalent. For a
general 1 § p † 8, it holds that (see [28])

Ap Ñ AR
p Ñ Ap`"

for every " ° 0 with the following estimate:

}w}AR
p

§ }w}1{p
A

p

.

Unlike for Ap weights, where we know that every weight w P Ap can be written as
w “ u

0

u1´p
1

, with u
0

, u
1

P A
1

, for the class AR
p there is no factorization result so far.

However, in [28, Corollary 2.8] the authors prove that, for every u P A
1

, every function
f P L1

loc

and every 1 § p † 8, the weight pMfq1´pu P AR
p with

}pMfq1´pu}p
AR

p

À }u}A
1

. (1.8)

Notice that combining (1.3) and (1.4), one has that every weight in Ap is essentially of
the form pMfq�p1´pqu, with 0 § � † 1 and u P A

1

, so (1.8) states that, if we take � “ 1,
the resulting weight lies in AR

p . This result raises the question of whether every weight
in AR

p can be written in this way. For the time being, we will work with the (a priori)
subclass for which this factorization holds.
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Definition 1.3. We define

pAp “  

w : w “ pMfq1´pu, for some f P L1

loc

and u P A
1

( Ñ AR
p ,

with
}w}

pA
p

“ inf }u}1{p
A

1

,

where the infimum is taken over all possible representations of w.

The following lemma shows that pAp is an intermediate class between Ap and AR
p :

Lemma 1.4. For every 1 † p † 8, we have that Ap Ñ pAp and }w}
pA
p

À }w}2{p
A

p

for every
w P Ap.

Proof. Let w P Ap, factored as w “ u
0

u1´p
1

, with u
0

, u
1

P A
1

. Since u
1

P A
1

, we have that
u
1

§ Mu
1

§ }u
1

}A
1

u
1

. With this and 1 ´ p † 0, we can write

}u
1

}1´p
A

1

§ pMu
1

q1´p

u1´p
1

“: k § 1.

Now, w “ u
0

u1´p
1

“ u
0

k´1pMu
1

q1´p, and it holds that

Mpu
0

k´1q § }u
1

}p´1

A
1

Mu
0

§ }u
1

}p´1

A
1

}u
0

}A
1

u
0

§ }u
1

}p´1

A
1

}u
0

}A
1

u
0

k´1.

Therefore, u
0

k´1 P A
1

and we deduce that w P pAp. Furthermore,

}w}
pA
p

§ }u
0

k´1}1{p
A

1

§ `}u
0

}A
1

}u
1

}p´1

A
1

˘

1{p À }w}2{p
A

p

,

using the quantitative version of the Ap-factorization theorem (see [39]), which states that
u
0

and u
1

can be taken so that

}w}A
p

§ }u
0

}A
1

}u
1

}p´1

A
1

À }w}2A
p

.

Remark 1.5. Even though, for a fixed 1 § p † 8, the classes Ap Ñ pAp Ñ AR
p need not

be the same in general, at this point it is clear that

A8 “
§

1§p†8
Ap “

§

1§p†8
pAp “

§

1§p†8
AR

p .

For later purposes, let us state the following property for weights of the form pMhq↵
when ↵ † 0:
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Lemma 1.6. Given a locally integrable function h and ↵ † 0, we have that, for every
cube Q Ñ Rn,

sup

xPQ
pMhq↵pxq À 1

|Q|
ª

Q

pMhq↵pyqdy.

In particular, if Q Ñ Q1,

1

|Q|
ª

Q

pMhq↵pyqdy À 1

|Q1|
ª

Q1
pMhq↵pyqdy.

This property states that the weight pMhq↵ belongs to the Reverse Hölder class RH8.
This class was introduced by B. Franchi in [58], and in [44, Theorem 4.4], the authors
prove that given an A

1

weight u, for every p ° 1, it holds that u1´p P RH8 XAp. In view
of (1.3), their result shows that pMhq↵ P RH8 XAp for every p ° 1´↵ and in particular,
Lemma 1.6. This estimate is also used (and proved in a different way) in [32, Corollary
2.3]. The second part of the lemma is obvious from the first.

Finally, we present the main extrapolation result obtained in [28, 32] in the context
of pAp weights:

Theorem 1.7. Let T be a sublinear operator such that, for some 1 † p
0

† 8 and every
w P pAp

0

,
T : Lp

0

,1pwq ›Ñ Lp
0

,8pwq.
Then, for every 1 § p † 8 and every w P pAp, T is of restricted weak-type pp, pq with
respect to w. Moreover, it also satisfies that, for every " ° 0 and u P A

1

,

T : LplogLq"puq ›Ñ L1,8
loc

puq.

The details on the boundedness constants involved are gathered in [28, 32]. Regarding
the sublinearity condition, we should say that it can be dropped if we want to show the
restricted weak-type estimate for either p “ 1 or p ° p

0

. It is in the range 1 † p † p
0

(and for the LplogLq" estimate) where this assumption is needed. At this point we must
emphasize that the main difference between this result and the classical extrapolation of
Rubio de Francia is that, in this case, we can obtain estimates down to p “ 1. In the
next section we will focus on this aspect of the theory and we will see how much we can
relax the hypotheses without losing the conclusion at the endpoint. Before we do that,
and for later purposes, let us check what we get if we use the ideas behind Theorem 1.7
to extrapolate a restricted weak-type pp

0

, p
0

q estimate that only holds for the classical
Ap

0

class (that is, if we work with operators under the assumptions of Rubio de Francia’s
Theorem 1.1). Obviously, we will not be able to reach p “ 1 in general, but in Chapter 5
we will be interested in the boundedness constant that we get for p ° 1 when p is close
to 1. The result is the following:

17



Chapter 1. Weighted Extrapolation Theory

Theorem 1.8. Let T be an operator such that, for some 1 † p
0

† 8 and every w P Ap
0

,

T : Lp
0

,1pwq ›Ñ Lp
0

,8pwq
is bounded with constant 'p}w}A

p

0

q, where ' is an increasing function on p0,8q. Then,
for every 1 † p † p

0

and every u P A
1

,

T : Lp, p

p

0 puq ›Ñ Lp,8puq
is bounded with constant essentially controlled by

}u}
1

p

´ 1

p

0

A
1

'

˜

ˆ

p
0

´ 1

p ´ 1

˙p
0

´1

}u}A
1

¸

.

Proof. We will follow the ideas in [28]. Let � ° 0 and y ° 0. Given f P Lp, p

p

0 puq, we use
[28, Proposition 2.10] with g “ |Tf | to write

�uTf pyq § �uMf p�yq ` �p0´py
p
0

yp

ª

t|Tf |°yu
pMfqp´p

0pxqupxqdx.

Now, notice that w :“ pMfqp´p
0u P Ap

0

, since it can be factored as in (1.4). Moreover,

}w}A
p

0

“
›

›

›

›

”

pMfq p

0

´p

p

0

´1

ı

1´p
0

u

›

›

›

›

A
p

0

§
›

›

›

pMfq p

0

´p

p

0

´1

›

›

›

p
0

´1

A
1

}u}A
1

À
ˆ

p
0

´ 1

p ´ 1

˙p
0

´1

}u}A
1

. (1.9)

Hence, we can use our assumption and deduce that

�uTf pyq À �uMf p�yq ` �p0´p
'p}w}A

p

0

qp0
yp

˜

ª 8

0

ˆ

ª

t|f |°zu
wpxqdx

˙

1{p
0

dz

¸p
0

.

But, since p ´ p
0

† 0, we can bound w “ pMfqp´p
0u § zp´p

0u on the set t|f | ° zu, so we
conclude that

�uTf pyq À �uMf p�yq ` �p0´p
'p}w}A

p

0

qp0
yp

˜

ª 8

0

z
p

p

0

´1

ˆ

ª

t|f |°zu
upxqdx

˙

1{p
0

dz

¸p
0

.

The expression in parentheses to the power p
0

is essentially }f}p
L
p,

p

p

0 puq
, and using the

sharp weak-type pp, pq estimate for M due to S. M. Buckley [9], we also know that

�uMf p�yq À }u}A
p

yp�p
}f}pLppuq § }u}A

1

yp�p
}f}p

L
p,

p

p

0 puq
.
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Combining these two facts and multiplying by yp we obtain that

yp�uTf pyq À
ˆ}u}A

1

�p
` �p0´p'p}w}A

p

0

qp0
˙

}f}p
L
p,

p

p

0 puq
.

Finally, we can minimize the right-hand side with respect to � ° 0 by choosing � “
}u}1{p

0

A
1

'p}w}A
p

0

q´1, and taking supremum over y ° 0, we get

}Tf}pLp,8puq À }u}1´p{p
0

A
1

'p}w}A
p

0

qp}f}p
L
p,

p

p

0 puq
.

This estimate, together with (1.9), completes the proof.

Remark 1.9. When T is sublinear, in Theorem 1.8 we can also conclude that

T : Lp,1puq ›Ñ Lp,8puq, (1.10)

since we can check that (1.5) holds on characteristic functions:

}T�E}Lp,8puq § Cp,u}�E}
L
p,

p

p

0 puq
“ Cp,uupEq1{p.

However, as we mentioned when we introduced (1.6) as an alternative definition for the re-
stricted weak-type pp, pq of sublinear operators, the boundedness constant for (1.10) would
have an extra factor behaving like 1

p´1

when p is close to 1.

1.3 Extrapolating on a smaller class of weights
As we anticipated after presenting Theorem 1.7, in this section we will see how much
we can relax the hypotheses of this theorem without losing information in the conclusion
at p “ 1. The following result states that if T satisfies a restricted weak-type estimate
as in Theorem 1.7 but only for a very particular subclass of pAp

0

, then we obtain the
analogous estimate for the whole range of 1 § p † 8, and at p “ 1, we still recover the
whole A

1

class. We will also drop the sublinearity condition on T , since for the weight
we are considering, we can avoid the interpolation step requiring it in the original result
of [28]. In fact, the results in this section could be written for couples p�E, gq, where g is
a measurable function, not necessarily T�E.

Theorem 1.10. Let 1 † p
0

† 8. If an operator T satisfies that, for every measurable
set E Ñ Rn and every weight u P A

1

,

}T�E}Lp

0

,8ppM�
E

q1´p

0uq § 'p}u}A
1

qupEq1{p
0

with ' an increasing function on p0,8q, then, for every 1 § p † 8,

}T�E}Lp,8ppM�
E

q1´puq § 'pp}u}A
1

qupEq1{p
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with

'pptq “
#

t
1

p

´ 1

p

0'ptq, if 1 § p § p
0

p
2

p

0 t
p`1

pp

0

p´p

0

p´1 '
´

p´1

p
0

´1

t
¯

, if p
0

† p † 8.

Proof. Let us start with 1 § p † p
0

. The argument for this case will be similar to that in
Theorem 1.8, which in turn follows the ideas of [28]. We start by using [28, Proposition
2.10] with the weight w “ pM�Eq1´pu, g “ |T�E|, f “ �E and � ° 0 to show that

�wT�
E

pyq § �wM�
E

p�yq ` �p0´py
p
0

yp

ª

t|T�
E

|°yu
pM�Eqp´p

0pxqwpxqdx

“ �wM�
E

p�yq ` �p0´py
p
0

yp

ª

t|T�
E

|°yu
pM�Eq1´p

0pxqupxqdx.

Now, we apply our hypothesis, multiply by yp and use that M is of restricted weak-type
pp, pq with respect to w with constant }w}AR

p

À }u}1{p
A

1

(see [28, Corollary 2.8]):

yp�wT�
E

pyq À }u}A
1

upEq
�p

` �p0´p'p}u}A
1

qp0upEq.

Finally, we take the supremum on y and the infimum over � ° 0, which is attained
essentially at � “ }u}

1

p

0

A
1

'p}u}A
1

q´1, to conclude that

}T�E}Lp,8ppM�
E

q1´puq À }u}
1

p

´ 1

p

0

A
1

'p}u}A
1

qupEq1{p. (1.11)

The case p
0

† p † 8 is a little more involved. We shall follow [32, Theorem 3.1]. Choose
� satisfying

1 † � † p1
0

p1 , and � § 1 ` 1

2

n`1}u}A
1

, (1.12)

which by [98] ensures that u� P A
1

and }u�}A
1

À }u}A
1

. Let 0 † ✓ † 1 such that

�
p
0

´ 1

p ´ 1

` ✓
p ´ p

0

p ´ 1

“ 1.

From here we deduce that, for every y ° 0,
ª

t|T�
E

|°yu
pM�Eq1´ppxqupxqdx §

ª

t|T�
E

|°yu
pM�Eq1´p

0pxqvpxqdx,

with
vpxq “ upxq� p

0

´1

p´1

`

Mpu✓pM�Eq1´p�t|T�
E

|°yuqpxq˘

p´p

0

p´1 P A
1

,
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and }v}A
1

À p´1

p
0

´1

}u}A
1

(using [32, Lemma 2.12] for this last fact). With this, our hypoth-
esis yields

ª

t|T�
E

|°yu
pM�Eq1´ppxqupxqdx § 1

yp0
'

ˆ

p ´ 1

p
0

´ 1

}u}A
1

˙p
0

vpEq.

Finally, we need to estimate vpEq. Recalling that M�E ” 1 on E and the relation in
(1.12), we can write

vpEq “
ª

E

ˆ

Mpu✓pM�Eq1´p�t|T�
E

|°yuqpxq
pM�Eq1´pu✓

˙

p´p

0

p´1

upxqdx,

and using Hölder,

vpEq § }�E}
L

p

p

0

,1puq

›

›

›

›

›

›

ˆ

Mpu✓pM�Eq1´p�t|T�
E

|°yuqpxq
pM�Eq1´pu✓

˙

p´p

0

p´1

›

›

›

›

›

›

L
p

p´p

0

,8puq

“ p

p
0

upEqp0{p
›

›

›

›

Mpu✓pM�Eq1´p�t|T�
E

|°yuqpxq
pM�Eq1´pu✓

›

›

›

›

p´p

0

p´1

Lp

1
,8puq

.

Here we apply [32, Lemma 2.6] and conclude that

vpEq À pupEqp0{pCp,✓ppM�Eq1´puq p´p

0

p´1 ppM�Eq1´puqpt|T�E| ° yuq p´p

0

p ,

where the constant Cp,✓p¨q is the one appearing in [32, Lemma 2.6]. With this estimate,
we obtain that

}T�E}pLp,8ppM�
E

q1´puq À p
p

p

0Cp,✓ppM�Eq1´puq ppp´p

0

q
p

0

pp´1q'

ˆ

p ´ 1

p
0

´ 1

}u}A
1

˙p

upEq.

Using that in our case 1

p1 † ✓ † 1, we can choose the best possible value for ✓ so that

Cp,✓ppM�Eq1´puq À p}u}
p`1

p

A
1

.

If we plug this in the previous estimate and observe that

p

p
0

` p

p
0

ˆ

p ´ p
0

p ´ 1

˙

§ 2p

p
0

,

we conclude

}T�E}Lp,8ppM�
E

q1´puq À p
2

p

0 }u}
p`1

pp

0

p´p

0

p´1

A
1

'

ˆ

p ´ 1

p
0

´ 1

}u}A
1

˙

upEq1{p.
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Chapter 1. Weighted Extrapolation Theory

Notice that the most interesting feature of this result is that the conclusion at p “ 1

holds for the whole A
1

class. In fact, if our goal is just to reach the endpoint, we can
make yet another simplification. Namely, we can obtain the restricted weak-type (1,1)
estimate for A

1

weights starting from a restricted weak-type pp
0

, p
0

q assumption in which
p
0

may depend on the weight u. The key fact is that we always have 1 “ p † p
0

.
Therefore, regardless of the value of p

0

, we must argue as in the first case of the proof of
Theorem 1.10. Notice that in this case, to prove the estimate at level p “ 1 for a fixed
weight u P A

1

, we use the assumption at level p
0

with exactly the same weight u, so the
dependence p

0

puq does not affect the argument. The conclusion is (1.11) with p “ 1, as
we state in the following theorem. Here we make the dependence of ' on p

0

explicit, since
it represents dependence on u and might need to be taken into account:

Theorem 1.11. Let T be an operator and u P A
1

. If there is some 1 † p
0

† 8 such that

}T�E}Lp

0

,8ppM�
E

q1´p

0uq § 'p
0

p}u}A
1

qupEq1{p
0 ,

then
}T�E}L1,8puq § }u}1´ 1

p

0

A
1

'p
0

p}u}A
1

qupEq.
In the next section, we will see how an extra (mild) assumption on T allows us to turn

the conclusion into a weak-type (1,1) estimate rather than a restricted one. To conclude
the discussion on this smaller class of weights, we present a duality result that also holds
in this setting:

Proposition 1.12. Let 1 † p
0

† 8. Assume that we have a sublinear operator T with
adjoint T ˚ such that, for every measurable set E Ñ Rn and u P A

1

,

}T ˚�E}Lp

0

,8ppM�
E

q1´p

0uq § 'p}u}A
1

qupEq1{p
0 , (1.13)

with ' an increasing function on p0,8q. Then, for every 1 † p † 8, u P A
1

and
f P Lp,1puq,

›

›

›

›

T pufq
u

›

›

›

›

Lp,8puq
À 'p1p}u}A

1

q}f}Lp,1puq,

with 'p1 defined as in Theorem 1.10.

Proof. First, we use Theorem 1.10 to extrapolate (1.13) and deduce, for every 1 † p1 † 8,

}T ˚�E}Lp

1
,8ppM�

E

q1´p

1uq § 'p1p}u}A
1

qupEq1{p1
.

Now fix 1 † p † 8. Since we want to show a restricted weak-type estimate, it is enough
to assume that f “ �E. Also, in order to compute the Lp,8 norm via duality, we also
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need to establish a restricted weak-type estimate for the duality operator x¨, hyu, so we
take h “ �F and

›

›

›

›

T pu�Eq
u

›

›

›

›

Lp,8puq
« sup

upF q1{p1 “1

ˇ

ˇ

ˇ

ˇ

B

T pu�Eq
u

,�F

F

u

ˇ

ˇ

ˇ

ˇ

“ sup

upF q“1

ª

Rn

T pu�Eqpxq�F pxqdx

“ sup

upF q“1

ª

Rn

�EpxqT ˚�F pxqupxqdx

“ sup

upF q“1

ª

Rn

�EpxqpM�F pxqqp1´1T ˚�F pxqpM�F pxqq1´p1
upxqdx

§ sup

upF q“1

}�EpM�F qp1´1}Lp,1ppM�
F

q1´p

1uq}T ˚�F }Lp

1
,8ppM�

F

q1´p

1uq.

Now, the first norm can be bounded by
ª 8

0

ˆ

ª

txPE:M�
F

pxqp1´1°yu
M�F pxq1´p1

upxqdx
˙

1{p
dy §

ª

1

0

y´1{pupEq1{pdy À upEq1{p.

To the second norm we apply our assumption to control it by 'p1p}u}A
1

qupF q1{p1 “
'p1p}u}A

1

q, and this completes the proof.

1.4 From restricted to unrestricted weak-type (1,1)
Even though the results presented above only yield restricted weak-type p1, 1q estimates,
it is known that for a large class of operators (as it happened for the Hardy-Littlewood
maximal function M), this is equivalent to being of weak-type p1, 1q. We will need to
define a notion introduced in [21] that gives a sufficient condition for operators to be of
weak-type p1, 1q just from a restricted weak-type estimate.

Definition 1.13. Given � ° 0, a function a P L1pRnq is called a �-atom if it satisfies the
following properties:

(i)
≥

Rn

a “ 0, and

(ii) there exists a cube Q such that |Q| § � and supp a Ñ Q.

With this, a sublinear operator T is p", �q-atomic if, for every " ° 0, there exists � ° 0

such that
}Ta}L1`L8 “

ª

1

0

pTaq˚ptqdt § "}a}
1

,

for every �-atom a, and T is said to be p", �q-atomic approximable if there exists a sequence
tTnun of p", �q-atomic operators such that, for every measurable set E, |Tn�E| § |T�E|
and, for every function f P L1pRnq with }f}8 § 1,

|Tfpxq| § lim

n
inf |Tnfpxq|, a.e. x P Rn.
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In [21], the author shows that this is not a strong property to assume on an operator.
For instance, it is checked that if

Tfpxq “ K ˚ fpxq, (1.14)

with K P LppRnq for some 1 § p † 8, or K measurable and uniformly continuous on Rn,
then T is p", �q-atomic, and if tTnun is a sequence of p", �q-atomic operators, then both

T ˚fpxq “ sup

n
|Tnfpxq|, and Tfpxq “

˜

ÿ

n

|Tnfpxq|q
¸

1{q

,

are p", �q-atomic approximable, for every q • 1. We will see that this notion of approxima-
bility by p", �q-atomic operators is not the only possible one keeping the good properties
of these operators, but for the time being we will not get into this matter. The result
concerning the boundedness of this kind of operators is the following:

Theorem 1.14. Let T be a sublinear operator p", �q-atomic approximable and let u P A
1

.
Then, if there exists a constant Cu ° 0 such that, for every measurable set E,

}T�E}L1,8puq § CuupEq,
we have that

T : L1puq ›Ñ L1,8puq
with constant 2nCu}u}A

1

.

This result was proved in [21] in the unweighted case, and extended to weights in A
1

in [28].

1.5 Limited range extrapolation
Finally, let us present an extrapolation tool that will be needed in Section 3.3.1. Assume
that we have a weighted Lp

0 estimate that only holds for certain powers of Ap
0

weights.
Despite the fact that Rubio the Francia’s extrapolation cannot be applied directly, this
partial information can be used to draw conclusions for a limited range of p around
p
0

, depending on the powers of the initial weights and the value of p
0

. This idea was
introduced in [51] and further developed in [26]. Let us make it precise. Its original
statement is a little bit more general, but for the sake of simplicity, we will state it in a
simpler way. See [26, Section 2] for more details.

Theorem 1.15. Assume that, for some 1 † p
0

† 8 and some ↵ P r0, 1s, a sublinear
operator T maps

T : Lp
0pw↵q ›Ñ Lp

0pw↵q, @w P Ap
0

.
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We define

p1
´ :“ p1

0

1 ´ ↵
, p` :“ p

0

1 ´ ↵
,

and, for every p P pp´, p`q, we set ↵
0

ppq,↵
1

ppq P r0, 1s to be such that

p1
´ “ p1

1 ´ ↵
1

ppq , p` “ p

1 ´ ↵
0

ppq .

Then, it holds that, for every p P pp´, p`q, and every u
0

, u
1

P A
1

,

T : Lppu↵0

ppq
0

u↵1

ppqp1´pq
1

q ›Ñ Lppu↵0

ppq
0

u↵1

ppqp1´pq
1

q.
Notice that the interval pp´, p`q is built around p

0

, and that if ↵ “ 0, it shrinks to
the singleton tp

0

u (which makes sense, because no extrapolation is possible if the initial
estimate does not have weights). If ↵ “ 1, then this result recovers Rubio de Francia’s
theorem, since for this particular case pp´, p`q “ p1,8q and ↵

0

ppq “ ↵
1

ppq “ 1, which,
due to the factorization of Ap weights (1.4), makes the conclusion valid for the whole Ap

class. If we are not interested in the weights in the conclusion, we can forget about the
exponents ↵ippq and write the following particular case:

Corollary 1.16. Assume that for some 1 † p
0

† 8 and some ↵ P r0, 1s, a sublinear
operator T maps

T : Lp
0pw↵q ›Ñ Lp

0pw↵q, @w P Ap
0

.

Then, for every p P pp´, p`q,
T : LppRnq ›Ñ LppRnq,

where p´, p` are as in Theorem 1.15.
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Chapter 2

The Bochner-Riesz Operator

2.1 Introduction to the problem
First of all, let us recall the standard definition for the Fourier transform of an integrable
function f P L1pRnq:

pfp⇠q :“
ª

Rn

fpxqe´2⇡ix¨⇠dx, ⇠ P Rn.

This operation f fiÑ pf can be extended by duality to the class of tempered distributions,
and in particular, defines an isometry on L2pRnq, known as Plancherel’s theorem. Its
inverse transform is denoted by f_pxq :“ pfp´xq. Another essential property is that the
Fourier transform of a convolution becomes a pointwise product in the following way:

zf ˚ gp⇠q “ pfp⇠qpgp⇠q.
A really detailed presentation of the Fourier transform and all its properties can be found
in [63]. Now, we will give the general definition of the Bochner-Riesz operator. Recall
that a` “ maxta, 0u denotes the positive part of a P R.

Definition 2.1. Given � ° 0 and r ° 0, we define the Bochner-Riesz operator Br
� on Rn

by
yBr
�fp⇠q “ p1 ´ |r⇠|2q�` pfp⇠q.

Notice that the term p1 ´ |r⇠|2q�` restricts the support of pf to the ball Bp0, 1{rq.
However, the larger the value of �, the smoother this truncation is, and thus, the better
the operator Br

� will behave. More precisely, it is easy to see that if � ° n´1

2

, then Br
�f

is essentially controlled by the Hardy-Littlewood maximal operator M (see, for instance,
[63, Sec. 10.2]). However, for the so-called critical index � “ n´1

2

, we do not have such
a control. We will focus on this critical case with r “ 1, so for the sake of simplicity, we
will drop the indices � or r whenever they are n´1

2

or 1 respectively.
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Despite the fact that B is no longer controlled by the Hardy-Littlewood maximal
operator, when it comes to its boundedness on weighted Lp-spaces, it satisfies the same
estimates as M . Namely, in 1988, M. Christ [35] showed that B is of weak-type (1,1) with
respect to the Lebesgue measure. Later on, in 1992, X. Shi and Q. Sun [107] proved that it
was of strong-type pp, pq for every weight in Ap and every 1 † p † 8, and finally, in 1996,
A. Vargas [124] extended the weak-type (1,1) estimate to A

1

weights. In this chapter,
we will give a short proof of the strong-type pp, pq, then simplify A. Vargas’ proof for A

1

weights and, finally, in Theorem 2.9, we will show that B satisfies a certain restricted
weak-type pp, pq estimate, in the spirit of Section 1.3. The main advantage of this new
estimate is that it will allow us to use extrapolation arguments on operators that can be
written as an average of Bochner-Riesz operators tBrur°0

.

2.2 Some preliminary results
Let us consider the classical decomposition of B. Arguing as in [35], it is enough to study
the operator (which we will call again B)

f fi›Ñ
˜ 8

ÿ

j“1

Kj

¸

˚ f,

where
Kjpxq “ ⌘

ˆ

x

|x|
˙

 pxq'p2´jxq|x|´n,

and:

• ⌘ is a fixed element from a finite C8 partition of the unity on the sphere Sn´1, which
we can assume to have very small support.

•  pxq “ cosp2⇡|x| ´ ⇡pn ´ 1q{4q.
• ' P C8pRnq, real-valued, radial, supported on tx P Rn

: |x| P r1{4, 1su, and such
that

ÿ

jPZ
'p2jxq ” 1, on Rnzt0u.

Even though we will resort to some estimates from [35] for which the author needs a deep
understanding of the kernels Kj, the only property that we will explicitly use has to do
with their size and support. Namely that, for every j • 1,

|Kjpxq| À 2

´jn�Bp0,2jqpxq. (2.1)

This is a direct consequence of their definition. In fact we could say that they are sup-
ported on the annulus Bp0, 2jqzBp0, 2j´2q, but since we will not really use it, let us just

28



C. Domingo Salazar

keep estimate (2.1). Also, we will use that they are uniformly controlled by the Hardy-
Littlewood maximal operator:

Lemma 2.2. For every j • 1, and every locally integrable function f ,

|Kj ˚ fpxq| À Mfpxq.
Proof. This is a direct consequence of (2.1):

|Kj ˚ fpxq| À
ˆ

�Bp0,2jq
|Bp0, 2jq|

˙

˚ fpxq § Mfpxq.

Once we have settled the decomposition of the kernel, we will need three more lemmas
before we can reach our goal. The first one will allow us to construct a simplified Calderón-
Zygmund decomposition for characteristic functions:

Lemma 2.3. Let 0 † ↵ † 1. Let E Ñ Rn be a measurable set. Then there exists a family
of pairwise disjoint dyadic cubes tQiu8

i“0

such that

|E X Qi|
|Qi| « ↵,

and E rN Ñ î8
i“0

Qi, with |N | “ 0.

Proof. We just take the Calderón-Zygmund family of dyadic cubes associated with the
function �E. By the stopping-time condition used in the decomposition, we know that
these cubes satisfy, for every i • 0,

↵ † 1

|Qi|
ª

Q
i

�Epxqdx “ |E X Qi|
|Qi| § 2

n↵.

Also, if we take a point x P Rnzî8
i“0

Qi, since it is not in any Calderón-Zygmund cube,
we have that for each m • 0, there exists a unique non-selected dyadic cube Q´m

x with
|Q´m

x | “ 2

´nm that contains x and

1

|Q´m
x |

ª

Q´m

x

�Epyqdy “ |E X Q´m
x |

|Q´m
x | § ↵.

But the intersection of the closures of the cubes tQ´m
x um•0

is the singleton txu, so using
Lebesgue’s differentiation theorem, we deduce that for almost every x P Rnzî8

i“0

Qi,

�Epxq “ lim

mÑ8
|E X Q´m

x |
|Q´m

x | § ↵ † 1,

and hence x R E.
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Remark 2.4. Based on this lemma, given 0 † ↵ † 1 and E Ñ Rn, we can define for
every k • 0,

Ek :“ E X
˜ 8
§

i“0

Qk
i

¸

,

where tQk
i u8

i“0

is the subfamily of cubes with size |Qk
i | “ 2

nk if k ° 0, and |Q0

i | § 1. Since
the set E is essentially contained in the union of all the cubes tQk

i u8
i,k“0

, we have that

E “
8
§

k“0

Ek,

and for every k, i • 0:
|Ek X Qk

i |
|Qk

i | “ |E X Qk
i |

|Qk
i | « ↵.

Let us illustrate this decomposition in the following picture (forgetting about the ↵-
ratio property). Consider a polygon E, in gray. We separate the cubes into three groups,
one color each, depending on their size, and we look at their intersection with E to find
the pieces E

1

, E
2

and E
3

.

Figure 2.1: Example of decomposition of E “ E
1

Y E
2

Y E
3

, with Ek “ E X î

i Q
k
i .
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The next lemma will be the cornerstone of our argument. For technical reasons re-
garding interpolation, not only will we need estimates for E, but also for subsets G Ñ E.
Notice that if Gk “ GXEk, we still have the inequality |G

k

XQk

i

|
|Qk

i

| À ↵, and that will suffice
to get the right estimates.

Lemma 2.5. Let 0 † ↵ † 1 and let E “ î8
k“0

Ek be a measurable set decomposed as in
Remark 2.4. Let G Ñ E be a measurable subset and define for every k • 0, Gk “ GXEk.
Then for every 1 § s † 8:

(a)
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

2

À 2

´sn´1

2 ↵|G|.

(b) For every weight u P A
1

,
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

L2puq
À }u}2A

1

↵upGq.

(c)
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

L2ppM�
E

q´1q
À |G|.

Proof. The proof of paq is exactly the same as that of [35, Estimate (3.1)], where the author
proves an estimate for the bad part of a Calderón-Zygmund decomposition without using
its cancellation property (which allows us to adapt it to our case). In fact, this estimate
is conveniently stated in [124, Section 2, Lemma 2] in the following way:

‚ Let v “ ∞

QPF vQ, where F is a family of disjoint dyadic cubes, with supp vQ Ñ Q

and
≥ |vQ| À ↵|Q|. Define Fk “ tQ P F : |Q| “ 2

nku for k • 1, F
0

“ tQ P F : |Q| § 1u
and Vk “ ∞

QPF
k

vQ. Then

›

›

›

›

›

8
ÿ

j“s

Kj ˚ Vj´s

›

›

›

›

›

2

2

À 2

´sn´1

2 ↵}v}
1

.

For our purposes, take the function v “ �G, the family F “ tQk
i u8

k,i“0

and Fk “ tQk
i u8

i“0

.
Then,

�G “
8
ÿ

i,k“0

�GXQk

i

,
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Chapter 2. The Bochner-Riesz Operator

and it holds that supp�GXQk

i

Ñ Qk
i and

ª

�GXQk

i

pxqdx “ |G X Qk
i | “ |Gk X Qk

i | § |Ek X Qk
i | « ↵|Qk

i |.

Hence, since Vk “ ∞8
i“0

�GXQk

i

“ �G
k

,
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

2

À 2

´sn´1

2 ↵}�G}
1

“ 2

´sn´1

2 ↵|G|.

Let us prove pbq. Writing the left-hand side as an inner product in L2puq and using its
bilinearity and symmetry, we get that it can be essentially majorized by

8
ÿ

j“s

j
ÿ

i“s

ª

|Kj ˚ �G
j´s

pxq||Ki ˚ �G
i´s

pxq|upxqdx.

Since �G
k

“ ∞8
l“0

�G
k

XQk

l

for every k • 0, we can write the previous expression as

8
ÿ

j“s

8
ÿ

l“0

˜

j
ÿ

i“s

8
ÿ

m“0

ª

|Kj| ˚ �G
j´s

XQj´s

l

pxq|Ki| ˚ �G
i´s

XQi´s

m

pxqupxqdx
¸

. (2.2)

Now, let us look at the term in parentheses, where Qj´s
l is fixed. Using (2.1), we know

that the support of the first convolution is contained in

Qj´s
l ` Bp0, 2jq Ñ Ql,

where |Ql| “ 2

pj`2qn, since a cube containing the sum1 would need to have side-length
2

j`1 ` 2

j´s § 2

j`2, and

|Kj| ˚ �G
j´s

XQj´s

l

pxq § 2

´jn|Gj´s X Qj´s
l |.

Similarly, for every s § i § j and every m • 0, the support of the second convolution is
contained in Qm with |Qm| “ 2

pi`2qn and Qi´s
m Ñ Qm. Moreover, since x P Ql (for the first

convolution to be non-zero), we have that

|Ki| ˚ �G
i´s

XQi´s

m

pxq “
ª

G
i´s

XQi´s

m

|Kipx ´ zq|dz “
ª

G
i´s

XQi´s

m

X2Q
l

|Kipx ´ zq|dz
§ 2

´in|Gi´s X Qi´s
m X 2Ql|,

which can be majorized by
2

´in|Gi´s X Qi´s
m |

together with the fact that we only need to consider the cubes Qi´s
m Ñ 4Ql. Here we used

again (2.1) to see that z P Ql ` Bp0, 2iq Ñ 2Ql and |Ki| § 2

´in. Summing up, we will use
the four following facts:

1Actually, Ql can be taken to be the dilation 2s`2
Q

j´s
l , but that would just complicate the notation.
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• x P Ql X Qm,

• |Kj| ˚ �G
j´s

XQj´s

l

pxq § 2

´jn|Gj´s X Qj´s
l |,

• |Ki| ˚ �G
i´s

XQi´s

m

pxq § 2

´in|Gi´s X Qi´s
m |,

•
îj

i“s

î8
m“0

Qi´s
m Ñ 4Ql.

Figure 2.2: Idea of the setting when Qj´s
l is fixed, and we have two cubes Qi´s

m and Qi´s
m

1

.

With this, we can finish the proof of pbq. We bound the expression in parentheses in
(2.2) by

2

´jn|Gj´s X Qj´s
l |

j
ÿ

i“s

8
ÿ

m“0

|Gi´s X Qi´s
m |upQl X Qmq

2

in

À ↵2´jn|Gj´s X Qj´s
l |

j
ÿ

i“s

8
ÿ

m“0

|Qi´s
m |upQmq

2

in

§ ↵}u}A
1

2

´jn|Gj´s X Qj´s
l |

j
ÿ

i“s

8
ÿ

m“0

upQi´s
m q

§ ↵}u}A
1

2

´jn|Gj´s X Qj´s
l |u `

4Ql

˘ § ↵}u}2A
1

upGj´s X Qj´s
l q,

33



Chapter 2. The Bochner-Riesz Operator

recalling that |Gi´s X Qi´s
m | À ↵|Qi´s

m | and that |Qm| « 2

in, |4Ql| « 2

jn. We can plug it
in (2.2) to get the sought-after estimate:

↵}u}2A
1

8
ÿ

j“s

8
ÿ

l“0

upGj´s X Qj´s
l q “ ↵}u}2A

1

8
ÿ

j“s

upGj´sq “ ↵}u}2A
1

upGq.

Finally we prove pcq. Exactly as in pbq, it is enough to show that

8
ÿ

j“s

8
ÿ

l“0

˜

j
ÿ

i“s

8
ÿ

m“0

ª

|Kj| ˚ �G
j´s

XQj´s

l

pxq|Ki| ˚ �G
i´s

XQi´s

m

pxqpM�Eq´1pxqdx
¸

À |G|, (2.3)

where the expression in parentheses is controlled by

2

´jn|Gj´s X Qj´s
l |

j
ÿ

i“s

8
ÿ

m“0

|Gi´s X Qi´s
m | pM�Eq´1pQmq

2

in
.

Now, since Qi´s
m Ñ 4Ql, |Ql| “ 2

pj`2qn and |Qm| “ 2

pi`2qn, we deduce that Qm Ñ 5Ql, and
hence, by Lemma 1.6,

pM�Eq´1pQmq
2

in
À pM�Eq´1p5Qlq

2

jn
.

Using this, we obtain

p2´jnq2pM�Eq´1p5Qlq|Gj´s X Qj´s
l |

j
ÿ

i“s

8
ÿ

m“0

|Gi´s X Qi´s
m |.

Now, we use the AR
2

condition of pM�Eq´1 with the subset2 G X 4Ql Ñ 5Ql, and that
îj

i“s

î8
m“0

Qi´s
m Ñ 4Ql to get

|G X 4Qlq|´1|Gj´s X Qj´s
l ||G X 4Ql|,

which we can simplify and sum over s § j † 8 and l • 0 to obtain that the left-hand
side in (2.3) is majorized by |G|.

The third and last lemma will be an interpolation argument (in the spirit of [113]) on
the estimates in Lemma 2.5 that will yield the right control of the L2 norm with respect
to the desired weights. Let us just remark that the first estimate will be used to prove
the second one, so in this case we will still need to consider subsets G Ñ E.

Lemma 2.6. Let 0 † ↵ † 1 and let E “ î8
k“0

Ek be a measurable set decomposed as in
Remark 2.4. Let G Ñ E be a measurable subset and define, for every k • 0, Gk “ GXEk.
Then, for every 1 § s † 8 and every u P A

1

:
2Recalling that M�E ” 1 on G Ñ E and assuming GX 4Ql has positive measure, otherwise the whole

expression would be zero.
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(d)
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

L2puq
À }u}2A

1

2

´s"↵upGq,

with " “ n´1

2

´

1

1`2

n`1}u}
A

1

¯

.

(e)
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

2

L2ppM�
E

q´✓uq
À }u}2A

1

2

´s�↵1´✓upEq.

with ✓ “ 1

1`2

n`1}u}
A

1

and � “ n´1

2

´

2

n`1}u}
A

1

p1`2

n`1}u}
A

1

q2
¯

Proof. For a, b ° 0, define wa,bpxq “ mintaupxq, bu. Fix t ° 0 and write

B1 “ tx P Rn
: }u}2A

1

upxq § 2

´sn´1

2 tu,
and B2 “ RnzB1. For every k • 0, we write Gk “ G1

kYG2

k, where Gi
k “ GkXBi Ñ Ek and

Gi “ î8
k“0

Gi
k “ G X Bi, for i “ 1, 2. Using paq and pbq in Lemma 2.5 and the definitions

we just introduced, we get
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

L2pw
1,t

q
À

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G1

j´s

›

›

›

›

›

2

L2puq
` t

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G2

j´s

›

›

›

›

›

2

2

À }u}2A
1

↵upG1q ` 2

´sn´1

2 t↵|G2| “ ↵wa,btpGq,
with a “ }u}2A

1

and b “ 2

´sn´1

2 . Now, we integrate both sides with respect to t P p0,8q
equipped with the measure dt

t✓`1

, where 0 † ✓ † 1. Using Fubini and the definition of the
weight, we obtain

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

L2pu1´✓q
À ↵a1´✓b✓u1´✓pGq.

But we know (see [98]) that if u P A
1

and r “ 1 ` 1

2

n`1}u}
A

1

, then ur P A
1

and }ur}A
1

À
}u}A

1

, so applying what we have shown to ur and taking ✓ “ pr ´ 1q{r, we obtain
›

›

›

›

›

8
ÿ

j“s

Kj ˚ �G
j´s

›

›

›

›

›

2

L2puq
À }u}

2

n`2}u}
A

1

1`2

n`1}u}
A

1

A
1

2

´sn´1

2

ˆ

1

1`2

n`1}u}
A

1

˙

↵upGq.

Notice that the exponent in }u}A
1

is always less than or equal to 2, so we conclude pdq.
The proof of peq follows the same idea but interpolating estimates pcq (in Lemma 2.5) and
pdq. Define in this case va,bpxq “ mintaupxq, bpM�Eq´1pxqu. Fix t ° 0 and write

C1 “ tx P Rn
: ↵}u}2A

1

2

´s"upxq § pM�Eq´1pxqtu,
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C2 “ RnzC1. Now we decompose, for every k • 0, Ek “ E1

k Y E2

k , with Ei
k “ Ek X C i

and Ei “ î8
k“0

Ei
k “ E X C i, for i “ 1, 2. We need to use pcq in Lemma 2.5 and pdq:

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

2

L2pv
1,t

q
À

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E1

j´s

›

›

›

›

›

2

L2puq
` t

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E2

j´s

›

›

›

›

›

2

L2ppM�
E

q´1q
À }u}2A

1

2

´s"↵upE1q ` t|E2| “ va,btpEq,
with a “ ↵}u}2A

1

2

´s" and b “ 1. Exactly as before and recalling that M�E ” 1 on E, we
deduce that for every 0 † ✓ † 1,

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

2

L2ppM�
E

q´✓u1´✓q
À a1´✓b✓u1´✓pEq.

Finally, we apply this to ur instead of u, take ✓ “ pr´1q{r, substitute a, b and we conclude
peq with the claimed values for ✓ and �.

2.3 The main results
As we mentioned at the beginning of this chapter, we will give three results concerning
weighted estimates for the Bochner-Riesz operator at the critical index. The first two
were already known, but we will include their proofs since they do not follow the same
scheme as the ones presented in [107] and [124] respectively. We will also keep track of
the boundedness constants depending on the weights.

Theorem 2.7. For every n ° 1, the Bochner-Riesz operator at the critical index B is
of strong-type pp, pq for every weight w P Ap and every 1 † p † 8, with boundedness

constant controlled by }w}maxt2, 2

p´1

u
A

p

.

In [107], the authors follow an interpolation argument for analytic families of operators.
Even though the underlying idea is simple, there are some technicalities that complicate
the proof. Later, when A. Vargas went on to prove the weighted weak-type p1, 1q estimate
in [124], she realized that using the key inequality from the earlier paper by M. Christ [35],
the strong-type p2, 2q for weights in A

2

was just a consequence of the control |Kj ˚f | À Mf
that we have on the decomposition of the kernel. We will present this simplification with
the dependence on the weight of the boundedness constant:

Proof. In [35, Lemma 3.1], the author shows that

|Kj ˚ rKj| À 2

´jnp1 ` |x|q´n´1

2 �t|x|§2

j`1upxq,
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where rKjpxq “ Kjp´xq. With this estimate, it is an easy computation to check that

}Kj ˚ rKj}1 À 2

´n´1

2

j,

and hence, for every function f P L2pRnq, if x¨, ¨y denotes the usual inner product in
L2pRnq,

}Kj ˚ f}
2

“
´

xKj ˚ rKj ˚ f, fy
¯

1{2 §
´

}Kj ˚ rKj ˚ f}
2

}f}
2

¯

1{2 §
´

}Kj ˚ rKj}1}f}2
2

¯

1{2

À 2

´n´1

4

j}f}
2

.

On the other hand, for every weight w P A
2

, by Lemma 2.2 and the L2-boundedness of M :

}Kj ˚ f}L2pwq À }Mf}L2pwq À }w}A
2

}f}L2pwq,

so with the usual interpolation with change of measure, we deduce that, for every 0 †
✓ † 1,

}Kj ˚ f}L2pw✓q À 2

´n´1

4

jp1´✓q}w}✓A
2

}f}L2pw✓q.

Since A
2

weights satisfy a sharp Reverse Hölder inequality (again, see [98]), for r “
1 ` 1

2

n`5}w}
A

2

we have that wr P A
2

and }wr}A
2

À }w}A
2

. Hence, applying the previous
estimate to this weight and choosing ✓ “ 1{r † 1, we conclude that

}Kj ˚ f}L2pwq À 2

´ n´1

4p1`2

n`5}w}
A

2

q j

}w}A
2

}f}L2pwq.

Therefore, we can sum over j to deduce that

}Bf}L2pwq §
8
ÿ

j“1

}Kj ˚ f}L2pwq À }w}A
2

p2c ´ 1q´1}f}L2pwq,

with c “ n´1

4p1`2

n`5}w}
A

2

q . But p2c ´ 1q´1 « }w}A
2

, so we get that B is of strong-type

p2, 2q for every weight in A
2

with boundedness constant controlled by }w}2A
2

. By Rubio
de Francia’s extrapolation (see its version in [50] for the behavior of the constants), we
deduce that for every 1 † p † 8, we have the strong-type pp, pq for every weight w P Ap

and with constant controlled by

}w}maxt2, 2

p´1

u
A

p

.
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Theorem 2.8. For every n ° 1, the Bochner-Riesz operator at the critical index B is of
weak-type p1, 1q for every weight u P A

1

, with boundedness constant controlled by }u}5A
1

.

In this case, we present a slightly simpler proof than the one in [124]. The main
difference is the fact that it is enough to show that B is of restricted weak-type p1, 1q
for weights in A

1

. Dealing with characteristic functions allows us to avoid, by means of
Remark 2.4, the Calderón-Zygmund decomposition in good and bad parts. We still use
the cubes, but the only decomposition we need is3 �E “ ∞8

k“0

�E
k

.

Proof. Using Plancherel’s theorem, we know that B is a convolution operator whose
kernel K belongs to L2pRnq, so as we mentioned in (1.14), B is an p", �q-atomic operator.
Therefore, by Theorem 1.14, it is enough to show that it is of restricted weak-type p1, 1q
for every weight in u P A

1

. Take ↵ ° 0. If ↵ • 1, then we use Theorem 2.7:

↵u ptx : |B�Epxq| ° ↵uq § ↵2u ptx : |B�Epxq| ° ↵uq § }B�E}2L2puq
À }u}4A

2

}�E}2L2puq § }u}4A
1

upEq.

If 0 † ↵ † 1, we decompose E as in Remark 2.4 and

↵u ptx : |B�Epxq| ° ↵uq À ↵u

˜ 8
§

i,k“0

3Qk
i

¸

` ↵u

˜#

x R
8
§

i,k“0

3Qk
i : |B�Epxq| ° ↵

+¸

.

For the first term, we use that u is doubling and

↵u

˜ 8
§

i,k“0

3Qk
i

¸

À ↵}u}A
1

8
ÿ

i,k“0

upQk
i q “ }u}A

1

8
ÿ

i,k“0

upQk
i q

|Qk
i | ↵|Qk

i |

« }u}A
1

8
ÿ

i,k“0

upQk
i q

|Qk
i | |Ek X Qk

i | À }u}2A
1

upEq.

On the other hand, looking at the intersection of the supports of Kj and �E
k

, it is easy
to see that if x R î8

i,k“0

3Qk
i , then

B�E “
8
ÿ

j“1

8
ÿ

k“0

Kj ˚ �E
k

“
8
ÿ

k“0

8
ÿ

j“k`1

Kj ˚ �E
k

“
8
ÿ

s“1

8
ÿ

j“s

Kj ˚ �E
j´s

,

3Recall that Ek is the portion of E lying in cubes of measure 2nk if k ° 0 or measure less than or
equal to 1 if k “ 0.
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so using Chebyshev and pdq in Lemma 2.6 with G “ E,

↵u

˜#

x R
8
§

i,k“0

3Qk
i : |B�Epxq| ° ↵

+¸

§ ↵u

˜#

x P Rn
:

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“1

8
ÿ

j“s

Kj ˚ �E
j´s

ˇ

ˇ

ˇ

ˇ

ˇ

° ↵

+¸

§ ↵´1

›

›

›

›

›

8
ÿ

s“1

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

2

L2puq
§ ↵´1

¨

˝

8
ÿ

s“1

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

L2puq

˛

‚

2

À ↵´1

˜ 8
ÿ

s“1

}u}A
1

2

´s "

2↵1{2upEq1{2
¸

2

“ }u}2A
1

p2"{2 ´ 1q´2upEq À }u}4A
1

upEq,

since p2"{2 ´ 1q´2 « }u}2A
1

. So taking supremum over ↵ ° 0, we have shown that

}B�E}L1puq À }u}4A
1

upEq,

which by Theorem 1.14, proves the weak-type p1, 1q for every weight u P A
1

and constant
controlled by }u}5A

1

.

Finally, let us present the new weighted result for the Bochner-Riesz operator at the
critical index:

Theorem 2.9. Given n ° 1, the Bochner-Riesz operator at the critical index B satisfies
that, for every u P A

1

, there exists 1 † p
0

† 8 depending on }u}A
1

such that, for each
measurable set E Ñ Rn,

}B�E}Lp

0

,8ppM�
E

q1´p

0uq À }u}4{p
0

A
1

upEq1{p
0 .

More precisely, the exact dependence is

p
0

p}u}A
1

q “ 1 ` 1

1 ` 2

n`1}u}A
1

.

Proof. We will follow the same strategy as in the proof of Theorem 2.8. Let ✓ P p0, 1q be
as in peq from Lemma 2.6. If ↵ • 1 and w✓ :“ pM�Eq´✓u, then by Theorem 2.7:

↵1`✓w✓ ptx : |B�Epxq| ° ↵uq § ↵2w✓ ptx : |B�Epxq| ° ↵uq
§ }B�E}2L2pw

✓

q À }w✓}4A
2

}�E}2L2pw
✓

q À }u}4A
1

upEq.
In the last inequality we used that

}w✓}A
2

§ }pM�Eq✓}A
1

}u}A
1

« }u}A
1

1 ´ ✓
« }u}A

1

,
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since 0 † ✓ “ 1

1`2

n`1}u}
A

1

§ 1

1`2

n`1

† 1. If 0 † ↵ † 1, we decompose E as in Remark 2.4
and

↵1`✓w✓ ptx : |B�Epxq| ° ↵uq À ↵1`✓w✓

˜ 8
§

i,k“0

3Qk
i

¸

` ↵1`✓w✓

˜#

x R
8
§

i,k“0

3Qk
i : |B�Epxq| ° ↵

+¸

.

For the first term, we use that w✓ P AR
1`✓ and by (1.8), }w✓}1`✓

AR
1`✓

À }u}A
1

. Also, recall
that w✓ “ u on E:

↵1`✓w✓

˜ 8
§

i,k“0

3Qk
i

¸

À ↵1`✓}u}A
1

8
ÿ

i,k“0

w✓pQk
i q

« }u}A
1

8
ÿ

i,k“0

w✓pQk
i q

upEk X Qk
i q

ˆ |Ek X Qk
i |

|Qk
i |

˙

1`✓
upEk X Qk

i q

À }u}2A
1

upEq.

For the second term, we argue as before but now with peq in Lemma 2.6:

↵1`✓w✓

˜#

x R
8
§

i,k“0

3Qk
i : |B�Epxq| ° ↵

+¸

§ ↵1`✓w✓

˜#

x :

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

s“1

8
ÿ

j“s

Kj ˚ �E
j´s

ˇ

ˇ

ˇ

ˇ

ˇ

° ↵

+¸

§ ↵✓´1

›

›

›

›

›

8
ÿ

s“1

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

2

L2pw
✓

q
§ ↵✓´1

¨

˝

8
ÿ

s“1

›

›

›

›

›

8
ÿ

j“s

Kj ˚ �E
j´s

›

›

›

›

›

L2pw
✓

q

˛

‚

2

À ↵✓´1

˜ 8
ÿ

s“1

}u}A
1

2

´s�

2↵
1´✓

2 upEq1{2
¸

2

“ }u}2A
1

p2�{2 ´ 1q´2upEq À }u}4A
1

upEq,

since again p2�{2 ´ 1q´2 « }u}2A
1

. So taking supremum over ↵ ° 0, we have shown that,
for p

0

“ 1 ` 1

1`2

n`1}u}
A

1

° 1,

}B�E}Lp

0

,8ppM�
E

q1´p

0uq À }u}4{p
0

A
1

upEq1{p
0 .

For later purposes, we will also need the following fact stating that Theorem 2.9 holds
for Br uniformly in r ° 0:
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Corollary 2.10. For every weight u P A
1

, there is some 1 † p
0

† 8, depending on }u}A
1

,
such that, for each measurable set E Ñ Rn,

}Br�E}Lp

0

,8ppM�
E

q1´p

0uq À }u}4{p
0

A
1

upEq1{p
0 ,

uniformly in r ° 0. The dependence of p
0

on }u}A
1

is the same as in Theorem 2.9.

Proof. It is easy to check, using the formula for the Fourier transform of radial functions
(see [63, Appendix B.5]), that

Krpxq “ r´nK
1

pr´1xq,
where now, for every r ° 0, Kr denotes the convolution kernel associated with Br, and
hence

Brfpxq “ Kr ˚ fpxq “ pK
1

˚ f p¨ rqq pr´1xq “ B pf p¨ rqq pr´1xq.
If we take f “ �E, we can write (here, r´1E “ tr´1x P Rn

: x P Eu):
Br�Epxq “ B�r´1Epr´1xq,

and we can use Theorem 2.9 to choose 1 † p
0

† 8 depending only on }u}A
1

and get that:

}Br�E}Lp

0

,8ppM�
E

q1´p

0uq “ sup

↵°0

↵

ˆ

ª

t|B�
r

´1

E

pr´1xq|°↵u
pM�Eq1´p

0pxqupxqdx
˙

1{p
0

“ sup

↵°0

↵

ˆ

ª

t|B�
r

´1

E

pyq|°↵u
pM�Eq1´p

0 pryqu pryq rndy
˙

1{p
0

“ sup

↵°0

↵

ˆ

ª

t|B�
r

´1

E

pyq|°↵u
pM�r´1Eq1´p

0pyqurpyqdy
˙

1{p
0

“}B�r´1E}Lp

0

,8ppM�
r

´1

E

q1´p

0u
r

q À }ur}4{p
0

A
1

urpr´1Eq1{p
0 ,

where urpxq “ rnuprxq. But a simple change of variables shows that

}ur}A
1

“ }u}A
1

and urpr´1Eq “ upEq,
as we claimed. Notice that it is essential that the dependence of p

0

on u is in terms of
}u}A

1

“ }ur}A
1

, so we have the same p
0

for both u and ur.
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Chapter 3

Fourier Multipliers

In this chapter, we will try to use extrapolation results on Fourier multipliers in order to
obtain weighted weak-type p1, 1q estimates. The arguments in Sections 3.2 and 3.3, where
we consider multipliers on R and radial multipliers on Rn respectively, will be based on
a general technique that we present in Proposition 3.1. The idea is to take advantage of
restricted weak-type estimates that we already know (like the one we have found for the
Bochner-Riesz operator in Theorem 2.9) and transfer them to more general operators.
In Section 3.4 we do not use this approach but rather we establish restricted weak-type
pp

0

, p
0

q estimates directly for multipliers of Hörmander type.

3.1 The averaging technique
The following proposition represents a simple idea that will turn out to be really useful
to prove endpoint estimates for operators that can be written as averages.

Proposition 3.1. Let p⌦, µq be a measure space and let tT!u!P⌦ be a collection of sublinear
operators indexed by ! P ⌦ and such that, for every u P A

1

there is some 1 † p
0

† 8 so
that, for each E Ñ Rn measurable set,

}T!�E}Lp

0

,8ppM�
E

q1´p

0uq À 'p
0

p}u}A
1

qupEq1{p
0 ,

uniformly in ! P ⌦. Then, for any given � P L1p⌦, |µ|q, the operator

Tfpxq “
ª

⌦

T!fpxq�p!qdµp!q

is of restricted weak-type p1, 1q for every u P A
1

with constant

}u}1´ 1

p

0

A
1

'p
0

p}u}A
1

q}�}L1p⌦,|µ|q.
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If T is in addition p", �q-atomic approximable, then it is of weak-type p1, 1q for every
u P A

1

with constant
}u}2´ 1

p

0

A
1

'p
0

p}u}A
1

q}�}L1p⌦,|µ|q.

Proof. Given u P A
1

, take its associated 1 † p
0

“ p
0

puq † 8 and by Minkowski’s
inequality

}T�E}Lp

0

,8ppM�
E

q1´p

0uq §
ª

⌦

}T!�E}Lp

0

,8ppM�
E

q1´p

0uq|�p!q|d|µ|p!q
À 'p

0

p}u}A
1

q}�}L1p⌦,|µ|qupEq1{p
0 .

Then, we apply Theorem 1.11 to obtain the restricted weak-type p1, 1q estimate with the
right constant. If T is p", �q-atomic approximable, Theorem 1.14 completes the proof.

Remark 3.2. Notice that if we only had uniform restricted weak-type p1, 1q estimates
for the family tT!u!P⌦, then the average operator T would not necessarily inherit that
property, since L1,8 is not a Banach space. The fact that we can transfer estimates from
T! to T at level p

0

° 1 (where Minkowski’s inequality is allowed) and then extrapolate
down to p “ 1, is the key ingredient in this result.

3.2 Fourier multipliers on R
The next application will illustrate our technique with a very simple example. The
weighted estimate that will play the role of Theorem 2.9 is the following:

Proposition 3.3. Given 1 † p † 8 and a weight w P AR
p , the Hilbert transform H

satisfies the restricted weak-type estimate

}Hf}Lp,8pwq À }w}p`1

AR
p

}f}Lp,1pwq.

This result has an easy proof based on the pointwise domination of Calderón-Zygmund
operators by the so-called sparse operators, and is actually true for any operator with such
a control, not just the Hilbert transform. The best result so far regarding domination
by sparse operators is contained in [80], and includes all Calderón-Zygmund operators
with a Dini-type condition on the modulus of continuity of the kernel. The proof of
Proposition 3.3 goes as follows:

Proof. By the reduction to sparse operators we just pointed out, it is enough to show that

}S�E}Lp,8pwq À }w}p`1

AR
p

wpEq1{p,

where S is a sparse operator. More precisely,

S�Epxq :“
ÿ

QPS

|E X Q|
|Q| �Qpxq,
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and S is a sparse family of dyadic cubes, meaning that for every Q P S, there exists a
measurable subset FQ Ñ Q such that |FQ| « |Q| and tFQuQPS are pairwise disjoint. We
will proceed by duality. Let h • 0 be a function in Lp1,1pwq with }h}Lp

1
,1pwq “ 1. Also,

we know that there is a dimensional constant c ° 0 such that, for every Q P S and every
y P Q, we can find a cube rQy centered at y with

Q Ñ rQy Ñ cQ.

Therefore, since |FQ| « |Q| « |cQ|,
ª

Rn

S�Epxqhpxqwpxqdx “
ÿ

QPS

|E X Q|
|Q|

ª

Q

hpxqwpxqdx «
ÿ

QPS

|E X Q|
|Q|

|FQ|p
|cQ|p

ª

Q

hpxqwpxqdx

À }w}p
AR

p

ÿ

QPS

|E X Q|
|Q|

wpFQq
wpcQq

ª

Q

hpxqwpxqdx

“ }w}p
AR

p

ÿ

QPS

ˆ

1

|Q|
ª

Q

�Epxqdx
˙ ˆ

1

wpcQq
ª

Q

hpxqwpxqdx
˙

ª

F
Q

wpyqdy

§ }w}p
AR

p

ÿ

QPS

ª

F
Q

ˆ

1

|Q|
ª

Q

�Epxqdx
˙

˜

1

wp rQyq
ª

rQ
y

hpxqwpxqdx
¸

wpyqdy

À }w}p
AR

p

ÿ

QPS

ª

F
Q

M�EpyqM c
whpyqwpyqdy,

where M c
w is the centered Hardy-Littlewood maximal operator associated with the mea-

sure given by w:
M c

whpyq “ sup

r°0

1

wpQpy, rqq
ª

Qpy,rq
|hpxq|wpxqdx.

Here Qpy, rq denotes the cube of center y and side-length r ° 0. Now, using that the
sets FQ are disjoint in Q P S, we can sum over the cubes and, by Hölder’s inequality, we
conclude that

ª

Rn

S�Epxqhpxqwpxqdx À }w}p
AR

p

}M�E}Lp,8pwq}M c
wh}Lp

1
,1pwq.

Next, we use (1.7) for the second term and, for the third one, the fact that M c
w maps

Lp1,1pwq into itself with a constant that does not depend1 on the weight w. This yields
that

ª

Rn

S�Epxqhpxqwpxqdx À }w}p`1

AR
p

wpEq1{p}h}Lp

1
,1pwq “ }w}p`1

AR
p

wpEq1{p,

1The technicality of introducing the cubes r

Q is explained by the fact that we must obtain the centered
maximal operator M

c
w. If we worked with the original cubes Q instead, we would end up with the

uncentered Mw, whose boundedness constant from L

p1,1pwq into itself does depend on w.
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and taking supremum over h we obtain }S�E}Lp,8pwq on the left-hand side of the inequality,
as we wanted to show.

The first result concerning Fourier multipliers that we present is the following:

Theorem 3.4. Let m be a function of bounded variation on R. Then, the operator Tm

defined by
yTmfp⇠q “ mp⇠q pfp⇠q

is of weak-type p1, 1q for every weight u P A
1

and with constant controlled by }dm} ¨ }u}3A
1

,
where }dm} denotes the total variation of the measure dm.

Proof. Since m is of bounded variation on R, the limit of mptq as t Ñ ´8 exists, so by
adding a constant to m if necessary, we can assume this limit to be zero. Let t'juj be a
non-negative approximation to the identity as j Ñ 8. That is:

• For every j ° 0, it holds that }'j}1 “ 1.

• For every r ° 0,

lim

jÑ8

ª

Rzp´r,rq
'jptqdt “ 0.

It holds that }p'j}8 § }'j}1 “ 1, and we can furthermore assume that the total variation
}dp'j} § 2. To this end, take for instance the approximation associated with the Poisson
kernel [63, Example 1.2.17],

'jptq “ j

⇡p1 ` j2t2q , j ° 0,

which satisfies p'jptq “ e´2⇡|t|{j and has this property:

}dp'j} “
ª

R
|dp'j|ptq “ 2

ª

0

´8

2⇡e2⇡t{j

j
dt “ 2.

Now, for every j ° 0, define
mjptq “ mptqp'jptq.

This function is of bounded variation with }dmj} § 3}dm}, since

}dmj} § }m}8}dp'j} ` }p'j}8}}dm} § 3}dm}.
We still have that mj vanishes at ´8, so we can write the Lebesgue-Stieltjes integral

mjp⇠q “
ª

R
�pt,8qp⇠qdmjptq.
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The multiplier associated with �pt,8q is essentially a modulated Hilbert transform

fpxq fi›Ñ e2⇡itxHpe´2⇡it ¨fqpxq
that we will denote by Ht (see [49, Estimate (3.9)]). Then,

Tm
j

fpxq “
ª

R
Htfpxqdmjptq. (3.1)

Now we use Proposition 3.3 with the weight w “ pM�Eq1´pu, for some u P A
1

and
1 † p † 8, and (1.8), to conclude

}Ht�E}Lp,8ppM�
E

q1´puq “ }Hpe2⇡it¨�Eq}Lp,8ppM�
E

q1´puq

À }u}1` 1

p

A
1

}�E}Lp,1ppM�
E

q1´puq “ }u}1` 1

p

A
1

upEq1{p,

uniformly in t P R. Therefore, the family tHtut is under the hypotheses of Proposition
3.1. Also, for every j ° 0, the operator Tm

j

is p", �q-atomic (since mj is integrable and
hence, its associated convolution kernel is uniformly continuous, as in (1.14)). With this,
we conclude that Tm

j

is of weak-type p1, 1q for every weight u P A
1

with constant2

}u}2´ 1

p

A
1

}u}1` 1

p

A
1

}dmj} À }dm}}u}3A
1

.

Finally, since t'juj is an approximation to the identity, at least for Schwartz functions f ,
there is a subsequence such that

Tm
jpiqfpxq “ 'jpiq ˚ Tmfpxq i›Ñ Tmfpxq a.e. x.

With this, we use the estimate for Tm
j

and Fatou’s lemma to finish the proof:

}Tmf}L1,8puq § lim inf

iÑ8
}Tm

jpiqf}L1,8puq À }dm}}u}3A
1

}f}L1puq.

The idea of transferring estimates on Banach spaces from H to Tm based on (3.1) is
not new. In [49, Corollary 3.8], this method is used to show that Tm is bounded on LppRq
for all 1 † p † 8. The only difference here is that the Banach estimate that we transfer
from H to Tm is a weighted one that allows us to extrapolate down to p “ 1 and deduce a
weak-type p1, 1q result for Tm that cannot be obtained by means of Minkowski’s inequality.
These multipliers are closely related to the ones appearing in the Marcinkiewicz multiplier
theorem (see [49, Theorem 8.13]). In that case, the result claims that if m has uniformly
bounded variation on each dyadic interval in R, then Tm maps LppRq into itself for every

2In this case, the function � appearing in Proposition 3.1 is the constant � ” 1, and its L1-norm with
respect to the measure |dmj | is exactly the total variation }dmj}.
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1 † p † 8. This is obtained by means of Littlewood-Paley theory, and can be extended
to the weighted setting to prove the same result for Ap weights [78]. However, it is known
that there are operators under the hypotheses of Marcinkiewicz’s theorem that fail to
be of weak-type (1,1), even in the unweighted case (see [119] for sharp results near L1).
Therefore, we know that our assumption for m to be of bounded variation on R cannot
be relaxed to uniform bounded variation on dyadic intervals.

The next section will follow the same argument but using the estimate for the Bochner-
Riesz operator in Theorem 2.9 to draw conclusions about radial Fourier multipliers on Rn.

3.3 Radial Fourier multipliers on Rn

We will start with an easy result that will be useful when n “ 3 and will motivate the
generalization to arbitrary dimensions. Notice that when n “ 3, the critical index of the
Bochner-Riesz operator is n´1

2

“ 1.

Lemma 3.5. Let m be a bounded function defined on p0,8q such that

(a) The derivatives m1 and m2 are defined on p0,8q.
(b) The limit

lim

tÑ8
mptq ´ tm1ptq “ c P R.

(c) We have that tm2ptq P L1p0,8q.
Then, the operator defined by

yTmfp⇠q “ mp|⇠|2q pfp⇠q, ⇠ P Rn

can be written as

Tmfpxq “
ª 8

0

B1{s
1

fpxq�psqds ` cfpxq, x P Rn,

where � P L1p0,8q and, for every r ° 0, yBr
1

fp⇠q “ p1 ´ r2|⇠|2q` pfp⇠q.
Proof. Fix t ° 0. Since m is bounded, mpsq{s goes to zero as s goes to infinity, so

mptq “ ´t

ª 8

t

ˆ

mpsq
s

˙1
ds “ ´t

ª 8

t

sm1psq ´ mpsq
s2

ds.

Now, integrating by parts,

mptq “ ´t

ˆ

lim

sÑ8

ˆ

´m1psq ` mpsq
s

˙

` m1ptq ´ mptq
t

`
ª 8

t

m2psqds
˙

.
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Using again that m is bounded and property pbq, we get that the limit is zero, and hence

mptq “ ´tm1ptq ` mptq ´ t

ª 8

t

m2psqds “
ª 8

t

sm2psqds ` c ´ t

ª 8

t

m2psqds

“
ª 8

t

ˆ

1 ´ t

s

˙

sm2psq ` c “
ª 8

0

ˆ

1 ´ t

s

˙

`
sm2psqds ` c.

Therefore, making a change of variables we get that, for every ⇠ P Rn,

mp|⇠|2q “
ª 8

0

ˆ

1 ´ |⇠|2
s2

˙

`
�psqds ` c,

with
�psq “ 2s3m2ps2q,

which lies in L1p0,8q by property pcq. Therefore,

yTmfp⇠q “
ª 8

0

{

B1{s
1

fp⇠q�psqds ` c pfp⇠q,

and inverting the Fourier transform together with Fubini, we finish the proof.

Proposition 3.6. If we have a function m as in Lemma 3.5, then the operator

yTmfp⇠q “ mp|⇠|2q pfp⇠q, ⇠ P R3,

is of weak-type p1, 1q for every weight u P A
1

and with constant essentially controlled by
}u}5A

1

.

Proof. When n “ 3, the operator B
1

is exactly the Bochner-Riesz operator at the critical
index. Now, by Corollary 2.10, we know that for every weight u P A

1

, there is some
1 † p

0

† 8 such that, for each measurable set E Ñ R3,

}B1{s�E}Lp

0

,8ppM�
E

q1´p

0uq À }u}4{p
0

A
1

upEq1{p
0 , (3.2)

uniformly in s P p0,8q. Now, by Lemma 3.5,

Tmfpxq “
ª 8

0

B1{sfpxq�psqds ` cfpxq, x P R3,

with � an integrable function on p0,8q. The term cf plays no role in the boundedness
of Tm, so let us focus on the first one. Let K

1{s be the convolution kernel associated with
B1{s. For every j ° 0, define

Kjpxq “
ª j

0

K
1{spxq�psqds “

ª 8

0

K
1{spxq�jpsqds,
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with �jpsq “ �psq�p0,jqpsq P L1p0,8q and }�j}1 § }�}
1

. Hence

T jfpxq “ Kj ˚ fpxq “
ª 8

0

B1{sfpxq�jpsqds.

Notice that by Minkowski and the fact that K
1

P L2pR3q,

}Kj}
2

“
›

›

›

›

ª 8

0

K
1{spxq�jpsqds

›

›

›

›

2

§
ª j

0

}s3K
1

psxq}
2

|�psq|ds § j3{2}K
1

}
2

}�}
1

† 8,

thus Kj P L2pR3q and by (1.14), T j is an p", �q-atomic operator. Now, we use Propo-
sition 3.1 and (3.2) to deduce that T j is of weak-type p1, 1q for every u P A

1

and with
constant

}u}2´ 1

p

0

A
1

}u}
4

p

0

A
1

}�j}1 § }u}5A
1

}�}
1

,

independently of j ° 0. Using Fatou’s Lemma, we conclude that for every f P L1puq,
›

›

›

›

ª 8

0

B1{sfpxq�psqds
›

›

›

›

L1,8puq
§ lim inf

jÑ8
}T jf}L1,8puq À }�}

1

}u}5A
1

}f}L1puq.

Finally, let us just restate Proposition 3.6 so we can see what it gives when we are
dealing with radial multipliers of the form mp|⇠|q:
Corollary 3.7. Let Tm be the operator defined by

yTmfp⇠q “ mp|⇠|q pfp⇠q, ⇠ P R3,

with m a bounded function defined on p0,8q such that

(a) The derivatives m1 and m2 are defined on p0,8q.
(b) The limit

lim

tÑ8
mptq ´ tm1ptq “ c P R.

(c) We have that both tm2ptq, m1ptq P L1p0,8q.
Then Tm is of weak-type p1, 1q for every weight u P A

1

and with constant }u}5A
1

.

Proof. We just check that it is equivalent to Proposition 3.6. Notice that
yTmfp⇠q “ mp|⇠|q pfp⇠q “ rmp|⇠|2q pfp⇠q,

with rmpt2q “ mptq, and therefore

rm1pt2q “ m1ptq
2t

, rm2pt2q “ m2ptq
4t2

´ m1ptq
4t3

.

But Proposition 3.6 gives the sought-after boundedness provided that:
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• The derivatives rm1 and rm2 are defined on p0,8q, which is equivalent to paq.
• The limit

lim

tÑ8
rmptq ´ trm1ptq “ lim

tÑ8
rmpt2q ´ t2 rm1pt2q « lim

tÑ8
mptq ´ tm1ptq “ c P R,

which is pbq. In the last equality we use that by pcq, m1 P L1p0,8q and hence

lim

tÑ8
tm1ptq “ 0.

• We have that trm2ptq P L1p0,8q, which by a change of variables is equivalent to
t3 rm2pt2q being integrable, and thus to

tm2ptq, m1ptq P L1p0,8q.

Hence, a direct application of Proposition 3.6 completes the proof.

In general, it happens that if rmpt2q “ mptq, then, for every k P N,

rmpkqpt2q “
k

ÿ

j“1

cj
mpjqptq
t2k´j

, with cj P R.

Therefore, if we have a result for Fourier multipliers of the type xTfp⇠q “ rmp|⇠|2q pfp⇠q, and
the hypothesis in such a result is an integrability condition for the k-th derivative of rm,
then, this hypothesis translates (when applied to a multiplier defined by mp|⇠|q pfp⇠q) into
conditions for every derivative of m of order less than or equal to k. Therefore, in what
follows, we will basically restrict our attention to radial multipliers with symbol mp|⇠|2q.

Let us see that this technique of writing Tm as an average of Bochner-Riesz operators
B1{s at the critical index can be extended to Rn by means of fractional calculus. The idea
of using fractional calculus to obtain results for radial Fourier multipliers was already
introduced in [121] and subsequently used in [45, 61], among others. The definition that
we will need is in the sense of Weyl:

Definition 3.8. Given 0 § � † 1 and w ° 0, we define the truncated fractional integral
of order 1 ´ � of a locally integrable function f on R by

I1´�
w fptq :“ 1

�p1 ´ �q
ª w

´w

ps ´ tq´�
` fpsqds, t † w,

and 0 if t • w. Moreover, if ↵ “ r↵s ` � ° 0, with r↵s being its integer part and � its
fractional part, we define the fractional derivative of f of order ↵ by

D↵fptq :“ ´
ˆ

d

dt

˙r↵s
lim

wÑ8
d

dt
I1´�
w fptq,
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whenever the right-hand side exists. In particular, if f has compact support, then

D↵fptq :“ ´
ˆ

d

dt

˙r↵s`1

I1´�
8 fptq.

Recall that �p↵q “ ≥8
0

x↵´1e´xdx. One can define fractional derivatives in multiple
ways. For instance, one can use Riemann-Liouville’s fractional integral

J↵fptq :“ 1

�p↵q
ª

R
pt ´ sq↵´1

` fpsqds,

and then, if k “ r↵s (where this notation means that k P N with k ´ 1 † ↵ § k), define a
fractional derivative of order ↵ in the sense of Riemann-Liouville:

D↵
RLfpfq “ pJk´↵fqpkqptq.

Analogously, if we differentiate first and integrate later, we obtain the fractional derivative
in the sense of Caputo:

D↵
Cfptq “ Jk´↵pf pkqqptq.

Every definition has its advantages and disadvantages, but for technical reasons, the
most convenient way for us to introduce fractional calculus is in the sense of Weyl, as in
Definition 3.8. For further information about fractional calculus and its different variants,
we refer to [46] and [62]. We will need the following lemma:

Lemma 3.9. Weyl’s fractional derivative satisfies these two properties:

(i) Let �
1

,�
2

P R, �
2

‰ 0. Then, for every ↵ ° 0,

D↵pfp�
1

` �
2

¨qqptq “
#

�↵
2

D↵fp�
1

` �
2

tq ↵ P N or �
2

° 0,

|�
2

|↵D↵
rfp´�

1

´ �
2

tq �
2

† 0,
(3.3)

where rfptq “ fp´tq is the reflection of f on R.

(ii) If f is a continuous function with compact support in ra, bs, then

|D↵fptq| § Cf,↵

|t|↵`1

, as t Ñ ´8. (3.4)

Proof. We start with piq. If ↵ P N, the first identity is well-known, for both �
2

° 0 and
�
2

† 0. For this reason, the second expression is also valid in the case �
2

† 0:

|�
2

|↵D↵
rfp´�

1

´ �
2

tq “ |�
2

|↵p´1q↵D↵fp�
1

` �
2

tq “ �↵
2

D↵fp�
1

` �
2

tq.
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If ↵ R N but �
2

° 0, we make the change of variables �
1

` �
2

s “ r and, since �
2

° 0, it
can be easily factored out from the positive part in the denominator:

D↵pfp�
1

` �
2

¨qqptq “ ´
ˆ

d

dt

˙r↵s
lim

wÑ8
d

dt

ˆ

1

�p1 ´ �q
ª w

´w

ps ´ tq´�
` fp�

1

` �
2

sqds
˙

“ ´
ˆ

d

dt

˙r↵s
lim

wÑ8
d

dt

ˆ

1

�p1 ´ �q
ª �

1

`�
2

w

�
1

´�
2

w

��´1

2

pr ´ �
1

´ �
2

tq´�
` fprqdr

˙

,

which equals

´��´1

2

ˆ

�
2

d

dp�
1

` �
2

tq
˙r↵s

lim

zÑ8
�
2

d

dp�
1

` �
2

tq
ˆ

1

�p1 ´ �q
ª z

´z

pr ´ �
1

´ �
2

tq´�
` fprqdr

˙

,

that is, �↵
2

D↵fp�
1

` �
2

tq. When �
2

† 0, we write

D↵pfp�
1

` �
2

¨qqptq “ D↵p rfp´�
1

´ �
2

¨qqptq
and an application of the previous case with ´�

2

° 0 yields the result:

D↵p rfp´�
1

´ �
2

¨qqptq “ p´�
2

q↵D↵
rfp´�

1

´ �
2

tq “ |�
2

|↵D↵
rfp´�

1

´ �
2

tq.
To show piiq, just notice that if we take t † a, then

|D↵fptq| “ C↵

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

d

dt

˙r↵s`1

ª b

a

ps ´ tqr↵s´↵fpsqds
ˇ

ˇ

ˇ

ˇ

ˇ

.

Differentiating under the integral sign and using that f is bounded on ra, bs yield that the
previous expression can be controlled by

Cf,↵

ª b

a

ps ´ tq´↵´1ds “ Cf,↵ppa ´ tq´↵ ´ pb ´ tq´↵q.

But this behaves like C
f,↵

|t|↵`1

as t Ñ ´8, since

lim

tÑ´8
pa ´ tq´↵ ´ pb ´ tq´↵

|t|´↵´1

“ ↵pb ´ aq,

so we finish the proof.

Now we are ready to state the main theorem of this section. AC
loc

will denote the
space of functions that are absolutely continuous on every compact subset of p0,8q.
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Theorem 3.10. Fix n • 2 and ↵ “ n`1

2

. Let m be a bounded, continuous function on
p0,8q which vanishes at infinity and satisfies that

D↵´jm P AC
loc

@j “ 1, ..., r↵s.
Then, if D↵m exists and

�ptq “ t↵´1D↵mptq P L1p0,8q,
the operator Tm defined by

yTmfp⇠q “ mp|⇠|2q pfp⇠q, ⇠ P Rn,

is of weak-type p1, 1q for every weight u P A
1

with constant controlled by C}�}L1p0,8q}u}5A
1

.

Proof. First, we will use [120, Lemma 3.14] to write

mptq “ p´1qr↵s

�p↵q
ª

R
ps ´ tq↵´1

` D↵mpsqds “ C↵

ª 8

t

ps ´ tq↵´1D↵mpsqds, (3.5)

which is valid under our hypotheses for m. With this identity, we are able to prove that

Tmfpxq “
ª 8

0

B1{sfpxq�psqds, x P Rn, (3.6)

with � P L1p0,8q. Indeed, it is enough to check that, for every ⇠ P Rn,

mp|⇠|2q “
ª 8

0

ˆ

1 ´ |⇠|2
s2

˙↵´1

`
�psqds, (3.7)

but this follows from (3.5) by the change of variables s “ r2, allowed for s ° 0, and taking
t “ |⇠|2:

mp|⇠|2q “2C↵

ª 8

|⇠|
pr2 ´ |⇠|2q↵´1D↵mpr2qrdr

“2C↵

ª 8

0

r2↵´1

ˆ

1 ´ |⇠|2
r2

˙↵´1

`
D↵mpr2qdr,

which is (3.7) with �prq “ C↵r2↵´1D↵mpr2q and }�}L1p0,8q « }�}L1p0,8q. The second
ingredient in the proof is the uniform bound given in Corollary 2.10. More precisely, that

}B1{s�E}Lp

0

,8ppM�
E

q1´p

0uq À }u}4{p
0

A
1

upEq1{p
0 , (3.8)
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uniformly in s P p0,8q. To conclude the proof, we argue exactly as in Proposition 3.6
but with the obvious changes now that we are in Rn instead of R3. The idea was just to
define

Kjpxq “
ª j

0

K
1{spxq�psqds “

ª 8

0

K
1{spxq�jpsqds,

where K
1{s denoted the kernel associated with B1{s, and prove that the convolution oper-

ator T j given by Kj is p", �q-atomic. Then we use Proposition 3.1 and the uniform bound
(3.8) to deduce that T j is of weak-type p1, 1q for every u P A

1

with constant essentially
bounded by

}u}5A
1

}�}L1p0,8q.

After this, we used Fatou’s lemma and (3.6) to finish the proof.

Let us briefly summarize how Theorem 3.10 is related to other results in the literature.
The integrability condition that we require on m is3

ª 8

0

t
n´1

2 |D n`1

2 mptq|dt † 8, (3.9)

and we obtain a weak-type p1, 1q estimate with respect to every weight in A
1

for the
Fourier multiplier with symbol mp|⇠|2q. This type of condition (3.9) on m is not new.
For instance, in the unweighted setting, [45, 104] use Weyl’s fractional calculus to ob-
tain strong-type pp, pq and weak-type p1, 1q results for maximal operators associated with
quasiradial Fourier multipliers. The condition that they require on m is also an integra-
bility condition for t↵´1D↵m, but with ↵ ° n`1

2

(see [104, Corollary 1]).
Another similar result to the one we presented can be found in [79]. Here the authors

deal with weights, but they consider general Fourier multipliers on Rn, not necessarily
radial ones. In terms of differentiability requirements, the condition that they need on m
to get the weak-type p1, 1q for every weight in A

1

is up to order n. In our case, we only
work with radial multipliers and require order n`1

2

instead. In the classical Hörmander
theorem [70] without weights, it is enough to have differentiability up to order strictly
larger than n

2

, which is essentially optimal even for radial multipliers (see [36]). Therefore,
the differentiability assumption in our result is not that far from the optimal order of
the unweighted case. Another important reference is [17], where one can find sufficient
conditions for radial Fourier multipliers to be bounded on LppR2q for 4{3 § p § 4. This
limitation in the range of p (which totally excludes the endpoint p “ 1) allows the authors
to lower the order of differentiability of m to ↵ ° 1{2, which corresponds to n´1

2

in R2.
Finally, one can check that (3.9) can be controlled by an expression resembling that

in Hörmander’s theory. More precisely, if ' is a C8 function, supported on p1{2, 1q and
such that

ÿ

jPZ
'p2´jtq “

8
ÿ

j“1

'jptq “ 1, t ° 0,

3Notice that when n “ 3, this is the condition tm

2ptq P L

1p0,8q that we had in Proposition 3.6.
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then it can be verified that, at least for n odd,
ª 8

0

t
n´1

2 |D n`1

2 mptq|dt À
ÿ

jPZ
2

jn

2

ˆ

ª

2

j

2

j´1

|D n`1

2 p'jmqptq|2dt
˙

1{2
. (3.10)

The finiteness of the right-hand side is related to the classical Hörmander condition for
radial multipliers, but with differentiability order n`1

2

. In that case, the sum in j would
be replaced by a supremum. The validity of inequality (3.10), when n is odd (and hence,
D

n`1

2 is a usual derivative), is just a direct application of the Cauchy-Schwarz inequality:
ª 8

0

t
n´1

2 |D n`1

2 mptq|dt §
ÿ

jPZ

ª

2

j

2

j´1

t
n´1

2 |D n`1

2 p'jmqptq|dt «
ÿ

jPZ
2

jpn´1q
2

ª

2

j

2

j´1

|D n`1

2 p'jmqptq|dt

§
ÿ

jPZ
2

jn

2

˜

ª

2

j

2

j´1

|D n`1

2 p'jmqptq|2dt
¸

1{2

.

The problem when n is even is that D n`1

2 is a purely fractional derivative, and in general,
one can check from Definition 3.8 that if f is supported on pa, bq, then D↵f is supported
on p´8, bq. Hence, at the first step, where we introduce the 'j, we would have to consider
the integral on p0, 2jq instead of p2j´1, 2jq. If we split p0, 2jq into three intervals

p0, 2j´2q Y p2j´2, 2j´1q Y p2j´1, 2jq,
the terms that we get for the last two dyadic intervals can be treated as in the previous
case, but the one corresponding to p0, 2j´2q becomes a problem. Arguing as in the proof
of property (3.4), one can check that for t P p0, 2j´2q,

|D n`1

2 p'jmqptq| § C'pp2j´1 ´ tq ´n´1

2 ´ p2j ´ tq ´n´1

2 q,
and with this and a change of variables, we get that

ª

2

j´2

0

t
n´1

2 |D n`1

2 p'jmqptq|dt À
ª

1

0

s
n´1

2 pp2 ´ sq ´n´1

2 ´ p4 ´ sq ´n´1

2 qds « 1,

which cannot be summed in j P Z.
Theorem 3.10 exploits the relation between Fourier multipliers Tm (under a precise

integrability condition on m) and the Bochner-Riesz operators B1{s at the critical index.
The key idea is transferring estimates that take place in Banach spaces by means of
Minkowski’s inequality (in this case, to be able to extrapolate down to p “ 1). This
idea of transference of estimates motivates the next subsection, where we will consider all
indices � ° 0 in an attempt to make some contribution to the so-called Bochner-Riesz
conjectures. Before that, let us give a particular example of application of Theorem 3.10.
It will be related to the following conjecture stated in [106]:
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Conjecture 3.11. Assume that ' is a C8 function with compact support in p´1{2, 1{2q
and, for every 0 † � † 1, set

h�psq :“ '

ˆ

1 ´ s

�

˙

.

Then, for every 1 † p † 2n
n`1

, it holds that the operator Th
�

defined by

zTh
�

fp⇠q “ h�p|⇠|2q pfp⇠q
satisfies

}Th
�

}LppRnqÑLppRnq À �´�ppq, with �ppq “ n

ˆ

1

p
´ 1

2

˙

´ 1

2

. (3.11)

The result we present is the following:

Corollary 3.12. Given n • 2, the operator Th
�

is of weak-type (1,1) for every weight
u P A

1

and
}Th

�

}L1puqÑL1,8puq À �´pn´1

2

q}u}5A
1

.

To prove this, it is enough to apply Theorem 3.10 (h� is under its hypotheses) together
with the following computation at ↵ “ n`1

2

:

Lemma 3.13. Given ↵ ° 0, it holds that, for �ptq “ t↵´1D↵h�ptq,
}�}L1p0,8q § C',↵�

´↵`1.

Proof. First, we compute D↵h�. Using the property in (3.3), we have that

D↵h�ptq “ 1

�↵
D↵

r'

ˆ

t ´ 1

�

˙

,

with r'psq “ 'p´sq being the reflection of ' on R. Now,
ª 8

0

|�ptq|dt “ �´↵
ª 8

0

t↵´1

ˇ

ˇ

ˇ

ˇ

D↵
r'

ˆ

t ´ 1

�

˙

ˇ

ˇ

ˇ

ˇ

dt “ �´↵`1

ª 8

´1{�
pr� ` 1q↵´1|D↵

r'prq|dr.

Since supppr'q “ suppp'q Ñ p´1{2, 1{2q, we have that D↵
r' is supported on p´8, 1{2q.

Hence, assuming � ° 0 small enough, we use (3.4) for r † ´1 and that |D↵
r'prq| is

bounded on compact sets to obtain
ª 8

´1{�
pr�`1q↵´1|D↵

r'prq|dr § C',↵

ª ´1

´1{�

pr� ` 1q↵´1

|r|↵`1

dr`
ª

1{2

´1

pr�`1q↵´1|D↵
r'prq|dr À C',↵,

which concludes the proof.
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Notice that �p1q “ n´1

2

, and hence, Corollary 3.12 is the endpoint weighted weak-type
version of estimate (3.11). In particular, taking u “ 1 we can use our estimate in the
following way:

Proposition 3.14. Assume that (3.11) holds for some 1 † p
0

† 2n
n`1

. Then, it is also
true for every 1 † p † p

0

.

Proof. In Corollary 3.12, we have shown that the weak-type (1,1) estimate for Th
�

holds
with �´�p1q. Then, we just use Marcinkiewicz’s interpolation theorem between this end-
point estimate and our assumption to conclude that, for every 1 † p † p

0

,

}Th
�

}LppRnqÑLppRnq À �
´�p1q

´

1{p´1{p
0

1´1{p
0

¯

¨ �´�pp
0

q
´

1´1{p
1´1{p

0

¯

“ �´�ppq.

We want to remark that the estimate in Corollary 3.12 (but with an " loss in the
exponent of �) can be derived from [51, Lemma 5.2], where the authors prove that, for
every " ° 0,

|Th
�

fpxq| § C"�
´pn´1

2

`"qMfpxq.

3.3.1 The Bochner-Riesz Conjectures

First, let us fix some notation. In this subsection, we will denote by Tm the operator
defined as a Fourier multiplier with symbol mp| ¨ |2q, that is:

yTmfp⇠q “ mp|⇠|2q pfp⇠q.
Also, we define the maximal operator associated with Tm by

T ˚
mfpxq “ sup

r°0

|T r
mfpxq| ,

where, for every r ° 0,
yT r
mfp⇠q “ mpr2|⇠2|q pfp⇠q.

We will keep B� for the Bochner-Riesz operator Tb
�

with b�ptq “ p1 ´ tq�` and � ° 0. We
also have a maximal operator associated with it:

Definition 3.15. Given � ° 0, we define the maximal Bochner-Riesz operator B˚
� in Rn

by
B˚
�fpxq “ sup

r°0

|Br
�fpxq| ,

where, following our notation4,

yBr
�fp⇠q “ `

1 ´ r2|⇠|2˘�` pfp⇠q.
4See Definition 2.1.
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Let us now state the Bochner-Riesz conjecture in two different ways. It basically
deals with the Bochner-Riesz operator B� below the critical index: 0 † � † n´1

2

. Notice
that B

0

, also known as the multiplier of the ball (since its symbol b
0

is the characteristic
function �Bp0,1q) is not considered. Unlike the rest of b� with � ° 0, the function b

0

is not
even continuous, and in 1971, C. Fefferman [56] showed that B

0

is only bounded in the
trivial case p “ 2.

Figure 3.1: B� should be bounded on LppRnq for p1{p,�q outside the shaded region.

Conjecture 3.16. Given 0 † � † n´1

2

, then

B� : L
ppRnq ›Ñ LppRnq

if and only if
p
0

p�q :“ 2n

n ` 1 ` 2�
† p † 2n

n ´ 1 ´ 2�
“: p

1

p�q.
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Conjecture 3.17. Given 1 † p † 8, then

B� : L
ppRnq ›Ñ LppRnq

if and only if

� ° �ppq :“ max

ˆ

n

ˇ

ˇ

ˇ

ˇ

1

p
´ 1

2

ˇ

ˇ

ˇ

ˇ

´ 1

2

, 0

˙

.

It is easy to check that both statements are equivalent. See Figure 3.1 for a graphical
description of the region they represent. The necessity of the condition required for B�

to be bounded was already proved by Herz [67] in 1954, when the author showed that
for 0 † � † n´1

2

, B� is not bounded on LppRnq if p R pp
0

p�q, p
1

p�qq (the shaded region
in Figure 3.1). Let us now focus on the second statement of the conjecture. By duality,
it is enough to check it for either small values of p, 1 † p † 2n

n`1

or their conjugates
2n
n´1

† p † 8. In dimension n “ 2, Conjecture 3.17 was shown to be true by Carleson and
Sjölin [18], but it is still open in higher dimensions. Partial results have been found over
the years (see for instance [55, 118] and more recently, [82]). The best result so far for
n • 3 is due to J. Bourgain and L. Guth [7], who showed, by an indirect argument related
to the restriction problem of the Fourier transform, that the Bochner-Riesz conjecture
holds whenever (written for values of p ° 2)

$

’

&

’

%

p ° 2p4n`3q
4n´3

, if n ” 0 mod 3,

p ° 2n`1

n´1

, if n ” 1 mod 3,

p ° 4pn`1q
2n´1

, if n ” 2 mod 3.

(3.12)

In Figure 3.2 we illustrate this current state of the conjecture for n • 3 (recall that
the case n “ 2 was completely settled). The value of p

0

is the lower bound of p appearing
in (3.12), which depends on the dimension n modulo 3. The segments going from p1{2, 0q
to p1{p

0

,�pp
0

qq and p1{p1
0

,�pp1
0

qq respectively are obtained by analytic interpolation, so
the solution in [7] actually shows that B� is bounded on LppRnq for every couple p1{p,�q
in the green region in Figure 3.2.

There is also the corresponding conjecture for the maximal Bochner-Riesz operator
B˚
� , which initially stated that B˚

� should be bounded on the same region as B�. Here, a
duality argument is no longer available, so unlike for the Bochner-Riesz operator B�, the
cases

1 † p † 2n

n ` 1

and
2n

n ´ 1

† p † 8
must be considered separately. With Figure 3.3 at hand, let us explain the current state of
the conjecture. For large values of p, the conjecture was shown to be true by A. Carbery
[15] in R2, closing the green region of the left-hand side of the case n “ 2. When n • 3,
only partial results have been found. M. Christ [34] proved the conjecture for every
p • 2n`2

n´1

, and more recently, S. Lee [82] improved it to p ° 2n`4

n
(as represented by
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Figure 3.2: Current state of the Bochner-Riesz conjecture for n • 3, with p
0

as in (3.12).

a dotted line in the case n • 3). Again, in order to close the green triangle coming
from Lee’s result, there is an interpolation argument with the point p1{2, 0q. For small
values of p (which correspond to the right-hand side of the pictures), however, the original
conjecture is known to be false, in the sense that an additional restriction has to be added
if we want to have boundedness. More precisely, in [116], T. Tao showed that if B˚

� is
bounded on LppRnq, then necessarily

� • 2n ´ 1

2p
´ n

2

,

which is a stronger requirement than � ° �ppq. This is represented by an additional red
region with vertex at pn{p2n´ 1q, 0q. Not much is known in this case except in R2, where
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the same author [117] extended the positive results to the region where

� ° max

ˆ

3

4p
´ 3

8

,
7

6p
´ 2

3

˙

, (3.13)

adding a small, green triangle in the picture of n “ 2.

Figure 3.3: Current state of the Maximal Bochner-Riesz conjecture.

Now that both the Bochner-Riesz and maximal Bochner-Riesz conjectures have been
presented, let us see how our techniques can be applied in this setting. First, we will
introduce the standard decomposition of p1 ´ tq�`, which will be useful for both B� and
B˚
� . Notice that in previous sections, the decomposition we made for the Bochner-Riesz

operator was for the convolution kernel. Now we will need a similar one on the Fourier
side (see [63, Section 10.2.2]). Take functions ' P C8

c p´1{2, 1{2q and  P C8
c p1{8, 5{8q, in

such a way that, for every 0 § t † 1,

'ptq `
8
ÿ

k“0

 

ˆ

1 ´ t

2

´k

˙

” 1.
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Then, for every ⇠ P Rn and r ° 0 such that r|⇠| † 1:

`

1 ´ r2|⇠|2˘� “ m
00

pr2|⇠|2q `
8
ÿ

k“0

2

´k�mkpr2|⇠|2q,

where m
00

pr2|⇠|2q “ 'pr2|⇠|2qp1 ´ r2|⇠|2q� and for k • 0,

mk

`

r2|⇠|2˘ “
ˆ

1 ´ r2|⇠|2
2

´k

˙�

 

ˆ

1 ´ r2|⇠|2
2

´k

˙

“  

ˆ

1 ´ r2|⇠|2
2

´k

˙

.

Clearly, we also have that  ptq “ t� ptq is a function in C8
c p1{8, 5{8q. Now, this decom-

position gives, for r “ 1,

B�f “ Tm
00

f `
8
ÿ

k“0

2

´k�Tm
k

f, (3.14)

and taking supremum over r ° 0,

B˚
�f § T ˚

m
00

f `
8
ÿ

k“0

2

´k�T ˚
m

k

f. (3.15)

The next two propositions will play an essential role in what follows, allowing us to
transfer estimates from radial Fourier multipliers to Bochner-Riesz operators and vice
versa:

Proposition 3.18. Let � ° 0 and X, Y be a couple of spaces, with X quasi-Banach
and Y Banach. Then, if Tm

00

presp. T ˚
m

00

q : X Ñ Y is bounded and, for every k • 0,
the operators Tm

k

presp. T ˚
m

k

q : X Ñ Y are bounded with constant Ck in such a way that
tCk2

´k�uk•0

P `1, then
B�presp. B˚

�q : X ›Ñ Y

is also bounded.

Proof. This is just an application of Minkowski’s inequality to (3.14) and (3.15) respec-
tively.

Notice that for every r ° 0, m
00

pr2|⇠|2q is a C8 function with compact support and
hence Tm

00

§ T ˚
m

00

À M . This means that whenever the Hardy-Littlewood maximal
operator M : X Ñ Y , the boundedness assumption on Tm

00

and T ˚
m

00

will automatically
hold. Now, using the ideas in the proof of Theorem 3.10, we also have:

Proposition 3.19. Given � ° 0, let m be a bounded, continuous function on p0,8q which
vanishes at infinity and satisfies that

D�`1´jm P AC
loc

@j “ 1, ..., r�s ` 1.
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Then, for every r ° 0,

T r
mfpxq “

ª 8

0

Brs
� fpxq��mpsqds, (3.16)

with
�

�
mpsq “ C�s

´2�´3D�`1mps´2q.
In particular, if Y is a Banach space, then

}Tmf}Y §
ª 8

0

}Bs
�f}Y |��mpsq|ds,

and
}T ˚

mf}Y § }B˚
�f}Y }��m}L1p0,8q.

Proof. Just take (3.7), write � instead of ↵ ´ 1, r2|⇠|2 instead of |⇠|2, and conclude that

mpr2|⇠|2q “ C�

ª 8

0

ˆ

1 ´ r2|⇠|2
s2

˙�

`
s2�`1D�`1mps2qds “

ª 8

0

p1 ´ r2s2|⇠|2q�`��mpsqds,

which proves (3.16). Now, if we take r “ 1 and apply Minkowski’s inequality, we get the
estimate for }Tmf}Y , and taking supremum over r ° 0 and then using Minkowski, gives
the one for }T ˚

mf}Y .

It is clear that this last result will come in handy when m “ mk, so let us compute
the L1 norm of ��m

k

just as we did for h� in Lemma 3.13. In fact, the computation will
be analogous.

Lemma 3.20. Given � ° 0, then, for every k • 0,

}��m
k

}L1p0,8q § C ,�2
k�.

Proof. Recall that ��m
k

psq “ C�s´2�´3D�`1mkps´2q and mkpsq “  

`

1´s
2

´k

˘

, where  was a
slight modification of  , still in C8

c p1{8, 5{8q. With this, we use property (3.3) to compute

D�`1mkps´2q “ 2

kp�`1qD�`1

r

 

ˆ

s´2 ´ 1

2

´k

˙

.

Now, exactly as in Lemma 3.13,
ª 8

0

|��m
k

psq|ds “ C�2
k�

ª 8

´2

k

p2´kr ` 1q�|D�`1

r

 prq|dr

§ C ,�2
k�

˜

ª ´1

´2

k

p2´kr ` 1q�
|r|�`2

dr `
ª ´1{8

´1

p2´kr ` 1q�dr
¸

§ C ,�2
k�,

where we need to remember that supppr

 q Ñ p´5{8,´1{8q and use the decay of |D�`1

r

 |
in property (3.4) for small values of r.
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Now we go back to the conjectures. Take for instance the maximal Bochner-Riesz
operator in R2 and 1 † p † 2 (see the picture on the left in Figure 3.3). Recall that, as
we mentioned in (3.13), in that case, if we define

¯�ppq :“ max

ˆ

3

4p
´ 3

8

,
7

6p
´ 2

3

˙

,

the best known result was that, when 1 † p † 2,

B˚
� : LppRnq ›Ñ LppRnq, if � ° ¯�ppq. (3.17)

Fix 1 † p
0

† 2. We have that, for every " ° 0,

B˚̄
�pp

0

q`" : L
p
0pRnq ›Ñ Lp

0pRnq.
Now, we apply Proposition 3.19 and Lemma 3.20 to get that, for every k • 0,

}T ˚
m

k

f}p
0

§ }B˚̄
�pp

0

q`"f}p
0

}�¯�pp
0

q`"
m

k

}L1p0,8q À 2

kp¯�pp
0

q`"q}f}p
0

. (3.18)

On the other hand, by [107] we know that, at the critical index (which for n “ 2 corre-
sponds to 1{2),

B˚
1{2 : L

p
0pwq ›Ñ Lp

0pwq, @w P Ap
0

.

Again, Proposition 3.19 and Lemma 3.20 yield that, for every k • 0 and w P Ap
0

,

}T ˚
m

k

f}Lp

0 pwq À 2

k{2}f}Lp

0 pwq. (3.19)

Using interpolation with change of measure between (3.18) and (3.19), one gets that, for
every k • 0 and ✓ P p0, 1q,

}T ˚
m

k

f}Lp

0 pw✓q À 2

kp✓{2`p1´✓qp¯�pp
0

q`"qq}f}Lp

0 pw✓q.

Since this holds for every ✓ in the open interval p0, 1q and at the beginning, we could
take any " ° 0, we can effectively get rid of the latter and simply write that, for every
✓ P p0, 1q,

}T ˚
m

k

f}Lp

0 pw✓q À 2

kp✓{2`p1´✓q¯�pp
0

qq}f}Lp

0 pw✓q.

Now we use this estimate in Proposition 3.18 to conclude that, given � ° 0,

B˚
� : Lp

0pw✓q ›Ñ Lp
0pw✓q,

if the sequence t2kp✓{2`p1´✓q¯�pp
0

qq´k�uk•0

belongs to `1. The result we have proved is the
following:

Lemma 3.21. For every 1 † p
0

† 2, every w P Ap
0

and every ✓ P p0, 1q, we have that

B˚
� : Lp

0pw✓q ›Ñ Lp
0pw✓q,

whenever � ° ✓
2

` p1 ´ ✓q¯�pp
0

q.
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Notice that the fact that we have an Ap
0

weight to a power ✓ does not allow the use of
classical extrapolation. We will use the limited range extrapolation from [26], as presented
in Corollary 1.16. A direct application of this result to the estimate in Lemma 3.21 yields
that, for every 1 † p

0

† 2 and every ✓ P p0, 1q,
B˚
� : LppRnq ›Ñ LppRnq,

for every p P pp´, p`q and provided that � ° ✓
2

` p1 ´ ✓q¯�pp
0

q. Recall that the definition
of p´ and p` comes from the identities

p1
´ :“ p1

0

1 ´ ✓
, p` :“ p

0

1 ´ ✓
.

Notice that if p ° p
0

, we have that ¯�ppq † ¯�pp
0

q † ✓
2

`p1´✓q¯�pp
0

q † �, so the boundedness
of B˚

� on LppRnq is already known from (3.17). Therefore, the interesting part is to study
the range of p P pp´, p0q. If we make the computation, we get that

p´ “ p
0

1 ` ✓pp
0

´ 1q .

If we want to obtain the smallest p´ possible, we need to pick the largest admissible value
of ✓. Isolating ✓ in the inequality � ° ✓

2

` p1 ´ ✓q¯�pp
0

q, we get that

0 † ✓ † � ´ ¯�pp
0

q
1{2 ´ ¯�pp

0

q ,

so we can just pick the upper bound5 and, with the condition � ° ¯�pp
0

q (so that ✓ is
positive), we can write that, for every 1 † p

0

† 8 and every � ° ¯�pp
0

q, the operator B˚
�

is bounded on Lp whenever

p ° p
0

´ 2

¯�pp
0

qp
0

1 ` 2pp
0

´ 1q� ´ 2p
0

¯�pp
0

q .

If we write this last inequality in terms of � and put it together with the condition
� ° ¯�pp

0

q we needed, everything can be summarized in the following proposition:

Proposition 3.22. Given 1 † p
0

† 2, it holds that

B˚
� : LppRnq ›Ñ LppRnq,

whenever
� ° max

ˆ

¯�pp
0

q, p0 ` 2

¯�pp
0

qp
0

pp ´ 1q ´ p

2ppp
0

´ 1q
˙

.

5Technically, we should choose ✓ to be the upper bound minus " ° 0, but since all the inequalities
that we will get are strict, it would not make any difference.
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Unfortunately, by considering the whole possible initial values of p
0

P p1, 2q, one can
see that the region p1{p,�q for which we get boundedness of B˚

� on LppRnq is exactly that
in (3.17), so no new estimates are obtained. The same approach was taken in the case
of the maximal Bochner-Riesz conjecture for n • 3 and values 2 † p † 8, starting from
Lee’s best known result (see the picture on the right-hand side in Figure 3.3), but again,
no new regions were found. The same idea could be used in the case of the Bochner-Riesz
conjecture (with Bourgain and Guth’s estimate (3.12)), but after all, it seems that the
fact that we use interpolation with weighted estimates for B� (or B˚

� respectively) at the
critical index � “ n´1

2

, prevents us from reaching any region that could not be reached
by analytic interpolation in the first place. Even though we have not been able to make
any new contribution to the conjectures, we wanted to include this subsection to give yet
another application of transference of estimates to averages.

3.4 Fourier multipliers of Hörmander type on Rn

First, let us introduce the Hörmander condition for a multiplier m. We will use the
standard notation |↵| “ ↵

1

` ¨ ¨ ¨ ` ↵n for a multi-index ↵ “ p↵
1

, ...,↵nq P Nn and if
x P Rn,

ˆ B
Bx

˙↵

“ B↵1

Bx↵1

1

¨ ¨ ¨ B↵n

Bx↵n

n

.

Definition 3.23. Let k P N such that k ° n{2 and let m : Rn Ñ R be a bounded function
of Ck class on Rnzt0u. Given 1 † s § 2, we say that m P HCps, kq if

sup

r°0

ˆ

r2|↵|´n

ª

r§|x|§2r

ˇ

ˇ

ˇ

ˇ

ˆ B
Bx

˙↵

mpxq
ˇ

ˇ

ˇ

ˇ

s

dx

˙

1{s
† 8, |↵| § k.

The classical Hörmander theorem (see for instance, the statement in [63, Theorem
5.2.7]) says that, in the unweighted case, the operator defined by

yTmfp⇠q “ mp⇠q pfp⇠q, ⇠ P Rn,

is of strong-type pp, pq for 1 † p † 8, and weak-type p1, 1q, whenever m P HCp2, kq for
some k ° n{2. The generalization of the condition to s ‰ 2 was introduced in [11], where
the authors use interpolation methods to check that the corresponding classical result
for m P HCps, kq needs k ° n{s. In [68, 77, 122], the authors introduce power weights
to the problem, but in the context of general Ap weights, the best result that is known
requires at least k “ n. More precisely, it can be proved that for m P HCps, nq, Tm is of
strong-type pp, pq for every weight in Ap and 1 † p † 8, and weak-type p1, 1q for every
weight in A

1

. This can be found in [79, Theorem 1], where the authors use the function
f 7 of Fefferman and Stein introduced in [57]. Their result is the following:
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Theorem 3.24. Let 1 † s § 2 and m P HCps, nq. Then, the operator defined by

yTmfp⇠q “ mp⇠q pfp⇠q, ⇠ P Rn,

is of strong-type pp, pq for every 1 † p † 8 and every weight in Ap, and of weak-type
p1, 1q for every weight in A

1

.

The proof of this result heavily relies on a slightly more general version of the following
lemma, which translates the conditions of m P HCps, kq into conditions on the convolution
kernel K “ m_. For technical reasons, as in [70, 79], we need to work with a truncation
KN of K. The decomposition, though, is standard: Let ' be a non-negative C8 function,
supported in t1{2 † |x| † 2u and such that

ÿ

jPZ
'p2´j⇠q “ 1, ⇠ ‰ 0.

For every j P Z, we set mjp⇠q “ mp⇠q'p2´j⇠q, which is supported in t2j´1 † |x| † 2

j`1u
and satisfies that

mp⇠q “
ÿ

jPZ
mjp⇠q, ⇠ ‰ 0.

Now, for every N P N, if kjpxq “ m_
j pxq, we can define

mNp⇠q “
N
ÿ

j“´N

mjp⇠q, KNpxq “ pmNq_pxq “
N
ÿ

j“´N

kjpxq.

We have that }mN}8 § C uniformly in N P N and mNp⇠q Ñ mp⇠q, ⇠ ‰ 0, as N Ñ 8. We
define TN

m f :“ KN ˚ f and work with this approximation instead of Tm. The next lemma
is the key estimate in [79]:

Lemma 3.25. Let 1 † s § 2, k P N and m P HCps, kq. Then, for every r ° 1 such that

(a) 1 † r § s,

(b) n
r

† k † n
r

` 1,

every 1 § p § r1 and every R ° 0,
ˆ

ª

R†|x|†2R

|KNpx ´ yq ´ KNpxq|pdx
˙

1{p
À R´k`n{p´n{r1 |y|k´n{r, when |y| † R

2

,

uniformly in N .

In this section, we will follow the ideas in [79] to get a restricted weak-type estimate
in the spirit of Theorem 2.9:
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Theorem 3.26. Fix 1 † s § 2 and m P HCps, nq. The associated multiplier operator Tm

satisfies that, for every u P A
1

, there exists 1 † p
0

† 8 depending on }u}A
1

such that, for
each measurable set E Ñ Rn,

}Tm�E}Lp

0

,8ppM�
E

q1´p

0uq À CuupEq1{p
0 .

The proof will be based on this lemma:

Lemma 3.27. Let 1 † s § 2, m P HCps, nq and u P A
1

. Then, take

1 † r † min

"

s,
n

n ´ 1

, 1 ` 1

2

n`1}u}A
1

*

and 1 † q † 2 ´ 1

r
. Now, for every measurable set E Ñ Rn and cube Q Ñ Rn, if

w :“ pM�Eq1´qu and c is the center of the cube Q, it holds that, for every y P Q,
ª

Rnz2Q
|KNpx ´ yq ´ KNpx ´ cq|wpxqdx À |Q|q

|E X Q|q
wpE X Qq

|Q| ,

independently of N .

Proof. We split the integral of the left-hand side into dyadic annuli and by Hölder’s
inequality,

8
ÿ

j“1

ª

2

j`1Qz2jQ
|KNpx ´ yq ´ KNpx ´ cq|wpxqdx

§
8
ÿ

j“1

sup

2

j`1Q

pM�Eq1´q

ˆ

ª

2

j`1Qz2jQ
|KNpx ´ yq ´ KNpx ´ cq|r1

dx

˙

1{r1 ˆ

ª

2

j`1Q

urpxqdx
˙

1{r
.

For the first integral, we use Lemma 3.25 with k “ n and p “ r1. Conditions paq and pbq are
fulfilled because r † mints, n{pn´1qu. For the second one, we recall that r † 1` 1

2

n`1}u}
A

1

ensures that the weight ur still lies in A
1

. With these two remarks, the previous expression
can be bounded by:

8
ÿ

j“1

sup

xP2j`1Q

pM�Eq1´qpxqp2j`pQqq´n`pQqn´n{rp2j`1`pQqqn{r
ˆ

1

|2j`1Q|
ª

2

j`1Q

urpxqdx
˙

1{r

À
8
ÿ

j“1

sup

xP2j`1Q

pM�Eq1´qpxqp2jnq1{r´1

inf

xP2j`1Q
upxq.

Now we use Lemma 1.6 to control the supremum of pM�Eq1´q over 2j`1Q by its average
and, inserting the weight u in the integral, we get

8
ÿ

j“1

p2jnq1{r´1

|2j`1Q|
ª

2

j`1Q

wpxqdx “
8
ÿ

j“1

wp2j`1Qq
|2j`1Q| p2jnq1{r´1.
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Finally, we use the AR
q property of w on the inclusion E X Q Ñ 2

j`1Q,
8
ÿ

j“1

wp2j`1Qq
|2j`1Q| p2jnq1{r´1 À

8
ÿ

j“1

wpE X Qq
|2j`1Q|

|2j`1Q|q
|E X Q|q p2jnq1{r´1

« |Q|q
|E X Q|q

wpE X Qq
|Q|

8
ÿ

j“1

p2jnqq`1{r´2,

and the fact that q † 2 ´ 1

r
to complete the proof.

Proof of Theorem 3.26. Let 1 † s § 2, m P HCps, nq and u P A
1

. We want to choose
1 † p

0

† 8 so that it satisfies the conditions of q in Lemma 3.27. It is enough to take

1 † p
0

† min

"

2 ´ 1

s
,
n ` 1

n
,
2 ` 2

n`1}u}A
1

1 ` 2

n`1}u}A
1

*

.

Define w :“ pM�Eq1´p
0u. Now we make the standard Calderón-Zygmund decomposition

of �E at height ↵ ° 0, obtaining a family of pairwise disjoint dyadic cubes tQkuk satisfying
the stopping-time condition

↵ † |E X Qk|
|Qk| § 2

n↵,

and a couple of functions g, b such that �E “ g ` b, defined by

gpxq “
#

�Epxq, x R î

k Qk,
|EXQ

k

|
|Q

k

| , x P Qk,

and bpxq “ ∞

k bkpxq with

bkpxq “ �Epxq ´ |E X Qk|
|Qk| , x P Qk.

Notice that when ↵ • 1, tQkuk “ H, and hence �E “ g, and when 0 † ↵ † 1 (as
we pointed out in Lemma 2.3), E Ñ î

k Qk except for a null set, which makes gpxq “
0 for almost every x R î

k Qk. Here we list the properties that we will need of this
decomposition:

(i)
≥

Q
k

bk “ ≥

Rn

b “ 0 and }bk}
1

À ↵|Qk|,
(ii) }g}8 À ↵ and }g}2L2pwq À ↵2´p

0wpEq.
All the properties that do not involve the weight w are well-known (see, for instance, [63,
Theorem 4.3.1]). As for the weighted estimate, we only need to recall that w P AR

p
0

and

}g}p0Lp

0 pwq À wpEq `
›

›

›

›

›

ÿ

k

|E X Qk|
|Qk| �Q

k

›

›

›

›

›

p
0

Lp

0 pwq
“ wpEq `

ÿ

k

|E X Qk|p0
|Qk|p0 wpQkq

À wpEq `
ÿ

k

wpE X Qkq « wpEq.
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Hence,
}g}2L2pwq § }g}2´p

0

8 }g}p0Lp

0 pwq À ↵2´p
0wpEq.

With this, we can finish the proof. Clearly,

wp|TN
m �E| ° ↵q À wp|TN

m g| ° ↵q ` w

˜

§

k

2Qk

¸

` w

˜

x R
§

k

2Qk : |TN
m bpxq| ° ↵

¸

.

For the first term, we use Chebyshev’s inequality, the strong-type p2, 2q of Tm for A
2

weights given by Theorem 3.24 (together with w P pAp
0

Ñ A
2

), and property piiq above:

wp|TN
m g| ° ↵q À }TN

m g}2L2pwq
↵2

À }g}2L2pwq
↵2

À wpEq
↵p

0

.

For the second term, we need to use that w is doubling, the stopping condition of the
cubes, and the AR

p
0

property of w:

w

˜

§

k

2Qk

¸

À
ÿ

k

wpQkq «
ÿ

k

1

↵p
0

|E X Qk|p0
|Qk|p0 wpQkq À

ÿ

k

wpE X Qkq
↵p

0

« wpEq
↵p

0

.

And finally, for the third term, we can use Chebyshev and reduce the problem to check if
ª

Rnzî
k

2Q
k

|TN
m bpxq|wpxqdx À wpEq

↵p
0

´1

(3.20)

holds. To see this, we use the cancellation of b and Fubini,
ª

Rnzî
k

2Q
k

|TN
m bpxq|wpxqdx “

ª

Rnzî
k

2Q
k

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k

ª

Q
k

pKNpx ´ yq ´ KNpx ´ ykqqbpyqdy
ˇ

ˇ

ˇ

ˇ

ˇ

wpxqdx

§
ÿ

k

ª

Q
k

|bpyq|
ª

Rnz2Q
k

|KNpx ´ yq ´ KNpx ´ ykq|wpxqdxdy,

where yk is the center of Qk. Now we use Lemma 3.27 with Q “ Qk and q “ p
0

and,
recalling that |E X Qk|{|Qk| « ↵, we get

ÿ

k

}bk}
1

wpE X Qkq
↵p

0 |Qk| .

But we know that }bk}
1

À ↵|Qk|, so we obtain (3.20). Bringing the three estimates
together, we show that

↵p
0wp|TN

m �E| ° ↵q À wpEq “ upEq,
so taking supremum over ↵ ° 0 we finish the proof for TN

m . Since all the estimates are
independent of N P N, we can use Fatou’s lemma to deduce the result for Tm.
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Remark 3.28. Notice that, even though the value of p
0

heavily depends on u (and hence
we cannot prove an estimate for the whole pAp

0

class and some 1 † p
0

† 8), we have not
used that the weight w “ pM�Eq1´p

0u has the characteristic function of E. Therefore,
it is worth pointing out that the estimate that we have for Tm would still be true if we
considered a weight of the form pMhq1´p

0u, for some h P L1

loc

.

Remark 3.29. Notice also that in the proof of Lemma 3.27, when we estimate the integral
ª

2

j`1Qz2jQ
|KNpx ´ yq ´ KNpx ´ cq|upxqdx,

we need to use Hölder’s inequality to separate the weight from the kernel and be able to
use Lemma 3.25. Moreover, since we need ur to remain in A

1

, we pay the price of having
an Lr1 norm on |KNpx ´ yq ´ KNpx ´ cq| with a large r1 . Let us see that, if we assume
u “ 1, we can improve the differentiability conditions on m.

Lemma 3.30. Let 1 † s § 2, k P N with k ° n
s

and m P HCps, kq. There exists q ° 1

such that, for every measurable set E Ñ Rn and cube Q Ñ Rn, if w :“ pMhq1´q for some
h P L1

loc

and c is the center of the cube Q, then, for every y P Q,
ª

Rnz2Q
|KNpx ´ yq ´ KNpx ´ cq|wpxqdx À |Q|q

|E X Q|q
wpE X Qq

|Q| ,

independently of N .

Proof. Set " “ k ´ n
s
. Since HCps, k

1

q Ñ HCps, k
2

q when k
2

§ k
1

, we can assume that k
is the smallest integer such that k ° n

s
and hence, 0 † " § 1. We start exactly as in the

proof of Lemma 3.27, but now we do not use Hölder’s inequality and simply write
8
ÿ

j“1

ª

2

j`1Qz2jQ
|KNpx ´ yq ´ KNpx ´ cq|wpxqdx

§
8
ÿ

j“1

sup

xP2j`1Q

pMhq1´qpxq
ª

2

j`1Qz2jQ
|KNpx ´ yq ´ KNpx ´ cq|dx.

Here we use Lemma 3.25 with p “ 1 to control the integral. If 0 † " † 1, we can take
r “ s so that paq and pbq from the lemma hold, because

n

s
† k “ n

s
` " † n

s
` 1.

With this, we can bound the previous expression by
8
ÿ

j“1

sup

xP2j`1Q

pMhq1´qpxqp2j`pQqq´k`n´n{s1
`pQqk´n{s “

8
ÿ

j“1

sup

xP2j`1Q

pMhq1´qpxq2´j".
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Here we use Lemma 1.6 followed by the AR
q property of pMhq1´q as before and the only

thing we need to finish the proof is to make sure that

8
ÿ

j“1

2

´jp"´qn`nq † 8.

But this is guaranteed if we choose 1 † q † 1 ` "
n
, so we are done for this first case. If

" “ 1, we cannot choose r “ s when applying Lemma 3.25, but we can take r † s close
enough to s so that

n

r
† n

s
` 1 † n

r
` 1,

and now the series we need to converge is

8
ÿ

j“1

2

´jpk´n{r´qn`nq.

Choosing 1 † q † 1 ` k´n{r
n

we complete the proof.

It is clear that, in the same way that we obtained Theorem 3.26 from Lemma 3.27,
from here we can deduce the following weighted estimate for multipliers m P HCps, kq
with k ° n{s, which is the condition of the classical Hörmander theorem without weights:

Theorem 3.31. Fix 1 † s § 2, k P N with k ° n
s

and m P HCps, kq. Then, there exists
1 † p

0

† 8 so that, for every weight of the form w “ pMhq1´p
0, h P L1

loc

, the multiplier
operator Tm satisfies

}Tm�E}Lp

0

,8pwq À wpEq1{p
0 ,

for every measurable set E Ñ Rn.

Using an extrapolation argument, from Theorems 3.26 and 3.31 we can deduce the
weak-type (1,1) with no weights (when m P Hps, kq and k ° n{s) and for every weight
in A

1

(when m P HCps, nq). To be precise, the extrapolation of Theorem 1.11 yields
restricted weak-type estimates, but if we show that the family of operators tTN

m uNPN are
p", �q-atomic, then we can prove the unrestricted estimates for each TN

m and passing to
the limit when N Ñ 8, deduce the result for Tm:

Corollary 3.32. Let 1 † s § 2, k P N and m P HCps, kq.
• If k ° n

s
, then Tm is of weak-type (1,1).

• If k “ n, then Tm is of weak-type (1,1) for every weight in A
1

.
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Proof. As we mentioned, it all boils down to proving that, for every N P N, TN
m is an

p", �q-atomic operator. Using an estimate from [79, p. 349], we have that if k ° n
s

(which
happens in both cases), then, for every R ° 0,

ª

R†|x|†2R

|KNpxq|2dx À R´n.

Hence,
ª

RnzBp0,1q
|KNpxq|2dx “

ÿ

j•0

ª

2

j†|x|†2

j`1

|KNpxq|2dx À
ÿ

j•0

2

´jn † 8.

Moreover, since mj P L1, we have that kj “ m_
j P L8 and KN “ ∞

|j|§N kj P L8.
Therefore,

ª

Bp0,1q
|KNpxq|2dx † 8,

and we conclude that KN P L2pRnq for every N P N. By (1.14), we have that TN
m is

p", �q-atomic. With this, we need to combine Theorems 3.26 and 3.31 with Theorem 1.11
and Theorem 1.14 to prove the result for TN

m . We finish the proof for Tm by Fatou’s
lemma when N Ñ 8.

3.4.1 A brief remark on the singular integral T⌦

The argument that we used in this section to obtain weighted results for multipliers
relied on estimates concerning their associated convolution kernels. For this reason, in
[79] the authors can deduce analogous weighted inequalities for convolution operators
without much effort. We will see what happens if we try to replicate the argument in
our case. First of all, let us introduce the problem and explain what is known. Let
S :“ Sn´1 “ tx P Rn

: |x| “ 1u be the unit sphere in Rn, equipped with the surface
measure �. For every x ‰ 0, we denote by x1 its normalization x1 “ x{|x| P S. Also, given
a rotation of the sphere ⇢ : S Ñ S, we define its magnitude |⇢| by

|⇢| “ sup

xPS
|⇢pxq ´ x|.

Let ⌦ P L1pSq be a function on S such that
ª

S
⌦pxqd�pxq “ 0.

For every 1 § r § 8, if ⌦ P LrpSq, we say that it satisfies the Lr-Dini condition when
ª

1

0

!rptqdt
t

† 8,
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where !rptq “ sup|⇢|†t }⌦ ˝ ⇢ ´ ⌦}LrpSq. Clearly, the weakest of these conditions is when
r “ 1 and the strongest, when r “ 8. We define the singular integral T

⌦

as the convolution
operator with kernel Kpxq “ ⌦px1q{|x|n, in the principal value sense. That is, for Schwartz
functions f ,

T
⌦

fpxq “ lim

"Ñ0

ª

|y|°"

⌦py1q
|y|n fpx ´ yqdy.

It can be checked (see [13] or [49, p. 73]) that for T
⌦

to be bounded on L2pRnq (or equiv-
alently, for pK to be in L8pRnq), it suffices that the even part of ⌦ belongs to L logLpSq.
In [12, 14], the authors show that ⌦ satisfying the L1-Dini condition is equivalent to say-
ing that the convolution kernel Kpxq “ ⌦px1q{|x|n is under the hypotheses of the classical
Calderón-Zygmund kernels (with an L1-Hörmander condition), and in particular, it means
that T

⌦

is of strong-type pp, pq for 1 † p † 8 and weak-type p1, 1q, without weights6.
They also show that the L1-Dini condition on ⌦ implies that ⌦ P L logLpSq, and several
years later, in 1996, A. Seeger [105] shows that, in fact, assuming ⌦ P L logLpSq is enough
for T

⌦

to be of weak-type (1,1). This weak-type p1, 1q estimate had already been estab-
lished in dimension n § 5 with different techniques in [37], which improved the almost
simultaneous result by S. Hofmann [69], that worked only for n “ 2 and assumed the
stronger condition ⌦ P LrpSq for some r ° 1. In the weighted setting, J. Duoandikoetxea
and J. L. Rubio de Francia proved in [52] that if ⌦ P L8pSq, then T

⌦

is of strong-type
pp, pq for every 1 † p † 8 and every weight in Ap. Moreover, the hypothesis ⌦ P L8pSq
cannot be relaxed to ⌦ P LrpSq for some r ° 1, as was shown by B. Muckenhoupt and
R. Wheeden in [96]. In particular, this means that an A

1

weighted analogue of Hofmann’s
result [69] in n “ 2 cannot hold. However, in [124], A. Vargas proved that when n “ 2,
for every u P A

1

, we have
T
⌦

: L1puq ›Ñ L1,8puq,
provided that ⌦ P ì

1§r†8 LrpSq. By extrapolation, we also get the strong-type pp, pq for
Ap weights, and as pointed out in [124], by testing with power weights it can be seen that
the condition ⌦ P ì

1§r†8 LrpSq is the best possible within the scale of Lr spaces. Using
A. Seeger’s [105] techniques to obtain weak-type p1, 1q estimates without any restriction
on the dimension together with A. Vargas’ [124] ideas to introduce weights, in 2004,
D. Fan and S. Sato [54] were able to extend this last weighted weak-type p1, 1q result to
every n P N. After this short summary of the state of the art, we go back to the paper of
D. Kurtz and R. Wheeden [79]. Back then, what was known [75] was that, if ⌦ satisfies
the L8-Dini condition, then T

⌦

is of weak-type p1, 1q for every weight in A
1

. In [79], the
authors give a different proof of this result by means of a lemma analogous to Lemma 3.25:

6Recall that the Ap weighted theory for Calderón-Zygmund operators assumes the stronger pointwise
Hörmander-type condition of standard kernels (following the terminology of Coifman and Meyer [40]).
See [49, p. 99] for a clear presentation of this notion of standard kernel.
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Lemma 3.33. Let 1 § r † 8 and assume that ⌦ P LrpSq satisfies the Lr-Dini condition.
There exists a constant ↵

0

° 0 such that, if |y| † ↵
0

R, then
ˆ

ª

R†|x|†2R

|Kpx ´ yq ´ Kpxq|rdx
˙

1{r
À Rn{r´n

˜

|y|
R

`
ª

|y|
R

|y|
2R

!rptqdt
t

¸

,

where Kpxq “ ⌦px1q{|x|n.
With this, we would like to show an estimate in the spirit of Lemma 3.27 as we did

for multipliers. However, this last integral term related to the Dini condition will become
a problem. Let ⌦ be a function on S with

≥

S⌦ “ 0, and assume it satisfies the L8-Dini
condition. Take u P A

1

and h P L1

loc

. We would like to show that there exists q ° 1 such
that, for every measurable set E Ñ Rn and cube Q Ñ Rn, if w :“ pMhq1´qu and c is the
center of the cube Q, it holds that, for y P Q,

ª

Rnz2Q
|Kpx ´ yq ´ Kpx ´ cq|wpxqdx À |Q|q

|E X Q|q
wpE X Qq

|Q| , (3.21)

where Kpxq “ ⌦px1q{|x|n. Fix q ° 1 to be chosen later. We mimic the argument in
Lemma 3.27 and bound the left-hand side of (3.21) by

8
ÿ

j“1

sup

xP2j`1Q

pMhq1´qpxq
ˆ

ª

2

j`1Qz2jQ
|Kpx ´ yq ´ Kpx ´ cq|r1

dx

˙

1{r1 ˆ

ª

2

j`1Q

urpxqdx
˙

1{r
,

for some 1 † r † 1 ` 1

2

n`1}u}
A

1

that ensures ur P A
1

. Since ⌦ satisfies the L8-Dini
condition, it also satisfies the Lr1-Dini condition and we can use Lemma 3.33 with R “
2

j`pQq and large j • 1 so that 2

´j † ↵
0

. This is because, for the lemma, we need that
|y ´ c| † ↵

0

R, which holds with this restriction on j and recalling that |y ´ c| † `pQq.
Since we only need to worry about large values of j • 1, for simplicity assume that we
can use it for every j • 1, and what we get is

8
ÿ

j“1

sup

xP2j`1Q

pMhq1´qpxqp2j`pQqqn{r1´n

˜

|y ´ c|
2

j`pQq `
ª

|y´c|
2

j

`pQq

|y´c|
2

j`1

`pQq

!r1ptqdt
t

¸

ˆ

ª

2

j`1Q

urpxqdx
˙

1{r

À
8
ÿ

j“1

sup

xP2j`1Q

pMhq1´qpxq
˜

1

2

j
`
ª

|y´c|
2

j

`pQq

|y´c|
2

j`1

`pQq

!r1ptqdt
t

¸

inf

xP2j`1Q
upxq.

Now we had to use Lemma 1.6 to control the supremum by an average, and the AR
q

property of w on the inclusion E X Q Ñ 2

j`1Q. After these two steps, we are left with

|Q|q
|E X Q|q

wpE X Qq
|Q|

8
ÿ

j“1

p2jnqq´1

˜

1

2

j
`
ª

|y´c|
2

j

`pQq

|y´c|
2

j`1

`pQq

!r1ptqdt
t

¸

.
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At this point, we would like to find q ° 1 so that the series is finite. However, this cannot
be achieved in general. We know that the integral itself is summable, since

8
ÿ

j“1

ª

|y´c|
2

j

`pQq

|y´c|
2

j`1

`pQq

!r1ptqdt
t

§
ª

1

0

!r1ptqdt
t

† 8,

but when multiplied by p2jnqq´1 it need not be. Clearly, if we assumed an extra (and
somewhat artificial) hypothesis of Dini condition on dyadic intervals, we could finish this
proof and, with it, show a restricted weak-type estimate for T

⌦

analogous to Theorem 3.26.
The conclusion is that, unlike for the case of Hörmander type multipliers, where the ideas
in [79] could be carried over to the setting of pAq weights and restricted weak-type pq, qq
estimates with q ° 1, for the singular integral T

⌦

it cannot be done as simply as the
authors in [79] did for q “ 1. In any case, the result that we would get if we followed the
previous scheme would be this:

Theorem 3.34. Let ⌦ be a function on S with
≥

S⌦ “ 0, and assume that, for every r ° 1

and 0 † a † 1, there exists " ° 0 such that
ª

2a

a

!rptqdt
t

À a".

Then, the singular integral T
⌦

satisfies that, for every u P A
1

, there exists 1 † p
0

† 8
such that, for each measurable set E Ñ Rn,

}T
⌦

�E}Lp

0

,8ppM�
E

q1´p

0uq À CuupEq1{p
0 .

The condition that we assume on the function ⌦ could be interpreted as an Lr-Dini
condition for every 1 § r † 8 with an extra size condition for !r on dyadic intervals.
This is obviously far from the hypotheses in the weighted weak-type p1, 1q result of D. Fan
and S. Sato [54], where the authors only assume that ⌦ P LrpSq for every 1 § r † 8. The
next natural step would be to check if their ideas could be adapted to our setting to show
restricted weak-type pq, qq estimates for some q ° 1 and weights in pAq. This seems likely
to be true, but we have decided to leave it as future work until we find an interesting
application, such as the ones presented in Sections 3.2 and 3.3 for the Hilbert transform
or the Bochner-Riesz operator based on the averaging technique.
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Chapter 4

Weighted Littlewood-Paley Theory

4.1 The general setting

In this chapter we will study different estimates related to a weighted Littlewood-Paley
theory for multipliers. This theory was initiated by J. E. Littlewood and R. E. A. C. Paley
in the thirties in a series of papers [89, 90, 91] dealing with Fourier and power series. The
general scheme is the following: Assume that we have a certain operator T for which we
know that there is an estimate of the form

G
1

pTfqpxq À G
2

fpxq, a.e. x P Rn, (4.1)

where G
1

and G
2

are certain operators called square functions. If we combine (4.1) with
a lower estimate for G

1

and an upper estimate for G
2

, say

}f}X À }G
1

f}X , and }G
2

f}X À }f}Y ,

with X and Y being a couple of quasi-Banach spaces1, then we can deduce that

}Tf}X À }f}Y .

In our case, we will consider the spaces X “ Lp,8pvq and Y “ Lp,1pvq, with v P pAp, that
correspond to a weighted Littlewood-Paley theory seeking the inequalities that appear
in the extrapolation of Section 1.2. We will investigate lower and upper estimates for
different square functions independently, which are interesting in their own right. Finally,
in Section 4.4, we will see how they can be related when introducing pointwise estimates
as in (4.1).

1We also need that X satisfies the lattice property, that is, 0 § f § g ñ }f}X § }g}X , for every
f, g P X.
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4.2 Lower estimates
Our first goal is to prove lower Littlewood-Paley inequalities of the form

}f}Lp,8pvq À }Gf}Lp,8pvq, (4.2)

with v P pAp and G being a certain square function. A nice presentation of some of the
different square functions that we will consider can be found in [126].

4.2.1 The Lusin area function S

The first function for which we will seek a lower estimate is the classical Lusin area function
S. First, we will need a list of definitions concerning the upper half-space Rn`1

` “ RnˆR`.

Definition 4.1.

• Given a fixed aperture a ° 0, we define the cone centered at x P Rn by

�pxq “ �apxq “ tpy, tq P Rn`1

` : |x ´ y| † atu.

• Given px, tq P Rn`1

` , we define the Poisson kernel

Ptpxq “ cnt

pt2 ` |x|2qn`1

2

,

with cn ° 0 such that }P
1

}
1

“ 1. Since Pt is a dilation of P
1

, this normalization
holds for every t ° 0 and tPtut°0

forms an approximation to the identity. With this,
we define the harmonic extension (or Poisson integral) of a function f to the upper
half-space by

upx, tq “ Pt ˚ fpxq.

• Now, we can define the Lusin area function as

Sfpxq “
ˆ

ª

�pxq
|rupy, tq|2dydt

tn´1

˙

1{2
,

where rupy, tq “
´

Bu
By

1

, ..., Bu
By

n

, Bu
Bt

¯

is the gradient vector.

• The non-tangential maximal function is given by

Nfpxq “ sup

py,tqP�pxq
|upy, tq|.
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• We will also need an auxiliary function, namely

Dfpxq “ sup

py,tqP�pxq
t|rupy, tq|.

• For technical reasons, we will also work with the local versions of S,N and D. Given
a measurable set R Ñ Rn`1

` , we will denote them by SR, NR and DR respectively and
define them exactly as S,N and D but replacing �pxq by �pxq X R.

• Finally2, N0

R will denote the following variant of NR:

N0

Rfpxq “ sup

py,tqP�pxqXR

|upy, tq ´ upy, tyq|

if �pxq X R ‰ H and 0 otherwise. Here,

ty “ suptt1 ° 0 : py, t1q P Ru P R` Y t`8u.

Figure 4.1: Idea of the definition of ty.

The main result of this subsection is the following:

Theorem 4.2. Let w P A8 and f a function such that its Poisson integral upx, tq satisfies

lim

tÑ8
upx, tq “ 0,

for every x P Rn, then for every 1 † p † 8,

}f}Lp,8pwq À }Sf}Lp,8pwq.
2All these operators S,N,D and their local versions, could be defined on harmonic functions u on the

upper half-space, not necessarily being the Poisson integral of a function f , and we would simply write
Su,Nu, etc.
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We will need the following result proved in [64, Theorem 4]:

Theorem 4.3. Let G be a bounded open subset of Rn, and let R be the interior of the
complement of

î

xRG �pxq in Rn`1

` . Given w P A8, ↵ ° 1 and � ° 1, there exist constants
�, � ° 0 such that

↵wptN0

Rf ° ��, SRf § ��, DRf § ��uq § wptN0

Rf ° �uq,
for every � ° 0. The conclusion also holds for R “ Rn`1

` by passage to the limit.

From this, we can deduce the following corollary:

Corollary 4.4. If w P A8 and f is a function such that its Poisson integral upx, tq
satisfies

lim

tÑ8
upx, tq “ 0, (4.3)

for every x P Rn, then, for every 1 † p † 8,

}Nf}Lp,8pwq À }Sf}Lp,8pwq ` }Df}Lp,8pwq.

Proof. Let us take G and R as in Theorem 4.3, ↵ “ 2

p`1 and � “ 2. Then we have
constants �, � ° 0 such that wptN0

Rf ° 2�uq can be bounded by:

wptN0

Rf ° 2�, SRf § ��, DRf § ��uq ` wptSRf ° ��uq ` wptDRf ° ��uq
§ 1

2

p`1

wptN0

Rf ° �uq ` wptSRf ° ��uq ` wptDRf ° ��uq.
If we multiply by 2

p�p and take supremum over � ° 0, we conclude that

}N0

Rf}pLp,8pwq § 1

2

}N0

Rf}pLp,8pwq ` Cp}SRf}pLp,8pwq ` }DRf}pLp,8pwqq.
Now, as in [64], N0

R is bounded with compact support (just like SR and DR), so all the
quantities in the previous inequality are finite and we can subtract to obtain the desired
estimate for the local versions:

}N0

Rf}Lp,8pwq À }SRf}Lp,8pwq ` }DRf}Lp,8pwq.

Finally we let R increase to Rn`1

` (by making G increase to Rn). By the monotone
convergence theorem, it is clear that the right-hand side of the last inequality tends to
}Sf}Lp,8pwq ` }Df}Lp,8pwq. On the other hand, in [10, p. 533], the authors show that
assuming (4.3) and taking R “ R⇢ associated with the open ball G⇢ “ Bp0, a⇢q (where a
is aperture of the cones and ⇢ ° 0), it holds that

Nfpxq § lim

⇢Ñ8
N0

R
⇢

fpxq,
so by Fatou’s lemma, we conclude that

}Nf}Lp,8pwq § lim

⇢Ñ8
}N0

R
⇢

f}Lp,8pwq

and finish the proof.
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Once we have this, we are ready to prove our main result:

Proof of Theorem 4.2. Recall that the cone �pxq we have been working with has a fixed
aperture a ° 0. Take now a smaller parameter 0 † a

0

† a and let Sa
0

f , Da
0

f and Na
0

f
be the analogous functions on the smaller cone �a

0

pxq Ñ �pxq. The following holds:

(i) By [64, Lemma 1], we have3 }Nf}Lp,8pwq À }Na
0

f}Lp,8pwq.

(ii) Trivially, Sa
0

f § Sf .

(iii) By [112, p. 207, Lemma (ii)], Da
0

fpxq À Sfpxq.
Combining these three facts and Corollary 4.4 (this time, with aperture a

0

), we get that

}Nf}Lp,8pwq À }Na
0

f}Lp,8pwq À }Sa
0

f}Lp,8pwq ` }Da
0

f}Lp,8pwq
À }Sf}Lp,8pwq ` }Sf}Lp,8pwq « }Sf}Lp,8pwq.

Using now that fpxq “ limpy,tqÑp¨,0q
py,tqP�pxq

upy, tq a.e. x P Rn, we complete the proof:

}f}Lp,8pwq §
›

›

›

›

›

sup

py,tqP�pxq
|upy, tq|

›

›

›

›

›

Lp,8pwq
“ }Nf}Lp,8pwq À }Sf}Lp,8pwq.

To finish this subsection, we want to point out that if we want to apply Theorem 4.2
to show restricted weak-type estimates for a Fourier multiplier

yTmfp⇠q “ mp⇠q pfp⇠q,
the vanishing assumption on u is not a limitation.

Corollary 4.5. Let m : Rn Ñ R be a bounded function (that is, Tm maps L2pRnq into
itself), then for every w P A8 and 1 † p † 8,

}Tm�E}Lp,8pwq À }SpTm�Eq}Lp,8pwq.

Proof. By Theorem 4.2, it is enough to see that, for every x P Rn,

lim

tÑ8
upx, tq “ lim

tÑ8
Pt ˚ pTm�Eqpxq “ 0.

3Even though the authors in [64] work with L

ppwq, their Lemma 1 gives an estimate for the measure
of level sets, so we can use it to compare weak norms as well.
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It is easy to check that Ptpyq as a function of t has a maximum at t “ |y|?
n
. With this in

mind, and looking only at t ° 1, we have that

Ptpyq À 1

1 ` |y|n “: F pyq P L2pRnq,

for every y P Rn, t ° 1. Now, using Cauchy-Schwarz and the fact that Tm is of strong-type
(2,2), we get that, for every t ° 1,

|Tm�Epx ´ yqPtpyq| § |Tm�Epx ´ yq|F pyq P L1pRnq,
so using the dominated convergence theorem,

lim

tÑ8
upx, tq “

ª

Rn

lim

tÑ8
Tm�Epx ´ yqPtpyqdy “ 0.

4.2.2 The S
 ,↵

function

Now we will present a different approach that yields the lower estimate corresponding to a
modern version of the area function S, the S ,↵ function. Here we will follow the ideas in
[125], where weighted Lp inequalities for S ,↵ are studied by means of dyadic techniques.

Definition 4.6. Let D be the standard dyadic lattice4 in Rn. Let f P L1

loc

pRnq. We set,
for every k P Z,

fk :“
ÿ

QPD
lpQq“2

´k

ˆ

1

|Q|
ª

Q

f

˙

�Q,

and
MDfpxq “ sup

kPZ
|fkpxq|

the dyadic maximal function5 of f .

In [125, p. 665], the author shows that every function f P C8
0

can be written as

fpxq “
3

n

ÿ

k“1

fpkqpxq,

where, for every k “ 1, ..., 3n,

fpkqpxq “
ÿ

QPG
k

�QaQpxq, (4.4)

and
4It is defined by D “

 

r2km1, 2kpm1 ` 1qq ˆ ¨ ¨ ¨ ˆ r2kmn, 2kpmn ` 1qq : k,m1, ...,mn P Z
(

.
5Notice that the Lebesgue differentiation theorem gives that fpxq § MDfpxq for almost every x P Rn.
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(i) Gk is a collection of cubes (not necessarily from the standard dyadic lattice D)
satisfying that for all Q,Q1 P Gk, either QXQ1 “ H or one is contained in the other,
and that Q Ñ Q1 with Q ‰ Q1 implies lpQq § 1

2

lpQ1q.
(ii) For every Q P Gk, it holds that supp aQ Ñ Q,

≥

a “ 0, }a}8 § |Q|´1{2 and
}ra}8 § lpQq´1|Q|´1{2.

(iii) The families tGku3nk“1

are pairwise disjoint.

Even though the cubes Gk may not belong to D, we can assume without loss of generality
that they are dyadic (as the author points out in [125, p. 666]), since the only properties
that are required are the ones described in piq. If a function can be written as in (4.4)
with respect to some family of cubes G satisfying piq and piiq, we will say that it is of
special form with respect to G. Once this is settled, let us give the following definition:

Definition 4.7. Given a subfamily of dyadic cubes G Ñ D, and a function f of special
form with respect to G, we define

S
⇤

fpxq “
˜

ÿ

xPQPG

|�Q|2
|Q|

¸

1{2

.

With this, we have the following lemma:

Lemma 4.8. Let 0 † p † 8, 0 † ⌘ § 1 and A ° 0. Let G Ñ D be a subfamily of dyadic
cubes. Let f be of special form with respect to G and such that MDf P Lp,8pvq, where v
is a weight for which the following quantity

Y⌘pQ, vq “
#

vpQq´1

≥

Q
vpxq log⌘

´

1 ` vpxq
|Q|´1vpQq

¯

dx if vpQq ° 0,

1 if vpQq “ 0,

is controlled by A for all Q P G. Then, there exists a constant Cpp, n, ⌘q † 8 such that

}MDf}Lp,8pvq § Cpp, n, ⌘qA1{2⌘}S
⇤

f}Lp,8pvq.

The proof of this lemma is based on a good-� inequality that the author shows in the
proof of [125, Lemma 2.3]. More precisely:

Lemma 4.9. Under the hypotheses of Lemma 4.8, it holds that for every � ° 0,

vptMDf ° 2�, S
⇤

f § ��uq § "ppqvptMDf ° �uq,
with � ° Cpp, n, ⌘qA´1{2⌘ and 2"ppq1{p § 1{2.

Now, our result is an easy consequence:
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Proof of Lemma 4.8. With the previous inequality,

}MDf}Lp,8pvq “ sup

�°0

2�vptMDf ° 2�uq1{p

§ 2 sup

�°0

�vptMDf ° 2�, S
⇤

f § ��uq1{p ` 2 sup

�°0

�vptS
⇤

f ° ��uq1{p

§ 2"ppq1{p
sup

�°0

�vptMDf ° �uq1{p ` 2

�
}S

⇤

f}Lp,8pvq

§ 1

2

}MDf}Lp,8pvq ` Cpp, n, ⌘qA1{2⌘}S
⇤

f}Lp,8pvq.

Isolating the term }MDf}Lp,8pvq, we finish the proof.

Definition 4.10. Let  P CkpRnq be a real, radial, non-trivial function such that
≥

 “ 0,
and whose support lies inside the closed ball Bp0, 1q. We can assume that  is normalized
so that

ª 8

0

| p p⇠tq|2dt
t

“ 1,

for all ⇠ ‰ 0. As usual, for t ° 0 we define the dilation  tpxq “ t´n px{tq. For
f P L1

loc

pRnq and ↵ ° 0, we define the square function of f with respect to  of aperture ↵:

S ,↵fpxq “
ˆ

ª

|x´y|†↵t
|f ˚  tpyq|2dydt

tn`1

˙

1{2
.

Remark 4.11. At the beginning of this section, we said that the author in [125] shows
that every function in C8

0

can be written as a finite sum of 3

n functions fpkq of special
form. From his construction, one can check that for6 ↵ • 3

?
n,

3

n

ÿ

k“1

S
⇤

pfpkqq À S ,↵f. (4.5)

This fact is explicitly stated at the end of the proof of [125, Theorem 2.5].

Finally, we state our main result:

Theorem 4.12. Let 1 § p † 8 and v “ pMhq1´pu P pAp. Then, for every f P C8
0

pRnq
and ↵ • 3

?
n,

}f}Lp,8pvq À }u}A
1

}S ,↵f}Lp,8pvq,

and the implicit constant only depends on p and n.
6Note that, whenever we write S⇤fpkq, the dyadic sum involved in its definition is with respect to the

corresponding family Gk.
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Proof. Take f P C8
0

pRnq and write

f “
3

n

ÿ

k“1

fpkq,

where each fpkq is of special form with respect to a dyadic subfamily Gk Ñ D, the families
Gk are pairwise disjoint and we have (4.5). Moreover, we know that for every cube Q with
vpQq ° 0, the weight v “ pMhq1´pu satisfies that

Y
1

pQ, vq « vpQq´1

ª

Q

M rpMhq1´pu�Qspxqdx § vpQq´1

sup

xPQ
pMhq1´ppxq

ª

Q

Mupxqdx

À }u}A
1

vpQq´1

1

|Q|
ª

Q

pMhq1´ppxqdx
ª

Q

upxqdx § }u}2A
1

vpQq´1vpQq “ }u}2A
1

.

The first equivalence is stated in [125, p. 668], and then we used Lemma 1.6 to control
the supremum and the A

1

property of u to finish the estimate. Therefore, for every
k “ 1, ..., 3n, we can apply Lemma 4.8 with ⌘ “ 1, A “ }u}2A

1

and the pair pfpkq,Gkq to
obtain that

}MDfpkq}Lp,8pvq À }u}A
1

}S
⇤

fpkq}Lp,8pvq.

But the families Gk are pairwise disjoint, so

MDfpxq “
3

n

ÿ

k“1

MDfpkqpxq,

and hence, by (4.5) and exploiting the finiteness of the sum and that S
⇤

fpkq • 0, we finish
the proof:

}f}Lp,8pvq § }MDf}Lp,8pvq À
3

n

ÿ

k“1

}MDfpkq}Lp,8pvq À }u}A
1

3

n

ÿ

k“1

}S
⇤

fpkq}Lp,8pvq

À 3

n}u}A
1

›

›

›

›

›

3

n

ÿ

k“1

S
⇤

fpkq

›

›

›

›

›

Lp,8pvq
À }u}A

1

}S ,↵f}Lp,8pvq.

Remark 4.13. Notice that this last theorem is stated in view of our goal (4.2) in this
section. However, from its proof one can check that the same would hold for any weight
v P A8 which we know that can be written as v “ pMhq1´qu, for some locally integrable
h, 1 § q † 8 and u P A

1

. Hence, for every 1 § p † 8, f P C8
0

and ↵ • 3

?
n, the

corresponding estimate would be

}f}Lp,8pvq À }u}A
1

}S ,↵f}Lp,8pvq,

with the implicit constant depending on p, n and q.
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4.2.3 The g� square function

Let � be a fixed, non-negative smooth bump function with support in r1, 2s. Let  be
the function on Rn defined by

p p⇠q “ |⇠|�p|⇠|q.
Notice that  satisfies

ª

Rn

 pxqdx “ p p0q “ 0.

With this, we introduce the g
�

(vertical) square function associated with � as follows:

g
�

fpxq “
ˆ

ª 8

0

| t ˚ fpxq|2dt
t

˙

1{2
,

where, as usual,  tpxq “ t´n pt´1xq. This function will appear when dealing with radial
multipliers. This is a generalization of the classical Littlewood-Paley g-function defined
by

gfpxq “
˜

ª 8

0

ˇ

ˇ

ˇ

ˇ

B
BtPt ˚ fpxq

ˇ

ˇ

ˇ

ˇ

2

tdt

¸

1{2

,

where P is the standard Poisson kernel (see [112, Chapter IV]) and Pt ˚ fpxq “ upx, tq is
the harmonic extension of f to the upper half-space. Introducing different functions �
will allow us to define different classes of radial multipliers associated with them and, for
each class, we will have pointwise inequalities involving the corresponding g

�

. Just like
for the classical g-function, it holds that, for some constant C

�

° 0,

}g
�

f}L2pRnq “ C
�

}f}L2pRnq. (4.6)

To check this, we use Fubini and Plancherel’s identity as follows:

}g
�

f}2L2pRnq “
ª 8

0

ª

Rn

| t ˚ fpxq|2dxdt
t

“
ª 8

0

ª

Rn

| pfp⇠q|2| p tp⇠q|2d⇠dt
t

“
ª

Rn

ª 8

0

| p pt⇠q|2dt
t

| pfp⇠q|2d⇠.

But using the definition of p and the support of �, for every ⇠ P Rn,
ª 8

0

| p pt⇠q|2dt
t

“
ª

2

1

s2�psq2ds
s

“ C2

�

,

so we get the equality in (4.6).

Proposition 4.14. It holds that, for every 1 † p † 8 and w P Ap,

}f}Lppwq À }g
�

f}Lppwq.
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Proof. It follows the same idea as in the unweighted case (see [112, p. 85]). We know
by (4.6) that }g

�

f}L2pRnq “ C
�

}f}L2pRnq. Using the polarization identity of L2pRnq and
introducing the weight in a simple way, we have that

ˇ

ˇ

ˇ

ˇ

ª

Rn

fpxqhpxqdx
ˇ

ˇ

ˇ

ˇ

«
ˇ

ˇ

ˇ

ˇ

ª

Rn

g
�

fpxqg
�

hpxqw´1pxqwpxqdx
ˇ

ˇ

ˇ

ˇ

.

Now we use Hölder’s inequality to bound the previous expression by

}g
�

f}Lppwq}g�h}Lp

1 pw1´p

1 q.

But w1´p1 P Ap1 , and the operator g
�

is bounded on Lqpvq for every 1 † q † 8 and v P Aq

(see, for instance, [84]), so using this fact, we conclude that
ˇ

ˇ

ˇ

ˇ

ª

Rn

fpxqhpxqdx
ˇ

ˇ

ˇ

ˇ

À }g
�

f}Lppwq}h}Lp

1 pw1´p

1 q.

Dividing by }h}Lp

1 pw1´p

1 q ‰ 0 and taking supremum over h P Lp1pw1´p1q, duality yields

}f}Lppwq À }g
�

f}Lppwq.

Remark 4.15. So far, we have not been able to find a proof of the inequality

}f}Lp,8pwq À }g
�

f}Lp,8pwq,

for w P pAp. In the previous cases (of the functions S and S ,↵) where we were seeking
this lower estimate, we had a certain good-� inequality that worked for A8 weights and,
therefore, we could deduce the Lp,8pwq Ñ Lp,8pwq estimate for pAp weights similarly to
the Lppwq Ñ Lppwq estimate for Ap. For g

�

, however, we used a duality argument that,
despite being really simple, does not work beyond the Ap classes.

4.3 Upper estimates
In this section, we want to study upper Littlewood-Paley inequalities of the form

}Gf}Lp,8pvq À }f}Lp,1pvq, v P pAp. (4.7)

4.3.1 The G
↵

function

We define the following square function

G↵fpxq “
˜

ª 8

0

ˇ

ˇ

ˇ

ˇ

B
BtB

t
↵fpxq

ˇ

ˇ

ˇ

ˇ

2

tdt

¸

1{2

,
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Chapter 4. Weighted Littlewood-Paley Theory

where Bt
↵ is the Bochner-Riesz operator as in Definition 2.1. This function was first

introduced by E. M. Stein in [111] to study L2 properties of the maximal Bochner-Riesz
operator. It can be easily checked that

B
BtB

t
↵fpxq “ 2↵

t

ª

Rn

|⇠|2
t2

ˆ

1 ´ |⇠|2
t2

˙↵´1

`
pfp⇠qe2⇡ix⇠d⇠,

and from here deduce that

G↵fpxq «
ˆ

ª 8

0

|K↵
t ˚ fpxq|2dt

t

˙

1{2
,

with xK↵
t p⇠q “ |⇠|2

t2

´

1 ´ |⇠|2
t2

¯↵´1

`
. This is the way that G↵ was defined in [16], [17] and [115],

some of the references that we will use for this part. See also the expository introduction
of [83]. The proof that for ↵ ° n`1

2

, the operator G↵ is of (unweighted) strong-type
pp, pq for every 1 † p † 8 and of weak-type p1, 1q is due to S. Sunouchi [115]. Here, the
author relates G↵ to an L2p0,8q vector-valued Calderón-Zygmund operator and is able
to use the classical theory to obtain his result. However, if we want to establish weighted
inequalities, it seems that the vector-valued theory in this case does not work as cleanly.
Our main result is the following:

Theorem 4.16. Let ↵ ° n`1

2

. Then G↵ is

(i) of strong-type pp, pq for every weight in Ap and 1 † p † 8,

(ii) of restricted weak-type pp, pq for every weight in AR
p and 1 † p † 8,

(iii) of weak-type p1, 1q for every weight in A
1

.

The proof of this theorem is based on the fact that we will be able to control G↵f by
a finite sum of sparse operators, which are much easier to handle and known to satisfy
these three properties7. The notion of sparse operator already appeared in the proof of
Proposition 3.3, where we actually showed that they satisfy the corresponding restricted
weak-type pp, pq estimate in piiq. For other examples of the use of sparse theory to obtain
weighted estimates for square functions, see [47, 84, 87]. Now, let us recall their definition
in a little more detail. For convenience, we will follow the exposition in [88]. Given
a dyadic lattice of cubes in Rn, we will say that a family of cubes S is �-sparse, with
0 † � † 1 if, for every Q P S, there exists a measurable subset FQ Ñ Q such that
|FQ| • p1 ´ �q|Q| and tFQuQPS are pairwise disjoint.

7The strong-type pp, pq for Ap weights was of great interest when it was seen [85, 86] that it gave a
new (and easier) proof of the celebrated A2 theorem [72] for Calderón-Zygmund operators.
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Definition 4.17. The sparse operator S associated with the sparse family S is defined by

Sfpxq :“
ÿ

QPS

ˆ

1

|Q|
ª

Q

|f |
˙

�Qpxq.

We will also need the following definitions of the so-called local mean oscillation:

Definition 4.18. Given a function g and a measurable set E, we define

!pg, Eq :“ sup

xPE
gpxq ´ inf

xPE
gpxq.

Given 0 † � † 1 and a dyadic cube Q, we also define

!�pg,Qq :“ mint!pg, Eq : E Ñ Q, |E| • p1 ´ �q|Q|u.
The key result that we will need is the following, and it can be found in [88]:

Theorem 4.19. Let f be a measurable function and let F : Rn Ñ R be such that, for
every " ° 0,

|tx P r´R,Rsn : |F pxq| ° "u| “ opRnq, as R Ñ 8.

If, given a dyadic cube Q and 0 † � § 2

´n´2, it holds that, for some � ° 0

!�pF,Qq § C�

8
ÿ

k“0

2

´�k
ˆ

1

|2k`1Q|
ª

2

k`1Q

|f |
˙

, (4.8)

then |F | is pointwise controlled by a finite sum of sparse operators applied to f .

Proof of Theorem 4.16. Fix ↵ “ n`1

2

` �, with � ° 0. If we define

Ttfpxq “ K↵
t ˚ fpxq?

t
,

it holds that,
G↵fpxq “ }Ttfpxq}L2p0,8q.

By [115], we know that G↵ is of weak-type p1, 1q, that is

y|tx P Rn
: }Ttfpxq}L2p0,8q ° yu| § }G↵}L1ÑL1,8}f}L1pRnq, (4.9)

and the author also shows (see [115, Equations (3) and (4)]) that, given r ° 0 and s P R
such that r ° 2|s|,

|Ktpr ` sq ´ Ktprq| À mintt´ 1

2

´�r´n´�, |s| t 1

2

´�r´n´�u, (4.10)
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where
Ktp|x|q “ K↵

t pxq?
t

.

Taking F pxq “ G↵fpxq, we have that the decay assumption for F in Theorem 4.19 is
trivially satisfied (using, for instance, that G↵ is of weak-type (1,1)), so if we show (4.8),
then we conclude that G↵f is dominated by sparse operators and, hence, finish the proof.
Fix a cube Q and 0 † � § 2

´n´2. Let x, x1 P Q. Then,

|}Ttfpxq}L2p0,8q ´ }Ttfpx1q}L2p0,8q| § }Ttfpxq ´ Ttfpx1q}L2p0,8q

“
›

›

›

›

›

Ttpf�2Qqpxq `
ÿ

k•1

Ttpf�
2

k`1Qz2kQqpxq ´ Ttpf�2Qqpx1q ´
ÿ

k•1

Ttpf�
2

k`1Qz2kQqpx1q
›

›

›

›

›

L2p0,8q
§ I ` II,

where
I “ }Ttpf�2Qqpxq}L2p0,8q ` }Ttpf�2Qqpx1q}L2p0,8q,

and after using Minkowski’s integral inequality,

II “
ÿ

k•1

ª

2

k`1Qz2kQ
}Ktp|x ´ y|q ´ Ktp|x1 ´ y|q}L2p0,8q|fpyq|dy.

We start by studying II. Since x, x1 P Q and y P 2

k`1Qz2kQ, we can set r :“ |x1 ´ y| and
observe that |x ´ y| “ r ` s, with s P p´|x ´ x1|, |x ´ x1|q. Therefore,

}Ktp|x ´ y|q ´ Ktp|x1 ´ y|q}2L2p0,8q “ }Ktpr ` sq ´ Ktprq}2L2p0,8q.

Computing the L2 norm and using (4.10) with the different bounds on p0, |s|´1q and
p|s|´1,8q respectively, we can control the previous expression by

ª |s|´1

0

|s|2t1´2�r´2n´2�dt `
ª 8

|s|´1

t´1´2�r´2n´2�dt « |s|2�
r2n`2�

.

But r “ |x1 ´ y| « 2

k`pQq and |s| § |x ´ x1| § `pQq, so again, the last term is majorized
by

`pQq2�
2

2kpn`�q`pQq2n`2�
“

ˆ

1

2

kpn`�q|Q|
˙

2

.

With this estimate, we go back to II and see that

II À
ÿ

k•1

ª

2

k`1Qz2kQ

|fpyq|
2

kpn`�q|Q|dy À
ÿ

k•1

2

´�k
ˆ

1

|2k`1Q|
ª

2

k`1Q

|fpyq|dy
˙

.
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To study I, we just use (4.9) to get that if

E˚
:“

"

z P Q : }Ttpf�2Qqpzq}L2p0,8q ° 2

n}G↵}L1ÑL1,8

�|2Q|
ª

2Q

|f |
*

,

then
|E˚| § }G↵}L1ÑL1,8

�|2Q|
2

n}G↵}L1ÑL1,8
≥

2Q
|f |}f�2Q}L1pRnq “ �|Q|.

So defining E :“ QzE˚, we deduce that, when x P E,

}Ttpf�2Qpxqq}L2p0,8q À C�
1

|2Q|
ª

2Q

|f |,

and the size of E is controlled by

|E| • |Q| ´ |E˚| • p1 ´ �q|Q|.
Summing up, bringing it all together, we have shown that there exists a measurable set
E Ñ Q such that |E| • p1 ´ �q|Q| and satisfying that, for every x, x1 P E,

|}Ttfpxq}L2p0,8q ´ }Ttfpx1q}L2p0,8q| § I ` II À C�

8
ÿ

k“0

2

´�k
ˆ

1

|2k`1Q|
ª

2

k`1Q

|fpyq|dy
˙

.

Hence, the same bound holds for !�p}Ttfp¨q}L2p0,8q, Qq, and we finish the proof.

4.4 Pointwise estimates and consequences
Even though the main goal of this chapter was to study lower and upper estimates inde-
pendently one from another, for the sake of completeness we will devote this last section
to see if some of them can be related by means of pointwise estimates. We will consider
two kinds of multipliers. First, we will study general multipliers of Hörmander type like
the ones appearing in Section 3.4, and then we will turn our attention to radial ones.

4.4.1 General multipliers

In Section 3.4, we showed a restricted weak-type estimate that extended the results of
D. Kurtz and R. Wheeden [79] about multipliers of Hörmander type. The technique
behind those results avoided the use of Littlewood-Paley theory. However, in [78, The-
orem 4], the author resorts to this theory to tackle the same problem as in [79]. When
1 † p † 8, he succeeds in showing the strong-type pp, pq estimates with respect to
Ap weights for multipliers satisfying m P HCp2, nq, but he cannot prove the weighted
weak-type (1,1) part due to limitations regarding the square function g˚

� involved. Let us
introduce this function and state in a lemma the pointwise inequality that one has in this
setting for Fourier multipliers with m P HCp2, nq. It relates the Lusin area function from
Definition 4.1 and g˚

2

:
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Definition 4.20. We define, for � ° 1,

g˚
�fpxq “

˜

ª

Rn`1

`

tp�´1qn`1

pt ` |x ´ y|q�n |rupy, tq|2dydt
¸

1{2

,

where upx, tq “ Pt ˚ fpxq is the Poisson integral of f .

Lemma 4.21. Given m P HCp2, nq, we have that

SpTmfqpxq À g˚
2

fpxq.

This inequality can be found in [112, Lemma, p. 233] (see also [78, p. 239]), stated
for m P HCp2, n ` 1q and g˚

� with � “ 2n`2

n
. Even though one cannot deduce Lemma

4.21 directly from here, in the proof, the author assumes m P HCp2, kq and obtains the
estimate involving g˚

� with � “ 2k
n

. He concludes the argument taking k “ n ` 1, but if
we take k “ n instead, we get Lemma 4.21. Even though we do have the lower estimate

}f}Lp,8pwq À }Sf}Lp,8pwq

for pAp weights, we have not been able to establish the corresponding upper estimate

}g˚
2

f}Lp,8pwq À }f}Lp,1pwq

for these weights, and hence, we cannot deduce the restricted weak-type pp, pq for multi-
pliers Tm with m P HCp2, nq. The function g˚

2

, however, is known to be of strong-type
pp, pq for the smaller class Ap (see [97]), and this is what allows the author in [78] to use
the Littlewood-Paley approach to show that Tm with m P HCp2, nq is of strong-type pp, pq
for Ap weights and 1 † p † 8. The weighted weak-type p1, 1q endpoint result for Tm and
A

1

weights is also true (see Section 3.4) but, as far as we know, it is an open problem
whether the function g˚

2

is of weak-type p1, 1q or not, even in the unweighted case.

4.4.2 Radial multipliers

Here we fix a non-negative, smooth bump function � with support in r1, 2s, just as we
did when we defined g

�

in Subsection 4.2.3. Now, the parameter ↵ ° 0 will be a positive
real number, and whenever we write

`

d
dt

˘↵ for ↵ R N, we will be referring to

{

ˆ

d

dt

˙↵

hp⇠q “ p´2⇡i⇠q↵php⇠q,

in the distributional sense if needed.
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Definition 4.22. Given a bounded function m : r0,8q Ñ R, extended by zero to the
whole line R, we say that m P R

�

p2,↵q if

sup

r°0

˜

r2↵´1

ª

R

ˇ

ˇ

ˇ

ˇ

ˆ

d

dt

˙↵ ˆ

�

ˆ

t

r

˙

mptq
˙

ˇ

ˇ

ˇ

ˇ

2

dt

¸

1{2

† 8.

A simple change of variables shows that this condition is equivalent to

sup

r°0

›

›

›

›

ˆ

d

dt

˙↵

�ptqmprtq
›

›

›

›

L2pRq
† 8,

and by [16, Theorem 2], we have that:

Theorem 4.23. Given ↵ ° 1

2

and m P R
�

p2,↵q, the multiplier defined by

yTmfp⇠q “ mp|⇠|q pfp⇠q,
satisfies

g
�

pTmfqpxq À G↵fpxq, a.e. x P Rn.

With this estimate together with Proposition 4.14 and (i) in Theorem 4.16, we obtain
the following multiplier result:

Theorem 4.24. Given a non-negative, smooth bump function � supported in r1, 2s and
a bounded function m : r0,8q Ñ R in R

�

p2,↵q for some ↵ ° n`1

2

, we have that the
associated radial multiplier Tm on Rn satisfies

Tm : Lppwq ›Ñ Lppwq,
for every 1 † p † 8 and w P Ap.

Here we have the opposite problem to the one we had for general multipliers. In
this case, we do have Theorem 4.16 (an upper estimate) that gives restricted weak-type
inequalities for pAp and the function G↵ (↵ ° n`1

2

), but we lack the corresponding lower
estimate for g

�

,
}f}Lp,8pwq À }g

�

f}Lp,8pwq, w P pAp,

as mentioned in Remark 4.15. This is the reason why Theorem 4.24 only applies to the
Ap setting. In [16, Theorem 4], however, the author gives yet another related pointwise
estimate, but this time for the maximal operator associated with Tm.

Theorem 4.25. Let m : r0,8q Ñ 8 be a bounded function satisfying, for ↵ ° 1

2

,
ª 8

0

ˇ

ˇ

ˇ

ˇ

s↵`1

ˆ

d

ds

˙↵ mpsq
s

ˇ

ˇ

ˇ

ˇ

2

ds

s
† 8.
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Then,
T ˚
mfpxq À G↵fpxq, a.e. x P Rn,

where T ˚
mfpxq “ supt°0

|T t
mfpxq| is the maximal operator associated with the family

tT t
mut°0

defined by
yT t
mfp⇠q “ mpt|⇠|q pfp⇠q.

In contrast with Theorem 4.23, this pointwise inequality is for the operator T ˚
m itself,

so we do not have to rely on a lower estimate in order to obtain boundedness results for
T ˚
m. In fact, we can use the full potential of Theorem 4.16 to deduce the following:

Corollary 4.26. Let ↵ ° n`1

2

and m : r0,8q Ñ 8 be a bounded function such that

ª 8

0

ˇ

ˇ

ˇ

ˇ

s↵`1

ˆ

d

ds

˙↵ mpsq
s

ˇ

ˇ

ˇ

ˇ

2

ds

s
† 8.

Then T ˚
m is

(i) of strong-type pp, pq for every weight in Ap and 1 † p † 8,

(ii) of restricted weak-type pp, pq for every weight in AR
p and 1 † p † 8,

(iii) of weak-type p1, 1q for every weight in A
1

.

For more details on the class of multipliers m satisfying the condition in Theorem 4.25
(or its corollary), see [16, Section III] and how the author relates this class to the Bessel
potential spaces introduced in [112, Chapter VI]. See also [83, (4) and (5)] for another
presentation of the pointwise estimates that we have used from [16].
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Chapter 5

Yano’s Extrapolation Theory

5.1 A connection between two theories
The theory of extrapolation we have presented so far follows the ideas introduced by
J. L. Rubio de Francia. As we have seen, in the context of Lp spaces, the goal is to
find an estimate at a fixed level p

0

that holds for a whole class of weights and deduce
new estimates at other levels of p. Yano’s extrapolation, on the other hand, works in a
different way. In this case, one would fix the measure (not necessarily a weight) and find
estimates for a whole range of p P p1, p

0

q, with a boundedness constant that blows up in a
precise way when p Ñ 1

`. The extrapolation argument, then, would seek boundedness in
a suitable space, closer to L1 than any of the initial Lp with p P p1, p

0

q. Even though these
two theories are different, Yano’s extrapolation can be used to, in some sense, complete
the information that we have for operators of Rubio de Francia type at the endpoint. Let
us explain this relation to motivate this chapter.

We know that an operator T under the hypotheses of Rubio de Francia’s extrapolation
theorem need not be bounded from L1 to L1,8. However, the sharp Lp constants obtained
in [48] provide useful information to obtain endpoint estimates for these operators. In
particular, we know that, if for some 1 † p

0

† 8 and every w P Ap
0

,

T : Lp
0pwq ›Ñ Lp

0pwq
is bounded with constant 'p}w}A

p

0

q, with ' an increasing function on p0,8q, then, given
u P A

1

,
T : Lppuq ›Ñ Lppuq

is bounded for every 1 † p † p
0

with constant essentially controlled by

'

¨

˝

C}u}
p

0

´1

p´1

A
1

pp ´ 1qp0´1

˛

‚, as p Ñ 1

`. (5.1)
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As we just mentioned1, the starting point in Yano’s theory is, precisely, having an Lp

boundedness on a range p1, p
0

q with some control on how the boundedness constant ex-
plodes when p is close to 1. In fact, the blow-up that we would like to have in order to
extrapolate is of the order of 1

pp´1qm , for some m ° 0. Therefore, examining (5.1), we see
that if we assume 'ptq “ t� for some � ° 0 and u “ 1, we obtain that T : Lp Ñ Lp is
bounded with constant essentially controlled by

1

pp ´ 1q�pp
0

´1q , as p Ñ 1

`.

With this information, one can show (as we will see in Theorem 5.22) endpoint results close
to L1pRnq for sublinear operators under the hypotheses of Rubio de Francia’s theorem. A
converse argument can be used to find optimal values of � (see [92]), but we will not get
into this particular problem.

In Yano’s theory, as one would expect, the slower the blow-up of the constant is,
the better the conclusions are, so one could try to start with the boundedness constant
associated with the restricted weak-type pp

0

, p
0

q of T instead. Take, for instance, the
Hardy-Littlewood maximal operator. It is known [9] that, for M ,

}M}Lp

0 pwq›ÑLp

0 pwq À }w}
1

p

0

´1

A
p

0

p
0

´ 1

, (5.2)

whereas
}M}Lp

0

,1pwq›ÑLp

0

,8pwq À }w}1{p
0

A
p

0

. (5.3)

Since we want to work with constants that have the least possible blow-up when p is close
to 1, it makes sense to start with this weaker assumption. The extrapolation of restricted
weak-type pp

0

, p
0

q estimates for Ap
0

weights was carried out in Theorem 1.8 avoiding the
use of Rubio de Francia’s classical theory. What we showed is that, if for every w P Ap

0

,

T : Lp
0

,1pwq ›Ñ Lp
0

,8pwq
is bounded with constant 'p}w}A

p

0

q, then, given u P A
1

,

T : Lp, p

p

0 puq ›Ñ Lp,8puq (5.4)

is bounded for 1 † p † p
0

with constant essentially controlled by

}u}
1

p

´ 1

p

0

A
1

'

˜

ˆ

p
0

´ 1

p ´ 1

˙p
0

´1

}u}A
1

¸

. (5.5)

1In this introductory section we will not make the classical results in Yano’s theory precise. We refer
to Section 5.2 for a detailed presentation.
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Notice that now, if we want to have a blow-up of the form 1

pp´1qm , we are allowed to
consider2 any fixed u P A

1

. Therefore, if 'ptq “ t↵ with ↵ ° 0, for every u P A
1

we get
that the constant for (5.4) behaves like

1

pp ´ 1q↵pp
0

´1q , as p Ñ 1

`.

The extrapolation that we will use is not the classical one, but a newer version that
assumes boundedness from Lp,8 into itself on a range p1, p

0

q. This variant was developed
in [33] and will be presented in Section 5.3.

For the time being, the only goal of this first section will be to compute the Lp,8 Ñ Lp,8

constants of operators under the assumptions of Rubio de Francia’s theory (Ap theory)
and under the assumptions of the theory presented in Section 1.2 ( pAp theory). To do so,
we will need the following interpolation result:

Lemma 5.1. Let 0 † s
0

, s
1

§ 1 † r
0

† r
1

† 8 and let T be a sublinear operator such
that

T : Lr
j

,s
jpuq ›Ñ Lr

j

,8puq
is bounded with constant Mj, for j “ 0, 1. Then, for every 0 † ✓ † 1, if 1

r
“ 1´✓

r
0

` ✓
r
1

, we
have that

T : Lr,8puq ›Ñ Lr,8puq
is bounded with constant controlled by BM1´✓

0

M ✓
1

, where

B “
ˆ

r
0

r

s
0

pr ´ r
0

q
˙

1{s
0

`
ˆ

r
1

r

s
1

pr
1

´ rq
˙

1{s
1

`
ˆ

r
1

s
1

˙

1{s
1

Proof. The proof of this result can be found, for instance, in [6, Theorem 5.3.2], but we
need to see how the constant behaves and this is not included in classical books. We will
proceed as in [28, Lemma 3.10]. By the real interpolation K-method (see [5, Chapter 5]),
we have that

T : pLr
0

,s
0puq, Lr

1

,s
1puqq✓,8 ›Ñ pLr

0

,8puq, Lr
1

,8puqq✓,8,
with constant less than or equal to M1´✓

0

M ✓
1

, where

pA
1

, A
2

q✓,8 “
"

f P A
1

` A
2

: sup

t°0

t´✓Kpt, f ;A
1

, A
2

q † 8
*

,

and
Kpt, f ;A

1

, A
2

q “ inf t}f
0

}A
1

` t}f
1

}A
2

: f “ f
0

` f
1

, f
0

P A
1

, f
1

P A
2

u .
Therefore, it is enough to show that:

2The exponents of }u}A1 in (5.5), unlike in (5.1), do not explode when p is close to 1, and hence having
}u}A1 ° 1 is no longer a problem. We will see that an exponential blow-up in p is hopeless if we want to
extrapolate in the sense of Yano.
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(i) }f}Lr,8puq § 2}f}pLr

0

,8puq,Lr

1

,8puqq
✓,8 ,

(ii) }f}pLr

0

,s

0 puq,Lr

1

,s

1 puqq
✓,8 § B}f}Lr,8puq.

The proof of (i) goes as follows: define � :“ r
0

r
1

r
1

´r
0

, fix t ° 0 and let f “ f
0

` f
1

be a
decomposition of f in Lr

0

,8puq ` Lr
1

,8puq. Then,

sup

y§t�
y1{r

0f˚
u pyq § sup

y§t�
y1{r

0

´

pf
0

q˚
u

´y

2

¯

` pf
1

q˚
u

´y

2

¯¯

§ sup

y§t�
2

1{r
0}f

0

}Lr

0

,8puq ` y
1

r

0

´ 1

r

1

2

1{r
1}f

1

}Lr

1

,8puq

§2p}f
0

}Lr

0

,8puq ` t}f
1

}Lr

1

,8puqq.
Taking infimum over all possible decompositions of f , we conclude that

sup

y§t�
y1{r

0f˚
u pyq § 2Kpt, f ;Lr

0

,8puq, Lr
1

,8puqq,

and with this estimate,

2}f}pLr

0

,8puq,Lr

1

,8puqq
✓,8 “ sup

t°0

2t´✓Kpt, f ;Lr
0

,8puq, Lr
1

,8puqq
• sup

t°0

sup

y§t�
t´✓y1{r

0f˚
u pyq “ sup

y°0

y1{r
0f˚

u pyq sup

t•y1{�
t´✓

“ sup

y°0

y
´✓

�

` 1

r

0 f˚
u pyq “ }f}Lr,8puq.

For (ii), let f P Lr,8puq and � as before. For every t ° 0, we write f “ f
0

` f
1

with

f
0

“ f�t|f |°f
ů

pt�qu and f
1

“ f�t|f |§f
ů

pt�qu.

Now,

}f
0

}Lr

0

,s

0 puq §
ˆ

ª t�

0

pf˚
u pyqy1{rqs0y s

0

r

0

´ s

0

r

´1dy

˙

1{s
0

§ }f}Lr,8puq
t
�

´

1

r

0

´ 1

r

¯

´

s
0

r
0

´ s
0

r

¯

1{s
0

“ t✓
ˆ

r
0

r

s
0

pr ´ r
0

q
˙

1{s
0

}f}Lr,8puq,

by the definition of � and ✓ “ r
0

r
1

´rr
1

rr
0

´rr
1

. Also,

}f
1

}Lr

1

,s

1 puq § f˚
u pt�q

ˆ

ª t�

0

y
s

1

r

1

´1dy

˙

1{s
1

`
ˆ

ª 8

t�
f˚
u pyqs1y s

1

r

1

´1dy

˙

1{s
1

.
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For the first term, we multiply and divide by t�{r, compute the integral and the bound
we get is

t✓´1

ˆ

r
1

s
1

˙

1{s
1

}f}Lr,8puq.

For the second term, we proceed exactly as for }f
0

}Lr

0

,s

0 puq and control it by

t✓´1

ˆ

r
1

r

s
1

pr
1

´ rq
˙

1{s
1

}f}Lr,8puq.

Bringing the estimates together, we conclude that

}f}pLr

0

,s

0 puq,Lr

1

,s

1 puqq
✓,8 “ sup

t°0

t´✓Kpt, f ;Lr
0

,s
0puq, Lr

1

,s
1puqq

§ sup

t°0

t´✓p}f
0

}Lr

0

,s

0

puq ` t}f
1

}Lr

1

,s

1

puqq § B}f}Lr,8puq.

Next, we will use this interpolation to study the behavior in p of the Lp,8 Ñ Lp,8

constant for operators under the hypotheses of Rubio de Francia’s Theorem 1.1. The
boundedness from which we will start will be of restricted weak-type pp

0

, p
0

q, instead of
strong-type. The result we get is the following:

Theorem 5.2. Let 1 † p
0

† 8, and let T be a sublinear operator such that

T : Lp
0

,1pwq ›Ñ Lp
0

,8pwq
is bounded for every w P Ap

0

with constant 'p}w}A
p

0

q, where ' is an increasing function
on p0,8q. Then, for every u P A

1

and 1 † p † p
0

,

T : Lp,8puq ›Ñ Lp,8puq (5.6)

is bounded with constant

«

ˆ

2pp
0

p ´ 1

˙

2p

0

p`1 ` p2
0

p
0

´ p

�

'

˜

ˆ

2pp
0

´ 1q
p ´ 1

˙p
0

´1

}u}A
1

¸

pp`1qpp
0

´pq
pp2p

0

´p´1q

' p}u}A
1

q p

0

pp´1q
pp2p

0

´p´1q }u}
1

p

´ 1

p

0

A
1

.

In particular, if 'ptq “ t↵ for some ↵ ° 0 and u P A
1

is fixed, then the boundedness
constant behaves like

1

pp ´ 1q↵pp
0

´1q`p
0

when p is close to one.
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Proof. Let 1 † p † p
0

and u P A
1

Ñ Ap
0

. If we extrapolate down to p`1

2

by means of
Theorem 1.8, we get that

T : L
p`1

2

, p`1

2p

0 puq ›Ñ L
p`1

2

,8puq
with constant less than or equal to

M
0

“ }u}
2

p`1

´ 1

p

0

A
1

'

˜

ˆ

2pp
0

´ 1q
p ´ 1

˙p
0

´1

}u}A
1

¸

.

Moreover, our hypothesis is that

T : Lp
0

,1puq ›Ñ Lp
0

,8puq
with constant

M
1

“ 'p}u}A
p

0

q § 'p}u}A
1

q.
Therefore, we can interpolate by Lemma 5.1 with

r
0

“ p`1

2

, s
0

“ p`1

2p
0

r
1

“ p
0

, s
1

“ 1,

and the corresponding boundedness constants M
0

and M
1

. We obtain (5.6) for the fixed
p, which lies in pr

0

, r
1

q “ `

p`1

2

, 1
˘

, with constant
«

ˆ

2pp
0

p ´ 1

˙

2p

0

p`1 ` p2
0

p
0

´ p

�

M1´✓
0

M ✓
1

,

where
✓ “ p

0

pp ´ 1q
pp2p

0

´ p ´ 1q , 1 ´ ✓ “ pp ` 1qpp
0

´ pq
pp2p

0

´ p ´ 1q .
If we replace the expressions of ✓ and 1 ´ ✓, we get the sought-after constant. Finally,
if we consider 'ptq “ t↵ and u P A

1

fixed, it is easy to check that the behavior of the
constant is like

1

pp ´ 1q↵pp
0

´1q`p
0

when p is close to 1.

For simplicity, from now on we will adopt the following notation:

log

1

pxq “ 1 ` log`pxq and logkpxq “ log

1

logk´1

pxq, for k ° 1,

where log` denotes the positive part of the logarithm. Let us state a lemma that will
become a useful computation for the rest of this chapter.
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Lemma 5.3. Let 1 † p
0

† 8, m ° 0 and A ° 0. We have that

I “ inf

1†p§p
0

A1{p

pp ´ 1qm À A log

m
1

1

A
,

where the constant in the inequality depends on p
0

.

Proof. For the sake of simplicity, we will prove it for m “ 1, though the general case is
identical. Notice that

I “ inf

1†p§p
0

A1{p

pp1 ´ 1{pq « inf

1†p§p
0

A1{p

1 ´ 1{p “ inf

1{p
0

§x†1

Ax

1 ´ x
,

since 1{p
0

§ 1{p † 1 (i.e., 1{p « 1). Now, let us consider two cases:

• A • 1:
We have that spxq “ Ax

1´x
and s1pxq “ Axp1´xq logA`Ax

p1´xq2 ° 0 for every 0 † x † 1.
Hence,

I « inf

1{p
0

§x†1

Ax

1 ´ x
“ A1{p

0

1 ´ 1{p
0

« A1{p
0 § A “ A log

1

1

A
.

• A † 1:
Now, s1prxq “ 0 for rx “ 1 ` 1

logA
† 1. This is a minimum and therefore,

I «
#

Arx

1´rx
, if rx • 1{p

0

,
A1{p

0

1´1{p
0

, if rx † 1{p
0

.

We have rx • 1{p
0

if and only if A § e
p

0

1´p

0 “: C
0

, with 0 † C
0

† 1.
If 0 † A § C

0

† 1, then

I « A1` 1

logA

´ 1

logA

« A log

1

A
“ A log`

1

A
§ A log

1

1

A
.

If C
0

† A † 1, then A
C

0

° 1 and

I « inf

1{p
0

§x†1

pA{C
0

qx
1 ´ x

Cx
0

§ C1{p
0

0

inf

1{p
0

§x†1

pA{C
0

qx
1 ´ x

À C1{p
0

0

A

C
0

À A log

1

1

A
,

using the estimate in Case A • 1 with A
C

0

.
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Remark 5.4. At some point, we will also need the following, similar estimate:

I “ inf

1†p§p
0

log

1

ˆ

1

p ´ 1

˙

A1{p

p ´ 1

À A log

1

1

A
log

2

1

A
.

Proof. Let us go over the proof of the previous lemma and see what changes we have to
make. As before, we compute

I « inf

1{p
0

§x†1

log

1

ˆ

1

1 ´ x

˙

Ax

1 ´ x
.

The case A • 1 is the same, with I À A. Now, consider again the point rx “ 1` 1

logA
† 1,

which we know lies in r1{p
0

, 1q if, and only if A § C
0

. In such a case, we clearly have that

I À log

1

ˆ

1

1 ´ rx

˙

Arx

1 ´ rx
“ log

1

ˆ

log

1

A

˙

A1` 1

logA

log

1

A
À A log

1

1

A
log

2

1

A
.

On the other hand, if C
0

† A † 1,

I À C1{p
0

0

inf

1{p
0

§x†1

log

1

ˆ

1

1 ´ x

˙ pA{C
0

qx
1 ´ x

À C1{p
0

´1

0

A À A log

1

1

A
log

2

1

A
.

Let us go back to the computation of Lp,8 Ñ Lp,8 norms. Now, we will show a result
in the spirit of Theorem 5.2 but, this time, considering operators under the hypotheses of
Theorem 1.7 instead. We know that this is a stronger condition to assume on an operator
(see [28, Theorem 3.11]), so the Lp,8 Ñ Lp,8 constant that we will get should be better
behaved than the one in Theorem 5.2.

Theorem 5.5. Let 1 † p
0

† 8, and let T be a sublinear operator such that

T : Lp
0

,1pwq ›Ñ Lp
0

,8pwq
is bounded for every w P pAp

0

with constant 'p}w}
pA
p

0

q, where ' is an increasing function
on p0,8q. Then, for every u P A

1

, 1 † p † p
0

and 0 † " § p
0

´ 1,

T : Lp,8puq ›Ñ Lp,8puq (5.7)

is bounded with constant
«

ˆ

pp1 ` "q
p ´ 1

˙

1`"
` p2

0

p
0

´ p

�

ˆ

1

"

˙

p

0

´p

ppp
0

´1q }u}
p

0

´p

p

A
1

'
´

}u}1{p
0

A
1

¯

.

In particular, if u P A
1

is fixed and p is close to one, then the boundedness constant
behaves like

log

1

ˆ

1

p ´ 1

˙

1

p ´ 1

.
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Proof. In [28], the authors prove that from these hypotheses we can deduce that, for
1 † p

1

§ p
0

and u P A
1

,
T : L1, 1

p

1 puq ›Ñ L1,8puq
with constant

M
0

“ 1

p
1

´ 1

}u}1´ 1

p

0

A
1

'
´

}u}1{p
0

A
1

¯

.

Moreover, our hypothesis is

T : Lp
0

,1puq ›Ñ Lp
0

,8puq
with constant

M
1

“ 'p}u}
pA
p

0

q § 'p}u}1{p
0

A
1

q.
Therefore, we can interpolate using Lemma 5.1 with

r
0

“ 1, s
0

“ 1

p
1

r
1

“ p
0

, s
1

“ 1,

and the corresponding boundedness constants M
0

and M
1

. We obtain (5.7) for every
p P pr

0

, r
1

q “ p1, p
0

q with constant
„ˆ

pp
1

p ´ 1

˙p
1

` p
0

p

p
0

´ p
` p

0

⇢ˆ

1

p
1

´ 1

˙

1´✓
}u}

´

1´ 1

p

0

¯

p1´✓q
A

1

'p
0

´

}u}1{p
0

A
1

¯

1´✓`✓
.

Since
✓ “ p

0

pp ´ 1q
ppp

0

´ 1q , 1 ´ ✓ “ p
0

´ p

ppp
0

´ 1q ,
we can rewrite the constant as

„ˆ

pp
1

p ´ 1

˙p
1

` p2
0

p
0

´ p

⇢ˆ

1

p
1

´ 1

˙

p

0

´p

ppp
0

´1q }u}
p

0

´p

pp

0

A
1

'p
0

´

}u}1{p
0

A
1

¯

.

If we set p
1

“ 1 ` ", we get the first part of the result, since the condition 1 † p
1

§ p
0

is
equivalent to 0 † " § p

0

´ 1. Now, if we fix u P A
1

and take p close to one, notice that
the previous constant is equivalent to

C

"pp ´ 1q1`" ,

with a constant C independent of " and p. In particular, we have that T satisfies (5.7)
with constant equivalent to the infimum of the previous expression over " P p0, p

0

´ 1q.
Without loss of generality, assume that

"
0

“ 1

log

1

p´1

† p
0

´ 1.
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If we write A “ 1

p´1

, we want to compute the infimum of A1`"

"
. This can be computed by

differentiation (exactly as we did in Lemma 5.3) and it is attained at "
0

“ 1

logA
, which

lies in p0, p
0

´ 1q by assumption. Hence, we can take as a boundedness constant

A1`"
0

"
0

“
ˆ

log

1

p ´ 1

˙ ˆ

1

p ´ 1

˙

1` 1

log

1

p´1 À log

1

ˆ

1

p ´ 1

˙

1

p ´ 1

.

We see that in this case we can consider any function ' (not necessarily a power of t)
and the blow-up that we obtain is independent of '. Even though the constant is not
of the form 1

pp´1qm , we will see that the extrapolation can be easily modified to admit a
logarithmic factor. The rest of the chapter is organized as follows. First we will introduce,
in a more precise way, Yano’s classical theory. Then we will explain the new results that
have been found in [33] for operators mapping Lp,8 into itself. After this, we will make
some contributions in the setting of Lorentz spaces Lp,q, and finally, we will come back to
this connection with Rubio de Francia’s theory to see what we get from this behavior of
the constants when p tends to 1.

5.2 Classical results
Yano’s extrapolation theory goes back to 1951, when S. Yano published a result [127] for
sublinear operators of strong-type pp, pq:
Theorem 5.6. Fix pX,µq, pY, ⌫q a couple of finite measure spaces, p

0

° 1 and m ° 0. If
T is a sublinear operator such that, for every 1 † p § p

0

,

T : Lppµq ›Ñ Lpp⌫q
is bounded with norm controlled by C

pp´1qm , then,

T : LplogLqmpµq ›Ñ L1p⌫q.

Recall that LplogLqmpµq is the space of µ-measurable functions such that

}f}LplogLqmpµq “
ª 8

0

f˚
µ ptq logm

1

1

t
dt † 8.

As usual, f˚
µ denotes the decreasing rearrangement of f with respect to µ, defined by

f˚
µ ptq “ inf

 

y ° 0 : �µf pyq § t
(

,
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where �µf pyq “ µ ptx : |fpxq| ° yuq was the distribution function of f with respect to µ.
In general, given natural numbers 1 § j

1

† j
2

† ¨ ¨ ¨ † jn and positive real numbers
m

1

, ...,mn ° 0, we define the associated log-type space as follows:

Lplogj
1

Lqm1 ¨ ¨ ¨ plogj
n

Lqmnpµq “ tf µ-measurable : }f}Lplog
j

1

Lqm1 ¨¨¨plog
j

n

Lqmn pµq † 8u,

where

}f}Lplog
j

1

Lqm1 ¨¨¨plog
j

n

Lqmn pµq “
ª 8

0

f˚
µ ptq logm1

j
1

1

t
¨ ¨ ¨ logmn

j
n

1

t
dt.

Unlike in previous chapters, now, it will be more convenient to work with the decreasing
rearrangement when dealing with Lp spaces. More precisely, we will use the following
equivalent definition for the Lp norm:

}f}Lppµq “
ˆ

ª

Rn

|fpxq|pdµpxq
˙

1{p
“

ˆ

ª 8

0

f˚
µ ptqpdt

˙

1{p
.

Even though Yano’s original statement was for finite measures, it can actually be extended
to �-finite measures (that is, measures defined on a �-algebra ⌃ of subsets of a set ⌦ with
the latter being a countable union of measurable sets with finite measure) and improved
in order to have weaker hypotheses and a better range space. More precisely, one can
prove that for �-finite measures µ and ⌫, if a sublinear operator T satisfies

T : Lp,1pµq ›Ñ Lpp⌫q

with constant essentially controlled by 1

pp´1qm , then

T : LplogLqmpµq ›Ñ Emp⌫q,

where Emp⌫q is the space of ⌫-measurable functions such that

}f}E
m

p⌫q “ sup

t°0

tf˚˚
⌫ ptq

log

m
1

t
† 8,

and f˚˚
⌫ ptq “ 1

t

≥t

0

f˚
⌫ psqds . See [19] and [20] for more details on this extension.

Later, N. Yu Antonov [3] proved that there is almost everywhere convergence for
the Fourier series of every function in L logL log

3

LpTq. To do so, he checked that the
Carleson maximal operator satisfied a certain estimate that ensured its boundedness on
L logL log

3

LpTq and hence, the almost everywhere convergence for the Fourier series of
every function in this space. Further study (see [4], [30], [31], [109]) showed that with
Antonov’s ideas, it is possible to write an extrapolation result that we will refer to as
Antonov’s extrapolation theorem:

107



Chapter 5. Yano’s Extrapolation Theory

Theorem 5.7. Fix �-finite measures µ and ⌫, 1 † p
0

† 8 and m ° 0. If T is a sublinear
operator mapping

Lppµq ›Ñ Lp,8p⌫q
with constant controlled by C

pp´1qm for every 1 † p § p
0

, then

T : LplogLqm log

3

Lpµq ›Ñ Rmp⌫q, (5.8)

where Rmp⌫q is the space of ⌫-measurable functions such that

}f}R
m

p⌫q “ sup

t°0

tf˚
⌫ ptq

log

m
1

t
† 8.

For the weak-Lp space, Lp,8p⌫q, we also have an equivalent definition in terms of the
decreasing rearrangement that will be used:

}f}Lp,8p⌫q “ sup

t°0

t1{pf˚
⌫ ptq “ sup

y°0

y�⌫f pyq1{p.

5.3 Extrapolation on Lp,8 spaces
In the context of Lp and weak-Lp spaces, another result has been recently obtained in [33]
for operators mapping

T : Lp,8pµq ›Ñ Lp,8p⌫q
with constant controlled by C

pp´1qm near p “ 1, yielding a better estimate than if we simply
apply Antonov’s Theorem 5.7. Before stating it, we need the following definition, as in
[33]:

Definition 5.8. Given a quasi-Banach rearrangement invariant space X over a measure
space p⌦, µq, for each p • 1 we denote

rXsp “
#

g P Lp,8pµq : supt§y t
1{pg˚

µptq
y

�r0,1spyq P rX

+

,

endowed with the quasi-norm

}g}rXs
p

“ }g}Lp,8pµq `
›

›

›

›

›

supt§y t
1{pg˚

µptq
y

�r0,1spyq
›

›

›

›

›

rX

,

and where rX denotes the canonical representation of the space X on the line p0,8q by
means of f˚

µ (see [5, Chapter 2]).
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Definition 5.9. Let X be a quasi-Banach rearrangement invariant space over a measure
space p⌦, µq such that its quasi-norm can be written by means of an integral over p0,8q.
That is, for every f P X,

}f}X “
ª 8

0

�Xpf˚
µ ptq, tqdt.

Then, we define the space

X “
"

f µ-measurable :

ª

1

0

�Xpf˚
µ ptq, tqdt † 8

*

.

Example 5.10. If X “ L logLpµq, then L logLpµq is the set of µ-measurable functions
such that

ª

1

0

f˚
µ ptq log

1

1

t
dt † 8.

Also, recall that we say that a measure space p⌦, µq is non-atomic (or simply µ is a
non-atomic measure) if, for any µ-measurable set E Ñ ⌦ with µpEq ° 0, there exists a
µ-measurable subset F Ñ E such that µpEq ° µpF q ° 0. This is the main result in [33]:

Theorem 5.11. Fix a couple of �-finite, non-atomic measures µ and ⌫, 1 † p
0

† 8,
m ° 0, and let

T : Lp,8pµq ›Ñ Lp,8p⌫q
be a bounded sublinear operator with constant controlled by C

pp´1qm for every 1 † p § p
0

.
Then,

T :

“

LplogLqm´1

log

3

Lpµq‰

1

›Ñ Rmp⌫q,
where Rmp⌫q is the space of ⌫-measurable functions such that

}f}R
m

p⌫q “ sup

t°0

tf˚
⌫ ptq

log

m
1

t
† 8.

As we anticipated at the beginning of this section, this result is better than if we just
apply Antonov’s theorem to T (which would give that T satisfies (5.8)). This is due to
the fact that

LplogLqm log

3

L à “

LplogLqm´1

log

3

Lpµq‰

1

,

as shown in [33].
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5.4 An extension to Lp,q spaces
In this section, we will see what happens if we introduce Lorentz spaces Lp,q, with values
p † q † 8, instead of Lp,8. As we did for Lp and Lp,8, we point out that the spaces
Lp,qpµq can be written in terms of the decreasing rearrangement, since

}f}Lp,qpµq “
ˆ

p

ª 8

0

pt�µf ptq1{pqq dt
t

˙

1{q
“

ˆ

ª 8

0

f˚
µ ptqqtq{p´1dt

˙

1{q
.

We will present two extrapolation results, for operators:

• T : Lppµq ›Ñ Lp,qp⌫q,
• T : Lp,qpµq ›Ñ Lp,qp⌫q.

In the first case we will follow the ideas of Antonov’s theorem (as presented in [27]) and
in the second one, we will follow [33].

5.4.1 Extrapolation of T : Lp Ñ Lp,q near p “ 1

Here, we will fix a couple of �-finite measures µ and ⌫, 1 † p
0

§ q † 8 and m ° 0, and
we will assume that we have a bounded sublinear operator

T : Lppµq ›Ñ Lp,qp⌫q, (5.9)

with constant controlled by C
pp´1qm for every 1 † p § p

0

. Before tackling the problem
of obtaining endpoint estimates close to p “ 1, let us recall the definition of a general
Lorentz space:

Definition 5.12. Given q P p0,8q, a measure ⌫ and a weight !, we define

⇤

q
⌫p!q “

#

f ⌫-measurable : }f}
⇤

q

⌫

p!q :“
ˆ

ª 8

0

pf˚
⌫ ptqqq!ptqdt

˙

1{q
† 8

+

.

Notice that this definition includes most of the spaces that we have worked with so
far: Lp,qp⌫q “ ⇤

q
⌫ptq{p´1q, Lpp⌫q “ ⇤

p
⌫p1q or L logLp⌫q “ ⇤

1

⌫plog
1

p1{sqq. Another notion
that we will need to define is the Galb of a quasi-Banach space:

Definition 5.13. Given a quasi-Banach space X, we define

GalbpXq :“
#

tcnun :

8
ÿ

n“0

cnfn P X whenever }fn}X § 1

+

,

endowed with the norm }tcnun}
GalbpXq “ sup}f

n

}
X

§1

›

›

›

›

8
∞

n“0

cnfn

›

›

›

›

X

.
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This concept was introduced in [123] and studied in the context of Lorentz spaces
in [22]. Naturally, if X is a Banach space, then GalbpXq “ `1, but, for instance,
GalbpL1,8pµqq “ ` log `. This fact is also known as the Stein-Weiss lemma, and can
be found in [114]. We will start by proving an estimate for functions in the unit ball of
L8pµq, that is, µ-measurable functions that are essentially bounded by 1.
Lemma 5.14. Let T be a sublinear operator as in (5.9). Then, for every f P L8pµq such
that }f}8 § 1, we have

}Tf}
⇤

q

⌫

p!q À }f}L1pµq log
m
1

1

}f}L1pµq
,

where !ptq “ minttq´1, tq{p
0

´1u.
Proof. Let 1 † p § p

0

. On the one hand, by our boundedness hypothesis and the fact
that }f}8 § 1,

}Tf}Lp,qp⌫q À }f}Lppµq
pp ´ 1qm § }f}1{p

L1pµq
pp ´ 1qm .

On the other hand, since 1 † p § p
0

,

}Tf}Lp,qp⌫q •
ˆ

ª

1

0

pTfq˚
⌫ptqqtq´1dt `

ª 8

1

pTfq˚
⌫ptqqtq{p

0

´1dt

˙

1{q

“
ˆ

ª 8

0

pTfq˚
⌫ptqq!ptqdt

˙

1{q
“ }Tf}

⇤

q

⌫

p!q.

Bringing both estimates together and taking infimum over p on both sides, we get that

}Tf}
⇤

q

⌫

p!q À inf

1†p§p
0

}f}1{p
L1pµq

pp ´ 1qm À }f}L1pµq log
m
1

1

}f}L1pµq
,

by Lemma 5.3.
Lemma 5.15. Given 1 † p

0

§ q † 8, we have that

Galbp⇤q
⌫p!qq “ `plog `q1{q1

,

where !ptq “ minttq´1, tq{p
0

´1u and 1{q ` 1{q1 “ 1.
Proof. This lemma is a direct consequence of [22, Corollary 3.7], by which we only need to
check that W psq{sq is equivalent to a bounded, decreasing function. In [22], the authors
work with ⇤qp!q, taking ⌫ to be the Lebesgue measure, but when it comes to the Galb,
the way functions are rearranged plays no role and we can apply their result. Here, as
usual, for a weight ! we denote W ptq :“ ≥t

0

!psqds. If we make the computations, we get
that

W psq
sq

“ 1

q
�p0,1qpsq `

ˆ

1 ´ p
0

qsq
` p

0

qsq´q{p
0

˙

�r1,8qpsq,
which is decreasing and bounded by 1{q.
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With this, we are ready to prove our main result.

Theorem 5.16. Fix �-finite measures µ and ⌫, 1 † p
0

§ q † 8, m ° 0, and let

T : Lppµq ›Ñ Lp,qp⌫q
be a bounded sublinear operator with constant controlled by C

pp´1qm for every 1 † p § p
0

.
Then

T : LplogLqmplog
3

Lq1{q1pµq ›Ñ ⇤

q
⌫p!q

is bounded, with !ptq “ minttq´1, tq{p
0

´1u.
Notice that this is consistent with Theorem 5.7 if we formally take q “ 8.

Proof. We will follow the general scheme introduced in [27]. Let f be a positive function
and write

f “
8
ÿ

k“0

2

2

k

rfk, (5.10)

with
rfk “

"

1

2

f�t0§f§2u, if k “ 0,
1

2

2

k

f�t22k´1†f§2

2

ku, if k • 1.

It holds that } rfk}8 § 1 for every k • 0. Assume that f P L1pµq X L8pµq, and hence, the
sum in (5.10) is finite. Now, by sublinearity and the lattice property of ⇤q

⌫p!q,

}Tf}
⇤

q

⌫

p!q §
›

›

›

›

›

8
ÿ

k“0

2

2

k |T rfk|
›

›

›

›

›

⇤

q

⌫

p!q
“

›

›

›

›

›

8
ÿ

k“0

2

2

k

Dp} rfk}L1pµqq |T rfk|
Dp} rfk}L1pµqq

›

›

›

›

›

⇤

q

⌫

p!q
,

where Dptq :“ t logm
1

1

t
. But by Lemma 5.14,

›

›

›

›

›

|T rfk|
Dp} rfk}L1pµqq

›

›

›

›

›

⇤

q

⌫

p!q
À 1, k • 0,

and hence, if we denote Ak :“ 2

2

k

Dp} rfk}L1pµqq for every k • 0, we get that

}Tf}
⇤

q

⌫

p!q À sup

}g
k

}
⇤

q

⌫

p!q§1

›

›

›

›

›

8
ÿ

k“0

Akgk

›

›

›

›

›

⇤

q

⌫

p!q
“ }tAkuk}

Galbp⇤q

⌫

p!qq “ }tAkuk}`plog `q1{q1 ,

by Lemma 5.15. Now, define the function 'ptq :“ log

m
1

t log1{q1
3

t, which is essentially
constant on r0, 2s and on the intervals r22k´1

, 22
ks for every k • 0. The statement for r0, 2s

is clear, so let us check the latter:

ck :“ 'p22kq « 2

km
log

1{q1
1

k « 2

m
2

km
log

1{q1
1

pk ` 1q “ ck`1

,
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and since ' is increasing, we have that 'ptq « ck for every t P r22k´1

, 22
ks. Consequently,

if we define

ak “
"

≥

0§f§2

f'pfqdµ, if k “ 0,
≥

2

2

k´1†f§2

2

k

f'pfqdµ, if k • 1,

we obtain, for k • 1,

Ak “ 2

2

k

Dp} rfk}L1pµqq “ 2

2

k

D

ˆ

1

2

2

k

ª

2

2

k´1†f§2

2

k

fdµ

˙

« 2

2

k

D

ˆ

1

2

2

kck

ª

2

2

k´1†f§2

2

k

f'pfqdµ
˙

“ 2

2

k

D

ˆ

ak
2

2

kck

˙

,

and the analogous for k “ 0. Therefore, we can write

}Tf}
⇤

q

⌫

p!q À
›

›

›

›

"

2

2

k

D

ˆ

ak
2

2

kck

˙*

k

›

›

›

›

`plog `q1{q1
.

We claim that the right-hand side of the previous expression is uniformly bounded when-
ever takuk P `1 with }taku}`1 “ 1. If we prove this, we would have that }Tf}

⇤

q

⌫

p!q À 1 for
every function f P L8pµq such that

1 “
8
ÿ

k“0

ak “
ª

Rn

f'pfqdµ « }f}LplogLqmplog
3

Lq1{q1 pµq,

and would get the sought-after boundedness on L8pµq X LplogLqmplog
3

Lq1{q1pµq. But
since this is a dense subspace of LplogLqmplog

3

Lq1{q1pµq, we would have completed the
proof. So let us show our claim:

›

›

›

›

"

2

2

k

D

ˆ

ak
2

2

kck

˙*

k

›

›

›

›

`plog `q1{q1
À

8
ÿ

k“1

log

1{q1
1

k
ak

2

km
log

1{q1
1

k
log

m
1

2

2

k

2

km
log

1{q1
1

k

ak

«
8
ÿ

k“1

ak
2

km
log

m
1

2

2

k

ak
À

8
ÿ

k“1

ak
2

km
log

m
1

2

2

k `
8
ÿ

k“1

ak
2

km
log

m
1

1

ak

À
8
ÿ

k“1

ak ` 1 « 1,

where in the first estimate we use the definition of D and ck « 2

km
log

1{q1
1

k, and in the last
one we use that ak tends to zero as k tends to infinity in order to conclude that ak logm

1

1

a
k

is bounded and the second series is finite.
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5.4.2 Extrapolation of T : Lp,q Ñ Lp,q near p “ 1

In this part, we will assume that p⌦
1

, µq and p⌦
2

, ⌫q are �-finite, non-atomic measure
spaces. This, for instance, guarantees that every decreasing, right-continuous function on
p0,8q is the decreasing rearrangement with respect to µ of some µ-measurable function
(see [5, Chapter 2]). In [33], the authors obtain an extrapolation result for operators
T : Lp,8pµq Ñ Lp,8p⌫q. When both µ and ⌫ are the Lebesgue measure, they apply
Antonov’s extrapolation theorem to the composition TM , where M denotes the Hardy-
Littlewood maximal operator:

Mfpxq “ sup

QQx

1

|Q|
ª

Q

|fpyq|dy, f P L1

loc

.

It is easily shown that M is bounded from Lp into Lp,8 with a uniform constant indepen-
dent of p (when p is close to 1), and hence TM : Lp Ñ Lp,8 is bounded with the same
constant }T }Lp,8ÑLp,8 as T . The key estimate for this operator is that (see [5, Chapter 3])

pMfq˚ptq « f˚˚ptq “ 1

t

ª t

0

f˚psqds,

and hence, for general �-finite, non-atomic measures, it is enough to consider some oper-
ator such that its decreasing rearrangement with respect to µ is equivalent to f˚˚

µ . Let us
give a constructive example:

Definition 5.17. Let p⌦
1

, µ
1

q and p⌦
2

, µ
2

q be �-finite measure spaces. A map ⇢ : ⌦
1

Ñ ⌦

2

is said to be a measure-preserving transformation if, whenever E is a µ
2

-measurable set,
then ⇢´1pEq is a µ

1

-measurable set and

µ
1

p⇢´1pEqq “ µ
2

pEq.
Now, let ⇢ be a measure-preserving transformation between p⌦

1

, µq and p0,8q with
the Lebesgue measure3. Since these transformations induce equimeasurability (see [5,
Chapter 2, Proposition 7.2]), if we define

Mµfpxq “ f˚˚
µ p⇢pxqq “ 1

⇢pxq
ª ⇢pxq

0

f˚
µ psqds,

it holds that
pMµfq˚

µ “ f˚˚
µ . (5.11)

Now, let us fix 1 † p
0

§ q † 8, m ° 0, and assume that we have a bounded sublinear
operator T : Lp,qpµq Ñ Lp,qp⌫q, with constant less than or equal to C

pp´1qm for every
1 † p § p

0

. We will follow the ideas in [33] to obtain an endpoint estimate near p “ 1.
First, however, we will need to study the boundedness of Mµ : Lppµq Ñ Lp,qpµq.

3Actually, if p⌦1, µq is a finite measure space, then the transformation will take values in p0, µp⌦1qq
instead of p0,8q. If this were the case, everything would be identical with the obvious changes.
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Lemma 5.18. Let 1 † p § q † 8. Then, the operator Mµ : Lppµq Ñ Lp,qpµq is bounded
with optimal constant equivalent to

ˆ

p

q

˙

1{q ˆ

1

p ´ 1

˙

1{q
.

Proof. This lemma is a particular case of [103, Theorem 2]. Nevertheless, in this article
the author is not concerned about the dependence on p of the constants, so we need to go
over the proof and check that the equivalence between the given bound for Mµ and the
real one is stable at least when p tends to 1

`. This can be done for general weights !
1

,!
2

and the result gives us that, for 1 † p § q † 8, Mµ : ⇤

p
µp!

1

q Ñ ⇤

q
µp!

2

q if and only if

A “ sup

r°0

ˆ

ª r

0

!
2

pxqdx
˙

1{q ˆ

ª r

0

!
1

pxqdx
˙´1{p

† 8,

B “ sup

r°0

ˆ

ª 8

r

!
2

pxq
xq

dx

˙

1{q ˜

ª r

0

ˆ

1

x

ª x

0

!
1

psqds
˙´p1

!
1

pxqdx
¸

1{p1

† 8,

with optimal constant equivalent to A ` B. In our case, !
1

pxq “ 1, !
2

pxq “ xq{p´1 and
making the computations we obtain the desired estimate. We need to mention that in
[103] all the rearrangements are with respect to the Lebesgue measure (they work with
f˚˚), but, since we have (5.11), everything is identical if we work with respect to a general
�-finite, non-atomic measure µ.

Theorem 5.19. Fix µ and ⌫ two �-finite, non-atomic measures, 1 † p
0

§ q † 8, m ° 0

and let
T : Lp,qpµq ›Ñ Lp,qp⌫q

be a bounded, sublinear operator with constant controlled by C
pp´1qm for every 1 † p § p

0

.
Then,

T :

”

LplogLqm`1{q´1plog
3

Lq1{q1pµq
ı

1

›Ñ ⇤

q
⌫p!q

is bounded with !ptq “ minttq´1, tq{p
0

´1u.
Proof. By Lemma 5.18, we have that Mµ is bounded from Lppµq into Lp,qpµq with constant
behaving like 1

pp´1q1{q when p Ñ 1

`, and hence, the composition

TMµ : Lppµq Ñ Lp,qp⌫q
is bounded with constant like 1

pp´1qm`1{q when p tends to 1

`. Now, we apply Theorem 5.16
to conclude that

TMµ : LplogLqm`1{qplog
3

Lq1{q1pµq ›Ñ ⇤

q
⌫p!q
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is bounded. Therefore,

}T pMµfq}
⇤

q

⌫

p!q À
ª 8

0

f˚
µ ptq logm`1{q

1

1

t
log

1{q1
3

1

t
dt

§}f}L1pµq `
ª

1

0

f˚
µ ptq logm`1{q

1

1

t
log

1{q1
3

1

t
dt

«}Mµf}L1,8pµq `
ª

1

0

pMµfq˚
µptq logm`1{q´1

1

1

t
log

1{q1
3

1

t
dt,

where in the last step we need to recall that pMµfq˚
µptq “ 1

t

≥t

0

f˚
µ psqds and apply Fubini’s

theorem. With this, we have shown that

T : E X LplogLqm`1{q´1plog
3

Lq1{q1pµq ›Ñ ⇤

q
⌫p!q,

where
E “  

g P L1,8pµq : g “ Mµf, for some f P L1

loc

pµq(

.

Actually, as we said at the beginning of this section, this is also true if we replace Mµ

by any sublinear operator S satisfying pSfq˚
µ « f˚˚

µ . Taking this into account, by4 [33,
Remark 3.1], we actually have that, for every B ° 0,

T : EB X LplogLqm`1{q´1plog
3

Lq1{q1pµq ›Ñ ⇤

q
⌫p!q,

where
EB “

"

g P L1,8pµq : Dh with
1

B
g˚
µpsq § h˚˚

µ psq § Bg˚
µpsq

*

,

and using the same argument as in [33, Theorem 3.3 and 3.5] we get the result.

Just as a remark, we see that the extrapolation result obtained in [33] for operators
mapping Lp,8pµq into Lp,8p⌫q (stated in Theorem 5.11) is still true if we weaken the
hypotheses to operators with domain Lp,p1pµq instead of Lp,8pµq. The result can be stated
as follows:

Theorem 5.20. Fix a couple of �-finite, non-atomic measures µ and ⌫, 1 † p
0

† 8,
m ° 0, and let

T : Lp,p1pµq ›Ñ Lp,8p⌫q
be a bounded sublinear operator with constant controlled by C

pp´1qm for every 1 † p § p
0

.
Then,

T :

“

LplogLqm´1

log

3

Lpµq‰

1

›Ñ Rmp⌫q
is bounded with Rmp⌫q as in Theorem 5.11.

4At this point is where the hypothesis of non-atomic measures is needed.
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Proof. The key to this improvement is given by the fact that Mµ maps Lppµq into the
smaller5 space Lp,p1pµq also with a uniform constant independent of p as p Ñ 1

`, and
hence, we have that

TMµ : Lppµq ›Ñ Lp,8p⌫q
with constant 1

pp´1qm for values of p near 1 and the proof follows exactly as in [33]. To
prove this statement we use Lemma 5.18 with q “ p1 and check that the constant does
not blow up as p tends to 1

`.

5.5 A different behavior of the constant
In view of Theorem 5.5, it is interesting to know if we can apply this theory to operators

T : Lp,8pµq ›Ñ Lp,8p⌫q
whose boundedness constant behaves like

log

1

ˆ

1

p ´ 1

˙

1

p ´ 1

,

instead of 1

pp´1qm . The following proposition presents a slight modification of Theorem 5.11
so that we can apply it to an operator of this type.

Theorem 5.21. Let 1 † p
0

† 8. Fix µ and ⌫ two �-finite measures and let T be a
sublinear operator. If we define

Cp « log

1

ˆ

1

p ´ 1

˙

1

p ´ 1

,

then:

(i) Antonov type: If T : Lppµq ›Ñ Lp,8p⌫q is bounded for every 1 † p § p
0

with
constant Cp, then

T : L logL log

2

L log

3

Lpµq ›Ñ pR
1

p⌫q.
(ii) Carro - Tradacete type: If T : Lp,8pµq ›Ñ Lp,8p⌫q is bounded for every 1 † p § p

0

with constant Cp, then

T : rL log

2

L log

3

Lpµqs
1

›Ñ pR
1

p⌫q.
Here, pR

1

p⌫q is the space of ⌫-measurable functions such that

}f}
pR
1

p⌫q “ sup

t°0

tf˚
⌫ ptq

log

1

t log
2

t
† 8.

5In [33] the authors use that Mµ maps L

ppµq into L

p,8pµq â L

p,p1 pµq uniformly in p « 1.
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Idea of the proof. The first step in the proof of Antonov’s result (which goes exactly as
the proof of Theorem 5.16) is obtaining an estimate for integrable, bounded functions f .
In this case, we would get

pTfq˚
⌫ptq § inf

1†p§p
0

log

1

ˆ

1

p ´ 1

˙

1

p ´ 1

ˆ}f}L1pµq
t

˙

1{p
.

Using Remark 5.4, we can compute the infimum and

pTfq˚
⌫ptq À }f}L1pµq

t
log

1

t

}f}L1pµq
log

2

t

}f}L1pµq
.

Hence
}Tf}

pR
1

p⌫q “ sup

t°0

tpTfq˚
⌫ptq

log

1

t log
2

t
À Dp}f}L1pµqq,

where Dptq “ t log
1

1

t
log

2

1

t
. The proof now continues as in the classical case but with

this new function D that adds the log

2

-factor to the outcome. Concerning piiq, the idea
(at least when µ “ ⌫ are the Lebesgue measure, otherwise replace M by Mµ and argue
as in Theorem 5.19), is to apply Antonov’s result to the composition TM , where M is the
Hardy-Littlewood maximal operator. In our case, TM maps Lp into Lp,8 with constant
Cp, so we need piq instead of Antonov’s classical theorem in order to conclude that

TM : L log

1

L log

2

L log

3

L ›Ñ pR
1

is bounded. If we write what this means, we have

}T pMfq}
pR
1

À
ª 8

0

f˚ptq log
1

1

t
log

2

1

t
log

3

1

t
dt À }Mf}

1,8 `
ª

1

0

pMfq˚ptq log
2

1

t
log

3

1

t
dt.

Therefore, we have shown that if E is the set of functions g P L1,8 such that g “ Mf for
some locally integrable function f , then

T : E X L log

2

L log

3

L ›Ñ pR
1

. (5.12)

From this point on, the proof follows exactly as in [33], but now (5.12) translates into
boundedness for functions in the space rL log

2

L log

3

Ls
1

.

5.6 Back to the Rubio de Francia setting
Recall that, at the beginning of this chapter, we investigated the behavior in p of the
boundedness constants for operators related to the extrapolation theory of Rubio de
Francia. Let us see what we can deduce from that. We will start with the classical case
of the Ap theory. The first natural step is to use Yano’s theorem in its original Lp Ñ Lp

version (see Section 5.2) with the boundedness constant (5.1) that comes from Rubio de
Francia’s extrapolation. The (standard) result is the following:
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Theorem 5.22. Let 1 † p
0

† 8, � ° 0 and let T be a sublinear operator such that

T : Lp
0pwq ›Ñ Lp

0pwq
is bounded for every w P Ap

0

with constant Cp
0

}w}�A
p

0

. Then,

T : LplogLq�pp
0

´1qpRnq ›Ñ E�pp
0

´1qpRnq
is also bounded.

Next, we will start from a restricted weak-type pp
0

, p
0

q boundedness instead and ex-
trapolate an Lp,8 Ñ Lp,8 estimate. The class of operators to which these two results
apply is the same, since interpolation together with Rubio de Francia’s extrapolation and
the Reverse Hölder property of Ap weights yield that a sublinear operator of restricted
weak-type pp

0

, p
0

q for every weight in Ap
0

is also of strong-type pp
0

, p
0

q for every weight in
this class. However, their boundedness constant can improve significantly, as we pointed
out in (5.2) and (5.3) with the maximal operator M .

Theorem 5.23. Let 1 † p
0

† 8, ↵ ° 0 and let T be a sublinear operator such that

T : Lp
0

,1pwq ›Ñ Lp
0

,8pwq
is bounded for every w P Ap

0

with constant Cp
0

}w}↵A
p

0

. Then, for every u P A
1

,

T :

“

LplogLqp↵`1qpp
0

´1q
log

3

Lpuq‰

1

›Ñ Rp↵`1qpp
0

´1qpuq
is also bounded.

Proof. We just need to use Theorem 5.2 to conclude that such an operator maps

T : Lp,8puq ›Ñ Lp,8puq
with constant behaving like 1

pp´1q↵pp
0

´1q`p

0

, and then use Theorem 5.11 to extrapolate.

If we had ↵ “ �, then
“

LplogLqp↵`1qpp
0

´1q
log

3

LpRnq‰

1

à LplogLq↵pp
0

´1qpRnq,
but as we mentioned above, for a given operator T , the value of ↵ in Theorem 5.23
might be much better (i.e. smaller) than the � in Theorem 5.22. Moreover, notice that
Theorem 5.23 is valid for every u P A

1

, and not just for the Lebesgue measure. Let us
give an example.

Example 5.24. Consider Mk “ M˝ k¨ ¨ ¨ ˝M , with k • 2. This is an operator that is
under the hypotheses of Rubio de Francia’s theorem but is not bounded from L1 to L1,8,
not even in the unweighted case. Therefore, it is interesting to see what we can obtain at
the endpoint. We know that, for every p ° 1 and w P Ap,
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(i) }Mk}LppwqÑLppwq À }w}
k

p´1

A

p

pp´1qk ,

(ii) }Mk}Lp,1pwqÑLp,8pwq § }Mk}LppwqÑLp,8pwq À }w}
1

p

` k´1

p´1

A

p

pp´1qk´1

.

With (i), we can either apply Yano’s theorem directly with u “ 1, or Theorem 5.22, with
p
0

° 1 and � “ k
p
0

´1

. In both cases, we get that

Mk
: LplogLqkpRnq ›Ñ EkpRnq.

With (ii), we can apply Antonov’s theorem only when u “ 1, and conclude that

Mk
: LplogLqk´1

log

3

LpRnq ›Ñ Rk´1

pRnq.
However, Theorem 5.23 admits any u P A

1

, and, for every " ° 0, starting from p
0

° 1

such that " “ p
0

´1

p
0

` p
0

´ 1, and ↵ “ 1

p
0

` k´1

p
0

´1

, we get that

Mk
:

“

LplogLqk´1`"
log

3

Lpuq‰

1

›Ñ Rk´1`"puq.
Notice that, for u “ 1, the best of the three conclusions is the one coming from Antonov’s
theorem, since the space LplogLqk´1

log

3

LpRnq is larger than both LplogLqkpRnq and
“

LplogLqk´1`"
log

3

LpRnq‰

1

. However, by means of Theorem 5.23, we are able to obtain
endpoint results when u ‰ 1.

This idea of finding an optimal relation between the theories of Rubio de Francia and
Yano has been gathered and further developed in [25]. The other computation that we
carried out at the beginning of this chapter was in Theorem 5.5, where we saw that an
operator T that was of restricted weak-type pp

0

, p
0

q for every weight in pAp
0

was bounded
from Lp,8puq into itself for every u P A

1

and p close to 1 with constant behaving like

log

1

ˆ

1

p ´ 1

˙

1

p ´ 1

.

Now, we can use the extrapolation result in Section 5.5 to conclude the following:

Theorem 5.25. Let 1 † p
0

† 8, and let T be a sublinear operator such that

T : Lp
0

,1pwq ›Ñ Lp
0

,8pwq
is bounded for every w P pAp

0

with constant 'p}w}
pA
p

0

q, where ' is an increasing function
on p0,8q. Then, for every u P A

1

,

T : rL log

2

L log

3

Lpuqs
1

›Ñ pR
1

puq.
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Proof. This is a direct consequence of Theorem 5.5 and Theorem 5.21.

The next result will allow us to obtain a better endpoint estimate for operators under
the hypotheses of Theorem 5.25. As a first approach, we will start by considering only
monotone operators, and then, we will see that in fact, it can be extended to general
sublinear operators.

Definition 5.26. We will say that an operator T is monotone if for every 0 § f § g, it
holds that |Tf | § |Tg|.
Proposition 5.27. Fix an arbitrary weight u on Rn and let T be a sublinear, monotone
operator such that

(i) }T�E}L1,8puq § upEq for every measurable set E, and

(ii) T : L1puq X L8 ›Ñ L1,8
loc

puq is bounded.

Then,
T : L log

2

Lpuq ›Ñ L1,8
loc

puq.
Proof. Take a non-negative function f “ f

0

`f
1

, with f
0

“ f�tf§1u and f
1

“ f�tf°1u. By
density, we can assume without loss of generality that f P L8. Using that T is sublinear,
we have that

|Tf | § |Tf
0

| ` |Tf
1

|,
and hence, }Tf}L1,8

loc

puq À }Tf
0

}L1,8
loc

puq ` }Tf
1

}L1,8
loc

puq. Using (ii), we get that for f
0

,

}Tf
0

}L1,8
loc

puq À }f
0

}L1puq ` }f
0

}8 § }f}L log

2

Lpuq ` 1.

To deal with f
1

, we write

f
1

“
8
ÿ

k“1

f�E
k

«
8
ÿ

k“1

2

k�E
k

, (5.13)

with Ek “ t2k´1 † f § 2

ku. Since f is bounded, this series is in fact finite. Using that T
is monotone and sublinear, we have that

|Tf
1

| «
ˇ

ˇ

ˇ

ˇ

ˇ

T

˜ 8
ÿ

k“1

2

k�E
k

¸

ˇ

ˇ

ˇ

ˇ

ˇ

§
8
ÿ

k“1

2

k|T�E
k

|,

and therefore, using that GalbpL1,8puqq “ ` log `, (i), and upEkq § �uf p2kq, we conclude
that

}Tf
1

}L1,8
loc

puq À
›

›

›

›

›

8
ÿ

k“1

2

k|T�E
k

|
›

›

›

›

›

L1,8
loc

puq
À

8
ÿ

k“1

log

1

pkq2k}T�E
k

}L1,8puq

§
8
ÿ

k“1

log

1

pkq2k�uf p2kq À
ª 8

0

�uf psq log
2

psqds À }f}L log

2

Lpuq.
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Summing up, we have shown that

}Tf}L1,8
loc

puq À }f}L log

2

Lpuq ` 1,

and the result follows by linearity (changing f by ↵f and letting ↵ tend to infinity).

Notice that the hypothesis that T must be monotone is needed because in (5.13)
we have an equivalence instead of an equality. If we want to avoid this monotonicity
assumption, we cannot use the standard dyadic decomposition of a function. In [110],
however, the author presents the following decomposition of a non-negative function f in
an inductive way:

fpxq “
8
ÿ

j“1

ÿ

kPZ
2

k�E
k,j

pxq a.e. x P Rn, (5.14)

where the sets Ek,j depend on f and are defined in such a way that, for every weight u,

upEk,jq § �uf p2k`jq.
We will not give the details of the exact construction, but the idea is very straightforward
(see [110, Lemma 4]). With this identity at hand, let us see how we can get rid of the
monotonicity assumption in the previous proposition:

Theorem 5.28. Fix an arbitrary weight u on Rn and let T be a sublinear operator such
that

(i) }T�E}L1,8puq § upEq for every measurable set E, and

(ii) T : L1puq X L8 ›Ñ L1,8
loc

puq is bounded.

Then,
T : L log

2

Lpuq ›Ñ L1,8
loc

puq.
Proof. Take a non-negative function f “ f

0

` f
1

, with f
0

“ f�tf§1u and f
1

“ f�tf°1u. As
before, we have that }Tf}L1,8

loc

puq À }Tf
0

}L1,8
loc

puq ` }Tf
1

}L1,8
loc

puq, and for the term with f
0

,
we use piiq and }f

0

}8 § 1 to get

}Tf
0

}L1,8
loc

puq À }f}L log

2

Lpuq ` 1.

Now, to deal with f
1

, we make use of (5.14), which states that

f
1

pxq “
8
ÿ

j“1

ÿ

kPZ
2

k�E
k,j

pxq, a.e. x P Rn.
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For every N ° 0, set fN
1

to be the following truncated series:

fN
1

pxq “
N
ÿ

j“1

ÿ

|k|§N

2

k�E
k,j

pxq.

Since this is an equality, we do not need the monotonicity of T in order to obtain

}TfN
1

}L1,8
loc

puq À
8
ÿ

j“1

log

1

pjq
ÿ

kPZ
2

k
log

1

p|k|q�uf
1

p2k`jq. (5.15)

Recall that upEk,jq § �uf
1

p2k`jq and that the logarithmic terms come from the fact that
GalbpL1,8puqq “ ` log `. Here we have used that the series defining fN

1

is finite to apply
the sublinearity of T , and once this is done, we majorize the result by the whole series.
Next, fix j • 1 and split the inner sum into three pieces: I1j ` I2j ` I3j . The first one will
be

I1j “
ÿ

k†´j

2

k
log

1

p|k|q�uf
1

p2k`jq § }f}L log

2

Lpuq
8
ÿ

k“j`1

2

´k
log

1

pkq.

Here we used that, since f
1

° 1, we have that �uf
1

p2k`jq § }f}L log

2

Lpuq whenever k † ´j,
because in this case,

�uf
1

p2k`jq “ �f
1

p1q § }f}L log

2

Lpuq.

The second term we need to consider is

I2j “
0

ÿ

k“´j

2

k
log

1

p|k|q�uf
1

p2k`jq “ 2

´j
0

ÿ

k“´j

2

k`j
log

1

p|k|q�uf
1

p2k`jq

§ 2

´j}f}L log

2

Lpuq

j
ÿ

k“0

log

1

pkq.

Here we just used that t�uf ptq § }f}L log

2

Lpuq, for every t ° 0. Finally,

I3j “
8
ÿ

k“1

2

k
log

1

pkq�uf
1

p2k`jq § 2

´j
8
ÿ

k“1

2

k`j
log

1

pk ` jq�uf
1

p2k`jq

À 2

´j

ª 8

0

�uf psq log
2

psqds À 2

´j}f}L log

2

Lpuq.

Now we go back to (5.15) and using the bounds for Imj , m “ 1, 2, 3, we conclude that

}TfN
1

}L1,8
loc

puq À }f}L log

2

Lpuq
8
ÿ

j“1

log

1

pjq
˜ 8

ÿ

k“j`1

2

´k
log

1

pkq ` 2

´j
j

ÿ

k“0

log

1

pkq ` 2

´j

¸

.
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The second and third terms in parentheses, together with the log

1

pjq term outside, are
obviously convergent when j • 1. For the first one, a simple rearrangement of the sums
shows that

8
ÿ

j“1

log

1

pjq
8
ÿ

k“j`1

2

´k
log

1

pkq “
8
ÿ

k“2

2

´k
log

1

pkq
k´1

ÿ

j“1

log

1

pjq §
8
ÿ

k“2

2

´kk log
1

pkq2 † 8,

which is exactly the second one but with the indices k, j interchanged. Therefore, we have
that }TfN

1

}L1,8
loc

puq À }f}L log

2

Lpuq. If we show that fN
1

converges to f
1

in L log

2

Lpuq, then
we can conclude }Tf

1

}L1,8
loc

puq À }f}L log

2

Lpuq and hence,

}Tf}L1,8
loc

puq À }f}L log

2

Lpuq ` 1.

We finish the proof by linearity as in the previous proposition. To show that fN
1

Ñ f
1

in L log

2

Lpuq, we observe that the difference f
1

pxq ´ fN
1

pxq decreases to zero for almost
every x P Rn, since fN

1

is a partial sum of a convergent series of positive terms, and this
coincides with f

1

almost everywhere. In particular, its decreasing rearrangement with
respect to u satisfies that

pf
1

´ fN
1

q˚
uptq ›Ñ 0, a.e. t P p0,8q.

On the other hand, |f
1

´ fN
1

| can be pointwise controlled by f
1

P L log

2

Lpuq, so
ˇ

ˇ

ˇ

ˇ

pf
1

´ fN
1

q˚
uptq log

2

1

t

ˇ

ˇ

ˇ

ˇ

§ pf
1

q˚
uptq log

2

1

t
P L1p0,8q.

Therefore, by the dominated convergence theorem,

}f
1

´ fN
1

}L log

2

Lpuq “
ª 8

0

pf
1

´ fN
1

q˚
uptq log

2

1

t
dt ›Ñ 0,

as N Ñ 8, so we finish the proof.

Corollary 5.29. Let T be a sublinear operator such that, for some 1 † p
0

† 8 and every
w P pAp

0

,
T : Lp

0

,1pwq ›Ñ Lp
0

,8pwq
is bounded, with constant controlled by 'p

0

p}w}
pA
p

0

q and 'p
0

an increasing function on
p0,8q. Then, for every u P A

1

,

T : L log

2

Lpuq ›Ñ L1,8
loc

puq
is also bounded.
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Proof. In [28, Theorem 2.11 and Corollary 2.16], the authors prove that such an operator
satisfies, for every u P A

1

:

(i) }T�E}L1,8puq À upEq for every measurable set E, and

(ii) T : LplogLq"puq ›Ñ L1,8
loc

puq is bounded for every " ° 0.

We know that L1puqXL8 is continuously embedded in any rearrangement invariant space
with respect to the measure given by u (see [5, Chapter 2, Theorem 6.6]). In particular,
since LplogLq"puq is rearrangement invariant, we have that

T : L1puq X L8 ãÑ LplogLq"puq Ñ L1,8
loc

puq,
so we can apply Theorem 5.28 to deduce the desired boundedness. Notice that we would
have enough with (ii) for some " ° 0.

Remark 5.30. This result can be seen as a self-improvement of [28, Corollary 2.16]. In
fact, Corollary 5.29 improves Theorem 5.25, that was already stronger than [28, Corollary
2.16], since

LplogLq"puq à rL log

2

L log

3

Lpuqs
1

à L log

2

Lpuq.
Obviously, all these endpoint results close to L1 make sense when the operator T is not
p", �q-atomic approximable, because otherwise, we already have that

T : L1puq ›Ñ L1,8puq.
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Chapter 6

Pointwise Bounds via Yano’s Theory

6.1 Introduction
In this last part of the thesis we will present another application of the ideas behind
Yano’s extrapolation. However, we will no longer deal with weighted estimates in the
context of Ap weights. Our goal now is to take advantage of extrapolation techniques
to obtain pointwise bounds for integral operators. We will motivate this chapter1 with
an example. In 1917, J. Radon [101] introduced a transformation that reconstructed a
function from its projections. Later, in 1972, G. Hounsfield was able to build the first
x-ray computed tomography scanner using the Radon transform to recover an object from
its projection data [74]. The special case in which all projections are identical and hence,
a single projection is enough for an exact object reconstruction, was already solved by
N. H. Abel [1] in 1826. He used the following integral operator, called the Abel transform:

Afpxq “
ª 8

x

fptqt?
t2 ´ x2

dt. (6.1)

In many papers dealing with the Abel transform, the starting condition on the function
f is that “it decays at infinity faster than 1{t”. Obviously, if the information that we have
on the function f is just that fptq À 1

t
, then we cannot say anything about Af since

A
`

1

t

˘ ” 8. However, if we assume that the decay of f at infinity is a little faster, namely,
that there exists p

0

° 1 such that, for every 1 † p § p
0

and every t ° 0,

fptq § C

t2´ 1

p

, (6.2)

then Afpxq † 8 for every x ° 0 and

Afpxq À
ª 8

x

1?
t2 ´ x2t1´ 1

p

dt À x
1

p

´1

p ´ 1

.

1The results that we present are gathered in [23].
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Therefore, taking infimum over 1 † p § p
0

as in Lemma 5.3, we get that, for every x ° 0,

Afpxq À log

1

1

x
.

In this chapter we will prove that we can obtain the same upper bound for Afpxq
under a condition on the decay of f at infinity weaker than (6.2). It is clear from the
setting that the underlying idea (and hence, the techniques we will use) is the same as in
Yano’s extrapolation theory.

This problem seems to be of interest even when we are dealing with integral operators
of the form

TKfpxq “
ª 8

0

Kpx, tqfptqdt, (6.3)

with K a positive kernel. This class of operators includes

Safptq “
ª 8

0

apsqfpstqds, (6.4)

with a being a weight. These operators were first introduced by Braverman [8] and Lai
[81] and also studied by Andersen in [2]. In particular, they cover the cases of Hardy
operators, Riemann-Liouville, Calderón operator, Laplace and Abel transforms, among
many others.

The general setting will be the following: let w be a weight and, as usual, we write
W ptq “ ≥t

0

wpsqds. This weight will be fixed and hence, the constants C (explicit or
implicit) appearing in the inequalities of this chapter may depend on it. We will assume
that W ptq ° 0, for every t ° 0. Moreover, since W is increasing, it is equivalent to a
strictly increasing function and hence, we can assume without loss of generality that W
has an inverse, that we will denote2 by:

W p´1q
: p0,W p8qq ›Ñ p0,8q.

Let us consider positive, measurable functions f satisfying

fptq À 1

W ptq , t P p0,8q,

and an operator TK as in (6.3). Obviously, for such an f , it holds that

TKfpxq À
ª 8

0

Kpx, tq
W ptq dt “ Mpxq,

and hence the function M is an upper pointwise bound for TK on that set of functions.
However, on many occasions, M ” 8 and no interesting information can be obtained

2We use the notation W

p´1q for the inverse function because we will keep W

´1 to denote 1
W .
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without assuming some extra condition. As in the example of the Abel transform, we will
assume that M ” 8 but, for every 1 † p § p

0

,
ª 8

0

Kpx, tq
W ptq1{pdt † 8.

In fact, we will need to have some control on how this quantity blows up when p is close
to 1 (as it happened in Yano’s theory with the boundedness constants), so to be precise,
we will assume that it can be controlled by 1

pp´1qm . That is, there exists m ° 0 such that,
for every x,

Upxq :“ sup

1†p§p
0

pp ´ 1qmp

ˆ

ª 8

0

Kpx, tq
W ptq1{pdt

˙p

† 8. (6.5)

In Section 6.3, we will see that this is the case of many other interesting examples.
Since our goal is to find pointwise upper bounds, we will work with the following normed
spaces:

Definition 6.1. We say that a measurable function f P BpW q if and only if W´1 is a
pointwise upper bound for f , that is

BpW q :“
"

f measurable : }f}BpW q “ sup

t°0

fptqW ptq † 8
*

.

We observe that if (6.5) is satisfied, then clearly
ª 8

1

Kpx, tq
W ptq dt À inf

1†p§p
0

Upxq1{p

pp ´ 1qm À Upxq
´

log

1

1

Upxq
¯m

,

but this computation fails completely whenever we are dealing with values of the variable
t close to zero. Hence, we want to find conditions on the functions f P BpW q so that the
above bound remains true for the whole operator, that is

TKfpxq À Upxq
´

log

1

1

Upxq
¯m

.

6.2 Main Results
In order to give the proof of our main theorem, we need the following result. This can be
regarded as a variant of Antonov’s theorem (see Theorem 5.7), since the spaces BpU´1{pq
are closely related to Lp,8 spaces. However, since we do not use decreasing rearrangements
to define them, here the limiting space U´1 as p tends to 1 (at least formally) is still
normed, so we can avoid the use of the Galb of quasi-normed spaces that made the extra
log

3

-term appear. In fact, the proof is more similar to Yano’s theorem.
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Proposition 6.2. If T is a sublinear operator such that

T : Lppwq ›Ñ BpU´1{pq
is bounded, for every 1 † p § p

0

, with constant less than or equal to C
pp´1qm , then

T : LplogLqmpwq ›Ñ BpU´1

m q
is bounded with

Umptq “ Uptq
´

log

1

1

Uptq
¯m

. (6.6)

Proof. The proof follows the standard scheme of Yano’s extrapolation theorem in its
modern version (see [19, 30, 127]) but we include it for the sake of completeness. Let f
be a positive function satisfying }f}8 § 1. Then,

sup

t°0

TfptqU´1{pptq À }f}Lppwq
pp ´ 1qm § }f}1{p

L1pwq
pp ´ 1qm ,

and hence

Tfptq À inf

1†p§p
0

1

pp ´ 1qm
`}f}L1pwqUptq˘

1{p À }f}L1pwqUptq
ˆ

log

1

1

}f}L1pwqUptq
˙m

À }f}L1pwq

ˆ

log

1

1

}f}L1pwq

˙m

Umptq.

From here, it follows that, if }f}8 § 1, then

}Tf}BpU´1

m

q À Dmp}f}L1pwqq, (6.7)

where Dmpsq “ s
`

log

1

1

s

˘m. Now, for a bounded function with |f | • 1, whenever f ‰ 0,
we can decompose

f “
ÿ

n•0

2

n`1fn,

where fn “ 2

´pn`1qf�E
n

and En “ t2n † f § 2

n`1u. Clearly }fn}L1pwq § �wf p2nq, and
together with the fact that }fn}8 § 1 and BpU´1

m q is a normed space, we can use (6.7) on
every fn to conclude that

}Tf}BpU´1

m

q À
8
ÿ

n“0

2

nDmp}fn}L1pwqq À
8
ÿ

n“0

2

nDmp�wf p2nqq

À
ª 8

0

Dmp�wf pyqqdy « }f}LplogLqmpwq,

as we wanted to see. We extend this estimate to a general function (not necessarily
bounded) by a density argument.
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Lemma 6.3. If f is a decreasing function, then

}f}LplogLqmpwq “
ª 8

0

fptq
´

log

1

1

W ptq
¯m

wptqdt.

Proof. We have that, for every s ° 0,

�wf psq “
ª

tx°0:fpxq°su
wpxqdx “

ª �
f

psq

0

wpxqdx “ W p�f psqq.

Therefore,

f˚
wptq “ infts ° 0 : �wf psq § tu “ infts ° 0 : W p�f psqq § tu

“ infts ° 0 : �f psq § W p´1qptqu “ f˚pW p´1qptqq “ fpW p´1qptqq,
and hence,

}f}LplogLqmpwq “
ª 8

0

f˚
wptq

ˆ

log

1

1

t

˙m

dt “
ª 8

0

fpW p´1qptqq
ˆ

log

1

1

t

˙m

dt

“
ª 8

0

fptq
´

log

1

1

W ptq
¯m

wptqdt.

The following result follows immediately by Hölder’s inequality:

Lemma 6.4. Let w be a weight on p0,8q and let Pw be the generalized Hardy operator

Pwfpxq “ 1

W pxq
ª x

0

fpsqwpsqds.

Then,
Pw : Lppwq ›Ñ BpW 1{pq

is bounded with constant 1.

Now, we are ready to prove the main result of this chapter, following the ideas intro-
duced in [33]. Again, this can be regarded as an extrapolation similar to that in Theo-
rem 5.11 or Theorem 5.19, where first we make a composition with a suitable maximal
operator (in this case, Pw), and then we use an Antonov-like result (now, Proposition 6.2):

Theorem 6.5. Let TK be defined as in (6.3) and satisfying

Upxq :“ sup

1†p§p
0

pp ´ 1qmp

ˆ

ª 8

0

Kpx, tq
W ptq1{pdt

˙p

† 8.
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The function Um will stand for the expression in (6.6). Then, for every x,

TKfpxq À }f}D
m

pW qUmpxq,
where

}f}D
m

pW q “ }f}BpW q `
ª

1

0

sup

s°0

ˆ

min

´W psq
W ptq , 1

¯

fpsq
˙

´

log

1

1

W ptq
¯m´1

wptqdt.

Proof. By (6.5), we have that

TK : BpW 1{pq ›Ñ BpU´1{pq
with constant less than or equal to pp ´ 1q´m and hence, by the previous lemma,

TK ˝ Pw : Lppwq ›Ñ BpU´1{pq
is bounded with the same behavior of the constant. Then, applying Proposition 6.2, we
obtain that

TK ˝ Pw : LplogLqmpwq ›Ñ BpU´1

m q
is bounded. Now, since for t small enough, say t § � † 1, it is easy to see that

´

log

1

1

W ptq
¯m «

ª

1

t

´

log

1

1

W psq
¯m´1 wpsq

W psqds,

we have that
ª �

0

gptq
´

log

1

1

W ptq
¯m

wptqdt À
ª

1

0

Pwgptq
´

log

1

1

W ptq
¯m´1

wptqdt.

Therefore, by Lemma 6.3, if g is decreasing,

sup

t°0

TKpPwgqptq
Umptq À

ª 8

0

gptq
´

log

1

1

W ptq
¯m

wptqdt

À }g}L1pwq `
ª �

0

gptq
´

log

1

1

W ptq
¯m

wptqdt

À }Pwg}BpW q `
ª

1

0

Pwgptq
´

log

1

1

W ptq
¯m´1

wptqdt. (6.8)

Let us now assume that f P BpW q is a decreasing function satisfying
ª

1

0

sups§t W psqfpsq
W ptq

´

log

1

1

W ptq
¯m´1

wptqdt † 8.
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Set Hptq “ sups§t W psqfpsq. With this definition, it is clear that H is an increasing
function such that Hp0q “ 0 and Hptq

W ptq is decreasing, so we have that H
`

W p´1qptq˘

is
quasi-concave on p0,W p8qq. It is known (see [5, Chapter 2]) that in this case, there
exists h decreasing such that H

`

W p´1qptq˘ « ≥t

0

hpsqds, with equivalence constant 2, so
by a change of variables, there exists g decreasing such that

1

2

Hptq §
ª t

0

gpsqwpsqds § 2Hptq.

On the other hand,

fptq § Hptq
W ptq «

≥t

0

gpsqwpsqds
W ptq “ Pwgptq,

and thus TKfptq À TKpPwgqptq. Therefore, using (6.8)

sup

t°0

TKfptq
Umptq À sup

t°0

TKpPwgqptq
Umptq À }Pwg}BpW q `

ª

1

0

Pwgptq
´

log

1

1

W ptq
¯m´1

wptqdt.

Since

}Pwg}BpW q “ sup

t°0

W ptq
≥t

0

gpsqwpsqds
W ptq « sup

t°0

Hptq “ }f}BpW q,

and

Pwgptq « sups§t W psqfpsq
W ptq ,

we obtain that, for every decreasing function f P BpW q,

sup

t°0

TKfptq
Umptq À }f}BpW q `

ª

1

0

sups§t W psqfpsq
W ptq

´

log

1

1

W ptq
¯m´1

wptqdt. (6.9)

Finally, if we take a general function f P BpW q, we can consider its least decreasing
majorant

F ptq “ sup

r•t
fprq.

We have that F P BpW q is decreasing and f § F . Hence, TKfpxq § TKF pxq and the
result follows immediately applying (6.9) to the function F , since we have the equality of
norms

}F }BpW q “ sup

t°0

F ptqW ptq “ sup

t°0

sup

r•t
fprqW ptq “ sup

t°0

fptqW ptq “ }f}BpW q,

133



Chapter 6. Pointwise Bounds via Yano’s Theory

and

sups§t W psqF psq
W ptq “ sups§t W psq supr•s fprq

W ptq “ supr°0

fprqW pminpt, rqq
W ptq

“ max psups§t fpsqW psq,W ptq sups•t fptqq
W ptq

“ sup

s°0

ˆ

min

ˆ

W psq
W ptq , 1

˙

fpsq
˙

.

Notice that the natural setting for Theorem 6.5 is that of decreasing functions, and
we just extend it to general functions by considering their least decreasing majorants. In
fact, if f is itself decreasing, the expression for }f}D

m

pW q can be written in a simpler way.
The next corollary is just the result that we get in this setting and corresponds to the
estimate in (6.9):

Corollary 6.6. Under the hypotheses of Theorem 6.5 we have that, for every decreasing
function f ,

TKfpxq À }f}D
m

pW qUmpxq,
where

}f}D
m

pW q “ }f}BpW q `
ª

1

0

sups§t W psqfpsq
W ptq

´

log

1

1

W ptq
¯m´1

wptqdt.

Extrapolation results (such as the analogous to Antonov’s theorem) for operators
that are only defined on the cone of decreasing functions can be found in [29]. Finally,
the following corollary gives a bound for the iterative operator of order n P N, T n

Kf “
TKpT n´1

K fq:
Corollary 6.7. Assume that TK satisfies (6.5), with U « W´1. Then, for every n P N,
we have that

T n
Kfpxq À }f}D

nm

pW q
1

W pxq plog
1

W pxqqnm .

Proof. Since TK satisfies (6.5), with U « W´1, we have that

TK : BpW 1{pq ›Ñ BpW 1{pq,

with constant less than or equal to pp ´ 1q´m, so we can iterate to conclude that the
same holds for T n

K , with constant controlled by pp ´ 1q´nm. The proof now follows as in
Theorem 6.5.
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6.3 Examples and applications
In this section, we will use Theorem 6.5 on some interesting examples. Obviously, if one
is only interested in decreasing functions, all the conditions can be written as in Corollary
6.6 instead.

6.3.1 The Abel transform

Let us start by solving the initial question about the Abel transform.

Corollary 6.8. If a positive measurable function fptq À 1{t satisfies that
ª 8

1

sup

y
pfpyqyminpy, tqq dt

t2
† 8 (6.10)

then, for every x ° 0,
Afpxq À log

1

1

x
.

Before giving the proof, we should emphasize the fact that it is very easy to verify
that condition (6.10) is weaker than (6.2).

Proof. First of all, making a change of variables, it is immediate to see that, if gpsq “
fp1

s
q 1

s2
and

TKgpxq “
ª x

0

gpsq?
x2 ´ s2

ds,

then, for every x ° 0,
Afpxq “ 1

x
TKg

´

1

x

¯

. (6.11)

On the other hand, we have that

sup

1†p§2

pp ´ 1qp
ˆ

ª x

0

1?
x2 ´ s2s1{pds

˙p

« 1

x
† 8,

and therefore, applying Theorem 6.5, we get

TKgpxq À log

1

x

x
,

whenever g P BpW q with W ptq “ t and
ª

1

0

sup

s°0

´

gpsqmin

´s

t
, 1

¯¯

dt † 8.

The result now follows rewriting this condition in terms of f and using (6.11).
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6.3.2 The Riemann-Liouville operator

Given ↵ ° 0, let us consider the Riemann-Liouville operator

R↵fpxq “
ª x

0

fptqpx ´ tq↵´1dt.

This operator, and in particular its boundedness in the context of weighted Lp spaces, has
been studied in many papers such as [29], [93] or [100]. Our contribution is the following:

Corollary 6.9. Fix ↵ ° 0. If a positive measurable function fptq À 1{t satisfies that

ª

1

0

sup

s°0

´

min

´s

t
, 1

¯

fpsq
¯

dt † 8,

then, for every x ° 0,
R↵fpxq À x↵´1plog

1

xq.

Proof. Making the change of variables y “ t
x
, we have that

R↵fpxq “ x↵
ª

1

0

p1 ´ yq↵´1fpyxqdy :“ x↵I↵fpxq,

and hence

sup

1†p§2

pp ´ 1qp
ˆ

I↵
´

1

y1{p

¯

pxq
˙p

À 1

x
.

Consequently, if we take W ptq “ t and Uptq “ 1

t
, we have that I↵ is under the hypotheses

of Theorem 6.5 and therefore

I↵fpxq À log

1

x

x
,

whenever fptq À 1{t and it satisfies that

ª

1

0

sup

s°0

´

min

´s

t
, 1

¯

fpsq
¯

dt † 8.

Hence, under these conditions on f , it holds that, for every x ° 0,

R↵fpxq À x↵´1plog
1

xq.
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6.3.3 Iterative operators

Observe that in the two previous examples, the function U coincides with W´1, and hence
we can apply Corollary 6.7 to obtain the following:

Corollary 6.10. Let n P N and f be positive measurable function with fptq À 1{t. It
holds that:

• If f satisfies
ª 8

1

sup

y
pfpyqyminpy, tqq plog

1

tqn´1

dt

t2
† 8,

then, for every x ° 0,
Anfpxq À

´

log

1

1

x

¯n

.

• If f satisfies
ª

1

0

sup

s°0

´

min

´s

t
, 1

¯

fpsq
¯ ´

log

1

1

t

¯n´1

dt † 8,

then, for every x ° 0,
Rn
↵fpxq À x↵´1plog

1

xqn.

6.3.4 Braverman-Lai’s operators

Let us now consider the operator Sa defined in (6.4) and let us assume the following: there
exist an increasing function D • 0, with Dptq “ 0 if and only if t “ 0, and a function E
so that, for some m ° 0 and every 1 † p § p

0

,
ª 8

0

ˆ

sup

t°0

Eptq
Dpstq

˙

1{p
apsqds À 1

pp ´ 1qm . (6.12)

Then, one can immediately see that, for every t ° 0,
ª 8

0

apsq
Dpstq1{pds À 1

pp ´ 1qmEptq1{p ,

and hence, (6.5) holds with W “ D and U À E´1. A direct consequence of Theorem 6.5
is the following:

Corollary 6.11. If (6.12) holds, then, for every f P BpDq satisfying
ª

1

0

sup

s°0

ˆ

min

ˆ

Dpsq
Dptq , 1

˙

fpsq
˙ ˆ

log

1

1

Dptq
˙m´1

dDptq † 8,

we have that
Safpxq À plog

1

Epxqqm
Epxq .
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Notice that in the simplest case, when apsq “ �p0,1qpsq, the operator Safptq “ Sfptq “
1

t

≥t

0

fpsqds is the Hardy operator. What we obtain is that, if Dptq “ Eptq “ t, we can
take m “ 1 to conclude that

Safptq À log

1

t

t
,

whenever fptq À 1{t and
ª

1

0

sup

s°0

´

min

´s

t
, 1

¯

fpsq
¯

dt † 8.

By taking a function f such that fptq “ 1

t
, whenever t ° 1, we see that the pointwise

bound cannot be improved. However, in this particular example, in order to get that
pointwise bound, it is possible to weaken the condition on the function near 0 by simply
assuming that f P L1p0, 1q.

6.3.5 Other applications

In Theorem 6.5, the condition that we require on f is basically that its least decreasing
majorant F satisfies }F }D

m

pW q † 8. To finish this section, we will present two more
versions of our main result in which the role of F is played by the decreasing rearrangement
f˚ and the level function f ˝, respectively.

Assume that Kpx, tq is decreasing in t. Then, by Hardy’s inequality [5, Theorem 2.2],
we have that, for every function f ,

TKfpxq “
ª 8

0

Kpx, tqfptqdt §
ª 8

0

Kpx, tqf˚ptqdt “ TKpf˚qpxq,
so we can apply Corollary 6.6 to f˚ and write the following result:
Corollary 6.12. Under the hypotheses of Theorem 6.5 if, for every x ° 0, Kpx, tq is
decreasing in t P p0,8q, then

TKfpxq À }f˚}D
m

pW qUmpxq.
Similarly, assume now that we have a Volterra operator

VKfpxq “
ª x

0

Kpx, tqfptqdt,
with Kpx, tq decreasing in t P p0, xq. In [99], the authors show that, for every bounded
function f • 0 with compact support in p0,8q, it holds that

VKfpxq § VKpf ˝qpxq,
where f ˝ is a decreasing function associated with f called the Halperin level function (see
[65, 108]). Therefore, this estimate together with Corollary 6.6 and Fatou’s lemma yield:
Corollary 6.13. Under the hypotheses of Theorem 6.5, if Kpx, tq is decreasing in t P p0, xq
for every x ° 0, then

VKfpxq À }f ˝}D
m

pW qUmpxq.
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6.4 Generalization to sublinear operators
Although our motivation has been to study integral operators with positive kernels, our
main result can be extended to more general operators as follows:

Theorem 6.14. Let T be a sublinear operator such that, for every x

Upxq :“ sup

1†p§p
0

sup

}f}
BpW1{pq§1

pp ´ 1qpmTfpxqp † 8.

Then, we have that
Tfpxq À }f}D

m

pW qUmpxq.
In the proof of Theorem 6.5, we make use of the fact that the operators TK are

monotone. Since now we do not have this property on T , we will need to introduce
auxiliary functions  and ⇢ to get around this problem.

Proof. We will follow the proof of Theorem 6.5. Let  be an arbitrary function with
}}8 § 2. Define

Tf :“ T pfq.
By our assumption, it is easy to check that, for every 1 † p § p

0

,

T : BpW 1{pq ›Ñ BpU´1{pq,
with constant controlled by pp´1q´m. As before, we get that, for every function }}8 § 2

and every g decreasing,

sup

t°0

TpPwgqptq
Umptq À }Pwg}BpW q `

ª

1

0

Pwgptq
´

log

1

1

W ptq
¯m´1

wptqdt. (6.13)

Let us now assume that f P BpW q is a decreasing function satisfying that
ª

1

0

sups§t W psqfpsq
W ptq

´

log

1

1

W ptq
¯m´1

wptqdt † 8.

If Hptq “ sups§t W psqfpsq, we have the existence of a decreasing function g such that

1

2

Hptq §
ª t

0

gpsqwpsqds § 2Hptq.

With this,

fptq § Hptq
W ptq § 2

≥t

0

gpsqwpsqds
W ptq “ 2Pwgptq,
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so we can write, for some }}8 § 2,

fptq “ ptqPwgptq.
Therefore, for every function ⇢ with }⇢}8 § 1, we can use (6.13) with }⇢}8 § 2 to show
that

sup

t°0

T p⇢fqptq
Umptq “ sup

t°0

T⇢pPwgqptq
Umptq À }Pwg}BpW q `

ª

1

0

Pwgptq
´

log

1

1

W ptq
¯m´1

wptqdt
(6.14)

« }f}BpW q `
ª

1

0

sups§t W psqfpsq
W ptq

´

log

1

1

W ptq
¯m´1

wptqdt.

Choosing ⇢ ” 1, we finish the proof in the decreasing case. For a general function
f P BpW q, we consider its least decreasing majorant F ptq “ supr•t fprq, which lies in
BpW q and satisfies f § F . Hence, we write Tfpxq “ T p⇢F qpxq for some }⇢}8 § 1, and
the result follows immediately applying (6.14) together with

}F }BpW q “ }f}BpW q

and
sups§t W psqF psq

W ptq “ sup

s°0

ˆ

min

´W psq
W ptq , 1

¯

fpsq
˙

.
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