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Agraiments

“All we have to decide is what to do
with the time that is given to us”

Sembla ser que la tradicié6 marca que els agraiments es comencin donant les gracies
al director de la tesi. En el meu cas, us puc assegurar que la tradicié6 no hi juga cap
paper, perqué independentment del que digui, no podria ser de cap altra manera. Maria
Jests, el apoyo que he recibido durante estos afios por tu parte se mereceria paginas y
paginas. Eso no podré ser, pero si que te puedo dedicar un pequeno trocito. Podriamos
decir que nuestro primer contacto fue hace casi diez anos, cuando empecé la carrera.
T eras profesora de laboratorio de Anélisis I, y en una de estas pruebas de evaluacion
continuada, me pusiste la peor nota de todos mis anos en la universidad. Probablemente
(y afortunadamente) no te acuerdes de esto, pero esa primera vez que entré en tu despacho
y me explicaste el desastre que habia hecho con la funciéon definida a trozos, lo tengo bien
grabado! El resto de encuentros de licenciatura ya fueron menos embarazosos, pero no
fue hasta que me adoptaste para hacer el trabajo final de master sobre una transformada
de Hilbert “algo més complicada” que no nos empezamos a conocer. Un ano después,
més unos cuantos meses de guerra con becas y ministerios, me converti en tu alumno de
tesis. Matematicamente, has sido toda una guia, escogiendo temas, proponiendo caminos,
siendo estricta pero sabiendo dar empujoncitos en los momentos oportunos para que todo
tirase adelante. Todavia conservo aquel pdf que se titulaba Helping Carlos. Y a nivel més
personal, que voy a decir... ha sido otro placer! Muchas gracias por todos los consejos, la
paciencia que has tenido y por ser tan comprensiva, especialmente cuando accediste a que
trabajase un tiempo a distancia sin pensartelo dos veces. Es cierto que luego se convirtio
en una estancia oficial de lo mas fructifera, pero en el momento en que subi a hablar
contigo y te lo propuse, eso no lo sabiamos, y aun asi, no dudaste en aceptar. Significo
mucho para mi.

Esta claro que también quiero agradecer el apoyo a Javi, pues yo creo que todo esto
empezd cuando aceptaste mi propuesta de hacer un TAD sobre “algo de Analisis Fun-
cional”. Gracias por creer en mi entonces, guiarme junto con Pedro durante aquel ultimo
ano de carrera y continuar reuniéndote conmigo al principio del master hasta pasar el
testigo a Maria Jestis. Y por supuesto, muchas gracias también por revisar esta tesis y
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aportar consejos que nos han permitido llegar a esta version final. De la misma manera
quiero agradecer a cada uno de los miembros del GARF y allegados por los congresos que
hemos compartido, las reuniones (seguidas del puntual almuerzo a la una en la Flauta) y
sobre todo, por hacerme sentir como uno mas en todo momento: Carmen, Eduard, Elona,
Nadia, Joan, Joaquim, Pedro, Pilar, Salva y Santi. Moltes gracies també a tot el depar-
tament de Matematica Aplicada i Analisi, on he estat com a casa durant aquests anys,
i en especial a la Ino, per estar sempre disposada a donar un cop de ma amb qualsevol
tramit o problema (la majoria amb la Xerox) que pogués sorgir. Finally, I would like
to thank everyone who, in their own manner, made my two research stays great. Jon
Bennett, for creating the perfect working environment while I was in Birmingham, David,
whose couch served me as a bed on my first nights there, Jose, Magda, Mari Carmen,
Susana y Teresa, que convirtieron los ratos libres en los mejores momentos del dia. Y
si, en gran parte me refiero a las knitting nights de las que, contra todo prondstico, salid
una bufanda estupenda! Leo, Tania y Uli, el trio mexicano que desde el primer momento
que pisé la facultad me acogié como si nos conociéramos de toda la vida y me enseno el
verdadero significado de la cancién “agujetas de color de rosa”. And on the other side of
the ocean, we have Michael Lacey, who gladly welcomed me to Atlanta, shared with me
many enlightening meetings filled with brilliant ideas, and gave the best advice you could
ever imagine on restaurants and things to do! Thank you for showing me the meaning of
Cockentrice! The rest of the Georgia Tech analysis people, Brett, Rob, Scott... and the
non-analysis ones. I evidentment, I’aaawesome Pere, I’Astrid i en Marc, perqué amb ells
compartiem aquells cafés a la Highland Bakery, el hoppy taste de les IPAs, i molts altres
moments que, malgrat ser d’esséncia totalment americana, ens feien sentir com si féssim
a casa.

També vull dedicar unes paraules a tots els que han format part de la meva formacio
al llarg de la vida i que han posat el seu granet de sorra perqué arribés fins aqui. En
especial a en David Obrador, que sense cap mena de dubte és el culpable (en el bon sentit
de la paraula) que jo ara mateix sigui matematic. Amb ell vaig endinsar-me en el mon
del rigor de les matematiques a través de les L i R-figures del meu treball de recerca de
batxillerat. També vull mencionar a en Jordi Taixés i I'Elisenda Feliu, que no només van
ser dos genials docents durant la carrera, sind que a més van resultar ser dues persones
amb qui poder parlar de moltes altres coses més enlla de les assignatures que ensenyaven.

Seguim! Ara els hi toca als companys de la facultat amb qui he compartit tantes
estones. Dinars, cafés, capsuletes al sofa, seminaris SIMBa seguits de la seva SIMBeer,
partits, videos de tesi, ferrades i tot tipus de SIMBactivities (si nois, aixo del SIMBa
va donar per molt!). A tots ells, I’Alex, I’Andratx, I’Ari, I’Arturo, en Dani, I'Eloi, la
Giulia, en Jordi, en Marc, la Marta, la Meri, la Nadia, en Narcis, en Roc, en Simone,
en Tommaso (equipo!), en Zubin... i als meus companys de despatx, 1’Adriana, 1’Albert,
en Miguel, en Miguel Angel, en Toni i altre cop, en Roc, sempre disposat a aguantar
les meves distraccions constants i divagacions diverses. Moltes gracies per tot! Aquests
anys no haurien estat el mateix sense vosaltres! I una mica abans de tot aixo, tenim
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els companys de llicenciatura: Carlos, mi companero de batallas y pareja indiscutible de
trabajo, la Celia, I’Elba, la Laia, la Marta, en Pere, en Roland... tots nosaltres ens vam
veure evolucionar com a matematics i vam compartir tots els neguits d’aquesta carrera,
practiques, examens impossibles de corbes, sopars que s’acabaven descontrolant... qui ho
hauria dit aleshores que ara estaria escrivint aquestes frases sobre vosaltres. I per acabar
aquest paragraf, tenim a en Joan, amb qui vaig coincidir poc a la carrera, perd al master
es va convertir en una d’aquelles persones que de seguida saps que no sera només un
company de classe. Moltes gracies per les innumerables converses en les que hem intentat
arreglar el mon, sempre plenes de savis consells, tant quan eres aqui i no dubtaves en
apropar-te en moto al Poble Sec, com ara que ets lluny, i hem de tirar del VoIP.

Malgrat que la relacié amb aquesta tesi pot semblar no tan directa, tota la gent que ha
estat amb mi des d’abans de no saber ni sumar també es mereixen el seu reconeixement.
En Ferran i en Marc, companys de viatge inseparables, i les meves “veines” (en el sentit
ampli de la paraula) preferides, 'Helena, I'Eli i la Marta. El Jaume, que encara ara em
pregunta qué fem els matematics i la Nuria, que ha donat el seu toc artistic a aquesta
memoria! Evidentment, a tots ells se’ls hi suma la familia: els tiets, el Rafa, I’Angelina,
el Jose, la Mili, I’Oscar i la Marisa, els cosins, ’'Esther, I’Aitor (que bien te iban mis
“conocimientos” de probabilidades aplicadas, eh?), I’'Elena i el Jon, la tata Silvia (la
nena...) i UEnric. Per suposat, la tia Maria i el tio Vidal, com uns avis per mi... L’avi
Sito, la iaia Delfina i la yaya Cruz, que tot i no poder veure el final de tot aix0, sé que
estarien, i sempre han estat, molt orgullosos. Aquesta tesi és per vosaltres! I per acabar,
els meus pares, per fer-me créixer amb valors d’esfor¢ i de respecte, sent exigents perqué
tragués el millor de mi, perd sempre recolzant-me i respectant les decisions que he anat
prenent. En resum, moltes gracies a tots els responsables de qué, amb les meves virtuts i
multiples defectes, m’hagi convertit en aquest noi que ara presenta una tesi.

I I'altim trosset I’hi he guardat a la Marta, la meva ninja preferida! Ara ja som ninges
totalment retirats, i et puc dedicar un parell de linies. Tot i que... qué no t’he dit encara?
Gracies per estar al meu costat, encara que de vegades fos a la distancia, per escoltar-
me sempre, encara que digués coses sense sentit, per fer-me sentir cada dia que érem un
equip, encara que molts cops allo al que ens enfrontavem només afectava a un dels dos.
Ara tanques aquests agraiments, perd en realitat aixd no és un tancament, sin6 l'inici
d’un nou capitol...

Barcelona, febrer del 2016
Carlos Domingo

Vil






Introduccié en Catala

A T’Analisi Harmonica, la pregunta de si un operador esta acotat a LP sorgeix de manera
natural en molts problemes. Definim els espais L” respecte d'una mesura positiva i abso-
lutament continua w(x)dx (que anomenem pes), com el conjunt de funcions mesurables f
tals que

o = ([ 1rpur) <o

Treballarem en el rang p > 1, i el cas p = 1 és el que anomenem 1’extrem. L’acotacié a
L' no s’espera que sigui analoga als casos p > 1, i per a provar-la, s’acostuma a fer servir
técniques especifiques. Prenem, per exemple, I'operador maximal de Hardy-Littlewood

Q>z

Mf(z) = supﬁ fQ FW)\dy. 1)

on el suprem es pren sobre cubs () € R™ que contenen el punt x. Fins i tot en el cas més
senzill, quan w = 1, sabem que, per a tot p > 1,

M:IP — P,

perd que, en canvi, aixo ja no és cert si p = 1. De fet, I'inica funcié f € L! per a la qual
M f pertany a L' és f = 0. Si volem que M estigui acotat d’L' en algun altre espai, hem
d’introduir ’anomenat espai L'-débil, que es denota per LY®. Per a un p > 1 qualsevol,
definim LP*(w) com el conjunt de funcions f tals que

[ fllzw ooy = sup tw({z e R : |f(z)] > t})"P < .
>

La desigualtat de Chebyshev ens déna automaticament que LP™ és més gran que L) i

ara si, es pot provar que
M:L'— LY,

Per a l'operador de Hardy-Littlewood, les acotacions amb pesos M : LP(w) — LP(w)
per ap > 11i L'(w) — L“*(w) han estat totalment caracteritzades des del 1972, quan
B. Muckenhoupt [94]| va introduir les classes de pesos A, amb aquestes propietats per
ap>11ip =1 respectivament. No obstant aixo, hi ha altres operadors per als quals
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Iestimaci6 a I’extrem ha resultat ser molt més dificil que la resta dels casos. Prenem, per
exemple, la funcié g; definida per

tn-i—l 1/2
g f(z) = (J —%]Vu(y,t)\Qdydt> ,
R (

t+ |z —y|)

on u és 'extensié harmonica d’f al semiespai superior R%™ i Vu és el seu vector gradient
(vegeu les Definicions 4.1 1 4.20). Aquest operador apareixera al Capitol 4 i juga un paper
important en problemes relacionats amb multiplicadors i espais de Sobolev (vegeu el llibre
de referencia d’E. Stein [112]). Al 1974, B. Muckenhoupt i R. Wheeden [97| van provar
que, per a tot p > 1itot we A,,

g - L' (w) — LP(w).

En canvi, pel que sabem, l'estimaci6 a I'extrem gi : L' — LY continua oberta, fins i
tot en un context sense pesos. Una de les majors diferéncies entre ’extrem i la resta dels
casos rau precisament en espai LY® en si. Al contrari d’L', L” o fins i tot LP°® amb
p > 1, l'espai LY no es pot normar per a esdevenir espai de Banach. Totes aquestes
singularitats de ’extrem sén el motiu pel qual una teoria d’extrapolaci6 és de gran interées
per a moltes aplicacions. En termes generals, el nostre objectiu és obtenir informacié
ap =1 (o en algun espai proper a L') només partint d’hipotesis a p > 1. Per aixo,
estudiarem dues teories d’extrapolacié, una de Rubio de Francia i I’altra de Yano.

Sobre ’extrapolacié de Rubio de Francia

La primera d’aquestes teories es remunta a l'any 1984, i és deguda a J. L. Rubio de
Francia [102]. Suposa acotacié per a un tnic py perod respecte tota una classe de pesos
(l’anteriorment citada classe A,) que ens permet treure conclusions per a tot 1 < p < .
La definicio d’aquestes classes A, no és important en aquest moment, pero es pot trobar
a la Secci6 1.1. El resultat original de Rubio de Francia diu aixi':

Teorema 1.1 (Rubio de Francia, [102]). Donat un operador sublineal T', si per a un cert
1 <po <o iperatotweA,,

T: LP°(w) — LP°(w)
esta acotat, aleshores, per a tot 1 <p < o0 i tot w e A,,
T: LP(w) — LP(w)

també esta acotat.

1La numeraci6é dels teoremes dins d’aquesta introduccié coincidira amb la del text. Tot i aixi, per
motius de claredat en la presentacid, els enunciats poden variar una mica.
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La primera cosa que hem de remarcar és que el cas p = 1 no es pot assolir en general,
ni tan sols si només volem que T porti L' en L* sense pesos (prenem, per exemple,
M? = M o M com a contraexemple). Val a dir, perd, que el proposit original d’aquest
resultat era deduir estimacions per a 1 < p < o0 només a partir de desigualtats a L?. Tot i
aixo, avengos recents duts a terme per M. J. Carro, L. Grafakos i J. Soria [28] han provat
que si canviem la classe de pesos a les hipotesis, hi ha una manera d’assolir I'extrem.
Aquest nou resultat es troba enunciat al Teorema 1.7 d’una forma més general, pero la
part més interessant de cara a aquesta introducci6 és la segiient:

Teorema 1.7 (Carro - Grafakos - Soria, [28]). Donat un operador T, si per a un cert

1 <pg<ooitotweA,, tenim

Po>s
ITxE|Lroww) < Clxe|wrow), £ <R,

aleshores, per a tot u € Ay,

ITxe|row < Clxelrw, E<R™ (2)

La notacié yg representa la funcié caracteristica del conjunt F, i la classe de pesos
d’aquest resultat es defineix com

A, = {(Mh)"Pu:he Ll ue A},

on M és 'operador maximal de Hardy-Littlewood de (1). La classe le\p esta Intimament
relacionada amb la classe A, del Teorema 1.1 per les inclusions

A, c A, C Ay,
per a tot 1 < p < o0 1itot e > 0. Malgrat que l'estimacio a 'extrem (2) que s’aconsegueix

només es pot tenir (en general) sobre funcions caracteristiques, a la Secci6 1.4 recordem
que, per a una amplia classe d’operadors, aix0 és equivalent a I'acotacio

T: L'Y(u) — LY*(u).

El nostre primer objectiu sera debilitar les hipotesis del Teorema 1.7 tant com sigui
possible sense perdre informaci6 a I'extrem p = 1. L’avantatge d’una extrapolacié d’aquest
tipus, que sera el pilar central d’aquesta tesi, és doble. D’una banda, quan s’aplica a
un operador 7', ens déna una demostracié de la seva acotacié d’L' a LY*, i de l'altra,
constitueix una estimaci6é a un cert nivell py > 1 on els espais involucrats son de Banach.
Passem a explicar els resultats principals que hem obtingut en relacié a aquesta teoria
i com estan organitzats a la tesi. Tractarem de donar les idees principals tot evitant
detalls técnics, pel que si el lector troba que necessita més detalls sobre algun concepte,
I'index al final hauria de resultar 1til per a localitzar la seva definicié dins del text.

x1



INTRODUCCIO EN CATALA

v Al Capitol 1 proporcionem totes les eines d’extrapolacidé que es necessitaran.
Després de presentar en més detall la teoria classica de Rubio de Francia i la seva variant
més nova de [28], a la Seccié 1.3 millorem la segona d’aquestes ad hoc per a obtenir
estimacions a ’extrem. El resultat principal d’aquest capitol es pot enunciar de la segiient
manera;

Teorema 1.11. Sigui T un operador, E < R™ un conjunt mesurable i w € Ay. Si hi ha
un cert 1 < py < o0 tal que

HTXEHLPO’OO((MXE)I—ZQOU) < CHXEHLPO((MXE)I_POU)a

aleshores
|TxELrew < Clxsllew-

Si el comparem amb el Teorema 1.7, observem el segiient:

e Donat que els pesos A,, es defineixen com aquells de la forma (Mh)'"Pou, amb
h e Ll 1iwue A la primera simplificacié que veiem al Teorema 1.11 respecte del
Teorema 1.7 és que no ens cal provar l'acotacioé per a tot pes d’ﬁpo. N’hi ha prou
amb provar 'estimacié quan h és exactament la funcié caracteristica yg a la que

estem aplicant T'.

e La segona simplificacié és que no necessitem un 1 < py < oo universal. Per a cada
pes u € A; podem trobar un valor diferent de pg > 1. Aixo serad essencial per als
nostres objectius.

v Al Capitol 2 presentem la primera aplicacié del Teorema 1.11. L’operador que
estudiarem és el de Bochner-Riesz a I'index critic. Aquest operador es pot definir com a
multiplicador de Fourier a R" de la seglient manera:

BIE) = (1— €7 fe), (3)

on a; = max{a,0} és la part positiva d'a € R, i f denota la transformada de Fourier
d’f. El resultat que presentarem per a B és el Teorema 2.9, i basicament afirma que
I'operador de Bochner-Riesz es troba exactament sota les hipotesis de 1'extrapolacié del
Teorema 1.11:

Teorema 2.9. Per a totu € Ay, existeiz 1 < pg < o tal que, per a cada conjunt mesurable
EcR”,
| BXE 1200y < ClXE]Lr0 (w), (4)

onw = (Mxg) Pu.

Sobre aquest resultat, hem de destacar que:

xii
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e L’operador B es troba a la classe d’operadors que es descriuen a la Secci6 1.4, i per
tant, extrapolacié del Teorema 1.11 de fet implica que B esta acotat d’L'(u) en
LY (u) per a tot u € A;.

e La desigualtat L' — L1* ja havia estat establerta per M. Christ [35] en el cas sense
pesos i per A. Vargas [124] per a pesos d’A;. Tot i aixi, estimacio d’extrapolacid
(4) que provem per a B, no només és més forta que la de L' — L»®| sin6 que també
té 'avantatge que té lloc entre espais de Banach. Aquest fet el farem servir en el
proper capitol.

v Tal i com acabem d’anticipar, al Capitol 3 presentem algunes aplicacions del
Teorema 2.9. El resultat principal tracta de multiplicadors radials i, ometent alguns
detalls, es pot resumir aixi:

Teorema 3.10. Fizem n > 2 i a = ”T“ Sigut m una funcié acotada a (0,0) tal que,

per a una definicid de derivada fraccionaria D adient,
t*"tD*m(t) e L*(0, 0).
Aleshores, el multiplicador de Fourier radial T,, definit com

T, (€) = m(P) (&)
esta acotat d’L*(u) a LY*(u), per a tot pes u € Aj.

A continuaci6, expliquem la técnica que fem servir per a provar aquest resultat, ja
que il-lustra un dels principals avantatges de ’estimacié d’extrapolacié del Teorema 1.11.
Aquests son els passos:

e Escrivim 7}, com a mitjana d’operadors que es comporten com el multiplicador de
Bochner-Riesz. Més concretament,

0
Tmxe(x) = J Bxp(x)®(s)ds, amb ® e L'(0, ),
0

on els operadors {B*},-( satisfan la mateixa estimacié que B al Teorema 2.9, uni-
formement en s > 0.

e Fem servir la desigualtat integral de Minkowski per a l'espai de Banach LFo®(w)
per transferir 'estimaci6é d’extrapolacié (4) de B* a T,,, tot deduint que

| Tx 2]l o () < C P L10,00) | XE L0 () -

e Finalment, extrapolem 7}, fins a p = 1 pel Teorema 1.11 i completem la demostraci6.

xiil
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Cal fer notar que la conclusié per a T, no es pot deduir només d’una estimaciod
L' — LY* per a la familia {B*},~0, donat que el rang ¢s un espai quasi-Banach. Per a
concloure el capitol, a la Secci6 3.4, estudiem multiplicadors generals de tipus Hérmander
a R™. En aquest cas, no fem servir la técnica de les mitjanes que acabem d’explicar, sin6
que ataquem el problema directament. El resultat que obtenim per a aquests operadors
es pot enunciar de la segiient manera:

Teorema 3.26. Fizem 1 < s < 2 1 prenem m : R" — R una funcié acotada de classe

C"(R™\{0}) tal que
a e}
2lal-n -
§1>113 (T J’r‘Sm|S2T (&x) m(x)

Aleshores, el multiplicador associat f;:f(f) = m(&) (&) satisfa que, per a tot u € Ay,
existeir 1 < pg < oo tal que

s 1/s
dx) <o, |a|l <n.

HTmXEHLPOﬁO(w) < C”XEHLPU(M)v Ec Rna
onw = (Myxg)' Pu.

Les principals contribucions presentades en aquests tres primers capitols es troben
recollides a [24], 1 han estat enviades a publicacio.

v Al Capitol 4 estudiem els diferents ingredients d’'una teoria de Littlewood-Paley
adaptada als pesos A,. Aquesta teoria va ser iniciada als anys trenta per Littlewood
i Paley en un seguit d’articles [89, 90, 91| sobre séries de Fourier i poténcies, perd des
d’aleshores, les seves idees han resultat ser molt ttils quan es treballa amb multiplicadors
de Fourier T,,. Més concretament, en el nostre cas estarem interessats en dos tipus de
desigualtats, que anomenarem estimacions inferiors i superiors, respectivament:

(a) If]zrew) < ClGLf|Lro ),
(0) [Gaxelrrew) < Ixelrew)-

Considerarem pesos w € ﬁp, i estudiarem diferents operadors Gy i G5, anomenats funcions
quadrat, que ja apareixien a la teoria classica. Provar estimacions inferiors i superiors per
a funcions quadrat és interessant de per si, perd a més a més, si es combinessin amb una
relacio del tipus

(c) |G1(TxE)|Lrow) < C|Gaxe|Lrew),

per a un cert operador 7', donarien una estimaci6 en la linia del Teorema 1.11. Nosaltres
estudiarem diverses funcions quadrat. Per exemple, a la Secci6 4.2 obtenim la desigualtat
(a) per a la funcié d’area classica de Lusin

dud 1/2
s = ([ 1vumPEs)

Xiv
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on, com abans, u és ’extensio harmonica d’ f al semiespai superior RTI. Un altre exemple
es pot trobar a la Secci6 4.3, on fem servir la recent técnica presentada a [88] per A. Lerner
i F. Nazarov sobre majoraci6 per operadors sparse per obtenir la desigualtat (b) per a la

funcié quadrat
" 5 1/2
Gof(x) = (J tdt) .
0

BLF(€) = (1—|tel?) f(e)

no és res més que una generalitzacio de 'operador de Bochner-Riesz B definit a (3).

0

anxf(x)

Aqui

Sobre I'extrapolacié de Yano

La segona teoria d’extrapolaci6 que estudiarem és deguda a S. Yano [127], i esta rela-
cionada més aviat amb I’Analisi Real. En aquest cas, suposem una certa acotacié LP
per a p > 1, respecte d'una mesura fixada i amb un cert control sobre les normes C,, de
loperador quan p s’apropa a 1. A partir d’aqui, deduim que 'operador esta acotat en
un cert espai que és més a prop d'L' que qualsevol altre espai LP. Aquest és el resultat
original de S. Yano del 1951:

Teorema 5.6. Fizem espais de mesura finita (X, p), (Y,v), po>1im>0. SiT és un
operador sublineal tal que, per a tot 1 < p < py,

T L (p) — L7(v)

esta acotat amb norma més petita o igual a @ ¢ aleshores,

=D’
T : L(log L)™(n) — L'(v)
també esta acotat.

L’espai L(log L)™ (1) < L*(u) és el conjunt de funcions g-mesurables tals que

| 1 og. @) dute) <

Aquest resultat s’ha millorat i estés posteriorment a altres tipus d’acotacié. Un dels
resultats més recents és degut a M. J. Carro i P. Tradacete [33] i tracta amb operadors

T: L (p) — L""(v),

1 )
amb norma que es comporta com W quan p s‘apropa a 1.

XV
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v Al Capitol 5 presentem alguns resultats sobre la teoria de Yano motivats per la
seva relacié amb l'extrapolacié de Rubio de Francia presentada al Capitol 1. Recordem
que un operador 7" sota les hipotesis del Teorema 1.1 no necessariament esta acotat d’L*
a L1®. Malgrat aixo, les normes LP — L? optimes trobades a [48] (vegeu també [50]) ens
permeten fer servir I'extrapolacié de Yano per a obtenir estimacions a prop d’L!. Més
concretament, sabem que si, per a un cert 1 < py < o0, un cert 5 > 0, i tot we A,,, T és
un operador sublineal tal que

T:L”(w) — LP(w)
esta acotat amb norma C’ponHﬁpo, aleshores
T:LP(R") — LP(R")
esta acotat per a tot 1 < p < pg amb norma essencialment controlada per

1

W’ quan p — 1+.
Amb aixo, I'extrapolacié de Yano assegura que T esta acotat a L(log L)?®0—1)(R"), tal i
com enunciem al Teorema 5.22. La conclusié només és valida per a la mesura de Lebesgue,
ja que, en cas contrari, veurem que la norma I” — LP explota massa rapidament. Tot
i aixi, al Teorema 5.23, aconseguim treure conclusions a prop d’L'(u) per a tot u € A;
mitjancant un argument d’extrapolacié diferent. Aquesta idea de buscar una bona forma
de relacionar les teories d’extrapolacié de Rubio de Francia i Yano per tal d’obtenir
estimacions a I’extrem amb pesos ha estat recollida i desenvolupada més enlla del contingut
d’aquesta tesi a [25].

__ L’altre escenari on podem aplicar I'extrapolacié de Yano prové de la teoria de pesos
A,. Recordem que a [28] els autors proven el Teorema 1.7, i 'estimaci6 a 'extrem que en
dedueixen és

ITxellpreow < Clxelow, e A (5)

Tot i aixi, quan T és sublineal, es poden dir més coses. També demostren que en aquest
cas, malgrat que no podem esperar tenir 7' : L'(u) — LY®(u) en general, el que si que
tenim és la segiient acotacid, que tampoc esta restringida a funcions caracteristiques:

Teorema 1.7 (Carro - Grafakos - Soria, [28]). Sigui T un operador sublineal tal que, per
a un cert 1 < py < o0 i tot we Ay, tenim

|TxElroew) < CliXElro@w), E<R™ (6)
Aleshores, per a tot ue Ay, a més de (5), es compleix que

T : Llog L)*(u) — Ly*(u), € > 0. (7)

loc

xXvi
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Obviament, aquesta acotacié és interessant quan 'operador T no es troba a la classe
d’operadors pels que (5) implica acotaci6 d’L(u) a LV*(u), ja que

L(log L)*(u) < L'(u).

Un altre objectiu del Capitol 5 és millorar aquesta estimacié a Uextrem (7) de tipus
logaritmic mitjangant la teoria d’extrapolaci6 introduida a [33]. Primer, ens cal calcular
la norma LP* — LP* d’aquests operadors. Aixo0 es troba al segiient resultat:

Teorema 5.5. Sigui T' un operador sublineal tal que, per a un cert 1 < py < o0 i tot

w e Ay, tenim

ITxElLro>w) < Clxelrrow, £<R"

Aleshores, per a cada pes u € Ay fixat i cada 1 < p < pg, es compleix que
T: LP*(u) — LP*(u)
esta acotat amb norma essencialment controlada per

1 1
1 — | — — 1" 8
() s .

Un cop tenim aquest calcul, estenem el resultat de [33| de tal manera que admeti
constants amb termes logaritmics com a (8). Amb aix0, al Corol-lari 5.25 som capagos de
provar que un operador que satisfa (6) esta acotat en un cert espai X (u) tal que, per a
tot € > 0,

L{log L)*(u) < X (u).

Aix0 ja millora lestimacié a l'extrem (7) de [33], perd també ens adonem que si fem
servir meés informacio sobre T' (basicament, que satisfa (5) sobre funcions caracteristiques),
podem obtenir una auto-millora d’aquest resultat i deduir-ne el segiient:

Corol-lari 5.29. Sigui T' un operador sublineal tal que, per a un cert 1 < py < oo i tot
we Ay, tenim
|TxElrro=w) < Clxelrow), £ <R

Aleshores, per a tot u € Ay, es compleix que

T : Lloglog L(u) — L1 (u).

loc

Actualment, aquest és el millor resultat a 'extrem (no restringit a funcions caracteris-
tiques) per a operadors sublineals que satisfan les hipotesis del Teorema 1.7, ja que

L(log L)*(u) < X(u) < Lloglog L(u).

XVvil
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A part d’aquests resultats relacionats amb el Capitol 1, al Capitol 5 també presentem una
extensio de la teoria de Yano als espais de Lorentz LP?. Per a p < q < o0, els espais LP4
son espais intermedis entre LP i LP-débil:

LP < [P < [P,
Els resultats d’extrapolacié que obtenim tracten d’operadors que porten
T L(n) — LP(), o T DM(u) — D),

quan p és proper a 1 i1 < ¢ < o és fix. Aixo es presenta als Teoremes 5.16 1 5.19, i
completa la teoria de Yano en el context d’espais de Lorentz.

v Finalment, al Capitol 6, donem un seguit de resultats que ja no estan relacionats
amb la teoria de pesos A, que ha estat present durant tots els capitols. Aqui fem servir
les idees de 'extrapolacioé de Yano adaptada a funcions decreixents per tal d’obtenir cotes
puntuals per a operadors integrals de la forma

zwm=fmwmwu

amb K un nucli positiu. El principal resultat és el Teorema 6.5, i es pot aplicar a diver-
sos operadors com la transformada d’Abel, 'operador de Riemann-Liouville, operadors
iteratius, etc. Aquestes aplicacions es troben a la Secci6 6.3. El contingut d’aquest dltim
capitol ha estat acceptat per a publicaci6 a [23].

Xviil
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Introduction

In Harmonic Analysis, the question of whether an operator is bounded on LP arises nat-
urally in many problems. We define LP spaces with respect to a positive, absolutely
continuous measure w(z)dz (that we call weight), as the set of measurable functions f
such that

o = ([ 1rpu@r) <o

We will work on the range p > 1, and the case p = 1 is what we call the endpoint.
Boundedness on L' is not normally expected to be analogous to the cases p > 1, and
to establish it, one usually requires specific techniques. Take, for instance, the Hardy-
Littlewood maximal operator

1
M) = sup oo j@ 1 )ldy, 1)

where the supremum is taken over cubes () € R” containing x. Even in the easiest case,
when w = 1, we know that, for every p > 1,

M:LP —> [P,

but this is no longer true when p = 1. In fact, the only function f € L' for which M f
belongs to L' is f = 0. If we want M to be bounded from L! into some other space, we
need to introduce the so-called weak-L! space, denoted by L“*. For general p > 1, we
define L»*(w) as the set of measurable functions f such that

£y = sup tw({ € R” : | f(w)] > P < o,
>

Chebyshev’s inequality readily shows that LP® is bigger than LP, and it can be checked
that, now,
M: L' — LY.

For the Hardy-Littlewood maximal operator, the weighted estimates M : LP(w) — LP(w)
for p > 1 and L'(w) — L“*(w) have been completely characterized since 1972, when
B. Muckenhoupt [94] introduced the classes of weights A, having these properties for
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p > 1 and p = 1, respectively. However, there are other examples for which the endpoint
estimate has proved to be much more difficult than the rest of the cases. Take, for instance,
the g5 function defined by

thrl 1/2
g f(x) = j N\ Quly. )dydt |
R’ﬁl(

t+lz—yl)

where u is the harmonic extension of f to the upper half-space R7™' and Vu is its
gradient vector (see Definitions 4.1 and 4.20). This operator will appear in Chapter 4
and it plays an important role in problems related to multipliers and Sobolev spaces (see
Stein’s reference book [112]). In 1974, B. Muckenhoupt and R. Wheeden [97] showed that,
for every p > 1 and every w € A,

g3 : I (w) — LP(w).

However, as far as we know, the endpoint estimate g5 : L' — L»® remains open, even in
the unweighted setting. One of the main differences between the endpoint and the other
cases stems precisely from the space LV® itself. Unlike L', L? or even LP® when p > 1,
the space L1'* cannot be normed to become a Banach space. All these singularities about
the endpoint are the reason why a theory of extrapolation is of great interest in many
applications. Roughly speaking, our goal is to obtain information at p = 1 (or on some
space close to L) only from assumptions at p > 1. To this end, we will study two different
extrapolation theories, one of Rubio de Francia and the other of Yano.

On Rubio de Francia’s extrapolation

The first of these theories goes back to 1984 and is due to J. L. Rubio de Francia [102].
It assumes boundedness for a single py but with respect to a whole class of weights (the
aforementioned A,, class) that allows us to draw conclusions for every 1 < p < co. The
definition of these A, classes is not important at the moment, but it can be found in
Section 1.1. The original result by Rubio de Francia reads as follows?:

Theorem 1.1 (Rubio de Francia, [102]). Given a sublinear operator T', if for some fized
1 < py <0 and every w € A,

T: LP(w) — LP°(w)
is bounded, then, for every 1 <p < o and every w € A,
T: LP(w) — LP(w)

15 also bounded.

2Theorem numbering within this introduction will coincide with the one in the text. However, for the
sake of clarity, the presentation of the results may differ.
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The first thing we need to remark is that the case p = 1 cannot be reached in general,
even if we only seek an L' — L»® boundedness without weights (take, for instance,
M? = M o M as a counterexample). It is fair to say, though, that the original purpose
of this result was to deduce L? estimates for every 1 < p < o just from L? inequalities.
However, recent developements made by M. J. Carro, L. Grafakos and J. Soria 28] have
shown that if we change the class of weights in the assumption, there is a way to reach
the endpoint. This new result is stated in Theorem 1.7 in a more general fashion, but the
most interesting part for this introduction is the following:

Theorem 1.7 (Carro - Grafakos - Soria, |28]). Given an operator T, if for some fized

1 < po < 0 and every w € A, it holds that

ITxE o) < Clxelrow, E <R,
then, for every u e Ay,
HTXEHLLOO(U) < C'HXEHLl(u), E C R". (2)

The notation xg stands for the characteristic function of the set F/, and the class of
weights in this result is defined by
A, = {(Mh)"Pu:helLl, ue A},

where M is the Hardy-Littlewood maximal operator from (1). The ﬁp class is closely
related to the classical A, class in Theorem 1.1 by the inclusions

A, c A, C Ay,

for every 1 < p < o0 and every ¢ > 0. Even though the endpoint estimate (2) that we
obtain can only be expected to hold (in general) on characteristic functions, in Section 1.4
we recall that, for a large class of operators, it is equivalent to the boundedness

T:L'(u) — LV (u).

Our first goal will be to weaken the hypotheses in Theorem 1.7 as much as possible without
losing information at the endpoint p = 1. The advantage of such an extrapolation, which
will be the cornerstone of this thesis, is twofold. On the one hand, when applied to an
operator T', it provides a proof of its boundedness from L' to L%*, and on the other, it
constitutes an estimate at a certain level py > 1 where the spaces involved are Banach
spaces.

Let us explain the main results that we obtain related to this theory and how they are
organized in this thesis. We will try to convey the main ideas avoiding technicalities, so
if the reader needs further details on some notion, the index at the end should be useful
to locate its definition within the text.
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v In Chapter 1 we provide all the extrapolation tools that will be needed. After
presenting in more detail the classical theory of Rubio de Francia and its newer variant in
[28], in Section 1.3 we improve the latter ad hoc to obtain endpoint estimates. The main
result of this chapter can be stated as follows:

Theorem 1.11. Let T be an operator, E < R" a measurable set and uw € Ay. If there is
some 1 < py < o0 such that

17X El o= (arxmyi=rouy < ClXE 20 (hrxmyi=rouy;

then
ITXE| 21w < Clixellrw)-

Comparing it to Theorem 1.7, we observe the following:

e Since ﬁpo weights were defined to be (Mh)"Pou, with h € Ll and u € A;, the
first simplification that we see in Theorem 1.11 with respect to Theorem 1.7 is
that we do not have to show boundedness for every weight in A,,. It is enough to

prove the estimate when h is exactly the characteristic function yg to which we are
applying T

e The second simplification is that we do not need a universal 1 < py < c0. For every
weight u € Ay, we can find a different value of pg > 1. This will be essential for our
purposes.

v In Chapter 2 we present the first application of Theorem 1.11. The operator that
we will study is the Bochner-Riesz operator at the critical index. It can be defined as a
Fourier multiplier on R™ as follows:

BIE) = (1— €7 fee), (3)

where a, = max{a,0} is the positive part of a € R, and ]? denotes the Fourier trans-
form of f. The result that we will obtain for B is Theorem 2.9, and it basically states
that the Bochner-Riesz operator is exactly under the assumptions of the extrapolation in
Theorem 1.11:

Theorem 2.9. For every u € Ay, there exists 1 < py < o0 such that, for each measurable
set £ < R,

BBl ooy < Clxslzg), (4)

where w = (Mxg)' "Pou.

About this result, we should emphasize that:
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e The operator B falls within the class of operators described in Section 1.4, and
hence, the extrapolation in Theorem 1.11 actually yields that B is bounded from
L' (u) to LY*(u) for every u € A;.

e The L' — L' inequality had already been established by M. Christ [35] in the
unweighted case and A. Vargas [124] for A; weights. However, the extrapolation
estimate (4) that we prove for B, not only is stronger than the L' — L%® one, but
it also has the advantage that it takes place between Banach spaces. We will use
this fact in the next chapter.

v Aswe just anticipated, in Chapter 3 we present some applications of Theorem 2.9.
The main result deals with radial Fourier multipliers and, omitting some details, it can
be summarized as follows:

Theorem 3.10. Fiz n > 2 and a = 2. Let m be a bounded function on (0,0) such

that, for a suitable definition of fractional derivative D?,
t*"'D*m(t) e L*(0,0).
Then, the radial Fourier multiplier T,, defined by
Tuf (&) = m(&P)F(€)
is bounded from L'(u) into L (u), for every weight u € Aj.

Let us explain the technique we use to prove this result, since it illustrates one of the
main advantages of the extrapolation estimate in Theorem 1.11. These are the steps:

e We write T}, as an average of operators behaving like the Bochner-Riesz multiplier.
More precisely,

©0]
Twxe(z) = f Béxg(z)®(s)ds, with ® e L'(0, ),

0

where the operators {B*}..( satisfy the same estimate as B in Theorem 2.9, uni-
formly in s > 0.

e We use Minkowski’s integral inequality for the Banach space LP**(w) to transfer
the extrapolation estimate (4) from B*® to T,,, deducing that

1T X B Lro-e () < C @] 1(0,00) | X E] LP0 (w)-

e Finally, we extrapolate T;, down to p = 1 by Theorem 1.11 and complete the proof.
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Notice that the conclusion for 7}, cannot be drawn just from an L' — L'“* estimate
for the family {B*®}.o, given the quasi-Banach nature of the range. To conclude the
chapter, in Section 3.4, we study general multipliers of Héormander-type on R™. In this
case, we do not use the aforementioned averaging technique, but rather a direct approach.
The main contribution for these operators can be stated as follows:

Theorem 3.26. Fiz 1 < s <2 and let m : R™ — R be a bounded function in C™*(R™\{0})

such that
a (e}
su T2|a|_"f (—) m(x
7“>IO)( r<|z|<2r oz ( )

~

Then, the associated multiplier T/m\f(ﬁ) =m(&)f(&) satisfies that, for every u € Ay, there
exists 1 < pg < oo such that

s 1/s
dzn) <o, |al <n.

HTmXE'HLpo,oc(w) < C”XEHLPO(w), E c Rn7
where w = (Myg)' 7Pou.

The main results presented in these first three chapters are gathered in the preprint
[24], already submitted for publication.

v In Chapter 4 we study the different ingredients in a Littlewood-Paley theory
adapted to A, weights. This theory was initiated in the thirties by Littlewood and Paley
in a series of papers [89, 90, 91| about Fourier and power series, but since then, their ideas
have proved to be really useful when dealing with Fourier multipliers 7;,,. More precisely,
in our case we are interested in two types of inequalities, that we will call lower and upper
estimates respectively:

(@) [fllzreiwy < ClGLFllro ),
(0) [GaxelLrew) < [xE]Lrw):

We will consider weights w € fAlp, and study different operators G; and G5, known as
square functions, that already appear in the classical theory. Establishing upper or lower
estimates for square functions is interesting in its own right, but moreover, if combined
with a relation of the form

(©) 1G{(TxE)|rrew) < ClGaxE|Lrew),

for some operator T', they would yield an estimate in the spirit of Theorem 1.11. We will
study various square functions. For instance, in Section 4.2 we obtain inequality (a) for
the classical Lusin area function

dud 1/2
s = ([ 1vumPEs)
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where, as before, u is the harmonic extension of f to the upper half-space R%™. Another
example can be found in Section 4.3, where we use the recent technique presented in [88|
by A. Lerner and F. Nazarov of majorization by sparse operators to obtain inequality (b)

for the square function
” ) 1/2
f tdt .
0

BLF(€) = (1—|tel?)s f(e)

is just a generalization of the Bochner-Riesz operator B that we defined in (3).

0

= Bof (@)

Gaf(x) = ( ot

Here

On Yano’s extrapolation

The second extrapolation theory that we will study is due to S. Yano [127], and it is related
to the field of Real Analysis. In this case, we assume some kind of LP boundedness for
p > 1, with respect to a fixed measure and with some control on the operator norms C,,
as p tends to 17. From here, we deduce that the operator is bounded on a certain space
which is closer to L' than any other LP space. This is the original result by S. Yano from
1951:

Theorem 5.6 (Yano, [127]). Fiz (X, ), (Y,v) a couple of finite measure spaces, py > 1
and m > 0. If T is a sublinear operator such that, for every 1 < p < po,

T: LP(p) — LP(v)

18 bounded with norm less than or equal to #, then,

T': L{log L)™ (1) — L'(v)
15 also bounded.

The space L(log L)™(u) < L'(p) is the set of u-measurable functions such that

[ 1710+ 0s, @ aute) <

This result has subsequently been improved and extended to other types of boundedness.
One of the latest results is due to M. J. Carro and P. Tradacete [33] and deals with
operators mapping

i L (n) — [P2(0),

with norm behaving like ﬁ when p is close to 1.
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v In Chapter 5 we present some results about Yano’s theory motivated by its
relation to the extrapolation of Rubio de Francia presented in Chapter 1. Recall that an
operator 7" under the hypotheses of Theorem 1.1 need not be bounded from L' to LY.
However, the sharp LP — L? norms that were derived in [48] (see also [50]) allow us to use
Yano’s extrapolation to obtain endpoint estimates close to L'. More precisely, we know
that if, for some 1 < py < o0, some > 0, and every w € A, , T is a sublinear operator
such that

T: LP(w) — LP°(w)

is bounded with norm C’ponHipo, then
T:LP(R") — LP(R"™)
is bounded for every 1 < p < py with norm essentially controlled by

1 1+
m, as p — .
With this behavior, Yano’s extrapolation yields that 7" is bounded on L(log L)#®o—1)(R"™),
as stated in Theorem 5.22. The conclusion is only valid for the Lebesgue measure, because
otherwise, we will see that the blow-up of the LP — L? norm is too fast. However, in
Theorem 5.23, we succeed in drawing conclusions close to L!(u) for every u € A; by means
of a different extrapolation approach. This idea of finding a suitable way to relate the
theories of Rubio de Francia and Yano in order to obtain weighted endpoint estimates
has been gathered and developed beyond the scope of this thesis in [25].

The other setting where Yano’s extrapolation can be applied comes from the theory
of A, weights. Recall that in [28] the authors prove Theorem 1.7, and that the endpoint
estimate that they obtain is

ITxEl e < Clxelow, we A (5)

However, when T is sublinear, there is more to it than that. They also show that, despite
the fact that we cannot expect to have T': L'(u) — L% (u) in general, what we do have is
the following endpoint estimate, which is not restricted to characteristic functions either:

Theorem 1.7 (Carro - Grafakos - Soria, [28]). Let T be a sublinear operator such that,
for some 1 < py < o0 and every w € Ay, it holds that

|TxE|Lrow) < ClxE|Lr0@w), E <= R™ (6)
Then, for every u € Ay, in addition to (5), we have that

T : Llog L)*(u) — Ly*(u), &> 0. (7)

loc
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Obviously, this boundedness is interesting when the operator 7 is not in the class of
operators for which (5) implies boundedness from L'(u) into L»*(u), since

L(log L)*(u) < L'(u).

Another goal of Chapter 5 is to improve this endpoint estimate (7) of logarithmic type
for operators under the hypotheses of Theorem 1.7 by means of the extrapolation theory
introduced in [33]|. First, we need to compute the LP"* — LP* norm of such operators.
This is done in the following result:

Theorem 5.5. Let T' be a sublinear operator such that, for some 1 < pg < o0 and every

w e ﬁpo, it holds that

|TxE]Lroe@w) < Clxe|row), E<R"
Then, for every fired u € Ay and every 1 < p < poy, we have that
T: LP*(u) — LP*(u)

18 bounded with norm essentially controlled by

1 1
1 _) — — 17", 8
Og(p_l)p_y s 9 )

Once we have this computation, we extend the result in [33| in such a way that it
admits constants with logarithmic terms as in (8). With this, we are able to show in
Corollary 5.25 that an operator satisfying (6) is bounded on a certain space X (u) such
that, for every ¢ > 0,

L{log L)* (u) < X (u).

This already improves the endpoint estimate (7) from 28], but we also check that, by using
further information about 7" (basically, that it satisfies (5) on characteristic functions),
we can self-improve this result and deduce the following:

Corollary 5.29. Let T' be a sublinear operator such that, for some 1 < py < 0 and every
w e A,,, it holds that

po >

|TxE]Lroew) < Clixe|row), £ <R
Then, for every u € Ay, we have that

T : Lloglog L(u) — L (u).

loc
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So far, this is the best endpoint estimate (not restricted to characteristic functions)
for general sublinear operators satisfying the hypotheses of Theorem 1.7, given that

L(log L)*(u) < X (u) & Lloglog L(u).

In addition to these results related to Chapter 1, in Chapter 5 we also present an extension
of Yano’s theory to Lorentz spaces LP?. For p < q < oo, these are intermediate spaces
between LP and weak-LP:

LP c [P [P,

The extrapolation results that we obtain deal with operators mapping
T:LP(p) — LP(v), or T:LP(u) — LM (v),

when p is close to 1 and 1 < ¢ < oo is fixed. This is presented in Theorems 5.16 and 5.19
and completes the theory of Yano in the setting of Lorentz spaces.

v Finally, in Chapter 6, we show a series of results that are no longer related to the
weighted A, theory that has been present throughout the chapters. Here we make use of
Yano’s extrapolation ideas adapted to decreasing functions in order to obtain pointwise
bounds for integral operators of the form

Tiefe) = | " K, 0 £,

with K a positive kernel. The main result is contained in Theorem 6.5, and it can be
applied to several integral operators such as the Abel transform, the Riemann-Liouville
operator, iterative operators, etc. These applications are all gathered in Section 6.3. The
content of this chapter has been accepted for publication in [23].

10



Chapter 1

Weighted Extrapolation Theory

1.1 The theory of Rubio de Francia

Let us start by recalling the definition of general LP spaces, which will constantly appear
throughout this thesis. Given a measure space (X, u), for every 1 < p < oo, LP(p) will
denote the space of u-measurable functions satisfying

i = ( [ 17@Pauto)) "

and L*(p) will be the space of p-measurable, bounded p-a.e functions on X. On many
occasions, and especially in the first four chapters, we will take X = R" equipped with
an absolutely continuous measure p. That is, p will satisfy du(x) = w(z)dz, where w is a
non-negative, locally integrable function called weight. For these weighted LP-spaces, we
will write LP(w), and if w = 1 (i.e. u is just the Lebesgue measure), we will use LP(R") or
simply LP. Also, recall that the weak LP-spaces LP*(u) consist of u-measurable functions
satisfying
| £l zp-eo () = sup t)\?(t)l/p < o,
t>0

where
Np(t) == p({z e X ¢ |f(z)| > t})

is the distribution function of f with respect to u. As usual, u(E) denotes the p-measure
of the set £, and if y is the Lebesgue measure, then we write u(E) = |E|. A generalization
of these spaces are the so-called Lorentz spaces. Given 1 < p < o0 and 1 < ¢ < 00, we
define LP9(p) as the set of p-measurable functions such that

© gt
HfHLP’q(u) = (pf0 (t/\“]f(t) P)‘17> < 0.

11
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It is immediate to check that LP(p) = LPP(u) and if 1 < g < o0, we have the following
chain of inclusions:
Pt c [P c [P,

From now on, we will write x < y when there is a positive constant C' > 0 such that
x < Cy. If both z <y and y < z, then we write x ~ y. The constants involved are
universal in their context. If there is an important dependence on some variable, we will
note it with a subindex (<y, ~4).

The extrapolation theory that we will present in this chapter will follow the ideas of
Rubio de Francia [102]. First of all, let us recall the classical results. Let M be the
Hardy-Littlewood maximal operator, introduced by Hardy and Littlewood [66] in 1930:

1
M) = sup ooy j@ F()ldy, (11)

where () < R" is a cube and f is a locally integrable function. In 1972, B. Muckenhoupt
[94] proved the following characterization for 1 < p < oo:

M : LP(w) — LP(w)

is bounded if, and only if w € A,, where A, is the class of weights such that

o (o)

Whenever an operator maps LP(w) into itself, we will say that it is of strong-type (p,p)
with respect to w. Therefore, in other words, Muckenhoupt’s result states that A, weights
characterize the strong-type (p,p) of the maximal operator M. The case p = 1 has to be
treated separately. It is clear that we cannot expect to have a strong-type (1, 1) estimate
of any kind for M, since M f is only integrable when f = 0. However, we do have a
weaker estimate [94]:

1

|wl 4, = sup < .
Q

M : L'(u) — LY (u) (1.2)
is bounded if, and only if u € A;. This class' is defined by those weights u such that
Mu(z) < Cu(x), a.e. xeR",

and |u| , is the least constant C' > 0 that can be taken in such an inequality. In general,
an operator mapping L?(w) into LP*(w) will be called of weak-type (p,p) with respect
to w, and hence, one could say that A; weights characterize the weak-type (1,1) of the
maximal operator M. One can easily see that A, < A, whenever 1 < p < ¢. Indeed,
given w € A,, when p = 1,

(") <o = (o) < (52

!For convenience, we will try to keep the notation u only for weights in Aj.

12
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and the case p > 1 is just Holder’s inequality. In view of these inclusions, it is natural to
denote by A, the union
Ao = | 4

1<p<o

This class first appeared in [95] and [38], and can be characterized (see also [49, Corollary
7.6]) by those weights w for which there exists § > 0 such that

Q1" w(E)
E%(wo w(@ ="

where the supremum is taken over all cubes ) and all measurable sets £ < (). Even
though we will not use them, we should mention that several characterizations of A, can
be found in the literature, such as the one by N. Fujii [59] or the one by S. Hruscev [71]
(and independently, by J. Garcia-Cuerva and J. L. Rubio de Francia [60]). We also refer
to the survey on this topic in [53].

The classes of A, weights have been broadly studied ever since they were introduced
by B. Muckenhoupt. A basic property is that they satisfy a Reverse Holder inequality

(see, for instance, [63, Theorem 9.2.2]). More precisely, there exists an ¢ > 0, depending
on p, |w|4,, and the dimension n, such that

(Mwmy#<g@
Q| Tolel
In particular, from here one can easily show that, given w € A,:
e If 1 < p < o, there exists € > 0 such that w'*c € A,.
o If 1 < p < o, there exists ¢ > 0 such that we A,_..

This, in some sense, represents the “openness” of these classes, an essential property
in Ap-theory. Another consequence of the Reverse Holder inequality is the following
characterization of A; weights, introduced by R. Coifman and R. Rochberg in [41]: A
weight u belongs to A; if, and only if, there exist a locally integrable function f and
0 < 6 < 1 such that

u~ (Mf)°. (1.3)

The last property that we want to recall about A, weights is P. Jones’s factorization |73],
which states that w € A, if and only if there is a couple of A; weights ug, u; such that

w = uguy L. (1.4)

However, the most important feature of A, weights for us is that they are behind Rubio
de Francia’s extrapolation theorem [102]. In its original version, it reads as follows:

13
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Theorem 1.1. Given a sublinear operator T, if for some 1 < py < 0 and every w € Ay,
T : LP°(w) — LP°(w)

is bounded, then, for every 1 < p < oo and every w € A,,
T: LP(w) — LP(w)

15 also bounded.

Later on, simpler proofs and improvements of this result appeared. For instance, it
was shown that it is still true if we have the boundedness estimates for general couples
of functions (f,¢g) instead of (f,Tf), with T" being a sublinear operator. Also, there is a
weak-type version of this result. More precisely, if we have a weak-type (po, po) estimate
for some 1 < py < oo and every weight in A, , then we deduce the weak-type (p,p) for
every 1 < p < o and every weight in A,. Moreover, in the case of sublinear operators, we
can use classical interpolation to show that in fact, we have strong-type (p,p). However,
in all this setting, it is not possible to extrapolate down to p = 1, in the sense that there
are operators under Rubio de Francia’s hypotheses which are not of weak-type (1,1).
Take, for instance, the composition M? = M o M. This operator trivially maps LP(w)
into itself for every w € A, and 1 < p < oo, but it is not of weak-type (1, 1), even in the
unweighted case. For further details on Rubio de Francia’s extrapolation theorem and its
modern variants, see [42], [43] or [50].

1.2 A new extrapolation to reach the endpoint p =1

As we have seen, one of the drawbacks of the classical theory of extrapolation is that we
cannot reach the endpoint p = 1 just from information at p > 1. In [28], however, the
authors realized that if we change the class of weights in the extrapolation assumptions,
there is a way to get estimates at level p = 1. Before we can introduce these weights and
the extrapolation itself, we will need some definitions.

Definition 1.2. Assume that we have an arbitrary weight w on R™. Given 1 < p < 0,
we say that an operator T is of restricted weak-type (p,p) with respect to w if, for every
measurable set F,

| TxE e @) < CplXE|Lo@w) = Cow(E)"P. (1.5)

In other words, if T is of weak-type (p,p) when restricted to characteristic functions.

When 1 < p < o0 and T is sublinear, it can be shown that (1.5) is equivalent to saying
that

T : LPY(w) — LP™(w) (1.6)

14
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is bounded, and sometimes this is taken as a definition. However, when p = 1, it is not
true that (1.5) is equivalent to T : L'(w) — L'*(w), as we shall discuss in Section 1.4.
In fact, it holds that when p > 1 is close to 1, if we have (1.6), then (1.5) trivially holds
with the same constant, but if we have (1.5), then

Cp
p—1

|T'| Lo (w)—> L0 () S

For the time being, this dependence on p of the constants will not be important to us
and we will study restricted weak-type estimates using (1.5) or (1.6) indistinctively when
p > 1. However, we make it explicit since we will need to take it into account when
studying Yano’s extrapolation theory in subsequent chapters. In this context of restricted
weak-type estimates, in 1982 R. Kerman and A. Torchinsky [76]| characterized the weights
for which M satisfied (1.5), including the case p = 1. More precisely, they proved that,
for 1 <p < o,

|MXE|Lre) S [w]agw(E)? (1.7)

if, and only if, w € AR, where the so-called restricted A, class is the set of weights w

such that "
ol = sup 1ot (MR ) <
QI \w(E)

and the supremum is taken over all cubes () and all measurable sets £ < (). When p = 1,
this class coincides with A; = AR, entailing that in this particular case of the maximal
operator M, the weighted weak-type and restricted weak-type (1,1) are equivalent. For a
general 1 < p < oo, it holds that (see [28])

A, AR C Ay,

for every ¢ > 0 with the following estimate:

1

wlag < Jwl’s).

Unlike for A, weights, where we know that every weight w € A, can be written as
w = uoui_p , with wug,u; € Ap, for the class AZ} there is no factorization result so far.
However, in [28, Corollary 2.8] the authors prove that, for every u € A;, every function
fe Ll andevery 1 <p < oo, the weight (M f)"Pu € AR with

M) P ulfie < Jula,- (1.8)

loc

Notice that combining (1.3) and (1.4), one has that every weight in A, is essentially of
the form (M f)°(=Py, with 0 < 6 < 1 and u € Ay, so (1.8) states that, if we take § = 1,
the resulting weight lies in AZ}. This result raises the question of whether every weight
in AZ} can be written in this way. For the time being, we will work with the (a priori)
subclass for which this factorization holds.

15
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Definition 1.3. We define
le\p ={w:w=(Mf)"Pu, for some f €L, andue A} < AZ},

with

. 1
lw] 5, = inf [ul}?,

where the infimum is taken over all possible representations of w.
The following lemma shows that ;1}, is an intermediate class between A, and Af:

Lemma 1.4. For every 1 < p < o0, we have that A, < ﬁp and |w] ;< Hw||124/: for every

we A,

Proof. Let w € A,, factored as w = uou}_p, with ug, u; € A;. Since u; € A;, we have that
uy < Muy < |ugl|a,u1. With this and 1 — p < 0, we can write

(Mul)l_p

1—
fula” < — 55— =k<1
1

Now, w = ugu; ? = ugk™" (Mu;)" 7, and it holds that

M (uoh™") < [un ;" Mug < |5 o a0 < Jualy; o] ay uok ™.

Therefore, ugk™' € A; and we deduce that w € ﬁp. Furthermore,

1yl —1\1/p 2
|wlz, < luok AP < (o |75) 7 < Jw] 32,

using the quantitative version of the A,-factorization theorem (see [39]), which states that
up and u; can be taken so that

[wlla, < luolla, Jurlis," < Jwl,.
O

Remark 1.5. Even though, for a fired 1 < p < o0, the classes A, < ﬁp c AZ} need not
be the same in general, at this point it is clear that

A=) 4= U 4= | 4}

1<p<w 1<p<0 1<p<0

For later purposes, let us state the following property for weights of the form (Mh)*
when o < 0:

16



C. DOMINGO SALAZAR

Lemma 1.6. Given a locally integrable function h and o < 0, we have that, for every
cube Q) < R™,

! i e?
sup (MH)"(2) % 75 jQ<Mh> (v)dy.

In particular, if Q < Q’,

ﬁf@(Mh)%y)dy < (MR)° (y)dy.

1
Q' Jor

This property states that the weight (Mh)® belongs to the Reverse Holder class RH,.
This class was introduced by B. Franchi in [58], and in [44, Theorem 4.4], the authors
prove that given an A; weight u, for every p > 1, it holds that u'™? € RH,, n A,. In view
of (1.3), their result shows that (Mh)* € RHy, n A, for every p > 1 —« and in particular,
Lemma 1.6. This estimate is also used (and proved in a different way) in [32, Corollary
2.3|. The second part of the lemma is obvious from the first.

Finally, we present the main extrapolation result obtained in |28, 32| in the context
of ﬁp weights:

Theorem 1.7. Let T' be a sublinear operator such that, for some 1 < py < o0 and every
we A

Po >

T : LPoY(w) — [P (w).

Then, for every 1 < p < oo and every w € ﬁp, T is of restricted weak-type (p,p) with
respect to w. Moreover, it also satisfies that, for every e >0 and u € Ay,
T : L(log L) (u) — L7 (w).

The details on the boundedness constants involved are gathered in |28, 32]. Regarding
the sublinearity condition, we should say that it can be dropped if we want to show the
restricted weak-type estimate for either p = 1 or p > pg. It is in the range 1 < p < po
(and for the L(log L) estimate) where this assumption is needed. At this point we must
emphasize that the main difference between this result and the classical extrapolation of
Rubio de Francia is that, in this case, we can obtain estimates down to p = 1. In the
next section we will focus on this aspect of the theory and we will see how much we can
relax the hypotheses without losing the conclusion at the endpoint. Before we do that,
and for later purposes, let us check what we get if we use the ideas behind Theorem 1.7
to extrapolate a restricted weak-type (po,po) estimate that only holds for the classical
A, class (that is, if we work with operators under the assumptions of Rubio de Francia’s
Theorem 1.1). Obviously, we will not be able to reach p = 1 in general, but in Chapter 5
we will be interested in the boundedness constant that we get for p > 1 when p is close
to 1. The result is the following;:

17
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Theorem 1.8. Let T' be an operator such that, for some 1 < py < o0 and every w € Ay,
T : [P (w) — LPO* (w)

is bounded with constant ¢(||w| 4, ), where ¢ is an increasing function on (0,00). Then,
for every 1 < p < pg and every u € Ay,

T L7 (u) —> LP*(u)

18 bounded with constant essentially controlled by

1_1 po—1
P PO pO - 1
Jull o ((p_ L) ruul) .

Proof. We will follow the ideas in [28]. Let v > 0 and y > 0. Given f € Lp’%(u), we use
[28, Proposition 2.10] with g = |T'f] to write

Po
h(0) < Nggom) + 77 | QU @ula)ds,
Y= Hirfl=v}

Now, notice that w := (M f)P~Pou € A,,, since it can be factored as in (1.4). Moreover,

—p11-po p |Po—1 po — 1 po—1
< . (1.9
] u Ll (p_ ) Jula;- (1.9)

< |(pynt :
Hence, we can use our assumption and deduce that

o(|lw]a, ) [ (* Lo
1Y) S Mgy (yy) + 9P f (J w(x)dx) dz
Yy 0 {If1>=}

But, since p — py < 0, we can bound w = (M f)P~P0u < 2P~Poy on the set {|f| > z}, so we
conclude that

w Po o0 b 1/p0
7r(y) < Avip(yy) + VPO_pM (J zp0 (J u(:v)dx) dz)
Yy 0 {If1>z}

The expression in parentheses to the power pg is essentially | fI” ,»  and using the
L7770 (u)

fols,, = |[()%

Apg

Po

Ppo

sharp weak-type (p,p) estimate for M due to S. M. Buckley [9], we also know that

" || HAp ] 4
r() € = f oy < 5 117,

Pfyp L po (

18
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Combining these two facts and multiplying by 3” we obtain that

ufa -
P A\Y < | IZhAr Po—p Po p )
5000 5 (P s ol ) I,

P

Finally, we can minimize the right-hand side with respect to v > 0 by choosing v =

Hu”%fogp(HwHApo)_l, and taking supremum over y > 0, we get

1-p/p
ITF Wy Il o, VI,

This estimate, together with (1.9), completes the proof. ]
Remark 1.9. When T is sublinear, in Theorem 1.8 we can also conclude that

T : LPY(u) — L (u), (1.10)
since we can check that (1.5) holds on characteristic functions:

= C,u(E)YP.

ITxE] ooy < Cpullxel

L7706 (u)
However, as we mentioned when we introduced (1.6) as an alternative definition for the re-
stricted weak-type (p,p) of sublinear operators, the boundedness constant for (1.10) would
have an extra factor behaving like ﬁ when p is close to 1.

1.3 Extrapolating on a smaller class of weights

As we anticipated after presenting Theorem 1.7, in this section we will see how much
we can relax the hypotheses of this theorem without losing information in the conclusion
at p = 1. The following result states that if 7" satisfies a restricted weak-type estimate
as in Theorem 1.7 but only for a very particular subclass of A, , then we obtain the
analogous estimate for the whole range of 1 < p < 0, and at p = 1, we still recover the
whole A; class. We will also drop the sublinearity condition on 7', since for the weight
we are considering, we can avoid the interpolation step requiring it in the original result
of [28]. In fact, the results in this section could be written for couples (xg, g), where ¢ is
a measurable function, not necessarily Ty g.

Theorem 1.10. Let 1 < pg < 0. If an operator T satisfies that, for every measurable
set E < R™ and every weight u € Ay,

1T X8| Lroo ((arxg)t—rouy < P[]y )u(E)"P°
with ¢ an increasing function on (0,00), then, for every 1 < p < oo,

ITXEl e (arxey=ray < (] 4 )u(E)
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with L
tr o p(t), if1<p<po
©p(t) = 2 pt+lp—pg . ‘
prot o P—lgp(;;_lt) . if po <p < 0.

Proof. Let us start with 1 < p < pg. The argument for this case will be similar to that in
Theorem 1.8, which in turn follows the ideas of [28]. We start by using [28, Proposition
2.10] with the weight w = (Mxg)'"Pu, g = |Txg|, f = xz and v > 0 to show that

w w _ ypo _
Mo ) < Moy, () £ (e (@)
Y Hirxel>v}

w _ ypo -~
= (1) + 977 j{ ) e
XE|>Y

Now, we apply our hypothesis, multiply by y? and use that M is of restricted weak-type
(p,p) with respect to w with constant |w|ar < ||u||114/f (see |28, Corollary 2.8]):

4y u(E)

Bl u(E).

YT, (1) S

Finally, we take the supremum on y and the infimum over v > 0, which is attained
1

essentially at v = Hu!@gp(HuHAl)_l, to conclude that

1 1

)

ITXE oo axen=ra) < lulll, ™ @(lu]a,)u(E)"P. (1.11)
The case py < p < oo is a little more involved. We shall follow |32, Theorem 3.1]. Choose
B satisfying

A 1

Dby
1<f<? and B<1+—0r 1.12
v > al, (1.12)

which by [98] ensures that u” € A; and [u”| 4, < |ulla,. Let 0 < § < 1 such that

1 _
3 Po 4 (9]? Po _ 1
p—1 p—1

From here we deduce that, for every y > 0,

J (Mxp)' P (x)u(z)dr < J (Mxg)' 7 (2)v(z)d,

{ITxrl>y} {ITxel>y}
with
po—1 P—Po
v(@) = u(@)? 7 (M (Mxp) X {rxpn) (@) 7 € AL
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and [[v] 4, < ;;11 |ull4, (using [32, Lemma 2.12] for this last fact). With this, our hypoth-
esis yields

I p 1 D — 1 po
(M) Fapu(e)de < oo (L ul, ) o(B).
{ITxel>y} Po —

Finally, we need to estimate v(F). Recalling that Mxg = 1 on F and the relation in
(1.12), we can write

P—PQ

) " u(@)da,

M (u’ (Mxe)' "X (rypl=y) ()
’U(E) = JE ( (MXE)l_pug

and using Hélder,

P—pQ
(B) < ] M (! (M) X)) (2) ) 7
v < |xe L%,l(u) (M xz) =P .
Lm’w(u)
pP—Po
_ Pyl M (Mxe) P X(rw=p) (@) | 7
Po (Mxp)'—Pu? L ()

Here we apply [32, Lemma 2.6] and conclude that

pP—PQ
)

v(E) < pu(B)P"Cl (M) ~u) 7 (M) Pu)({|Txs| > y}) 7

where the constant C,4(-) is the one appearing in [32, Lemma 2.6]. With this estimate,
we obtain that

P _ p(p—pg) p—1 P
Xty = 5 oo 00 P00 (L, ) ().

Using that in our case [% < # < 1, we can choose the best possible value for 8 so that

pt+1

Cpo((Mxg)' ™"u) < pllul ) -

If we plug this in the previous estimate and observe that
p.D (p—Po> <

Po po\p—1 Po

we conclude

2 o EELETE p—1
(Tl aresyra < PRI 0 (E= i, ) ().
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Notice that the most interesting feature of this result is that the conclusion at p = 1
holds for the whole A; class. In fact, if our goal is just to reach the endpoint, we can
make yet another simplification. Namely, we can obtain the restricted weak-type (1,1)
estimate for A; weights starting from a restricted weak-type (po, po) assumption in which
po may depend on the weight u. The key fact is that we always have 1 = p < py.
Therefore, regardless of the value of py, we must argue as in the first case of the proof of
Theorem 1.10. Notice that in this case, to prove the estimate at level p = 1 for a fixed
weight u € Ay, we use the assumption at level py with exactly the same weight u, so the
dependence po(u) does not affect the argument. The conclusion is (1.11) with p = 1, as
we state in the following theorem. Here we make the dependence of ¢ on py explicit, since
it represents dependence on u and might need to be taken into account:

Theorem 1.11. Let T be an operator and u € Ay. If there is some 1 < pg < o0 such that

ITXEl o ((atxy=rouy < @po (] 4 JulE),

then

1

1—L
17Xl ey < el 4, @po (lul ay)ul(E).

In the next section, we will see how an extra (mild) assumption on 7" allows us to turn
the conclusion into a weak-type (1,1) estimate rather than a restricted one. To conclude
the discussion on this smaller class of weights, we present a duality result that also holds
in this setting:

Proposition 1.12. Let 1 < py < 0. Assume that we have a sublinear operator T with
adjoint T* such that, for every measurable set E € R™ and u € Ay,

IT* Xl oo (agy-mowy < @(lullay)u(E)P, (1.13)

with ¢ an increasing function on (0,00). Then, for every 1 < p < o, u € A; and
fe LPi(u),

» < oy ([l a) | f e ),

i

L% (u)

with ¢, defined as in Theorem 1.10.

Proof. First, we use Theorem 1.10 to extrapolate (1.13) and deduce, for every 1 < p' < o0,
1p

IT*XE Lo (ary vy < pr (U] ay)u(E)

Now fix 1 < p < c0. Since we want to show a restricted weak-type estimate, it is enough
to assume that f = yg. Also, in order to compute the LP® norm via duality, we also
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need to establish a restricted weak-type estimate for the duality operator (-, h),, so we
A sup

take h = yr and
T(u
< ( XE),XF>
Lro(u)  u(F)Yr'=1 “ u

HT(uXE) = sup JnT(uXE)(J;)XF(x)dx
— Sup JnXE(x)T*XF($)U($)dx

u(F)=1

u
u(F)=1

/

— up j ¥ () (Mxp ()P VT x () (M ()
u(F)=1JR"

u(z)dz

S ?I%Iil I (Mxr)” _1HLF’I((MXF)l’P’u)”T*XFHLP’»‘”((MXF)“P’u)‘

Now, the first norm can be bounded by

0 1/p 1
f (J MXF(x)l_p/u(x)da:) dy < J Y YPu(EYYPdy < w(E)YP.
0 {xeE:Mxp(z)P ~1>y} 0

To the second norm we apply our assumption to control it by @, (|luf 4, )u(F)Y? =
¢ (lu] 4,), and this completes the proof. O

1.4 From restricted to unrestricted weak-type (1,1)

Even though the results presented above only yield restricted weak-type (1, 1) estimates,
it is known that for a large class of operators (as it happened for the Hardy-Littlewood
maximal function M), this is equivalent to being of weak-type (1,1). We will need to
define a notion introduced in [21] that gives a sufficient condition for operators to be of
weak-type (1, 1) just from a restricted weak-type estimate.

Definition 1.13. Given 6 > 0, a function a € L*(R") is called a d-atom if it satisfies the
following properties:

(i) $gna =0, and
(ii) there exists a cube Q such that |Q| < ¢ and suppa < Q.

With this, a sublinear operator T is (g,0)-atomic if, for every e > 0, there exists § > 0

such that .

|Talprsre = f (Ta)*(t)dt < efaly,
0

for every 6-atom a, and T is said to be (g, §)-atomic approximable if there exists a sequence
{T,}n of (g,0)-atomic operators such that, for every measurable set E, |T,xg| < |T'xg|
and, for every function f € L'(R™) with ||f]. < 1,

T f(x)| < liminf|T,f(z)|, a.e xeR"
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In [21], the author shows that this is not a strong property to assume on an operator.
For instance, it is checked that if

Tf(x) =K = f(x), (1.14)

with K € LP(R"™) for some 1 < p < o0, or K measurable and uniformly continuous on R",
then T is (g, 0)-atomic, and if {T},}, is a sequence of (e, J)-atomic operators, then both

1/q
T f(x) = sup| T, f(x)],  and Tf(w)=<Z|Tnf(f6)lq> ,

n

are (g, 0)-atomic approximable, for every g = 1. We will see that this notion of approxima-
bility by (e, §)-atomic operators is not the only possible one keeping the good properties
of these operators, but for the time being we will not get into this matter. The result
concerning the boundedness of this kind of operators is the following:

Theorem 1.14. Let T be a sublinear operator (g, 0)-atomic approximable and let u € A;.
Then, if there exists a constant C,, > 0 such that, for every measurable set F,

ITxElLre@ < Cuu(E),

we have that
T: L'u) — LY (u)

with constant 2"C,,|u) 4, -

This result was proved in [21] in the unweighted case, and extended to weights in A;
in [28].

1.5 Limited range extrapolation

Finally, let us present an extrapolation tool that will be needed in Section 3.3.1. Assume
that we have a weighted LP° estimate that only holds for certain powers of A,, weights.
Despite the fact that Rubio the Francia’s extrapolation cannot be applied directly, this
partial information can be used to draw conclusions for a limited range of p around
po, depending on the powers of the initial weights and the value of py. This idea was
introduced in [51] and further developed in [26]. Let us make it precise. Its original
statement is a little bit more general, but for the sake of simplicity, we will state it in a
simpler way. See |26, Section 2| for more details.

Theorem 1.15. Assume that, for some 1 < py < © and some « € [0,1], a sublinear

operator T" maps
T: LP(w®) — LP(w®), Ywe Ay.
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We define
/oL p6 L Po
p_: 1— O{’ b+ 1 — Oé’

and, for every p € (p—,ps+), we set ap(p),ai(p) € [0,1] to be such that

/

S A
- 1-w(p) T 1 —ag(p)

Then, it holds that, for every p € (p_,py), and every ug, u; € Ay,

T Lp(ugo(p)urfl(p)(l—p)) N Lp(ug()(p)ufl(p)(l_p)).

Notice that the interval (p_,p,) is built around pg, and that if & = 0, it shrinks to
the singleton {pg} (which makes sense, because no extrapolation is possible if the initial
estimate does not have weights). If a = 1, then this result recovers Rubio de Francia’s
theorem, since for this particular case (p—,p;) = (1,0) and ap(p) = a1(p) = 1, which,
due to the factorization of A, weights (1.4), makes the conclusion valid for the whole A,
class. If we are not interested in the weights in the conclusion, we can forget about the
exponents «;(p) and write the following particular case:

Corollary 1.16. Assume that for some 1 < pyg < o0 and some « € [0,1], a sublinear

operator T" maps
T: LP(w) — LP(w®), Ywe Ay.

Then, for every p € (p—,p+),
T : L’(R") —> LP(R"),

where p_, p, are as in Theorem 1.15.
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Chapter 2

The Bochner-Riesz Operator

2.1 Introduction to the problem

First of all, let us recall the standard definition for the Fourier transform of an integrable
function f e L'(R"):

f(€) = flx)e ™ =8dy, ¢ e R™
-

This operation f +— f can be extended by duality to the class of tempered distributions,
and in particular, defines an isometry on L?*(R™), known as Plancherel’s theorem. Its

inverse transform is denoted by f¥(z) := f(—z). Another essential property is that the
Fourier transform of a convolution becomes a pointwise product in the following way:

— ~

feg(&) = f(£)g(&).

A really detailed presentation of the Fourier transform and all its properties can be found
in [63]. Now, we will give the general definition of the Bochner-Riesz operator. Recall
that ay = max{a,0} denotes the positive part of a € R.

Definition 2.1. Given A > 0 and r > 0, we define the Bochner-Riesz operator BY on R"
by
By f(&) = (1= [r€[)2 £ (€).

Notice that the term (1 — |ré]?)} restricts the support of f to the ball B(0,1/r).
However, the larger the value of A\, the smoother this truncation is, and thus, the better
the operator B} will behave. More precisely, it is easy to see that if A > "T’l, then B f
is essentially controlled by the Hardy-Littlewood maximal operator M (see, for instance,
[63, Sec. 10.2]). However, for the so-called critical index A = 2%, we do not have such
a control. We will focus on this critical case with » = 1, so for the sake of simplicity, we

will drop the indices \ or r whenever they are "T_l or 1 respectively.
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CHAPTER 2. THE BOCHNER-RIESZ OPERATOR

Despite the fact that B is no longer controlled by the Hardy-Littlewood maximal
operator, when it comes to its boundedness on weighted LP-spaces, it satisfies the same
estimates as M. Namely, in 1988, M. Christ [35] showed that B is of weak-type (1,1) with
respect to the Lebesgue measure. Later on, in 1992, X. Shi and Q. Sun [107] proved that it
was of strong-type (p, p) for every weight in A, and every 1 < p < o0, and finally, in 1996,
A. Vargas [124] extended the weak-type (1,1) estimate to A; weights. In this chapter,
we will give a short proof of the strong-type (p, p), then simplify A. Vargas’ proof for A;
weights and, finally, in Theorem 2.9, we will show that B satisfies a certain restricted
weak-type (p,p) estimate, in the spirit of Section 1.3. The main advantage of this new
estimate is that it will allow us to use extrapolation arguments on operators that can be
written as an average of Bochner-Riesz operators {B"},~.

2.2 Some preliminary results

Let us consider the classical decomposition of B. Arguing as in [35], it is enough to study
the operator (which we will call again B)

fr— (Z Kj) « f,
j=1

where
x

Ky() = (—) (@)@ D)l ™,

|

and:

e 7 is a fixed element from a finite C* partition of the unity on the sphere S"~!, which
we can assume to have very small support.

e () = cos(2m|x| — m(n —1)/4).
e v € C*(R"), real-valued, radial, supported on {x € R" : |z| € [1/4,1]}, and such
that ‘
Dlp@z)=1, on R™{0}.
JEZ

Even though we will resort to some estimates from [35] for which the author needs a deep
understanding of the kernels K, the only property that we will explicitly use has to do
with their size and support. Namely that, for every j > 1,

|K;(2)] < 2_anB(0,2j)($)- (2.1)

This is a direct consequence of their definition. In fact we could say that they are sup-
ported on the annulus B(0,27)\B(0,2772), but since we will not really use it, let us just
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keep estimate (2.1). Also, we will use that they are uniformly controlled by the Hardy-
Littlewood maximal operator:

Lemma 2.2. For every j = 1, and every locally integrable function f,
|Kj = f(x)] < Mf(x).

Proof. This is a direct consequence of (2.1):

Ky )l 5 (e ) « ) < MS (o)

]

Once we have settled the decomposition of the kernel, we will need three more lemmas
before we can reach our goal. The first one will allow us to construct a simplified Calderon-
Zygmund decomposition for characteristic functions:

Lemma 2.3. Let 0 < a < 1. Let E < R" be a measurable set. Then there exists a family
of pairwise disjoint dyadic cubes {Q;}72, such that

NCM,
|Qi]
and E~N < |2, Qi, with IN|=0.

Proof. We just take the Calderéon-Zygmund family of dyadic cubes associated with the
function yg. By the stopping-time condition used in the decomposition, we know that
these cubes satisfy, for every ¢ > 0,
a<—| xp@)dr=——<2".
1Qil Jo, Qi
Also, if we take a point z € R™\ [ JZ, Q;, since it is not in any Calderén-Zygmund cube,
we have that for each m > 0, there exists a unique non-selected dyadic cube Q)™ with
|Q.™| = 2™ that contains = and

i B Q"
— Xe(y)dy = ———"— < .

But the intersection of the closures of the cubes {Q, ™} >0 is the singleton {z}, so using
Lebesgue’s differentiation theorem, we deduce that for almost every z € R™\ [ J;Z, Q:,

E —m

xe(x) = lim

m—o Q7™

and hence x ¢ F. O
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Remark 2.4. Based on this lemma, given 0 < o < 1 and E < R", we can define for

every k = 0,
e¢]
Ek =Fn (UQ?) ;
i=0

where {QF}*, is the subfamily of cubes with size |QF| = 2" if k > 0, and |Q%| < 1. Since
the set E is essentially contained in the union of all the cubes {Qf}szo, we have that

o0
E = U Ey,
k=0
and for every k,i = 0:
|Ex 0@ _ [EnQF
[o Qf

Let us illustrate this decomposition in the following picture (forgetting about the a-
ratio property). Consider a polygon E, in gray. We separate the cubes into three groups,
one color each, depending on their size, and we look at their intersection with F to find
the pieces F, E5 and Ej.

Figure 2.1: Example of decomposition of £ = Ey U Ey U Es, with B, = E n |, Q~.
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The next lemma will be the cornerstone of our argument. For technical reasons re-
garding interpolation, not only will we need estimates for E, but also for subsets G < F.
|GrnQF|

Notice that if Gy = G n F}, we still have the inequality ~1oF < «, and that will suffice

to get the right estimates.

Lemma 2.5. Let 0 < a <1 and let £ = UZO:O E}. be a measurable set decomposed as in
Remark 2.4. Let G < E be a measurable subset and define for every k = 0, G, = G N Ej.
Then for every 1 < s < oo:

(a)

<277 oG

2
2

0
Z K] * Xijs
j=s

(b) For every weight u € Ay,

2

< ulfi, ou(G).

e}
Z K Xa;_,
Jj=s

L2 (u)

(¢)

2
el

L2(Mxe)~")

0
Z Kj*xag;_,
j=s

Proof. The proof of (a) is exactly the same as that of [35, Estimate (3.1)], where the author
proves an estimate for the bad part of a Calderén-Zygmund decomposition without using
its cancellation property (which allows us to adapt it to our case). In fact, this estimate
is conveniently stated in [124, Section 2, Lemma 2| in the following way:

o Let v = ZQE 7vq, where F is a family of disjoint dyadic cubes, with suppvg <
and {|vg| < @|Q|. Define 7, = {Q € F:|Q| =2} for k > 1, Fyp = {Q € F : |Q| <
and V), = ZQefk vg. Then

Q
1}

2

< 2_8%_104HU”1.

0¢]
2 K Vi
Jj=s 2

For our purposes, take the function v = x¢, the family F = {QF}%,_, and F;, = {QF}72,.
Then,

o]
XGa = Z XanQks
i,k=0
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and it holds that supp xg~gr S QF and
fong.e(x)dx —1G A QY = [Grn QY < |Ex n Q] ~ QY.

: 0
Hence, since V;, = >, XGnQh = XGi»

n—1 n—1
i*Xe, .| 2777 alxgli =277 alG|.

Let us prove (b). Writing the left-hand side as an inner product in L?(u) and using its
bilinearity and symmetry, we get that it can be essentially majorized by

5230 186+ e NI e @t

j=si=s

Since xa, = Do XGonQk for every k = 0, we can write the previous expression as

ZZ (2 Z J|K|*XGJ QI (@)Kl * Xq,_ ~qizs () u(z)dx ) (2.2)

i=s m=0

Now, let us look at the term in parentheses, where Q{ ~% is fixed. Using (2.1), we know
that the support of the first convolution is contained in

Q7+ B(0,27) € Q,

where |Q,| = 2V +2)“, since a cube containing the sum! would need to have side-length
I+ 4 275 < 29%2 and

‘Kj’ *Xaj_nQ™® () < Q_jn‘Gj*S A Q{'—5|'

Similarly, for every s < ¢ < j and every m > 0, the support of the second convolution is
contained in Q,, with |@,,| = 20*?™ and Q'>* < Q,,. Moreover, since x € @, (for the first
convolution to be non-zero), we have that

| K| * XGl-_Sinrjs(x) = f

Gi—sﬁQi’;S

Gifs N Q:;S N 2@l‘7

\Ki(x — z)|dz = f _ |K(x — z)|dz
Gi—snQim °N2Q,
< 2fin

which can be majorized by ' '

271n‘Gi73 A Q';;S|
together with the fact that we only need to consider the cubes Q'~* < 4Q,;. Here we used
again (2.1) to see that z € Q, + B(0,2") < 2Q, and |K;| < 2. Summing up, we will use
the four following facts:

! Actually, @, can be taken to be the dilation 2°+2Q]*, but that would just complicate the notation.
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reQ,nQ,,
|Kj| * XGj*sf\Q{_s<I) < 27jn|Gj—S a Q{_SL

Kil * X, _ gz (1) < 277|Gis 0 Q177

g:s Um0 @in® < 4Q;.

le

J—s
i—8 xl [
1 .

Q e

Qi—s
m

Figure 2.2: Idea of the setting when @ ° is fixed, and we have two cubes Q%* and QL.

With this, we can finish the proof of (b). We bound the expression in parentheses in
(2.2) by

j © A
— j—s g W Q QO
279Gy 0 QD) D) (G 1 Qi D Cn)
i=s m=0
Jj ®© -
iy . o u(Q )
< 9—jn G;S J—S 1—8 °m
W2 1G 0 Q1S Y 1015
< afula,27"|Gios 0 Q1D w(@Qh)

i=s m=0

< afful 4, 277G 0 Q7 *u (4Q)) < alulf, w(Gj—s 0 Q7),
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recalling that |G;_, N Q%] < a|Qi~¢| and that |Q,,| ~ 2™, [4Q,| ~ 2/™. We can plug it
in (2.2) to get the sought-after estimate:

0

allulf, X Y ulGims 0 Q) = alulh, Y u(Gymy) = aful3,u(G).

Jj=s1=0 j=s
Finally we prove (c¢). Exactly as in (b), it is enough to show that
0 j
>y (Z > 1l X, g @I *xGi_ngs<as><MxE>-1<x>dx> <16l (23)
Jj=s1=0 \t=sm=0
where the expression in parentheses is controlled by

(Mxe)'(Q,,)
21'71

)
279G 0 QU Y D 1Gie 0 Q7
i=s m=0
Now, since Q~* < 4Q,, |Q,| = 2U*?" and |Q,,| = 20*2", we deduce that Q,, < 5Q,, and
hence, by Lemma 1.6, - o
(Mxg) (@) < (Mxg)'(5Q)
9in ~ in

Using this, we obtain

j ®©
(2772 (M) (5QIGss 0 Q17125 2, 1Gis 0 Q7).
i=s m=0
Now, we use the A% condition of (Mxg)~" with the subset® G n 4Q, < 5Q;, and that
U, Qi < 4Q), to get

G N 4Q)|MGjs 0 Q7°||G 1 4Q),

which we can simplify and sum over s < j < o0 and [ > 0 to obtain that the left-hand
side in (2.3) is majorized by |G|. O

The third and last lemma will be an interpolation argument (in the spirit of [113]) on
the estimates in Lemma 2.5 that will yield the right control of the L? norm with respect
to the desired weights. Let us just remark that the first estimate will be used to prove
the second one, so in this case we will still need to consider subsets G < E.

Lemma 2.6. Let 0 < o < 1 and let E = | J,_, Ex be a measurable set decomposed as in
Remark 2.4. Let G < E be a measurable subset and define, for every k >0, G, = G Ey.
Then, for every 1 < s < o0 and every u € A;x:

2Recalling that Myg = 1 on G € F and assuming G n 4Q, has positive measure, otherwise the whole
expression would be zero.
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(d)

2

< Julfi, 27 au(G),

o0]
DK+ xa,_,
j=s

. _ n—1 1
with & = 5 (W) '
(e)

L2 (u)

2

< [ul%, 27! u(E).

o
2 Kj»Xg;_,
j=s

L2((Mxp)~%u)

withezéandﬁz%—l<w>

1427 uf 4y 1427 uf 4, )?

Proof. For a,b > 0, define w, ,(r) = min{au(z), b}. Fix t > 0 and write
B' = {zeR": [ul?} u(z) <277 ¢},

and B? = R™\B'. For every k > 0, we write Gy = G}, UG?, where Gi = G, n B' < E}, and
G =, ,Gi =Gn B fori=1,2 Using (a) and (b) in Lemma 2.5 and the definitions
we just introduced, we get

2 2 2

a0 e ¢]
g EKj*ngl__s +1 ZKj*XG]z_S
j:S Lz(u) j:S

< Jul?, au(GY) + 2757 ta|G?| = awau(G),

0
Z Kj = xa,_,
Jj=s

L2(w1,¢) 2

with a = |ul%, and b = 275"3". Now, we integrate both sides with respect to t € (0,0)
equipped with the measure t;%, where 0 < # < 1. Using Fubini and the definition of the

weight, we obtain
2

< aa (@),

LZ(UI—G)

o0
DK+ xa,_,
j=s

But we know (see [98]) that if u € A; and r = 1 + 5o, then u” € A; and |[u"| 4, <

27 ula,
|u| 4,, so applying what we have shown to u" and taking § = (r — 1)/r, we obtain
2 22 u) 4,
)
< ||U||;;2n+ H HAlQ o 12 ul 4y au(G).

L2 (u)

o0
Z Kj*Xa;_,
j=s

Notice that the exponent in |jul 4, is always less than or equal to 2, so we conclude (d).
The proof of (e) follows the same idea but interpolating estimates (¢) (in Lemma 2.5) and
(d). Define in this case v, ;(z) = min{au(z),b(Mxg) *(z)}. Fix t > 0 and write

O ={z e R": aful}, 2 u(z) < (Mxp) ™ (2)t},
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C? = R"\C"'. Now we decompose, for every k > 0, Ey, = El U EZ, with E! = E;, n ("
and E' = | J_,Ei = En C? for i =1,2. We need to use (c) in Lemma 2.5 and (d):

2 2 2

< +t

o0 o0 o0
D KX, PN XE! DK XE2_,
j=s Jj=s L2(u) j=s

< Julfd, 2" au(EY) + tE*| = vau(E),

L2(v1,4) L2((MxEg)~1Y)

with @ = afu%,27°° and b = 1. Exactly as before and recalling that Mxp =1 on E, we
deduce that for every 0 < 6 < 1,

2

~

L2(Mxp)~fu'~%)

< a/179b9u170(E).

0
DK« xe,,
j=s

Finally, we apply this to " instead of u, take § = (r—1)/r, substitute a, b and we conclude
(e) with the claimed values for 6 and (. O

2.3 The main results

As we mentioned at the beginning of this chapter, we will give three results concerning
weighted estimates for the Bochner-Riesz operator at the critical index. The first two
were already known, but we will include their proofs since they do not follow the same
scheme as the ones presented in [107| and [124] respectively. We will also keep track of
the boundedness constants depending on the weights.

Theorem 2.7. For every n > 1, the Bochner-Riesz operator at the critical index B is

of strong-type (p,p) for every weight w € A, and every 1 < p < oo, with boundedness
2

constant controlled by Hw||zljx{2pj}

In [107], the authors follow an interpolation argument for analytic families of operators.
Even though the underlying idea is simple, there are some technicalities that complicate
the proof. Later, when A. Vargas went on to prove the weighted weak-type (1, 1) estimate
in [124], she realized that using the key inequality from the earlier paper by M. Christ [35],
the strong-type (2, 2) for weights in A, was just a consequence of the control | K+ f| < M f
that we have on the decomposition of the kernel. We will present this simplification with
the dependence on the weight of the boundedness constant:

Proof. In [35, Lemma 3.1], the author shows that

- i _no1
K * K5 < 27 (1 + [2)) 777 X(jajeaie (@),
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where K ;(z) = K;(—z). With this estimate, it is an easy computation to check that
|K Kyl s 27777,

and hence, for every function f € L?(R"), if {-,-) denotes the usual inner product in
L*(R™),

~ 1/2 ~ 1/2 ~ 21/2
1555 flo = (K5 # By £,0) < (1K= Ky flalfl2) < (165 « Kbl £13)

<275 £l
On the other hand, for every weight w € A,, by Lemma 2.2 and the L2-boundedness of M:

155 * fllezw) S M Fll2) S |wla] flz2e),

so with the usual interpolation with change of measure, we deduce that, for every 0 <
0 <1,

_n=lgq_
1565 # fllrzgey < 2775 9D, £ 22 o).

Since A, weights satisfy a sharp Reverse Holder inequality (again, see [98]), for r =

1+ m we have that w" € Ay and ||w"|4, < |w|a,. Hence, applying the previous

estimate to this weight and choosing 6 = 1/r < 1, we conclude that

n—1

e )’
1K 5 floz <2 0271000 ool | 2.

Therefore, we can sum over j to deduce that

e @]
IBF 2y < D5 1K * flrzwy S [wlan (2 = D)7 f iz
=1
with ¢ = —"L_~ But (2° — 1)™' ~ |w|4,, so we get that B is of strong-type

4(1427+5w] 4,
(2,2) for eviry weight )in Ay with boundedness constant controlled by |w]%,. By Rubio
de Francia’s extrapolation (see its version in [50] for the behavior of the constants), we
deduce that for every 1 < p < o0, we have the strong-type (p, p) for every weight w € A,
and with constant controlled by
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Theorem 2.8. For every n > 1, the Bochner-Riesz operator at the critical index B is of
weak-type (1,1) for every weight u € Ay, with boundedness constant controlled by |ulf’, .

In this case, we present a slightly simpler proof than the one in [124]. The main
difference is the fact that it is enough to show that B is of restricted weak-type (1,1)
for weights in A;. Dealing with characteristic functions allows us to avoid, by means of
Remark 2.4, the Calderén-Zygmund decomposition in good and bad parts. We still use
the cubes, but the only decomposition we need is® xp = 3., Xz,

Proof. Using Plancherel’s theorem, we know that B is a convolution operator whose
kernel K belongs to L*(R"), so as we mentioned in (1.14), B is an (g, §)-atomic operator.
Therefore, by Theorem 1.14, it is enough to show that it is of restricted weak-type (1, 1)
for every weight in v € A;. Take a > 0. If & > 1, then we use Theorem 2.7:

au({z : [Bxe(@)| > a}) < a®u({z : |Bxp(2)| > a}) < | Bxelia,
<

lul, IxElTew) < lully,u(E).

If 0 < a <1, we decompose E as in Remark 2.4 and

au ({z : |Bxg(z)| > a}) < au ( U SQf) + au ({xe,é U 3Q% : |Bxp(r)| > a}) :

i,k=0 i,k=0

For the first term, we use that u is doubling and

* k - Ey c U(Qf) k
au | | 3QF) < alula, X uw(@F) = lula, ] QF Q7|

1,k=0 i,k=0 i,k=0

- U(Qf) k 2
~ula Y] OF] |Ex 0 Q7] < Jul3, u(E).
i,k=0 i

On the other hand, looking at the intersection of the supports of K; and xg,, it is easy
to see that if = ¢ | J;,_, 3Q%, then

[CONe ] o0 0 o O
Bxp =), > Kivxm =, > Ki*xum =), Ki*xs,..

j=1k=0 k=0 j=k+1 s=1j=s

3Recall that Ej, is the portion of E lying in cubes of measure 27% if k£ > 0 or measure less than or
equal to 1 if k£ = 0.
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so using Chebyshev and (d) in Lemma 2.6 with G = E,

au ({xeﬁ O 3Q% . |Bxg(2)| > a}) < au ({x eR":
k=0

o 0
22 K xe,

. })

s=1j=s

0 2 © |
<a! ZZKj*XEj*S <ot Z ZKj*XEjfs

s=1j=s L2(u) s=1||j=s L2(u)

2
o

<o () |u\A12‘53a1/2u<E)1/2> = Jul?, 2% — 1) 2u(E) < |ul},u(EB),

s=1

since (292 —1)72 ~ |u|%,. So taking supremum over a > 0, we have shown that
|BxEl L < luld,ul®),

which by Theorem 1.14, proves the weak-type (1, 1) for every weight u € A; and constant
controlled by [|ul%, . O

Finally, let us present the new weighted result for the Bochner-Riesz operator at the
critical index:

Theorem 2.9. Given n > 1, the Bochner-Riesz operator at the critical index B satisfies
that, for every u € Ay, there exists 1 < py < oo depending on |u|a, such that, for each
measurable set E < R",

HBXEHlpO,oo Mxg)t—Pou g HuH4A/iD0u(E)1/pO'
More pTGCiS€ly, the exact dependence 18

1

u =1t g
po(J|uf a,) 1+ 201 u 4,

Proof. We will follow the same strategy as in the proof of Theorem 2.8. Let 6 € (0,1) be
as in (e) from Lemma 2.6. If o > 1 and wy := (M xg) %u, then by Theorem 2.7:

oy ({2 : | Bxs(e)] > o) < o®wy ({a : [Bys(@)] > a})

2
< BxE 200y < TwollaIXENT2 (0 < Tully,u(E).
In the last inequality we used that

],
1-46

lwollay < [(MxE)"|ay 4y ~
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1

since 0 < 0 = Tro Tl

< 15 < L If 0 < a < 1, we decompose E as in Remark 2.4
and

o wy ({2 1 |Bxe(z)| > o) < a'Pwy < U 3@?)

i\k=0
o0
+ o' Py ({xqﬁ U 3Q% . |Bxg(x)| > a}) .
k=0
For the first term, we use that wy € AF , and by (1.8), ||wg|\114%f0 < |lulla,. Also, recall

that wg = u on E:

0 0
'ty ( U 3@?) < a*ula, Y wo(@F)

i,k=0 i,k=0

S (@) (IEme|)”9 B O
e 2 SEnn ) @)

< ul,w(E).

For the second term, we argue as before but now with (e) in Lemma 2.6:

e} o 0
a0y ({az ¢ U 3Q% . |Bxp(x)| > a}) < o, ({x : Z ZK]- * XE,_,
i,k=0 s=1j=s
0 0 2
Z ZKJ *XEj—S

s=1j=s

0

0—-1
<a’ | )

L2(we) s=1

0
2 Kj * XEj_s
j=s

L2(wa)

2
o0
- _gB 10 _
< a7 )] a2 Wu(E)”) = [[ulA, (2°7% = 1)2u(E) < |ul},w(E),
s=1

since again (272 — 1)7% ~ |lu[%,. So taking supremum over o > 0, we have shown that,
for pp =1+ > 1,

1+2n+ Ll 4,

4
| BXEl prooe (a1ygy-rowy < Il 47 u(E) 7.

]

For later purposes, we will also need the following fact stating that Theorem 2.9 holds
for B" uniformly in r > 0:
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Corollary 2.10. For every weight u € Ay, there is some 1 < py < 00, depending on |ul| 4,,
such that, for each measurable set E < R",

T 4
|B XEHLPOvOO((MXEﬂ*POu) < HUHA/IPOU(E)I/W,
uniformly in r > 0. The dependence of py on ||u]a, is the same as in Theorem 2.9.

Proof. 1t is easy to check, using the formula for the Fourier transform of radial functions
(see |63, Appendix B.5]), that

K.(z) =r"K(r 'z),

where now, for every » > 0, K, denotes the convolution kernel associated with B", and
hence

B'f(z) = K« f(z) = (Ky = f (7)) (r'2) = B(f (7)) (r ).
If we take f = xpg, we can write (here, r'E = {r~lz e R": z € E}):
B"xg(x) = Bxy-15(r~'z),
and we can use Theorem 2.9 to choose 1 < py < o depending only on |ul 4, and get that:

N 1/po
HBTXE||Lp0‘oo((MXE)17pOu) =sup « ( (MXE)l—PO (I)U([E)d.f)
J

a>0 {|Bx,~1p(rz)[>a}

~ 1/po
=sup o ( (MXE)l_pO (ry)u (ry) r”dy)

a>0  \J{Bx 1 ,w)>a)

[

1/po

:supa( ” <Mxr-1E>”0<y>uT<y>dy)

>0 N H[Bx,—1p)|>a}
4 -
=| Bxo-15lmroo((arn, 1 py-rouny S |3 our (r BP0,
where u,(x) = r"u(rz). But a simple change of variables shows that

luray = Julla, and  w,(r™'E) = u(E),

as we claimed. Notice that it is essential that the dependence of py on u is in terms of
|ull 4, = |ur|a,, so we have the same py for both u and w,.. O
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Chapter 3

Fourier Multipliers

In this chapter, we will try to use extrapolation results on Fourier multipliers in order to
obtain weighted weak-type (1, 1) estimates. The arguments in Sections 3.2 and 3.3, where
we consider multipliers on R and radial multipliers on R"™ respectively, will be based on
a general technique that we present in Proposition 3.1. The idea is to take advantage of
restricted weak-type estimates that we already know (like the one we have found for the
Bochner-Riesz operator in Theorem 2.9) and transfer them to more general operators.
In Section 3.4 we do not use this approach but rather we establish restricted weak-type
(po, po) estimates directly for multipliers of Hérmander type.

3.1 The averaging technique

The following proposition represents a simple idea that will turn out to be really useful
to prove endpoint estimates for operators that can be written as averages.

Proposition 3.1. Let (2, i) be a measure space and let {T,,}.eq be a collection of sublinear
operators indexed by w € Q and such that, for every u € Ay there is some 1 < pg < 0 so
that, for each E < R™ measurable set,

HTWXEHLPO’QC((MXE)1_1"0u) S Ppo (HuHAl )U(E)l/pou

uniformly in w € Q. Then, for any given ® € L'(Q, |u|), the operator

Tf(z) = f T, £ (2)® (w)dpu(w)

is of restricted weak-type (1,1) for every u € Ay with constant

1

1
el a, ™ oo (T 4) [ 212, -
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If T is in addition (g,0)-atomic approzimable, then it is of weak-type (1,1) for every

u € A; with constant
1

[ull 4, ™ @po (] 419 22 (02 10
Proof. Given u € A, take its associated 1 < py = po(u) < oo and by Minkowski’s

inequality

HTXEHLPO’OO((MXEF*POU) < L HTwXE||LP0v°C‘((MXE)1*POu)|(I)(w)|d|:u‘(w)

< 0o (] 4) | @] 11 0y (B) 7.

Then, we apply Theorem 1.11 to obtain the restricted weak-type (1, 1) estimate with the
right constant. If T"is (g, 0)-atomic approximable, Theorem 1.14 completes the proof. [

Remark 3.2. Notice that if we only had uniform restricted weak-type (1,1) estimates
for the family {T,}.eq, then the average operator T would not necessarily inherit that
property, since LY is not a Banach space. The fact that we can transfer estimates from
T, to T at level py > 1 (where Minkowski’s inequality is allowed) and then extrapolate
down to p = 1, is the key ingredient in this result.

3.2 Fourier multipliers on R

The next application will illustrate our technique with a very simple example. The
weighted estimate that will play the role of Theorem 2.9 is the following:

Proposition 3.3. Given 1 < p < o and a weight w € Af, the Hilbert transform H
satisfies the restricted weak-type estimate

[H flzoeoqy < Jwlfe' [ £llew)-

This result has an easy proof based on the pointwise domination of Calderén-Zygmund
operators by the so-called sparse operators, and is actually true for any operator with such
a control, not just the Hilbert transform. The best result so far regarding domination
by sparse operators is contained in [80], and includes all Calderén-Zygmund operators
with a Dini-type condition on the modulus of continuity of the kernel. The proof of
Proposition 3.3 goes as follows:

Proof. By the reduction to sparse operators we just pointed out, it is enough to show that
|SXE o) < Jwlfxw(E)?,
P

where S is a sparse operator. More precisely,

FE
Sxp(r) = 3 %XQ@
QeS
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and S is a sparse family of dyadic cubes, meaning that for every ) € S, there exists a
measurable subset Fy € @ such that |Fp| ~ |@Q| and {F}ges are pairwise disjoint. We
will proceed by duality. Let 2 > 0 be a function in LP"'(w) with A o1y = 1. Also,
we know that there is a dimensional constant ¢ > 0 such that, for every ) € § and every
y € (), we can find a cube @y centered at y with

Q< @y C Q.
Therefore, since |Fy| ~ |Q] ~ |cQ),
|En Q)| |En Q| |Fol
g h d
N xe(2)h( QZE;S 0] Q QZE; Q] |cQlr JQ (z)w(x)dx

wlP |En Qlw(ly) Dwlz)de
S| ||A;;QZ€S o] f@hu (a)d

~ ol ¥ (i [ veta o) (o th@)w(x)dx) LQw@)dy

QeS

<lutyy 3 LQ(|@| f Yo (@) ) <wé§y> f@thw(x)dx) w(y)dy

<l X [ Mty
QesVE

where M¢ is the centered Hardy-Littlewood maximal operator associated with the mea-
sure given by w:

1
Mih(y) =sup— i | b))
r>0 QU(Q(y,T)) Q(y,r)
Here Q(y,r) denotes the cube of center y and side-length » > 0. Now, using that the
sets Fy are disjoint in () € S, we can sum over the cubes and, by Holder’s inequality, we
conclude that

| Sxptelhteyo(o)ds < fulfys Ml e | ML

Next, we use (1.7) for the second term and, for the third one, the fact that M¢ maps
Lplvl(w) into itself with a constant that does not depend® on the weight w. This yields
that

 Sxs@h(z)w()de < [l w(E) P 1] oy = 0]y w(E),

IThe technicality of introducing the cubes @ is explained by the fact that we must obtain the centered
maximal operator MS. If we worked with the original cubes @ instead, we would end up with the
uncentered M,,, whose boundedness constant from LP-!(w) into itself does depend on w.
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and taking supremum over i we obtain | S g|| .= (w) on the left-hand side of the inequality,
as we wanted to show. ]

The first result concerning Fourier multipliers that we present is the following:

Theorem 3.4. Let m be a function of bounded variation on R. Then, the operator T,
defined by

T, f(€) = m(€) f(€)

is of weak-type (1,1) for every weight u € Ay and with constant controlled by |dm| - |u?,,
where ||dm| denotes the total variation of the measure dm.

Proof. Since m is of bounded variation on R, the limit of m(t) as t — —o0 exists, so by
adding a constant to m if necessary, we can assume this limit to be zero. Let {¢;}; be a
non-negative approximation to the identity as j — oo. That is:

e For every j > 0, it holds that |¢;[; = 1.

e For every r > 0,

720 JR\(=rir)

It holds that [|§;] < |¢;[1 = 1, and we can furthermore assume that the total variation
|d@;| < 2. To this end, take for instance the approximation associated with the Poisson
kernel [63, Example 1.2.17],

J

1 >0
1+ T

©;(t)

which satisfies $;(t) = e 2717 and has this property:

271'627rt/j

0
43, = f 43,1 = 2 f ™ o,
R —00 J

Now, for every 7 > 0, define
my(t) = m(t)@;(t).

This function is of bounded variation with |dm;| < 3|dm/|, since
[dm; || < lImllol|dps ] + 185l [ dml| < 3lldml].

We still have that m; vanishes at —o0, so we can write the Lebesgue-Stieltjes integral

m;(§) = JR X(t,00)(§)dm;(1).
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The multiplier associated with X () is essentially a modulated Hilbert transform
f(CL’) — s 627rit9cH(6—27rz’t~f) (x)

that we will denote by H; (see [49, Estimate (3.9)]). Then,
T, f () = f H,f(z)dm;(t). (3.1)
R

Now we use Proposition 3.3 with the weight w = (Myxg)'™Pu, for some u € A; and
1 < p < oo, and (1.8), to conclude

| Hixe| e (ixmyi—ruy = [H(E™ XE) | Lo (xm)i-ru)

1+

1 1+l
< Julla,” IXE Lo arey-ra) = lula, " u(E)',

uniformly in ¢ € R. Therefore, the family {H,}; is under the hypotheses of Proposition
3.1. Also, for every j > 0, the operator T}, is (&, d)-atomic (since m; is integrable and
hence, its associated convolution kernel is uniformly continuous, as in (1.14)). With this,
we conclude that T,,,; is of weak-type (1, 1) for every weight u € A; with constant?

21 141
Jalla, " el ldmy ]| < ldmul,

Finally, since {¢,}, is an approximation to the identity, at least for Schwartz functions f,
there is a subsequence such that

Tonyy f(2) = @5y * T [ (2) — T.f(z) ae. .
With this, we use the estimate for T, and Fatou’s lemma to finish the proof:
ITon flgceuy < it i [Ty flrencuy S ldmlal, 1 -

]

The idea of transferring estimates on Banach spaces from H to T, based on (3.1) is
not new. In [49, Corollary 3.8], this method is used to show that 7}, is bounded on LP(R)
for all 1 < p < oo. The only difference here is that the Banach estimate that we transfer
from H to T, is a weighted one that allows us to extrapolate down to p = 1 and deduce a
weak-type (1, 1) result for T, that cannot be obtained by means of Minkowski’s inequality.
These multipliers are closely related to the ones appearing in the Marcinkiewicz multiplier
theorem (see [49, Theorem 8.13|). In that case, the result claims that if m has uniformly
bounded variation on each dyadic interval in R, then 7,, maps LP(R) into itself for every

2In this case, the function ® appearing in Proposition 3.1 is the constant ® = 1, and its L'-norm with
respect to the measure |dm;| is exactly the total variation |dm,].
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1 < p < oo. This is obtained by means of Littlewood-Paley theory, and can be extended
to the weighted setting to prove the same result for A, weights |78|. However, it is known
that there are operators under the hypotheses of Marcinkiewicz’s theorem that fail to
be of weak-type (1,1), even in the unweighted case (see [119] for sharp results near L').
Therefore, we know that our assumption for m to be of bounded variation on R cannot
be relaxed to uniform bounded variation on dyadic intervals.

The next section will follow the same argument but using the estimate for the Bochner-
Riesz operator in Theorem 2.9 to draw conclusions about radial Fourier multipliers on R"™.

3.3 Radial Fourier multipliers on R"

We will start with an easy result that will be useful when n = 3 and will motivate the
generalization to arbitrary dimensions. Notice that when n = 3, the critical index of the

Bochner-Riesz operator is "T_l = 1.

Lemma 3.5. Let m be a bounded function defined on (0,0) such that
(a) The derivatives m' and m” are defined on (0, 0).

(b) The limit
lim m(t) —tm/(t) = ce R.

t—o0
(c) We have that tm”(t) € L'(0, ).

Then, the operator defined by

A~

T f(€) = m(l€)f(6), €eR"

can be written as

nJ@FJj$WMW@w+q@xxew,

— ~

where ® € L'(0,0) and, for every r >0, B{f(§) = (1 —r2[£]?), f(£).

Proof. Fix t > 0. Since m is bounded, m(s)/s goes to zero as s goes to infinity, so

i 1 [ (20 o [,

S S

Now, integrating by parts,

m(t) = —t (hm (—m'(s> ; m(s)) ml(t) — @ ; L ) m”(s)ds) |

§—00 S
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Using again that m is bounded and property (b), we get that the limit is zero, and hence

0¢]

m(t) = —tm/(t) + m(t) —t :O m"(s)ds = L sm”(s)ds + ¢ — tf:o m”(s)ds

_ fo (1 - é) sm(s) + ¢ = LOO (1 - §)+ sm”(s)ds + c.

Therefore, making a change of variables we get that, for every £ € R",

miigl) = | i ( - 'ﬁ—'f>+q><s>ds e

d(s) = 25°m” (%),
which lies in L'(0, o) by property (c). Therefore,

with

Ol | "B R(©)a(s)ds + cf(©).

and inverting the Fourier transform together with Fubini, we finish the proof. O

Proposition 3.6. If we have a function m as in Lemma 3.5, then the operator

Taf(€) = m(E)f(©), €eR?,

is of weak-type (1,1) for every weight uw € Ay and with constant essentially controlled by

Proof. When n = 3, the operator Bj is exactly the Bochner-Riesz operator at the critical
index. Now, by Corollary 2.10, we know that for every weight u € A;, there is some
1 < po < o such that, for each measurable set £ < R3,

1B x5 o (i -vouy S Ll u(EYP, (32)
uniformly in s € (0,00). Now, by Lemma 3.5,
e}
T,0(@) = | BV f@e(s)ds + ef(w), ze R
0
with ® an integrable function on (0,00). The term cf plays no role in the boundedness

of T}, so let us focus on the first one. Let K/, be the convolution kernel associated with
BYs. For every j > 0, define

I(x) = f ' Ky (2)0(5)ds = f " Ky(0)0,(s)ds,

49



CHAPTER 3. FOURIER MULTIPLIERS

with ®;(s) = ®(s)x(0,5)(s) € L'(0,0) and ||®;]; < |®[;. Hence
0
Tf(e) = K0« fla) = | BV f@)(s)ds.
0
Notice that by Minkowski and the fact that K; € L*(R3),

| K72 =

0 J
[ mwmioias] < [ Ismsnlaiewias < 221 biel <

0 2 Jo
thus K7 € L*(R3) and by (1.14), TV is an (g, d)-atomic operator. Now, we use Propo-
sition 3.1 and (3.2) to deduce that TV is of weak-type (1,1) for every u € A; and with
constant

9L 4
lulla, ™ Il 2 19500 < ul, 2],

independently of j > 0. Using Fatou’s Lemma, we conclude that for every f e L'(u),

Q0
f BY* f(x)®(s)ds < minf [ 77 fll 1.0 < [ el 12
0

L1 ()
[

Finally, let us just restate Proposition 3.6 so we can see what it gives when we are
dealing with radial multipliers of the form m(|¢]):

Corollary 3.7. Let T,, be the operator defined by
Tnf(€) = m(ENF(E), €eR,

with m a bounded function defined on (0,00) such that

(a) The deriatives m' and m” are defined on (0, 0).

(b) The limit
lim m(t) —tm/(t) = ce R.

t—o0
(c) We have that both tm”(t), m'(t) € L'(0, o).
Then T,, is of weak-type (1,1) for every weight u € Ay and with constant |lul, .
Proof. We just check that it is equivalent to Proposition 3.6. Notice that

T f(€) = m(IENF(&) = M€ F (),
with m(t?) = m(t), and therefore

N 't . m"(t)  m'(t)
/ t2 _ m( " t2 — )
) == ) = T T T

But Proposition 3.6 gives the sought-after boundedness provided that:
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e The derivatives m’ and m” are defined on (0, %0), which is equivalent to (a).
e The limit

lim m(t) — tm/(t) = lim m(t?) — £2m/(t*) ~ lim m(t) — tm/(t) = ce R,

t—0o0 t—o0 t—00

which is (b). In the last equality we use that by (c), m’ € L'(0, o) and hence

lim tm/(t) = 0.

t—00

e We have that tm”(t) € L'(0,00), which by a change of variables is equivalent to
t3m” (%) being integrable, and thus to

tm/ (t), m'(t) € L*(0, o).

Hence, a direct application of Proposition 3.6 completes the proof. O

In general, it happens that if m(t?) = m(t), then, for every k € N,
k ) (¢)
~ m .
m(k) (t2) = Z Cjw, with cj € R.
=1

Therefore, if we have a result for Fourier multipliers of the type T f &) =m(|EP)f ( ), and
the hypothesis in such a result is an integrability condition for the k-th derivative of m,
then, this hypothesis translates (when applied to a multiplier defined by m(|¢|)f(£)) into
conditions for every derivative of m of order less than or equal to k. Therefore, in what
follows, we will basically restrict our attention to radial multipliers with symbol m(|£|?).

Let us see that this technique of writing 7}, as an average of Bochner-Riesz operators
B'/* at the critical index can be extended to R™ by means of fractional calculus. The idea
of using fractional calculus to obtain results for radial Fourier multipliers was already
introduced in [121] and subsequently used in [45, 61|, among others. The definition that
we will need is in the sense of Weyl:

Definition 3.8. Given 0 < § < 1 and w > 0, we define the truncated fractional integral
of order 1 — ¢ of a locally integrable function f on R by

II0f(t) = ﬁ J_ww(s — 1) f(s)ds, t<uw,

and 0 if t = w. Moreover, if a = [a] + 6 > 0, with [a] being its integer part and ¢ its
fractional part, we define the fractional derivative of f of order a by

d\" d
Dofi) = () dim LI5S0
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whenever the right-hand side exists. In particular, if f has compact support, then
d [a]+1 s
D*f(t) :=— — 1.°f(t).
r= () B
Recall that I'(a) = SSO r* te™®dxr. One can define fractional derivatives in multiple

ways. For instance, one can use Riemann-Liouville’s fractional integral

L
()

and then, if £ = [a] (where this notation means that k € N with £k — 1 < o < k), define a
fractional derivative of order « in the sense of Riemann-Liouville:

Depf(f) = (S H ().

Analogously, if we differentiate first and integrate later, we obtain the fractional derivative
in the sense of Caputo:

JOF(E) JR(t )2 f(s)ds,

DEf(t) = J*(FM)(@).

Every definition has its advantages and disadvantages, but for technical reasons, the
most convenient way for us to introduce fractional calculus is in the sense of Weyl, as in
Definition 3.8. For further information about fractional calculus and its different variants,
we refer to [46] and [62]. We will need the following lemma:

Lemma 3.9. Weyl’s fractional derivative satisfies these two properties:

(i) Let A\, A2 € R, Ay # 0. Then, for every a > 0,

ASDYf(A + A N or Ay >0,
Da<m1+x2->><t>:{|;2,ag§f;;j?&t) TR

~

where f(t) = f(—t) is the reflection of f on R.

(i) If f is a continuous function with compact support in |a,b], then

fos C e
|Df(t)] < t|§+1, as t — —o. (3.4)

Proof. We start with (i). If o € N, the first identity is well-known, for both Ay > 0 and
Ao < 0. For this reason, the second expression is also valid in the case Ay < 0:

~

Mo[® D F(=A1 = Aot) = [Xa|*(—=1)*DF (A + Aat) = ASD*F(Ay + Aot).
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If @ ¢ N but Ay > 0, we make the change of variables A; + Aos = r and, since \y > 0, it
can be easily factored out from the positive part in the denominator:

prisn a0 = —(2) "t 4 (s [0+ )

—w

d [Oé] ) d 1 A +Aw 51 5
- <£) z%ggc dt (F(l —9) L \ Ay (= A= Aat)y f(r)dr) ,
1—A2W

which equals

Aad [o] Mod 1 z
_yo0-1 2 . 2 _ _ s
)\2 (d()\l + )\Qt)) ,}gg) d()\l + )\2t) <I‘(1 . 5) fz(/r )\1 )\Qt)+ f(?“)d?") R

that is, Ay D*f(A1 + Aat). When Ay < 0, we write

~

D(f(A+ A2 ) () = DU(f(—=A1 — A2 ))(¢)

and an application of the previous case with —\s > 0 yields the result:

~ ~ ~

D(f(=A1 = X2))(t) = (= A2)* DY f(=A1 — Aat) = [Xo|* D f(—= A1 — Aat).

To show (i), just notice that if we take ¢ < a, then

() o [t =02 spas

a

[D*f(t)] = Ca

Differentiating under the integral sign and using that f is bounded on [a, b] yield that the
previous expression can be controlled by

Cta f (s—t) s =Cial(a—t)™* = (b—1t)"%).

a

: 0 Cpa :
But this behaves like MQLH as t — —oo, since

T (e it O

t——00 |t|—0&—1

= a(b—a),

so we finish the proof. O

Now we are ready to state the main theorem of this section. AC),. will denote the
space of functions that are absolutely continuous on every compact subset of (0, ).
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Theorem 3.10. Fixn > 2 and o = ”TH Let m be a bounded, continuous function on
(0, 00) which vanishes at infinity and satisfies that

D*Ime ACpe Yi=1,..,[a].
Then, if D“m exists and
®(t) = t* ' Dm(t) € L'(0, 0),
the operator T,, defined by
Tnf(€) = m(EP)f(E), €eRr,
is of weak-type (1,1) for every weight u € Ay with constant controlled by C|®| 11,00y [u]?,-
Proof. First, we will use [120, Lemma 3.14] to write

_(—1)[a] NI Do (s)ds — 003_ “~IpDm(s)ds
= T JR(S )21 Dm(s)d _Caft( ) Dm(s)ds, (3.5)

which is valid under our hypotheses for m. With this identity, we are able to prove that
w p—
T () — f BY: f(2)B(s)ds, xeR", (3.6)
0

with ® € L'(0,0). Indeed, it is enough to check that, for every & € R,

e = [ (1- ‘5’2)+ B(s)ds, (37)

0

but this follows from (3.5) by the change of variables s = r2, allowed for s > 0, and taking
t=[¢*

m(lgl) =2¢, [ :w e D m(r rdr

* st I o 2
=20, J r- ( ——2) Dem(r?)dr,
0 ™ /)4

which is (3.7) with ®(r) = Cor®**'D*m(r?) and |®|11(00) ~ [®|Li1(000)- The second
ingredient in the proof is the uniform bound given in Corollary 2.10. More precisely, that

| BY*XE| Lroce (arxgy-rowy S [ul AT u(E), (3-8)
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uniformly in s € (0,00). To conclude the proof, we argue exactly as in Proposition 3.6
but with the obvious changes now that we are in R™ instead of R3. The idea was just to
define

Ki(z) = f: Ki/s(2)®(s)ds = LOO Ki/s(2)®;(s)ds,

where K/, denoted the kernel associated with B /s and prove that the convolution oper-
ator T given by K is (g, §)-atomic. Then we use Proposition 3.1 and the uniform bound
(3.8) to deduce that TV is of weak-type (1,1) for every u € A; with constant essentially
bounded by

2, 1@ 21 0.0)-
After this, we used Fatou’s lemma and (3.6) to finish the proof. O

Let us briefly summarize how Theorem 3.10 is related to other results in the literature.
The integrability condition that we require on m is®

o0
J 15 D5 ()| dt < oo, (3.9)
0
and we obtain a weak-type (1,1) estimate with respect to every weight in A; for the
Fourier multiplier with symbol m(|£|?). This type of condition (3.9) on m is not new.
For instance, in the unweighted setting, [45, 104] use Weyl’s fractional calculus to ob-
tain strong-type (p, p) and weak-type (1, 1) results for maximal operators associated with
quasiradial Fourier multipliers. The condition that they require on m is also an integra-
bility condition for t*~*D%m, but with o > L (see [104, Corollary 1]).

Another similar result to the one we presented can be found in [79]. Here the authors
deal with weights, but they consider general Fourier multipliers on R", not necessarily
radial ones. In terms of differentiability requirements, the condition that they need on m
to get the weak-type (1,1) for every weight in A; is up to order n. In our case, we only
work with radial multipliers and require order "TH instead. In the classical Hérmander
theorem [70] without weights, it is enough to have differentiability up to order strictly
larger than %, which is essentially optimal even for radial multipliers (see [36]). Therefore,
the differentiability assumption in our result is not that far from the optimal order of
the unweighted case. Another important reference is [17], where one can find sufficient
conditions for radial Fourier multipliers to be bounded on L?(R?) for 4/3 < p < 4. This
limitation in the range of p (which totally excludes the endpoint p = 1) allows the authors
to lower the order of differentiability of m to o > 1/2, which corresponds to "T_l in R2.

Finally, one can check that (3.9) can be controlled by an expression resembling that
in Hormander’s theory. More precisely, if ¢ is a C* function, supported on (1/2,1) and
such that

Dlp(27t) = 2 0i(t) =1, t>0,

JEZ

3Notice that when n = 3, this is the condition tm”(t) € L'(0, ) that we had in Proposition 3.6.
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then it can be verified that, at least for n odd,

0 ] 27 1/2
f t"zlyD"élm(mdtsZﬂU yD"?(gpjm)(t)Pdt) . (3.10)
0 i1

JEZL 2

The finiteness of the right-hand side is related to the classical Hérmander condition for

radial multipliers, but with differentiability order "TH In that case, the sum in 57 would

be replaced by a supremum. The validity of inequality (3.10), when n is odd (and hence,
n+1

D2 is a usual derivative), is just a direct application of the Cauchy-Schwarz inequality:

2 2

0 J _ J
| e me < 3 [ 00 e~ $ 25 [ 10 (gm)a
0 JEZ 271 JEZ 241
| o 1/2
<)% ( | |D"2“<¢jm><t>|2dt) .
JEZ 271

The problem when n is even is that D" isa purely fractional derivative, and in general,
one can check from Definition 3.8 that if f is supported on (a,b), then D®f is supported
on (—o0,b). Hence, at the first step, where we introduce the ¢;, we would have to consider
the integral on (0,27) instead of (277, 27). If we split (0,27) into three intervals

(0,277 u (@227 u (271, 2),

the terms that we get for the last two dyadic intervals can be treated as in the previous
case, but the one corresponding to (0,2772?) becomes a problem. Arguing as in the proof
of property (3.4), one can check that for ¢ € (0,2772),

n+1 —n—1 - —n—1

D= (pm)(t)] < Co((Z7 =) 72 — (22 —)72 ),

and with this and a change of variables, we get that

2

272 1
| R md < | 55 (@207 - 4= s <1,
0 0

which cannot be summed in j € Z.

Theorem 3.10 exploits the relation between Fourier multipliers T,, (under a precise
integrability condition on m) and the Bochner-Riesz operators BY/* at the critical index.
The key idea is transferring estimates that take place in Banach spaces by means of
Minkowski’s inequality (in this case, to be able to extrapolate down to p = 1). This
idea of transference of estimates motivates the next subsection, where we will consider all
indices A > 0 in an attempt to make some contribution to the so-called Bochner-Riesz
conjectures. Before that, let us give a particular example of application of Theorem 3.10.
It will be related to the following conjecture stated in [106]:
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Conjecture 3.11. Assume that ¢ is a C* function with compact support in (—1/2,1/2)

and, for every 0 <9 <1, set
1—s5
h = .
= o( 5

Then, for every 1 <p < nz—fl, it holds that the operator Ty, defined by

T 1(6) = hs([€1%) F(€)
satisfies

_ . 1 1 1
Byt < 679, with Ap) = (3= 2) = (3.11)

The result we present is the following:

Corollary 3.12. Given n = 2, the operator Ty, is of weak-type (1,1) for every weight
ue A and

_(n=1
[Tl 3y mroy < 6~ CF)

To prove this, it is enough to apply Theorem 3.10 (h; is under its hypotheses) together

with the following computation at a = ”T“:

Lemma 3.13. Given a > 0, it holds that, for ®(t) = t*"*D%hs(t),
||®HL1(O,OO) < C%a(s_a—i_l.

Proof. First, we compute D%hs. Using the property in (3.3), we have that

1 Jft—1
Donite) = 5 0°( ),

with ©(s) = ¢(—s) being the reflection of ¢ on R. Now,

0 0
f |<I>(t)|dt—5‘°‘J o=t
0 0

Since supp(@) = supp(p) < (—1/2,1/2), we have that D*@ is supported on (—o0,1/2).
Hence, assuming 6 > 0 small enough, we use (3.4) for r < —1 and that |D*@(r)| is
bounded on compact sets to obtain

1 ®©
D73 (7 )| = st [ g
) —1/s

o] —1 1 a—1 1/2
f (ro+1)*7 D*@(r)|dr < Cemaf Mdr—l—f (ré+1)*HD@(r)|dr < C,p.a,

—1/5 —1/5 ||t -1

which concludes the proof. ]
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Notice that A(1) = 5=, and hence, Corollary 3.12 is the endpoint weighted weak-type
version of estimate (3.11). In particular, taking u = 1 we can use our estimate in the
following way:

Proposition 3.14. Assume that (3.11) holds for some 1 < py < -2%. Then, it is also

n+1-°
true for every 1 < p < pyg.

Proof. In Corollary 3.12, we have shown that the weak-type (1,1) estimate for T},, holds
with 2. Then, we just use Marcinkiewicz’s interpolation theorem between this end-
point estimate and our assumption to conclude that, for every 1 < p < py,

| Ths | 2o @) Lo @) < SO L 520 (3555) 530

]

We want to remark that the estimate in Corollary 3.12 (but with an ¢ loss in the
exponent of §) can be derived from [51, Lemma 5.2|, where the authors prove that, for
every € > (),

T, f(2)] < Co6~C2 ) M f(2).

3.3.1 The Bochner-Riesz Conjectures

First, let us fix some notation. In this subsection, we will denote by 7,, the operator
defined as a Fourier multiplier with symbol m(] - |?), that is:

T f(€) = m(EP) f(€).

Also, we define the maximal operator associated with 7,,, by

T, f(x) = sup | T}, f ()],

r>0

where, for every r > 0,

— ~

Tr.f(§) = m(r*|E) F(€)-
We will keep Bj for the Bochner-Riesz operator Ty, with by(t) = (1 —¢)? and A > 0. We
also have a maximal operator associated with it:

Definition 3.15. Given A > 0, we define the mazimal Bochner-Riesz operator BY in R"
by
B} f(z) = sup | By f(z)],

r>0

where, following our notation®,

BLf(€) = (1—r%¢l?)) (9.

4See Definition 2.1.
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Let us now state the Bochner-Riesz conjecture in two different ways. It basically
deals with the Bochner-Riesz operator B) below the critical index: 0 < A < ”T_l Notice
that By, also known as the multiplier of the ball (since its symbol by is the characteristic
function X p(o,1y) is not considered. Unlike the rest of by with A > 0, the function b is not

even continuous, and in 1971, C. Fefferman [56| showed that By is only bounded in the
trivial case p = 2.

n—1

Alp) Alp)

=

3
|
—
ST
3
+
—

Figure 3.1: B, should be bounded on LP(R™) for (1/p, \) outside the shaded region.

Conjecture 3.16. Given 0 < \ < "T_l, then
By : LP(R") — LP(R"™)
if and only if

2n 2n
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Conjecture 3.17. Given 1 < p < o0, then

By : LP(R") —> LP(R™)

1 1] 1
————— 0.
p2‘2)

It is easy to check that both statements are equivalent. See Figure 3.1 for a graphical
description of the region they represent. The necessity of the condition required for B)
to be bounded was already proved by Herz [67] in 1954, when the author showed that
for 0 < A < %51, By is not bounded on LP(R") if p ¢ (po()), p1(A)) (the shaded region

in Figure 3.1). Let us now focus on the second statement of the conjecture. By duality,
2n

it is enough to check it for either small values of p, 1 < p < ;=4 or their conjugates

=L < p < o0. In dimension n = 2, Conjecture 3.17 was shown to be true by Carleson and
SJOhn [18], but it is still open in hlgher dimensions. Partial results have been found over
the years (see for instance [55, 118| and more recently, [82]). The best result so far for
n = 3 is due to J. Bourgain and L. Guth [7], who showed, by an indirect argument related
to the restriction problem of the Fourier transform, that the Bochner-Riesz conjecture

holds whenever (written for values of p > 2)

if and only if
A > A(p) := max <n

2(4n+3)

p>=— ifn=0 mod 3,
p > 2;‘“ if n=1 mod 3, (3.12)
p>é ), if n=2 mod 3.

In Figure 3.2 we illustrate this current state of the conjecture for n > 3 (recall that
the case n = 2 was completely settled). The value of pg is the lower bound of p appearing
n (3.12), which depends on the dimension n modulo 3. The segments going from (1/2,0)
to (1/po, A(po)) and (1/pj, A(pj)) respectively are obtained by analytic interpolation, so
the solution in [7] actually shows that B, is bounded on LP(R") for every couple (1/p, A)
in the green region in Figure 3.2.

There is also the corresponding conjecture for the maximal Bochner-Riesz operator
BY, which initially stated that BY should be bounded on the same region as B). Here, a
duality argument is no longer available, so unlike for the Bochner-Riesz operator B, the
cases

l<p< 2n d 2n <p< oo
p n+1 1 p

must be considered separately. With Figure 3.3 at hand, let us explain the current state of
the conjecture. For large values of p, the conjecture was shown to be true by A. Carbery
[15] in R?, closing the green region of the left-hand side of the case n = 2. When n > 3,
only partial results have been found. M. Christ [34] proved the conjecture for every

p = 2” 1, and more recently, S. Lee [82| improved it to p > 2”n—+4 (as represented by

60



C. DOMINGO SALAZAR

n—1

Alp) Alp)

o= e

=~
S

Figure 3.2: Current state of the Bochner-Riesz conjecture for n > 3, with py as in (3.12).

a dotted line in the case n = 3). Again, in order to close the green triangle coming
from Lee’s result, there is an interpolation argument with the point (1/2,0). For small
values of p (which correspond to the right-hand side of the pictures), however, the original
conjecture is known to be false, in the sense that an additional restriction has to be added
if we want to have boundedness. More precisely, in [116], T. Tao showed that if B} is
bounded on LP(R™), then necessarily

)\2271—1_
2p

n
27

which is a stronger requirement than A > A(p). This is represented by an additional red
region with vertex at (n/(2n —1),0). Not much is known in this case except in R?, where
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the same author [117] extended the positive results to the region where

2
)\>max(%—§l——>, (3.13)

n=2
n >
1 n_1 n=>3
2 2
' A6 g Ap)
|
|
|
| |
1 |
0 | 4 0 l
1 1 27 3 1 n n—1 1 n n+1 1
1 2 310 1 2n+4  2n 2 2n—1 2n

Figure 3.3: Current state of the Maximal Bochner-Riesz conjecture.

Now that both the Bochner-Riesz and maximal Bochner-Riesz conjectures have been
presented, let us see how our techniques can be applied in this setting. First, we will
introduce the standard decomposition of (1 —¢)}, which will be useful for both B, and
BY. Notice that in previous sections, the decomposition we made for the Bochner-Riesz
operator was for the convolution kernel. Now we will need a similar one on the Fourier
side (see [63, Section 10.2.2]). Take functions ¢ € CX(—1/2,1/2) and ¢ € CX(1/8,5/8), in
such a way that, for every 0 <t < 1,

62



C. DOMINGO SALAZAR

Then, for every £ € R™ and r > 0 such that r|¢| < 1:
A e¢]

(1= 7€) = moo(r?l) + 35 27 ma(r?l€),
k=0

where moo(r?[€[*) = @(r[¢[*)(1 — r?|¢[*)* and for k >0,

1 — r2|€]2 A 1 — r2|€]2 1 — r2|€]2
mk(r2|€2):< 27“!5!) ¢( 27“]6\51):\1,< Qrklfl).

Clearly, we also have that W(t) = t*)(t) is a function in C*(1/8,5/8). Now, this decom-
position gives, for r = 1,

a0
Byf = Togof + ), 27T, f, (3.14)
k=0

and taking supremum over r > 0,

a0
Byf <Tpho f+ Y 2707 f. (3.15)
k=0

The next two propositions will play an essential role in what follows, allowing us to
transfer estimates from radial Fourier multipliers to Bochner-Riesz operators and vice
versa:

Proposition 3.18. Let A\ > 0 and X,Y be a couple of spaces, with X quasi-Banach
and Y Banach. Then, if Ty, (resp. T ) X — Y is bounded and, for every k = 0,
the operators Tpy,, (resp. Ty, )+ X — Y are bounded with constant Cy, in such a way that

{Cr27F s € 01, then
By(resp. BY) : X — Y

15 also bounded.

Proof. This is just an application of Minkowski’s inequality to (3.14) and (3.15) respec-
tively. O]

Notice that for every r > 0, mgo(r?|¢|?) is a C* function with compact support and
hence Ty, < 15, < M. This means that whenever the Hardy-Littlewood maximal
operator M : X — Y, the boundedness assumption on T,y and T,; ~ will automatically
hold. Now, using the ideas in the proof of Theorem 3.10, we also have:

Proposition 3.19. Given A > 0, let m be a bounded, continuous function on (0,00) which
vanishes at infinity and satisfies that

DMVime AC,e Vj=1,...[\]+1.
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Then, for every r > 0,
0

Tr f () = f B f ()2, (s)ds, (3.16)

0
with
D) () = Cys A 3D M m(s72).
In particular, if Y is a Banach space, then

0

Tty < j B3 fly |92, ()| ds.

and
I fly < IB3flv 19521 0,00)-
Proof. Just take (3.7), write A instead of a — 1, 72|¢]? instead of [£]?, and conclude that
2(¢12 . r?¢)® * 2A+1 A+1 2 * 2 2112\ HA
m(r°|&]) = C,\JO (1 — 7>+3 DY m(s%)ds = Jo (1 —7r°s%|&1%) 1@, (s)ds,

which proves (3.16). Now, if we take r = 1 and apply Minkowski’s inequality, we get the
estimate for |7}, f|y, and taking supremum over r > 0 and then using Minkowski, gives
the one for |T7% f|y. O

It is clear that this last result will come in handy when m = my, so let us compute
the L' norm of (IDTAnk just as we did for hs in Lemma 3.13. In fact, the computation will
be analogous.

Lemma 3.20. Given A > 0, then, for every k = 0,
|87 10,00 < Cypp2.

Proof. Recall that @), (s) = Chs™ 7 *D*my(s72) and my(s) = ¥ (3=%), where ¥ was a
slight modification of v, still in C2°(1/8,5/8). With this, we use property (3.3) to compute

B ~ [(s?2—-1
D/\+1mk(s 2) _ 2k()\+1)D/\+1\IJ ( o ) .

Now, exactly as in Lemma 3.13,

o0 o0
J B3, (s)|ds = ckzkkf (2~ + 1) DMF () |dr
0 ok
~1 (k. 4 1)\ ~1/8
< Cq/) ,\2k>\ J —( rt ) dr + J (24{"‘7” + 1>)‘d7” < Cw ,\Qk)\,
7 —9k |7"|’\Jr2 -1 7

where we need to remember that supp(¥) < (—5/8, —1/8) and use the decay of | DM1U|
in property (3.4) for small values of r. [
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Now we go back to the conjectures. Take for instance the maximal Bochner-Riesz
operator in R? and 1 < p < 2 (see the picture on the left in Figure 3.3). Recall that, as
we mentioned in (3.13), in that case, if we define

the best known result was that, when 1 < p < 2,
B} : [P(R™) — LP(R™), if A > A(p). (3.17)
Fix 1 < pg < 2. We have that, for every ¢ > 0,

BE, . LP(R™) — LP(R™).

(po)+e

Now, we apply Proposition 3.19 and Lemma 3.20 to get that, for every k > 0,
1T f oo < 1B oy 4o Too | P2 * e 10,0y S 25AEI ) . (3.18)

On the other hand, by [107] we know that, at the critical index (which for n = 2 corre-
sponds to 1/2),
12 2 P (w) — LP(w), Yw e Ay,

Again, Proposition 3.19 and Lemma 3.20 yield that, for every k£ > 0 and w € A4,
| Ty f 220 ) 2k/2||f|\mo(w)' (3.19)

Using interpolation with change of measure between (3.18) and (3.19), one gets that, for
every k=0 and 0 € (0,1),

T, fll o wey S 9k(0/2+(1=0)(A(po)+¢)) | £l 7o (-

~

Since this holds for every 6 in the open interval (0,1) and at the beginning, we could
take any £ > 0, we can effectively get rid of the latter and simply write that, for every
0e(0,1), i

[T £l oo oy S 25O O=XED ] 1y ).

Now we use this estimate in Proposition 3.18 to conclude that, given A > 0,
B s L (w”) —> L (w’),

if the sequence {2’“(9/2*(1*9)’_\@0))*“};@0 belongs to ¢!. The result we have proved is the
following:

Lemma 3.21. For every 1 < py < 2, every w € A,, and every 6 € (0,1), we have that
B L7 (w?) — LP°(w?),

whenever A > & + (1 —0)A(po).

65



CHAPTER 3. FOURIER MULTIPLIERS

Notice that the fact that we have an A, weight to a power 6 does not allow the use of
classical extrapolation. We will use the limited range extrapolation from [26|, as presented
in Corollary 1.16. A direct application of this result to the estimate in Lemma 3.21 yields
that, for every 1 < pg < 2 and every 6 € (0, 1),

B} : LP(R") — LP(R"),

for every p € (p—, p;) and provided that A > g + (1 — 0)A(po). Recall that the definition
of p_ and p, comes from the identities

/o Do . Po
p*‘ p+‘ 1_0

Notice that if p > po, we have that A(p) < A(po) < g~|—(1—9)5\(p0) < A, so the boundedness
of B} on LP(R") is already known from (3.17). Therefore, the interesting part is to study
the range of p € (p_, po). If we make the computation, we get that

Po

P T 0 — 1)

If we want to obtain the smallest p_ possible, we need to pick the largest admissible value
of . Isolating € in the inequality \ > g + (1 = 0)A(po), we get that

0<g< 2= A)

1/2 = A(po)’
so we can just pick the upper bound® and, with the condition A (po) (so that @ is

> A
positive), we can write that, for every 1 < py < o0 and every A > A(py), the operator B}
is bounded on LP whenever

po — 2X(po)po _
1+ 2(po — 1)A — 2poA(po)

If we write this last inequality in terms of A and put it together with the condition
A > A(po) we needed, everything can be summarized in the following proposition:

D>

Proposition 3.22. Given 1 < py < 2, it holds that
B} : LP(R") — LP(R"),

whenever

- + 2\ —1) -
) > max (/\(po)’ Po + 2A(po)po(p — 1) p) |
2p(po — 1)
5Technically, we should choose # to be the upper bound minus € > 0, but since all the inequalities
that we will get are strict, it would not make any difference.
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Unfortunately, by considering the whole possible initial values of py € (1,2), one can
see that the region (1/p, \) for which we get boundedness of By on LP(R") is exactly that
in (3.17), so no new estimates are obtained. The same approach was taken in the case
of the maximal Bochner-Riesz conjecture for n > 3 and values 2 < p < oo, starting from
Lee’s best known result (see the picture on the right-hand side in Figure 3.3), but again,
no new regions were found. The same idea could be used in the case of the Bochner-Riesz
conjecture (with Bourgain and Guth’s estimate (3.12)), but after all, it seems that the
fact that we use interpolation with weighted estimates for By (or B} respectively) at the
critical index A = ”T_l, prevents us from reaching any region that could not be reached
by analytic interpolation in the first place. Even though we have not been able to make
any new contribution to the conjectures, we wanted to include this subsection to give yet

another application of transference of estimates to averages.

3.4 Fourier multipliers of Hormander type on R"

First, let us introduce the Hormander condition for a multiplier m. We will use the
standard notation |a| = oy + -+ + «, for a multi-index o = (o, ...,,) € N* and if

reR"”,
ON\" o oon
or) — ox8  odxon’

Definition 3.23. Let k € N such that k > n/2 and let m : R™ — R be a bounded function
of C* class on R™\{0}. Given 1 < s <2, we say that m € HC (s, k) if

a (e}
su r2|a|”J (—) m(z
7">IO)< r<|z|<2r oz ( )

The classical Hérmander theorem (see for instance, the statement in [63, Theorem
5.2.7|) says that, in the unweighted case, the operator defined by

T f(€) = m(E)f(€), €eR”,

is of strong-type (p,p) for 1 < p < oo, and weak-type (1,1), whenever m € HC(2, k) for
some k > n/2. The generalization of the condition to s # 2 was introduced in [11], where
the authors use interpolation methods to check that the corresponding classical result
for m € HC(s, k) needs k > n/s. In |68, 77, 122], the authors introduce power weights
to the problem, but in the context of general A, weights, the best result that is known
requires at least k = n. More precisely, it can be proved that for m € HC(s,n), T,, is of
strong-type (p,p) for every weight in A, and 1 < p < o0, and weak-type (1,1) for every
weight in A;. This can be found in [79, Theorem 1|, where the authors use the function
f* of Fefferman and Stein introduced in [57|. Their result is the following:

s 1/s
dx) <o, |al <k,
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Theorem 3.24. Let 1 < s <2 and m € HC(s,n). Then, the operator defined by

—

T.f(€) =m(€)f(€), €eR",

is of strong-type (p,p) for every 1 < p < oo and every weight in A,, and of weak-type
(1,1) for every weight in Aj.

The proof of this result heavily relies on a slightly more general version of the following
lemma, which translates the conditions of m € HC'(s, k) into conditions on the convolution
kernel K = m". For technical reasons, as in |70, 79|, we need to work with a truncation
Ky of K. The decomposition, though, is standard: Let ¢ be a non-negative C* function,
supported in {1/2 < |z| < 2} and such that

dp(279) =1, £#0.

JEZ

For every j € Z, we set m;(§) = m(&)p(277¢), which is supported in {2771 < |z| < 27t}
and satisfies that
m(§) = > m;(§), £#0.

JEZ

Now, for every N € N, if k;(x) = m} (z), we can define

m™ (§) = Z my(€), Kn(x)=(m")"(x) = Y ky(x).

We have that |[m?|, < C uniformly in N € N and m"(£) — m(€), £ # 0, as N — 0. We
define TN f := Ky * f and work with this approximation instead of T},,. The next lemma
is the key estimate in [79]:

Lemma 3.25. Let 1 < s<2, ke N and me HC(s,k). Then, for every r > 1 such that
(a) 1 <r <s,
(b)) 2 <k<2+1,

every 1 < p <r' and every R > 0,

1/p
/ R
([, Jiwta =)= KatolPds) < RSP E when ] < 5,
R<|z|<2R 2

uniformly in N.

In this section, we will follow the ideas in [79] to get a restricted weak-type estimate
in the spirit of Theorem 2.9:
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Theorem 3.26. Fiz 1 < s <2 and m e HC(s,n). The associated multiplier operator T,
satisfies that, for every u € Ay, there exists 1 < py < oo depending on |u| 4, such that, for
each measurable set E < R",

HTmXE”LPO*‘:’O((MXE)FPOU) < C’uu(E)l/Pol

The proof will be based on this lemma:

Lemma 3.27. Let 1 <s <2, me HC(s,n) and u € Ay. Then, take

1 <7 < mi n 1+ L
T mim-<s, —— —_—
=1 2vH

and 1 < q¢ < 2 — % Now, for every measurable set E < R" and cube Q < R", if

w = (Mxg)*" % and c is the center of the cube Q, it holds that, for every y € Q,

QF w(E A Q)
jRn\QQmN(x—y)—KN<as—c>|w<x>dxs‘Emw T,

independently of N.

Proof. We split the integral of the left-hand side into dyadic annuli and by Hoélder’s
inequality,

ZJ |Kn(x —y) — Ky(z — o)|w(x)dx

T JariQi2ig
0 1/r 1/r
<X s 0o ([ Jsto ) - Ksto-aas) ([ wi)
/ 2+1Q\2/Q 2+1Q

For the first integral, we use Lemma 3.25 with k£ = n and p = 7’. Conditions (a) and (b) are
fulfilled because < min{s, n/(n—1)}. For the second one, we recall that r < 1+ Tl

1
ensures that the weight u" still lies in A;. With these two remarks, the previous expression

can be bounded by:

0 - . . e/ feyid i 1 . 1/r
33 sup (Mxe) ()@ UQ) Q" Q) (500 2j+1Q“<f>df>
N —q jn\1/r— .
<X s ()@Y ute)

Now we use Lemma 1.6 to control the supremum of (Myg)'~? over 2/71Q by its average
and, inserting the weight v in the integral, we get

[o'e] (2jn>l/r—1 0 w(2]+lQ) n1/r1
; 127+1Q)| Lj+1Q w(z)dx Z 20 +1Q)] (2)

j=1
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Finally, we use the A property of w on the inclusion £ n Q < 27*'Q,

Z (2] Q ]n 1/r—1 < Z E M Q |2]+1Q|q (2jn)1/r71

2 g 271Q] |EAQ
~ |Q|q w(E N Q) Z(an)q+1/rf27
EnQr Q] &
and the fact that ¢ < 2 — % to complete the proof. O

Proof of Theorem 3.26. Let 1 < s < 2, me HC(s,n) and u € A;. We want to choose
1 < po < o0 so that it satisfies the conditions of ¢ in Lemma 3.27. It is enough to take

1 n+1 242" |ufga,

s’ mn T 14 20 |u 4,

1<p0<min{

Define w := (M xg)' P u. Now we make the standard Calderén-Zygmund decomposition
of xg at height @ > 0, obtaining a family of pairwise disjoint dyadic cubes {Q}}x satisfying

the stopping-time condition

E

| Qx|
and a couple of functions g, b such that yg = g + b, defined by

g(x) _ {XE(x>7 x ¢ Uk Qs

[EnQg|
Qo TEW

and b(z) = >, bp(x) with

Notice that when o > 1, {Qx}r = &, and hence xg = g, and when 0 < a < 1 (as
we pointed out in Lemma 2.3), E < | J, Qx except for a null set, which makes g(z) =
0 for almost every = ¢ |J, Qx. Here we list the properties that we will need of this
decomposition:

i) §o, bk = §p 0 =0and [bi]1 < a|@xl,
(ii) lgle < @ and ||g]72(,) < o> Pw(E).

All the properties that do not involve the weight w are well-known (see, for instance, [63,
Theorem 4.3.1]). As for the weighted estimate, we only need to recall that w e A% and

|EﬂQk|p0
)+ L g @

Po

Z|E0Qk Yo
k
Q] o)

E) + Y \w(E n Qi) ~ w(E).

o (w) S
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Hence,
1917200y < 19157 Nglr0 () S @ 0w (E).
(w)
With this, we can finish the proof. Clearly,

w(|TNxg| > o) Sw(TYg| > a) +w (UZQk> +w <x¢ U2Qk | TNb(2)| > a) :
k

k

For the first term, we use Chebyshev’s inequality, the strong-type (2,2) of T, for A
weights given by Theorem 3.24 (together with w € A, < A,), and property (i7) above:

N 12 2
HTm9||L2(w) < HQHLz(w) < w(E)
oPo

w(|Tngl > o) <

a? T a?
For the second term, we need to use that w is doubling, the stopping condition of the
cubes, and the A% property of w:

1 |Er\Q|p0 wEmQ w(E)
w(LkJQQk> g;w@)k)%;oﬂ’o o |plz Z LN P

k

And finally, for the third term, we can use Chebyshev and reduce the problem to check if
w(E)

CYPO*l

f TN b(z)|w(z)dr < (3.20)
R™\ |y, 2Qk

holds. To see this, we use the cancellation of b and Fubini,

J b () () — f D
R\, 2Qk RAAU, 2Qk | &

<X [ W[ Kl =)~ Kl - w)lu(e)dady,
k K

R™M2Q

J, Bt =) = Kot = b)) (oo

where g, is the center of @),. Now we use Lemma 3.27 with ) = Q)x and ¢ = py and,
recalling that |E n Qx|/|Qk| = «, we get

EﬁQk)
b )
2” kHl pO|Q |

But we know that |[byll; < a|Qk|, so we obtain (3.20). Bringing the three estimates
together, we show that

apow(\T,]XXE| >a) S w(F) =u(F),

so taking supremum over o > 0 we finish the proof for T . Since all the estimates are
independent of N € N, we can use Fatou’s lemma to deduce the result for 7,,. ]
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Remark 3.28. Notice that, even though the value of py heavily depends on u (and hence
we cannot prove an estimate for the whole Apo class and some 1 < py < ), we have not
used that the weight w = (Mxg)* " Pu has the characteristic function of E. Therefore,
it 1s worth pointing out that the estimate that we have for T,, would still be true if we
considered a weight of the form (Mh)'=Pou, for some h € L}

loc*

Remark 3.29. Notice also that in the proof of Lemma 3.27, when we estimate the integral
| (o= 9) - Ko ofu(ed
241Q\29Q

we need to use Holder’s inequality to separate the weight from the kernel and be able to
use Lemma 3.25. Moreover, since we need u” to remain in Ay, we pay the price of having
an L™ norm on |Ky(x —y) — Kn(z — ¢)| with a large ' . Let us see that, if we assume
u =1, we can tmprove the differentiability conditions on m.

Lemma 3.30. Let 1 < s <2, ke Nwith k > % and m € HC(s, k). There exists ¢ > 1
such that, for every measurable set E < R"™ and cube Q < R", if w := (Mh)'*7 for some
he LL  and c is the center of the cube Q, then, for every y € Q,

loc
@ _wEnQ)
Jo gt =) =Kot = eyt < 1 e

independently of N.

Proof. Set e = k — 2. Since HC(s, k1) € HC(s, ky) when ky < k;, we can assume that k
is the smallest integer such that k£ > = and hence, 0 < ¢ < 1. We start exactly as in the
proof of Lemma 3.27, but now we do not use Holder’s inequality and simply write

2, L Q2Q [Kn(@ —y) = Ky(z = o)w(z)dr
j 1 j+1 j

0

< Z sup (Mh)'™(x) LHIQ\%Q |[Kn(x —y) — Kn(z — ¢)|dx.

j=1 .Z’€2j+1Q
Here we use Lemma 3.25 with p = 1 to control the integral. If 0 < ¢ < 1, we can take
r = s so that (a) and (b) from the lemma hold, because

n n n
—<k=—-—4+e<—+1
S S S

With this, we can bound the previous expression by

sup (Mh)'"=(x)(270(Q)) F " U@Q)F " = Y sup (Mh)' ()27,

j=1 $€2j+lQ j=1 $€2j+lQ
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Here we use Lemma 1.6 followed by the A property of (Mh)!'~9 as before and the only
thing we need to finish the proof is to make sure that

0
S gritemin < o
j=1

But this is guaranteed if we choose 1 < ¢ <1+ =, so we are done for this first case. If
e = 1, we cannot choose r = s when applying Lemma 3.25, but we can take r < s close
enough to s so that

n o n n
- <—-+1<—-+1,
TS r

and now the series we need to converge is
0
Z 2—j(k’—n/r—qn+n)
i=1

Choosing 1 < ¢ <1+ k_T"/r we complete the proof. n

It is clear that, in the same way that we obtained Theorem 3.26 from Lemma 3.27,
from here we can deduce the following weighted estimate for multipliers m € HC(s, k)
with & > n/s, which is the condition of the classical Hormander theorem without weights:

Theorem 3.31. Fiz1 <5 <2, ke N withk>"2 andm e HC(s, k). Then, there exists
1 < po < 90 so that, for every weight of the form w = (Mh)'™P h e Ll _, the multiplier
operator T,, satisfies

HTmXE HLPOvOC(w) < w(E>1/pO ’

for every measurable set E < R".

Using an extrapolation argument, from Theorems 3.26 and 3.31 we can deduce the
weak-type (1,1) with no weights (when m € H(s, k) and k > n/s) and for every weight
in A; (when m € HC(s,n)). To be precise, the extrapolation of Theorem 1.11 yields
restricted weak-type estimates, but if we show that the family of operators {T'\} yoy are
(g,8)-atomic, then we can prove the unrestricted estimates for each T and passing to
the limit when N — oo, deduce the result for T,,,:

Corollary 3.32. Let 1 <s<2, ke N and me HC(s, k).
o Ifk>2, then T, is of weak-type (1,1).

o Ifk =n, then T,, is of weak-type (1,1) for every weight in A;.
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Proof. As we mentioned, it all boils down to proving that, for every N € N, T is an
(¢, 0)-atomic operator. Using an estimate from [79, p. 349|, we have that if £ > 2 (which
happens in both cases), then, for every R > 0,

J | Ky (2)|?de < R™™.
R<|z|<2R

Hence,

J | Ky (7)|?dx = ZJ | Ky () dr < Z 27" < w0,

Rn\B(O,l) =0 2j<‘$|<2j+1 =0
Moreover, since m; € L', we have that k; = m} € L* and Ky = Dljl<n ki € L.
Therefore,

J K (2)[2de < 0,
B(0,1)

and we conclude that Ky € L?(R") for every N € N. By (1.14), we have that T is
(g, 6)-atomic. With this, we need to combine Theorems 3.26 and 3.31 with Theorem 1.11
and Theorem 1.14 to prove the result for 7. We finish the proof for T, by Fatou’s
lemma when N — 0. O

3.4.1 A brief remark on the singular integral T,

The argument that we used in this section to obtain weighted results for multipliers
relied on estimates concerning their associated convolution kernels. For this reason, in
[79] the authors can deduce analogous weighted inequalities for convolution operators
without much effort. We will see what happens if we try to replicate the argument in
our case. First of all, let us introduce the problem and explain what is known. Let
S := S = {z € R" : |z| = 1} be the unit sphere in R", equipped with the surface
measure o. For every = # 0, we denote by 2’ its normalization 2’ = x/|z| € S. Also, given
a rotation of the sphere p: S — S, we define its magnitude |p| by

|p| = sup[p(x) — xl.
xeS
Let Q € L*(S) be a function on S such that
f Q(z)do(z) = 0.
§

For every 1 < r < o0, if Q € L' (S), we say that it satisfies the L"-Dini condition when

! dt
J wr@)? < %0,

0
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where w,(t) = sup|, < [2 0 p — Q1) Clearly, the weakest of these conditions is when
r = 1 and the strongest, when r = c0. We define the singular integral T, as the convolution
operator with kernel K (x) = Q(a’)/|x|", in the principal value sense. That is, for Schwartz
functions f,

Tof@) =tm [ 29— )y

=0 Jiyi=e Y™

It can be checked (see [13] or [49, p. 73|) that for Ty to be bounded on L*(R") (or equiv-
alently, for K to be in L*(R™)), it suffices that the even part of 2 belongs to Llog L(S).
In [12, 14], the authors show that 2 satisfying the L'-Dini condition is equivalent to say-
ing that the convolution kernel K (x) = Q(z’)/|z|" is under the hypotheses of the classical
Calderén-Zygmund kernels (with an L'-Hérmander condition), and in particular, it means
that Tq is of strong-type (p,p) for 1 < p < o0 and weak-type (1,1), without weights®.
They also show that the L!-Dini condition on €2 implies that € Llog L(S), and several
years later, in 1996, A. Seeger [105] shows that, in fact, assuming Q € L log L(S) is enough
for Ty, to be of weak-type (1,1). This weak-type (1,1) estimate had already been estab-
lished in dimension n < 5 with different techniques in [37], which improved the almost
simultaneous result by S. Hofmann [69], that worked only for n = 2 and assumed the
stronger condition {2 € L"(S) for some r > 1. In the weighted setting, J. Duoandikoetxea
and J. L. Rubio de Francia proved in [52] that if Q € L*(S), then Tg is of strong-type
(p,p) for every 1 < p < o0 and every weight in A,. Moreover, the hypothesis 2 € L*(S)
cannot be relaxed to Q € L"(S) for some r > 1, as was shown by B. Muckenhoupt and
R. Wheeden in [96]. In particular, this means that an A; weighted analogue of Hofmann’s
result [69] in n = 2 cannot hold. However, in [124], A. Vargas proved that when n = 2,
for every u € Ay, we have

To : L'(u) — LY (u),

provided that Q€ (), <r=o L' (S). By extrapolation, we also get the strong-type (p,p) for
A, weights, and as pointed out in [124], by testing with power weights it can be seen that
the condition Q € (,_, ., L"(S) is the best possible within the scale of L" spaces. Using
A. Seeger’s [105] techniques to obtain weak-type (1, 1) estimates without any restriction
on the dimension together with A. Vargas’ [124] ideas to introduce weights, in 2004,
D. Fan and S. Sato [54] were able to extend this last weighted weak-type (1,1) result to
every n € N. After this short summary of the state of the art, we go back to the paper of
D. Kurtz and R. Wheeden [79]. Back then, what was known [75] was that, if Q satisfies
the L*-Dini condition, then Ty, is of weak-type (1,1) for every weight in A;. In [79], the
authors give a different proof of this result by means of a lemma analogous to Lemma 3.25:

6Recall that the A, weighted theory for Calderén-Zygmund operators assumes the stronger pointwise
Hormander-type condition of standard kernels (following the terminology of Coifman and Meyer [40]).
See [49, p. 99| for a clear presentation of this notion of standard kernel.
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Lemma 3.33. Let 1 < r < o and assume that 2 € L"(S) satisfies the L"-Dini condition.
There ezists a constant oy > 0 such that, if |y| < apR, then

ly

" (%, o
| o Ee-w-k@ra) s mre (B[ TwnT ),
R<|z|<2R R Lyl t

where K(x) = Q(z)/|x|™.

With this, we would like to show an estimate in the spirit of Lemma 3.27 as we did
for multipliers. However, this last integral term related to the Dini condition will become
a problem. Let 2 be a function on S with SS Q) = 0, and assume it satisfies the L*-Dini
condition. Take u € A; and h € L] . We would like to show that there exists ¢ > 1 such
that, for every measurable set £ < R" and cube Q < R", if w := (Mh)'~% and c is the
center of the cube @, it holds that, for y € Q,

- — r — C)lw\r)axr |Q|q U}(E(WQ)
jR I R TR (3.21)

where K(z) = Q(2)/|z|*. Fix ¢ > 1 to be chosen later. We mimic the argument in
Lemma 3.27 and bound the left-hand side of (3.21) by

0 1/r' 1/r
> s 0w ([ ke Ke-ola) ([ e
j:1z52j+1Q 20+1Q\27Q 29+1Q

for some 1 < r < 1+ W that ensures u” € A;. Since () satisfies the L*-Dini
1

condition, it also satisfies the L™ -Dini condition and we can use Lemma 3.33 with R =
270(Q) and large j > 1 so that 277 < «. This is because, for the lemma, we need that
ly — ¢| < apR, which holds with this restriction on j and recalling that |y — ¢| < £(Q).
Since we only need to worry about large values of j > 1, for simplicity assume that we
can use it for every j > 1, and what we get is

0 dy=cl 1r
_ ; wil—n [ 1Y —C 276(Q) dt ,

2 sup (Mh)'=9(z) (27 0(Q))™ <|2M(Ql —|—f - wT/(t)7> (J u (m)dm)

j=17EPTQ ESERVIT 2

o0 ly—c|

1 / dt

< Z sup (Mh)'"™(x) (—j—i- o u},,./(t>—> inf u(z).
ST ee2i41Q 2 i t ) we2it1Q

Now we had to use Lemma 1.6 to control the supremum by an average, and the Azf
property of w on the inclusion £ n Q < 2771Q. After these two steps, we are left with

QF wEnQ) & e (1| [Fr@ dt
|EOQ‘q |Q‘ ;(2 ) 1 <2_j+ ly—c| wr/(t)?).

27+10(Q)

J
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At this point, we would like to find ¢ > 1 so that the series is finite. However, this cannot
be achieved in general. We know that the integral itself is summable, since

ly—c|

= (2 dt L dt
ZJ Q) % < f on? < o
— t 0 t

ly—c]
20+10(Q)

but when multiplied by (2")97! it need not be. Clearly, if we assumed an extra (and
somewhat artificial) hypothesis of Dini condition on dyadic intervals, we could finish this
proof and, with it, show a restricted weak-type estimate for T, analogous to Theorem 3.26.
The conclusion is that, unlike for the case of Hormander type multipliers, where the ideas
in [79] could be carried over to the setting of A, weights and restricted weak-type (g, q)
estimates with ¢ > 1, for the singular integral T, it cannot be done as simply as the
authors in [79] did for ¢ = 1. In any case, the result that we would get if we followed the
previous scheme would be this:

Theorem 3.34. Let Q) be a function on S with SS Q =0, and assume that, for everyr > 1
and 0 < a < 1, there exists € > 0 such that

2a
J wr(t)% < a’.

a

Then, the singular integral Tq satisfies that, for every uw € Ay, there exists 1 < py < o0
such that, for each measurable set £ < R"™,
HTQXE‘|LPOvOC‘((MXE)1*POu) < CUU(E>1/100.

The condition that we assume on the function €2 could be interpreted as an L"-Dini
condition for every 1 < r < oo with an extra size condition for w, on dyadic intervals.
This is obviously far from the hypotheses in the weighted weak-type (1, 1) result of D. Fan
and S. Sato [54], where the authors only assume that Q € L"(S) for every 1 < r < co. The
next natural step would be to check if their ideas could be adapted to our setting to show
restricted weak-type (g, q) estimates for some ¢ > 1 and weights in A,. This seems likely
to be true, but we have decided to leave it as future work until we find an interesting
application, such as the ones presented in Sections 3.2 and 3.3 for the Hilbert transform
or the Bochner-Riesz operator based on the averaging technique.
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Chapter 4

Weighted Littlewood-Paley Theory

4.1 The general setting

In this chapter we will study different estimates related to a weighted Littlewood-Paley
theory for multipliers. This theory was initiated by J. E. Littlewood and R. E. A. C. Paley
in the thirties in a series of papers [89, 90, 91| dealing with Fourier and power series. The
general scheme is the following: Assume that we have a certain operator T for which we
know that there is an estimate of the form

Gi(Tf)(z) < Gyf(x), ae xzeR", (4.1)

where G; and G, are certain operators called square functions. If we combine (4.1) with
a lower estimate for G; and an upper estimate for G5, say

Iflx s 1Guflx,  and  [Gaflx < [ f]y,

with X and Y being a couple of quasi-Banach spaces!, then we can deduce that

ITflx = [ fly-

In our case, we will consider the spaces X = LP*(v) and Y = LP!(v), with v € A\p, that
correspond to a weighted Littlewood-Paley theory seeking the inequalities that appear
in the extrapolation of Section 1.2. We will investigate lower and upper estimates for
different square functions independently, which are interesting in their own right. Finally,
in Section 4.4, we will see how they can be related when introducing pointwise estimates
as in (4.1).

1We also need that X satisfies the lattice property, that is, 0 < f < g = | f|x < |g|x, for every
[geX.
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4.2 Lower estimates

Our first goal is to prove lower Littlewood-Paley inequalities of the form
[ f ey S NG fllLoeow), (4.2)

with v € /Alp and G being a certain square function. A nice presentation of some of the
different square functions that we will consider can be found in [126].

4.2.1 The Lusin area function S

The first function for which we will seek a lower estimate is the classical Lusin area function
S. First, we will need a list of definitions concerning the upper half-space R?*! = R" xR,..

Definition 4.1.

o Given a fized aperture a > 0, we define the cone centered at x € R™ by

D(x) = Ta(z) = {(y.t) e RY™ : o — y| < at}.

e Given (r,t) e R™ we define the Poisson kernel

Bi(r) =

¢t
(2 + |22)5

with ¢, > 0 such that |Py||; = 1. Since P, is a dilation of Py, this normalization
holds for every t > 0 and {P,};~o forms an approzimation to the identity. With this,
we define the harmonic extension (or Poisson integral) of a function f to the upper
half-space by

u(z,t) = Py = f(z).

e Now, we can define the Lusin area function as

dydt\
tn—l )

where Vu(y,t) = (%, ey 6‘97“”, ‘2—";) is the gradient vector.

s - ([ V(0

e The non-tangential mazimal function is given by

Nf(z)= sup |u(y,t)].
(s:0)eT ()
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o We will also need an auxiliary function, namely

Df(x) = sup t[Vu(y,t)|.

(y,t)el(z)

e [or technical reasons, we will also work with the local versions of S, N and D. Given
a measurable set R € R we will denote them by Sg, Ngr and Dy respectively and
define them exactly as S, N and D but replacing I'(x) by I'(x) n R.

o Finally?, N3 will denote the following variant of Ng:

Npf(z) = sup  |u(y,t) —u(y.t,)|
(y,t)el(z)nR

if D'(x) n R # & and 0 otherwise. Here,
ty =sup{t’' > 0: (y,t') € R} e Ry U {+0}.

Y

Figure 4.1: Idea of the definition of ¢,.

The main result of this subsection is the following:
Theorem 4.2. Let w € Ay, and f a function such that its Poisson integral u(z,t) satisfies
li =
lim u(z,t) =0,
for every x € R™, then for every 1 < p < oo,

1f oo wy S 1Sl Lo w)-

2All these operators S, N, D and their local versions, could be defined on harmonic functions v on the
upper half-space, not necessarily being the Poisson integral of a function f, and we would simply write
Su, Nu, etc.
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We will need the following result proved in [64, Theorem 4]:

Theorem 4.3. Let G be a bounded open subset of R", and let R be the interior of the
complement of | J 4 T'(x) in R Given w e Ay, a > 1 and B > 1, there exist constants
v,0 > 0 such that

aw({NLf > B), Srf <\, Daf < 0\}) < w({NOf > A}),
for every A > 0. The conclusion also holds for R = R by passage to the limit.
From this, we can deduce the following corollary:

Corollary 4.4. If w € Ay and f is a function such that its Poisson integral u(z,t)
satisfies
lim u(z,t) = 0, (4.3)

t—o0

for every x € R™, then, for every 1 < p < o0,
INFlleooe) S 1S fleoesuy + 1D flzoe )

Proof. Let us take G and R as in Theorem 4.3, a = 2™ and 8 = 2. Then we have
constants y,d > 0 such that w({N%f > 2)}) can be bounded by:

w({NI%f > 2\, Spf <A\, Drf < 0A}) + w({Srf > YA}) + w({Drf > 0A})
L W((VS > A} + w({Saf > A} + w{Drf > 6A}).

= op+1
If we multiply by 2P\’ and take supremum over A > 0, we conclude that

INRS 100 —IIN%me )+ CUSRS 700wy + IPRS 7000 )

Now, as in [64], N3 is bounded with compact support (just like Sg and Dg), so all the
quantities in the previous inequality are finite and we can subtract to obtain the desired
estimate for the local versions:

INRS oo < |SrS oo + | Drf | Leww)

Finally we let R increase to R"™' (by making G increase to R™). By the monotone
convergence theorem, it is clear that the right-hand side of the last inequality tends to
\Sflro@w) + [Df]lcrew@w). On the other hand, in [10, p. 533], the authors show that
assuming (4.3) and taking R = R, associated with the open ball G, = B(0, ap) (where a
is aperture of the cones and p > 0), it holds that

Nf(z) < lim Np f(z),
p—oo P
so by Fatou’s lemma, we conclude that

HN.}C”LP"’C(w) < phig) ||N]%prLp,oo(w)

and finish the proof. O
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Once we have this, we are ready to prove our main result:

Proof of Theorem /.2. Recall that the cone I'(z) we have been working with has a fixed
aperture a > 0. Take now a smaller parameter 0 < ag < a and let S, f, D,,f and N, f
be the analogous functions on the smaller cone I, (z) < I'(z). The following holds:

(i) By [64, Lemma 1|, we have® [N f| o) < | Naof | oo w)-
(ii) Trivially, S.,f < Sf.
(iii) By [112, p. 207, Lemma (ii)], Dq, f(z) < Sf(z).
Combining these three facts and Corollary 4.4 (this time, with aperture ag), we get that

HNfHLP’OC('w) < HNaof.HLPm(w) < HSaofHLPvOO(w) + HDaOfHLILOO(w)
< S F ooy + 1S F ooy = S F] e w)-

Using now that f(x) = limy—0) u(y,t) a.e. x € R", we complete the proof:
(y,t)el’(z)

= [N fllzroqwy < 1S fllzro ).
L9 (w)

sup |u(y, )|
(y:0)eT ()

1l 2oy <

]

To finish this subsection, we want to point out that if we want to apply Theorem 4.2
to show restricted weak-type estimates for a Fourier multiplier

~

T (€) = m(€) f(€),

the vanishing assumption on u is not a limitation.

Corollary 4.5. Let m : R® — R be a bounded function (that is, T,, maps L*(R™) into
itself ), then for every w e Ay and 1 < p < o0,

| Tx el (w) < [S(Tnxe)| e w)-
Proof. By Theorem 4.2, it is enough to see that, for every x € R",

lim u(z,t) = 1tlirn P« (T,xg)(z) =0.
—0

t—00

3Even though the authors in [64] work with LP(w), their Lemma 1 gives an estimate for the measure
of level sets, so we can use it to compare weak norms as well.
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It is easy to check that P,(y) as a function of ¢ has a maximum at ¢ = 4. With this in

mind, and looking only at ¢ > 1, we have that

1
Pi(y) < =
' 1+ [y|»

1 F(y) e L*(R"),

for every y € R™, t > 1. Now, using Cauchy-Schwarz and the fact that T, is of strong-type
(2,2), we get that, for every t > 1,

Txe(® —y)Piy)| < |Tuxe(z —y)|F(y) € L'R"),

so using the dominated convergence theorem,

lim u(zx,t) = J lim T,,,xg(x — y)P:(y)dy = 0.
R

t—o0 n t—00

4.2.2 The Sy, function

Now we will present a different approach that yields the lower estimate corresponding to a
modern version of the area function S, the Sy, function. Here we will follow the ideas in
[125], where weighted L? inequalities for Sy, are studied by means of dyadic techniques.

Definition 4.6. Let D be the standard dyadic lattice* in R™. Let f € L} (R™). We set,

for every k € Z,
1
f:: (_ f)Xa
' Qz;) |Q|L ¢

Q=2
and

Mp f(z) = sup | fi ()]
keZ

the dyadic maximal function® of f.

In [125, p. 665], the author shows that every function f € Ci° can be written as

3’71
f@)=>" (@),
k=1
where, for every k =1, ...,3",
fio(@) = D Aag(x), (4.4)
QeGy.

and

4Tt is defined by D = {[2km1,2k’(m1 +1)) x - x [2Pmy, 2%(m,, + 1)) kymy,..,my, € Z}.
®Notice that the Lebesgue differentiation theorem gives that f(x) < Mp f(z) for almost every x € R™.
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(i) Gk is a collection of cubes (not necessarily from the standard dyadic lattice D)
satisfying that for all ), Q' € Gy, either Q N ()" = J or one is contained in the other,
and that Q € @' with @ # Q' implies [(Q) < %Z(Q')

(ii) For every Q € G, it holds that suppag = @, §fa = 0, |ale < |Q|7Y? and
[Vale < UQ)TMQI7Y2.

(iii) The families {Gy.}3_, are pairwise disjoint.

Even though the cubes G, may not belong to D, we can assume without loss of generality
that they are dyadic (as the author points out in [125, p. 666|), since the only properties
that are required are the ones described in (7). If a function can be written as in (4.4)
with respect to some family of cubes G satisfying () and (i7), we will say that it is of
special form with respect to G. Once this is settled, let us give the following definition:

Definition 4.7. Given a subfamily of dyadic cubes G < D, and a function f of special
form with respect to G, we define

Aol
Saf(x) = ), o)
TeQEG ’
With this, we have the following lemma:

Lemma 4.8. Let 0 <p <o, 0<n<1and A>0. Let G < D be a subfamily of dyadic
cubes. Let f be of special form with respect to G and such that Mpf € L»*(v), where v
18 a weight for which the following quantity

1 if v(Q) =0,

is controlled by A for all Q € G. Then, there ezists a constant C(p,n,n) < o such that

Y, (Q,v) = { v(@Q)7! SQU(LE) log” (1 + ‘Qfﬁ%) dr if v(Q) >0,

|Mp f ooy < C(p, 1, 1) AV S f| o0 0 -

The proof of this lemma is based on a good-\ inequality that the author shows in the
proof of [125, Lemma 2.3]. More precisely:

Lemma 4.9. Under the hypotheses of Lemma 4.8, it holds that for every A > 0,
v({Mpf > 2X Saf <A} <e(p)o({Mpf > A}),
with v > C(p,n,n) A~ and 2¢(p)'/P < 1/2.

Now, our result is an easy consequence:
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Proof of Lemma 4.8. With the previous inequality,
| Mp f Lrow) = iup 2Av({Mpf > 2\})/P
>0

< 2sup W({Mpf > 2X\, Saf < YANYP + 2sup M ({Saf > yA})Y?
A>0 A>0

2
< 2:(p)P sup \o({Mp f > AP + =Sy fll oo
A>0 7
1
< 5l Mo flpree) + C(p, n, m) A" Saf | oo 0)-

Isolating the term |Mp f| e (y), we finish the proof. O

Definition 4.10. Let ¢ € C*(R") be a real, radial, non-trivial function such that §¢ = 0,

and whose support lies inside the closed ball B(0,1). We can assume that ¢ is normalized
so that

o d
| 1oenrs -1,
0

for all & # 0. As usual, for t > 0 we define the dilation ,(x) = t~"(x/t). For
fe Ll (R") and o > 0, we define the square function of f with respect to 1 of aperture a:

dud 1/2
Spaf(x) = <J| . t!f*wt(y)ﬁg—j) -

Remark 4.11. At the beginning of this section, we said that the author in [125] shows
that every function in C° can be written as a finite sum of 3" functions f) of special
form. From his construction, one can check that for® o = 34/n,

4
DS (fwy) € Syl (4.5)
k=1

This fact is explicitly stated at the end of the proof of [125, Theorem 2.5].
Finally, we state our main result:

Theorem 4.12. Let 1 < p < o0 and v = (Mh)* Pu € Ap. Then, for every f € C{(R™)
and o = 34/n,

[Flzreowy S [l a9y af o),

and the implicit constant only depends on p and n.

5Note that, whenever we write Sy J), the dyadic sum involved in its definition is with respect to the
corresponding family Gy.

86



C. DOMINGO SALAZAR

Proof. Take f e C{(R") and write

where each f() is of special form with respect to a dyadic subfamily G, < D, the families
Gy are pairwise disjoint and we have (4.5). Moreover, we know that for every cube ) with
v(Q) > 0, the weight v = (Mh)'Pu satisfies that

Yi(Q.v) ~ v(Q)! j@M[(Mh)lpuxqu)dmv(@ sup (MH)'( f Mu(

suA1v<Q>-1ﬁfQ<Mh>1-p<x>dazf w(@)dr < Jul3,0(Q) (@) = Julfs.

The first equivalence is stated in [125, p. 668], and then we used Lemma 1.6 to control
the supremum and the A; property of u to finish the estimate. Therefore, for every
k =1,..,3", we can apply Lemma 4.8 with n = 1, A = |ju|?, and the pair (fx),Gr) to
obtain that

| Mp fuoll ooy S [ a,[1Safoe |ee ).

But the families G, are pairwise disjoint, so

Mpf(x Z Mo f)(

and hence, by (4.5) and exploiting the finiteness of the sum and that Sy fx) = 0, we finish
the proof:

3" 3"

| flzre) < [Mpflinew < D) 1Mo faylrew) S lulay ) 15afwlore
k=1 k=1
371/
< 3"ulla, | D] Safu S lullailSy.afllre )
k=1 LP-(v)

]

Remark 4.13. Notice that this last theorem is stated in view of our goal (4.2) in this
section. However, from its proof one can check that the same would hold for any weight
v € Ay which we know that can be written as v = (Mh)'™9u, for some locally integrable
h,1 < q < o and u € A;. Hence, for every 1 < p < o, f € C¥ and a = 34/n, the
corresponding estimate would be

[Flzreowy S [l a9y af o),

with the implicit constant depending on p, n and q.
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4.2.3 The g square function

Let @ be a fixed, non-negative smooth bump function with support in [1,2]. Let ¢ be
the function on R™ defined by R
P(§) = [€|2([¢])-

Notice that ¢ satisfies
W(w)de = (0) =0,
RTL

With this, we introduce the g (vertical) square function associated with ® as follows:

gos@) = ([(1oce 1)

where, as usual, ¢;(x) = t ™)(t"'x). This function will appear when dealing with radial
multipliers. This is a generalization of the classical Littlewood-Paley g-function defined
0

by " 9 1/2
9f (@) = (L pn tdt) 7

where P is the standard Poisson kernel (see [112, Chapter IV]) and P, = f(x) = u(x,t) is
the harmonic extension of f to the upper half-space. Introducing different functions ®
will allow us to define different classes of radial multipliers associated with them and, for
each class, we will have pointwise inequalities involving the corresponding g¢. Just like
for the classical g-function, it holds that, for some constant Cg > 0,

|9 fllz2@®ny = Cal fllL2@n)- (4.6)

To check this, we use Fubini and Plancherel’s identity as follows:

:JJj@ww%wama

But using the definition of zZ and the support of ®, for every £ € R”,

A d 2 d
| wer = | sewrt -

0

=P+ f(z)

so we get the equality in (4.6).
Proposition 4.14. It holds that, for every 1 <p < o and w € A,,

1 zewy < |98 frw)
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Proof. 1t follows the same idea as in the unweighted case (see [112, p. 85]). We know
by (4.6) that |gef|r2rn) = Colf|r2@n). Using the polarization identity of L?(R™) and
introducing the weight in a simple way, we have that

o

. f(z)h(x)dx

J 9o f(2)gah(z)w ! (z)w(x)dx|.
Now we use Hélder’s inequality to bound the previous expression by

l90 £l o ) | g2l Lo (-5

But w' 7 e Ay, and the operator g¢ is bounded on L?(v) for every 1 < ¢ < wandv e A,
(see, for instance, [84]), so using this fact, we conclude that

< 90w 1l 1ty

. f(z)h(x)dx

Dividing by |||y (,i-») # 0 and taking supremum over h € LP (w'"), duality yields

1oy < 90 f]r@w)-

Remark 4.15. So far, we have not been able to find a proof of the inequality
[ f ooy S |90 f e w),

for w € ﬁp. In the previous cases (of the functions S and Sy .) where we were seeking
this lower estimale, we had a certain good-A inequality that worked for Ay weights and,
therefore, we could deduce the LP™*(w) — LP'*(w) estimate for A, weights similarly to
the LP(w) — LP(w) estimate for A,. For ge, however, we used a duality argument that,
despite being really simple, does not work beyond the A, classes.

4.3 Upper estimates

In this section, we want to study upper Littlewood-Paley inequalities of the form

|G Flrey < 1 flraqy,  ve Ay (4.7)

4.3.1 The G, function

We define the following square function

Gof(x) = ( | i

0

gBZf(I)

9 1/2
tdt) ,
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where B! is the Bochner-Riesz operator as in Definition 2.1. This function was first
introduced by E. M. Stein in [111] to study L? properties of the maximal Bochner-Riesz
operator. It can be easily checked that

O e 20 [ LR (RN e o
Goue = [ B (1-50) e

and from here deduce that

0 1/2
Guflo) = ([ e P )

0

o~ 2 2\ a—1
with K (§) = %—L <1 - |§—£> . This is the way that G,, was defined in [16], [17] and [115],

some of the references that we will use for this part. See also the expository introduction
of [83]. The proof that for a > ”T“, the operator G, is of (unweighted) strong-type
(p,p) for every 1 < p < oo and of weak-type (1,1) is due to S. Sunouchi [115]. Here, the
author relates Gy, to an L?(0,00) vector-valued Calderén-Zygmund operator and is able
to use the classical theory to obtain his result. However, if we want to establish weighted
inequalities, it seems that the vector-valued theory in this case does not work as cleanly.

Our main result is the following;:
Theorem 4.16. Let o > "L, Then G, is

(i) of strong-type (p,p) for every weight in A, and 1 < p < o0,

(i) of restricted weak-type (p,p) for every weight in AZ} and 1 <p < o,
(1ii) of weak-type (1,1) for every weight in A;.

The proof of this theorem is based on the fact that we will be able to control G, f by
a finite sum of sparse operators, which are much easier to handle and known to satisfy
these three properties”. The notion of sparse operator already appeared in the proof of
Proposition 3.3, where we actually showed that they satisfy the corresponding restricted
weak-type (p, p) estimate in (i7). For other examples of the use of sparse theory to obtain
weighted estimates for square functions, see [47, 84, 87|. Now, let us recall their definition
in a little more detail. For convenience, we will follow the exposition in [88]. Given
a dyadic lattice of cubes in R", we will say that a family of cubes § is A-sparse, with
0 < A < 1if, for every @Q € S, there exists a measurable subset F; & () such that
|Fo| = (1 = N)|Q| and {Fp}ges are pairwise disjoint.

"The strong-type (p,p) for A, weights was of great interest when it was seen [85, 86] that it gave a
new (and easier) proof of the celebrated Ay theorem [72] for Calderén-Zygmund operators.
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Definition 4.17. The sparse operator S associated with the sparse family S is defined by
1
5= 3 (g7 [ 1) xeta
2\l g
We will also need the following definitions of the so-called local mean oscillation:

Definition 4.18. Given a function g and a measurable set E, we define

w(g, E) := sup g(z) — inf g(x).
zeE zel

Given 0 < XA < 1 and a dyadic cube @), we also define

wA(g, Q) := min{w(g, E) : E < Q,[E] > (1 = A)|Ql}.
The key result that we will need is the following, and it can be found in [88]:

Theorem 4.19. Let f be a measurable function and let F' : R — R be such that, for
every € > 0,
H{x e [-R,R|": |F(z)| > e}| =o(R"), as R— .

If, given a dyadic cube Q and 0 < X\ < 27772, it holds that, for some § > 0

— 1
wx(F,Q) < CA];)2 ok (!2’““@ LMQ !f\) , (4.8)

then |F| is pointwise controlled by a finite sum of sparse operators applied to f.

Proof of Theorem 4.16. Fix a = ”TH + 6, with 6 > 0. If we define

Tif(x) = K—f‘j/{@)’

it holds that,
Gof(x) = |Tof ()] 12(0,00)-
By [115], we know that G, is of weak-type (1,1), that is

yle e R [T/ (@) 20y > 9} < 1 Galiproo] flosan, (4.9)

and the author also shows (see [115, Equations (3) and (4)]) that, given r > 0 and s € R
such that r > 2|s|,

Co(r + 8) — Ky ()] < min{t 27007770 || g2 0p—m=0}, (4.10)
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where
i(fa]) = 2ED
NG
Taking F(z) = G,f(x), we have that the decay assumption for F' in Theorem 4.19 is
trivially satisfied (using, for instance, that G, is of weak-type (1,1)), so if we show (4.8),

then we conclude that G, f is dominated by sparse operators and, hence, finish the proof.
Fix a cube Q and 0 < A < 2772, Let x,2" € Q. Then,

T2 f (@) 2200.00) = TS (&) | 2(0,00) | < (T2 () = Tof (") 20,009

= |Ti(fx20) (@) + D Tl fxarngar)(®) — Ti(fx2) (@) = D T fxacrigurg)(2')
k>1 k>1 L2(O,OO)
<I+1I,
where

I = |T(fx2) (@) 2(0.0) + | Ti(fX20) (#) | £2(0.00)

and after using Minkowski’s integral inequality,

H—Zf IKulle — o) — Kl — 1) 20y | £ )y

k>1 2k+1Q\2kQ

We start by studying I1. Since z,2’ € Q and y € 2811Q\2*Q, we can set r := |2’/ — y| and
observe that |z —y| = r + s, with s € (—|z — 2’|, |x — 2'|). Therefore,

1Kl = yl) = Kell2" =yl Z2(0,00) = 1Ke(r + 5) = Ki(r)Z20.00)-

Computing the L? norm and using (4.10) with the different bounds on (0, |s|™') and
(]s|71, o) respectively, we can control the previous expression by

[

But r = |2/ — y| ~ 2¥(Q) and |s| < |z — 2'| < £(Q), so again, the last term is majorized
by

I=! o

_ 9 1 9 S
2n+26
|s|—1 r

26

QP (1 Y
22k(n+6)€(@)2n+25 o 2k(n+5)’@| )
With this estimate, we go back to I1 and see that

1f(y)] sk 1
2 LkHQ\sz 2k(n+9)| Q)| Yy Z 2541Q) Jyeerg |f(y)|dy

k=1 k=1
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To study I, we just use (4.9) to get that if

2 Gl s prr f
E* = | T 2
{z e QI el > Hn [ 11},

then
A2Q)|

2n||GocHL1—>L1»°O SQQ |f|
So defining E := Q\E*, we deduce that, when x € E,

1
T Fxaole)z0n < Crgn j )

|E¥| < [|Gao|piopre 1f X2l @y = AlQ].

and the size of F is controlled by
[El=1Q| = |E*] = (1 - V)]

Summing up, bringing it all together, we have shown that there exists a measurable set
E < @ such that |E| > (1 — A)|Q] and satisfying that, for every x, 2’ € E,

S 1
I3 @00 ~ VT 0l < 1+ 11 O N2 (i [ [0l
k=0 ’2 Q’ 2k+1Q
Hence, the same bound holds for wy (|73 f(-)|z2(0,00)s @), and we finish the proof. O

4.4 Pointwise estimates and consequences

Even though the main goal of this chapter was to study lower and upper estimates inde-
pendently one from another, for the sake of completeness we will devote this last section
to see if some of them can be related by means of pointwise estimates. We will consider
two kinds of multipliers. First, we will study general multipliers of Hérmander type like
the ones appearing in Section 3.4, and then we will turn our attention to radial ones.

4.4.1 General multipliers

In Section 3.4, we showed a restricted weak-type estimate that extended the results of
D. Kurtz and R. Wheeden [79] about multipliers of Hérmander type. The technique
behind those results avoided the use of Littlewood-Paley theory. However, in [78, The-
orem 4], the author resorts to this theory to tackle the same problem as in [79]. When
1 < p < oo, he succeeds in showing the strong-type (p,p) estimates with respect to
A, weights for multipliers satisfying m € HC(2,n), but he cannot prove the weighted
weak-type (1,1) part due to limitations regarding the square function g5 involved. Let us
introduce this function and state in a lemma the pointwise inequality that one has in this
setting for Fourier multipliers with m € HC(2,n). It relates the Lusin area function from
Definition 4.1 and g5:
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Definition 4.20. We define, for A > 1,

t()\—l)n+1 ) 1/2
g f(z) = J Vu(y,t)|“dydt ,
A ( ) RT’I (t—i—’l’—y‘))‘n‘ ( )’

where u(x,t) = Py = f(x) is the Poisson integral of f.

Lemma 4.21. Given m € HC(2,n), we have that

S(Tnf)(x) s 95 f(2).

This inequality can be found in [112, Lemma, p. 233| (see also |78, p. 239|), stated
for m € HC(2,n + 1) and g} with A = 2222 Even though one cannot deduce Lemma
4.21 directly from here, in the proof, the author assumes m € HC(2, k) and obtains the
estimate involving gy with A\ = % He concludes the argument taking £ = n + 1, but if
we take £ = n instead, we get Lemma 4.21. Even though we do have the lower estimate

| fllzroqw) S 15 flLroew)
for ﬁp weights, we have not been able to establish the corresponding upper estimate

Hg;fHLP»OO(w) < HfHLP’l(w)

for these weights, and hence, we cannot deduce the restricted weak-type (p, p) for multi-
pliers T,,, with m € HC(2,n). The function gj, however, is known to be of strong-type
(p,p) for the smaller class A, (see [97]), and this is what allows the author in 78| to use
the Littlewood-Paley approach to show that T}, with m € HC(2,n) is of strong-type (p, p)
for A, weights and 1 < p < c0. The weighted weak-type (1,1) endpoint result for 7,,, and
Ay weights is also true (see Section 3.4) but, as far as we know, it is an open problem
whether the function gj is of weak-type (1,1) or not, even in the unweighted case.

4.4.2 Radial multipliers

Here we fix a non-negative, smooth bump function ® with support in [1,2], just as we
did when we defined g¢ in Subsection 4.2.3. Now, the parameter o > 0 will be a positive
d

real number, and whenever we write (E)a for a ¢ N, we will be referring to

—_—

<%> h(€) = (~2mig)*h(e),

in the distributional sense if needed.
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Definition 4.22. Given a bounded function m : [0,0) — R, extended by zero to the
whole line R, we say that m € Re(2, a) if

9 1/2

dt) < .

sup ( JIGE) (2(F) o)

A simple change of variables shows that this condition is equivalent to

(4) ®Omir)

and by [16, Theorem 2|, we have that:

<
L2(R)

sup
r>0

Y

Theorem 4.23. Given a > % and m € Rg(2,«), the multiplier defined by

T f(€) = m(ENf(€),

satisfies

9o(Tf)(x) < Gof(z), a.e. xeR™

With this estimate together with Proposition 4.14 and (i) in Theorem 4.16, we obtain
the following multiplier result:

Theorem 4.24. Given a non-negative, smooth bump function ® supported in [1,2] and
a bounded function m : [0,00) — R in Re(2,a) for some a > ™ we have that the
associated radial multiplier T, on R™ satisfies

Ty LP(w) — LP(w),
for every 1 <p < o and w € A,.

Here we have the opposite problem to the one we had for general multipliers. In
this case, we do have Theorem 4.16 (an upper estimate) that gives restricted weak-type
inequalities for A, and the function G, (o > %), but we lack the corresponding lower

2
estimate for gg, ~
1flzpow) < 9o flrrow), we Ap,

as mentioned in Remark 4.15. This is the reason why Theorem 4.24 only applies to the
A, setting. In [16, Theorem 4|, however, the author gives yet another related pointwise
estimate, but this time for the maximal operator associated with T,,.

Theorem 4.25. Let m : [0,00) — o0 be a bounded function satisfying, for o > %,
« 2
fm 8a+1 i m(s)
0 ds s
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Then,
T f(2) < Gof(e), ac. 7R,

where T f(x) = sup,o|TL f(x)| is the maximal operator associated with the family

{T! Y=o defined by

— ~

T3, f (&) = m(tE]) £(€).

In contrast with Theorem 4.23, this pointwise inequality is for the operator T itself,
so we do not have to rely on a lower estimate in order to obtain boundedness results for
T . In fact, we can use the full potential of Theorem 4.16 to deduce the following:

Corollary 4.26. Let o > 2+ and m : [0,0) — 0 be a bounded function such that
JOO Sa-i—l i : m(s)
0 ds 5

(i) of strong-type (p,p) for every weight in A, and 1 < p < o,

2
ds
<

S

Then T s

(ii) of restricted weak-type (p,p) for every weight in AZ} and 1 < p < oo,
(1ii) of weak-type (1,1) for every weight in A;.

For more details on the class of multipliers m satisfying the condition in Theorem 4.25
(or its corollary), see [16, Section III] and how the author relates this class to the Bessel
potential spaces introduced in [112, Chapter VI|. See also [83, (4) and (5)] for another
presentation of the pointwise estimates that we have used from [16].
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Chapter 5

Yano’s Extrapolation Theory

5.1 A connection between two theories

The theory of extrapolation we have presented so far follows the ideas introduced by
J. L. Rubio de Francia. As we have seen, in the context of LP spaces, the goal is to
find an estimate at a fixed level py that holds for a whole class of weights and deduce
new estimates at other levels of p. Yano’s extrapolation, on the other hand, works in a
different way. In this case, one would fix the measure (not necessarily a weight) and find
estimates for a whole range of p € (1, py), with a boundedness constant that blows up in a
precise way when p — 17. The extrapolation argument, then, would seek boundedness in
a suitable space, closer to L' than any of the initial L? with p € (1, pg). Even though these
two theories are different, Yano’s extrapolation can be used to, in some sense, complete
the information that we have for operators of Rubio de Francia type at the endpoint. Let
us explain this relation to motivate this chapter.

We know that an operator 1" under the hypotheses of Rubio de Francia’s extrapolation
theorem need not be bounded from L' to LY*. However, the sharp L? constants obtained
in [48| provide useful information to obtain endpoint estimates for these operators. In
particular, we know that, if for some 1 < py < o0 and every w € A,,,

T:L”(w) — LP(w)

is bounded with constant ¢(|lw] .4, ), with ¢ an increasing function on (0, <), then, given
u € A17
T:LP(u) — LP(u)

is bounded for every 1 < p < py with constant essentially controlled by

Cllul z; N
W s as p — 1™. (51)

97



CHAPTER 5. YANO’S EXTRAPOLATION THEORY

As we just mentioned!, the starting point in Yano’s theory is, precisely, having an L
boundedness on a range (1,py) with some control on how the boundedness constant ex-
plodes when p is close to 1. In fact, the blow-up that we would like to have in order to
extrapolate is of the order of W, for some m > 0. Therefore, examining (5.1), we see
that if we assume o(t) = t° for some 3 > 0 and u = 1, we obtain that T : LP — LP is
bounded with constant essentially controlled by

1

v T
(p— 1)1 P L

With this information, one can show (as we will see in Theorem 5.22) endpoint results close
to L'(R") for sublinear operators under the hypotheses of Rubio de Francia’s theorem. A
converse argument can be used to find optimal values of 8 (see [92]), but we will not get
into this particular problem.

In Yano’s theory, as one would expect, the slower the blow-up of the constant is,
the better the conclusions are, so one could try to start with the boundedness constant
associated with the restricted weak-type (po,po) of T instead. Take, for instance, the
Hardy-Littlewood maximal operator. It is known [9] that, for M,

1

ol
HMHLPO(w)—»LPO(w) < po——l’ (5.2)
whereas
1
| M oo () —szooenuy < el 520 (5.3)

Since we want to work with constants that have the least possible blow-up when p is close
to 1, it makes sense to start with this weaker assumption. The extrapolation of restricted
weak-type (po, po) estimates for A,, weights was carried out in Theorem 1.8 avoiding the
use of Rubio de Francia’s classical theory. What we showed is that, if for every w e A,,,

T : [P (w) — LPO*(w)
is bounded with constant ¢([w| 4, ), then, given u € Ay,
T L7 (u) —> LP*(u) (5.4)

is bounded for 1 < p < py with constant essentially controlled by

s (=)
\um°¢((p_1) ful, ). 5.5)

In this introductory section we will not make the classical results in Yano’s theory precise. We refer
to Section 5.2 for a detailed presentation.
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Notice that now, if we want to have a blow-up of the form (p+ we are allowed to

1)m Y
consider? any fixed u € A;. Therefore, if p(t) = t* with a > 0, for every u € A; we get

that the constant for (5.4) behaves like

1

- - O
(p— 1o D’ asp—17".

The extrapolation that we will use is not the classical one, but a newer version that
assumes boundedness from LP* into itself on a range (1, pg). This variant was developed
in [33] and will be presented in Section 5.3.

For the time being, the only goal of this first section will be to compute the LP* — LP®
constants of operators under the assumptions of Rubio de Francia’s theory (A, theory)
and under the assumptions of the theory presented in Section 1.2 (Ap theory). To do so,
we will need the following interpolation result:

Lemma 5.1. Let 0 < sp,81 < 1 <19 <1y <0 and let T be a sublinear operator such
that
T: L% (u) — L (u)
1-9 , 0

is bounded with constant M;, for 7 = 0,1. Then, for every 0 <0 <1, if% =+, we
have that

T:L"(u) — L"*(u)
is bounded with constant controlled by BMi—" M?, where

B ( ToT )1/50 . ( rir )1/51 . (ﬂ)l/SI
So(r —10) s1(ry — ) 51

Proof. The proof of this result can be found, for instance, in |6, Theorem 5.3.2], but we
need to see how the constant behaves and this is not included in classical books. We will
proceed as in |28, Lemma 3.10]. By the real interpolation K-method (see |5, Chapter 5|),
we have that

To (L0 (u), L (u) g0 —> (L7 (w), L™ (1))g 00,
with constant less than or equal to Mi—?MY?, where
(A1, A2)p0 = {f € Ay + Ay s supt P K(t, f; Ay, Ay) < OO} ;
t>0

and
K(t, f; A1, Az) = inf {]| folla, +t|fi]a, : £ = fo+ f1, foe AL, fre Ao}

Therefore, it is enough to show that:

2The exponents of |ul| 4, in (5.5), unlike in (5.1), do not explode when p is close to 1, and hence having
[u]a, > 1 is no longer a problem. We will see that an exponential blow-up in p is hopeless if we want to
extrapolate in the sense of Yano.
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() 1N zroy < 20 lezroe uy,Lrro @)yp o
() [ fhzrosow,erier@yoe < BlflLrow)

The proof of (i) goes as follows: define y := L fix ¢ > 0 and let f = fo + fi be a
decomposition of f in L™%*(u) + L™ (u). Then,

sSup yl/T’Of (y) <sup yl/ro ((f())z (%) + (1) <g>>

y<ty y<ty

1/T0 -1 1/T1
< sup 2 HfOHLTO’OO(u) —+ y’“O 1 2 Hfl HLTl’OO(u)

y<t?

<2(] follzroe )+t f1

Lr1% (u))-

Taking infimum over all possible decompositions of f, we conclude that

sup y'/"0 f2(y) < 2K (¢, f; L% (u), L™ (u)),

ysty

and with this estimate,

2”fH(Lro,OO(u%Lrl,OO(u))g’oo =Ssup 2t_gK(t, f; LTO’OO(U), LTI’OO(U))

t>0

> sup sup ¢~ y!" £ (y) = supy" f(y) sup t°

t>0 y<t? y>0 t>y1/’Y

—supy™ 0 £ (y) = | Flere

y>0

For (ii), let f € L™*(u) and 7 as before. For every ¢t > 0, we write f = fy + f; with

fo= fX{|f|>f;'=(tv)} and f1 = fX{If\éf;"(ﬂ)}'

Now,

t7 50_s50_4 Heo tw(%_%)
| foll Lroso ) < (J (fr(y)y*)oymo+ dy) < | fleroe @y 75
0 S0 __

1/s0
ToT
=t —— 7,90 ()5
(%) Wl

by the definition of v and # = 22=—""1 " Also,

rTrQ—TT1

. ., tY 57171 1/81 o0 . . 57171 1/81
| fullzrs ) < fo (27) ydy + faly)yn dy :
0 tY
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For the first term, we multiply and divide by t7/", compute the integral and the bound

we get is
1/s1
_ 1
-1 (_) T
51

For the second term, we proceed exactly as for | fo|zro.s0(u) and control it by

0—1 mr e
t Y r— 1LF (| 2o -

Bringing the estimates together, we conclude that

Hf”(Lro,sO (1), L7151 (1))g o = StUIO) t_GK(t, f; L7055 (u), LTSt (U))
>

Lroso (w) + 1 fi

< sup (| fo i () < B f] o)
>

O

Next, we will use this interpolation to study the behavior in p of the LP* — [P®
constant for operators under the hypotheses of Rubio de Francia’s Theorem 1.1. The
boundedness from which we will start will be of restricted weak-type (pg, po), instead of
strong-type. The result we get is the following:

Theorem 5.2. Let 1 < py < o0, and let T' be a sublinear operator such that
T : LPo (w) — L (w)

is bounded for every w € Ay, with constant p(|w||a,, ), where ¢ is an increasing function
on (0,00). Then, for everyu € Ay and 1 < p < py,

T LP™(u) —> LP™(u) (5.6)

1s bounded with constant

2 2pO1 2 2( 1) po—1 % (p—1) 11

PPo \ " Do Po — _po(p=1) _ i_L
+ =0 it A 5250 —p-1) 0

[(p - 1) Do —p] 7 (( p—1 ) ||U||A1> # ()7 Jul,

In particular, if (t) = t* for some a > 0 and uw € Ay is fized, then the boundedness
constant behaves like

1
(p — 1)aPo—1)+ro

when p s close to one.
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Proof. Let 1 < p < py and u e A; < A,,. If we extrapolate down to 22l by means of

2
Theorem 1.8, we get that

with constant less than or equal to

2 1 2(po — 1) po—1
My = [uli" "¢ ((pT lula, |-

Moreover, our hypothesis is that
T : LPY (u) —> LPO%(u)
with constant

My = ¢(ula,,) < ¢(lula,)-

Therefore, we can interpolate by Lemma 5.1 with

r0:2780_

1 = Po, s1 =1,

and the corresponding boundedness constants My and M;. We obtain (5.6) for the fixed
p, which lies in (rg,r1) = (’%1, 1), with constant

2p0

(210]?0)"“Jr e M0 00
p—1 po—p| 0 TV

po(p — 1) | g @t Dmo—p)
p(2po —p—1) p(2po —p—1)
If we replace the expressions of § and 1 — 0, we get the sought-after constant. Finally,
if we consider ¢(t) = t* and u € A; fixed, it is easy to check that the behavior of the
constant is like

where

0 —

1
(p — 1)aPo—1)+ro

when p is close to 1. O

For simplicity, from now on we will adopt the following notation:
log,(z) = 1+ log,(x) and log,(x) = log, log,_,(z), for k > 1,

where log, denotes the positive part of the logarithm. Let us state a lemma that will
become a useful computation for the rest of this chapter.
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Lemma 5.3. Let 1 < py < oo, m >0 and A > 0. We have that

Al/p 1
I= inf ——o < Alogl" -,

1<p<po (p — 1)
where the constant in the inequality depends on py.

Proof. For the sake of simplicity, we will prove it for m = 1, though the general case is
identical. Notice that

Al/p _ Al/p ' A*

I= inf ——~ inf — = inf ,
t<p<po p(1 —1/p) 1<p<po 1 —1/p  1/po<a<1 1l —2x

since 1/pg < 1/p <1 (i.e., 1/p ~ 1). Now, let us consider two cases:

e A>1
We have that s(z) = /= and §'(z) = W > 0 for every 0 < x < 1.
Hence,
A* Al/po 1
I~ inf — ~ AV < A = Alog, —.
po<e<t 1 —x 1 —1/pg A
e A< 1:
Now, s'(Z) = 0 for Z = 1 + —— < 1. This is a minimum and therefore,
I~ IATZ, if ¥ = 1/po,
~ 1/p
1‘31/20, if ¥ < 1/po.

We have T = 1/p, if and only if A < eTor —: Co, with 0 < Cy < 1.
If0<A<Cy<1, then

Altiega 1 1

1
I~ _@ mAlogzzAlongZéAlong.

IfC’0<A<1,thenCA0>1and

I~ i YO e cim gy AT

1po<a<l 1 —x posa<l 1—=x

A 1
S Cé/pogo S AlOgl Z,

using the estimate in Case A > 1 with CA
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]

Remark 5.4. At some point, we will also need the following, similar estimate:

1\ AP 1 1
= 1 [ < — —
I 1<1][r)1<fp0 log, (p — 1) P Alog; 1 log, T

Proof. Let us go over the proof of the previous lemma and see what changes we have to
make. As before, we compute

1 A®
I'~ inf log, .
1/po<z<l l—-2/)1—2x
The case A > 1 is the same, with I < A. Now, consider again the point 7 = 1 + @ <1,
which we know lies in [1/py, 1) if, and only if A < Cj. In such a case, we clearly have that

1 A7 1\ 441 1 1 1
< _ = J— og < J— J—
I <log, (1 — %) = log, (log A) A TTeeA Jog 15 Alog, 1 log, T

On the other hand, if C) < A < 1,

_ 1\ (4/Cy)” _ 1 1
< (V/po 0) — AYpo—1 4 ~ = -
I <G 1/p(1)r<l£<110g1 ) 1o, S Cy" A < Alog, Y log, T

O

Let us go back to the computation of LP* — LP** norms. Now, we will show a result
in the spirit of Theorem 5.2 but, this time, considering operators under the hypotheses of
Theorem 1.7 instead. We know that this is a stronger condition to assume on an operator
(see |28, Theorem 3.11]), so the LP"* — LP* constant that we will get should be better
behaved than the one in Theorem 5.2.

Theorem 5.5. Let 1 < pg < o0, and let T be a sublinear operator such that
T : LP (w) — LP(w)

is bounded for every w € /Alpo with constant gp(HngpO), where ¢ is an increasing function
on (0,00). Then, for everyue A;, 1 <p<pg and 0 <e < py — 1,

T LP*(u) —> LP*(u) (5.7)

18 bounded with constant

pL+e)\'"™  pE |1\ 1
o1 +p0*p z Jullay <P<HUHA1PO>-

In particular, if uw € Ay is fived and p is close to one, then the boundedness constant

behaves like
o 1 1
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Proof. In |28], the authors prove that from these hypotheses we can deduce that, for
1 <pi <pgand ue Ay,

Lo 1,00
T:L v (u) — L (u)

with constant ) .
1_
My = —— o (July™)
L [l 4, ( ul

Moreover, our hypothesis is
T : [P (u) — LP(u)

with constant
1
My = ¢(Julz, ) < e(lul4™).
Therefore, we can interpolate using Lemma 5.1 with

B !
ro=1, so= -

L =po, S1=1,

and the corresponding boundedness constants My and M;. We obtain (5.7) for every
p € (ro,m1) = (1,po) with constant

p1 1-6 1
pp1 Pop 1 1-L)(1-6) 1 1-6+6
Kﬁ) T —p +Po] (F) HUHgl W, (R .

_ po(P - 1) _
ppo— 1) ppo— 1)
we can rewrite the constant as

o1\ w2 1 el Po—p )
(Z2) e P )™ i e ().

If we set p; = 1 + ¢, we get the first part of the result, since the condition 1 < p; < pg is
equivalent to 0 < & < py — 1. Now, if we fix u € A; and take p close to one, notice that
the previous constant is equivalent to

Since

¢
S(p _ 1)1+5’

with a constant C' independent of € and p. In particular, we have that T satisfies (5.7)
with constant equivalent to the infimum of the previous expression over € € (0,py — 1).
Without loss of generality, assume that

&0 =

< Po — 1.
log
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If we write A = . we want to compute the infimum of 4—. This can be computed by
differentiation (exactly as we did in Lemma 5.3) and it is attalned at gg = log i, Which
lies in (0,po — 1) by assumption. Hence, we can take as a boundedness constant

A (1 L\ 1\ 1
s U %p—1)\p-1 >SSt p- 1

We see that in this case we can consider any function ¢ (not necessarily a power of t)
and the blow-up that we obtain is independent of ¢. Even though the constant is not
of the form ﬁ, we will see that the extrapolation can be easily modified to admit a
logarithmic factor. The rest of the chapter is organized as follows. First we will introduce,
in a more precise way, Yano’s classical theory. Then we will explain the new results that
have been found in [33| for operators mapping L”* into itself. After this, we will make
some contributions in the setting of Lorentz spaces L7, and finally, we will come back to
this connection with Rubio de Francia’s theory to see what we get from this behavior of
the constants when p tends to 1.

O

5.2 Classical results

Yano’s extrapolation theory goes back to 1951, when S. Yano published a result [127] for
sublinear operators of strong-type (p, p):

Theorem 5.6. Fizx (X, ), (Y,v) a couple of finite measure spaces, pg > 1 and m > 0. If
T is a sublinear operator such that, for every 1 < p < po,

T: LP(p) — LP(v)

18 bounded with norm controlled by (= then,

p— 1)m7

T: L(log L)™ () — L'(v).

Recall that L(log L)™(u) is the space of p-measurable functions such that

1
luteng = [ Fi0)10g7 Lt < .
As usual, f; denotes the decreasing rearrangement of f with respect to u, defined by

fit) =inf {y >0: M(y) <t},
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where N (y) = p({z : [f(z)| > y}) was the distribution function of f with respect to .
In general, given natural numbers 1 < j; < js < --- < j, and positive real numbers
my, ..., m, > 0, we define the associated log-type space as follows:

L(log;, L)™ -+ (log;, L)™"(n) = {f p-measurable : | f|zqog,, 1)m1 - (og,, Lymn () < %0},
where

o0 " 1 m 1
”fHL(logjl L)mlu-(logjn L)mn (H) = J; f: (t) logj1l ; e ].Og]n" ;dt

Unlike in previous chapters, now, it will be more convenient to work with the decreasing
rearrangement when dealing with LP spaces. More precisely, we will use the following
equivalent definition for the LP norm:

o = ([ eran) " = ([ szopar) "

Even though Yano’s original statement was for finite measures, it can actually be extended
to o-finite measures (that is, measures defined on a og-algebra ¥ of subsets of a set € with
the latter being a countable union of measurable sets with finite measure) and improved
in order to have weaker hypotheses and a better range space. More precisely, one can
prove that for o-finite measures p and v, if a sublinear operator T satisfies

T L () — LP(v)
with constant essentially controlled by W, then
T': L(log L)™ (1) — E(v),
where FE,,(v) is the space of v-measurable functions such that

e _

log" ¢ ’

I f[ 2 (v) = sup
t>0

and f¥*(t) = %Sé [¥(s)ds . See [19] and [20] for more details on this extension.

Later, N. Yu Antonov [3| proved that there is almost everywhere convergence for
the Fourier series of every function in Llog Llogs L(T). To do so, he checked that the
Carleson maximal operator satisfied a certain estimate that ensured its boundedness on
Llog Llogy L(T) and hence, the almost everywhere convergence for the Fourier series of
every function in this space. Further study (see [4], [30], [31], [109]) showed that with
Antonov’s ideas, it is possible to write an extrapolation result that we will refer to as
Antonov’s extrapolation theorem:
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Theorem 5.7. Fix o-finite measures yu and v, 1 < py < o0 and m > 0. If T is a sublinear
operator mapping

LP(p) — L7 (v)

with constant controlled by ﬁ for every 1 < p < pg, then
T : L(log L)™logs L(p) — Rn(v), (5.8)

where R, (v) is the space of v-measurable functions such that

tfy(t)
) = Sup ——= < 0
1R = sup g ¢
For the weak-LP space, L»*(v), we also have an equivalent definition in terms of the
decreasing rearrangement that will be used:

| fleow) = Stugtl/ PLE(t) = supyNi(y)"”.
>

y>0

5.3 Extrapolation on L”* spaces

In the context of LP and weak-L? spaces, another result has been recently obtained in [33|
for operators mapping
T o M%) — DM ()

with constant controlled by ﬁ near p = 1, yielding a better estimate than if we simply
apply Antonov’s Theorem 5.7. Before stating it, we need the following definition, as in
[33]:

Definition 5.8. Given a quasi-Banach rearrangement invariant space X over a measure
space (2, ), for each p = 1 we denote

Sup,<, tY/7g%(t) ~
(X1, = {9 e LP*(p) : t<yy X (y) € X ¢
endowed with the quasi-norm
sup,, 1721
Igllix1, = N9l ey + X ®)|
X

and where X denotes the canonical representation of the space X on the line (0,00) by
means of f (see [5, Chapter 2]).
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Definition 5.9. Let X be a quasi-Banach rearrangement invariant space over a measure
space (2, ) such that its quasi-norm can be written by means of an integral over (0, 0).
That is, for every f e X,

[Flx = LOO Dx(f(t),t)dt.

Then, we define the space

1

X = {f p-measurable : J Dx(fp(t), t)dt < oo} :

0

Example 5.10. If X = Llog L(p), then Llog L(u) is the set of p-measurable functions
such that

1
. 1
L f1(t) log; Sdt < .

Also, recall that we say that a measure space (€2, 1) is non-atomic (or simply u is a
non-atomic measure) if, for any p-measurable set £ < Q with u(E) > 0, there exists a
p-measurable subset F' € F such that pu(F) > u(F) > 0. This is the main result in [33]:

Theorem 5.11. Fixz a couple of o-finite, non-atomic measures p and v, 1 < py < o0,
m > 0, and let

T: L2 (p) — LP(v)

be a bounded sublinear operator with constant controlled by ﬁ for every 1 < p < py.
Then,

T: [L(log L)" " log L(p)], — Ru(v).

where R,,(v) is the space of v-measurable functions such that

tf(t)
L) = su —
1l R () D 10 a

< o0

As we anticipated at the beginning of this section, this result is better than if we just
apply Antonov’s theorem to 7' (which would give that T satisfies (5.8)). This is due to
the fact that

L(log L)™ logs L & [L(log L)™' logs L(u)], ,

as shown in [33].
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5.4 An extension to LY spaces

In this section, we will see what happens if we introduce Lorentz spaces LP9, with values
p < q < oo, instead of LP*. As we did for LP and LP*, we point out that the spaces
LP%(p) can be written in terms of the decreasing rearrangement, since

- ” /p q@)l/q_< P e q49/p— )1/q
Pl = (o [ 500008 ) = ([ grtomeiar)

We will present two extrapolation results, for operators:
o T': LP(p) — LP(v),
o T: [P(u) — LP(v).

In the first case we will follow the ideas of Antonov’s theorem (as presented in [27]) and
in the second one, we will follow [33].

5.4.1 Extrapolation of T': [P — [P near p =1

Here, we will fix a couple of o-finite measures p and v, 1 < pg < ¢ < o0 and m > 0, and
we will assume that we have a bounded sublinear operator

T:LP(u) — LP(v), (5.9)

with constant controlled by (p_ci)m for every 1 < p < pg. Before tackling the problem

of obtaining endpoint estimates close to p = 1, let us recall the definition of a general
Lorentz space:

Definition 5.12. Given q € (0,00), a measure v and a weight w, we define

| w(f:@))"w(t)dt) " oo} |

0

A(w) = {f v-measurable : || f|xg() = (

Notice that this definition includes most of the spaces that we have worked with so
far: LP9(v) = A%(t9/P~1), LP(v) = AB(1) or Llog L(v) = Al(log,(1/s)). Another notion
that we will need to define is the Galb of a quasi-Banach space:

Definition 5.13. Given a quasi-Banach space X, we define

Galb(X) := {{Cn}n : chfn € X whenever || f,|x < 1},

n=0

o0

> cnfn

n=0

endowed with the norm |[{c,}n|camx) = Supjs, | <1
b'e
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This concept was introduced in [123] and studied in the context of Lorentz spaces
in [22]. Naturally, if X is a Banach space, then Galb(X) = ¢! but, for instance,
Galb(L»*(n)) = flogf. This fact is also known as the Stein-Weiss lemma, and can
be found in [114]. We will start by proving an estimate for functions in the unit ball of
L*®(u), that is, u-measurable functions that are essentially bounded by 1

Lemma 5.14. Let T be a sublinear operator as in (5.9). Then, for every f € L*(u) such
that | f|s < 1, we have

1
ITfag@) < ]2 logt”
(w) (w) 1 ”fHLl(u)

where w(t) = min{t4t, t¥/Po—1},

Proof. Let 1 < p < py. On the one hand, by our boundedness hypothesis and the fact
that | f]e < 1,

= Wl _ MR
(p— 1)’” S

ITfLraey =

On the other hand, since 1 < p < py,

! 0 1/q
HTfHLp,q(,,) = <J0 (Tf)ﬁ(lf)qtq_ldt—kf (Tf)fj(t)qtq/po_ldt)

1
Bringing both estimates together and taking infimum over p on both sides, we get that

g < i w0 o o logl —
I(w) ~ 1L 1 0og y
M) =y pspe (p — 1) LK 1l

by Lemma 5.3. 0
Lemma 5.15. Given 1 < py < q < o0, we have that

Galb(Ad(w)) = L(log £)V/7
where w(t) = min{t4~!, 9P~} and 1/q + 1/¢ = 1.

Proof. This lemma is a direct consequence of [22, Corollary 3.7|, by which we only need to
check that W(s)/s? is equivalent to a bounded, decreasing function. In [22], the authors
work with A?%(w), taking v to be the Lebesgue measure, but when it comes to the Galb,
the way functions are rearranged plays no role and we can apply their result. Here, as

o0 1/q
| <Tf>z<t>qw<t>dt) Tl

0

usual, for a weight w we denote W (t) := So s)ds. If we make the computations, we get
that Wis) 1 .
s) — Do Po
s4q B 5X(0’1) (S) + < qsq qsq—Q/Po) X[I’OO) (S),
which is decreasing and bounded by 1/q. ]
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With this, we are ready to prove our main result.

Theorem 5.16. Fiz o-finite measures p and v, 1 < pg < q < o0, m > 0, and let
T L7 (n) — L)

be a bounded sublinear operator with constant controlled by i for every 1 < p < py.
Then
T: L(log L)™ (logg L) (1) — Af(w)

is bounded, with w(t) = min{t91, t/Po—1},
Notice that this is consistent with Theorem 5.7 if we formally take ¢ = oo

Proof. We will follow the general scheme introduced in [27]. Let f be a positive function
and write

f=>2"F, (5.10)
k=0

with 1 |
f - EfX{0<f<2}, if k=0,
k #fx{22k*1<f<22k}7 ifk>1.

It holds that | fi| . < 1 for every k = 0. Assume that f e L*(u) n L*(u), and hence, the
sum in (5.10) is finite. Now, by sublinearity and the lattice property of A%(w),

iz?’m 2 D) T
AT,

where D(t) := tlog]" +. But by Lemma 5.14,

T fllag () <

)

Al (w)

Al (w)

' T
DA fell 1))

A (w)

and hence, if we denote A; := 22°D (ka”Ll(# ) for every k > 0, we get that

Z ArGr

k=0

T fllag ) S = [{Ar}rlcamnsw) = I{Atklogog o1

Al (w)

HngAq(w)<1
by Lemma 5.15. Now, define the function ¢(t) := log!" tlogg/ ? ¢, which is essentially
k

t
constant on [0, 2] and on the intervals [22°", 22"] for every k > 0. The statement for [0, 2]
is clear, so let us check the latter:

Cp = g0(22k) ~ 2km logl/q k ~ 2mokm logl/q (k+1) = cryr,
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2k71
2%,

and since ¢ is increasing, we have that ¢(t) ~ ¢, for every t € | 22"]. Consequently,

if we define
. — { Sosf@ folf)dp, it k=0,
FT S Fo(P)dp, iR =1,

we obtain, for k > 1
ok ¥ 2* 1
A= 2D fil) = 2D (e |
22k~ < p<02

1 k ag
~ 22D f du) =22"D
(55 o Fot0) ).,

and the analogous for £ = 0. Therefore, we can write

2 (55}

We claim that the right-hand side of the previous expression is uniformly bounded when-
ever {ay}, € (' with |{ax}|a = 1. If we prove this, we would have that |7 f|ys(, < 1 for
every function f € L*(u) such that

1T fllagw) <

L(log £)1/d

1= Zak = )dﬂ ~ Hf”L (log L)™ (logg L)Y/ (1)

and would get the sought-after boundedness on L*(u) n L(log L)™(logy L)V/4 (). But
since this is a dense subspace of L(log L)™(logy L)% (1), we would have completed the
proof. So let us show our claim:

% 2k okm 7 1/d'
k Ak 1/q ay m 27 2" logy" k
H{QQ D (22k )} < Z logl/q k;—k T log] 1
/) ) kllegogoya =1 2 mlog k g
o0]
~ lo < log" 22" + log!" —
;2 g1 2 81 Z g1

where in the first estimate we use the definition of D and ¢, ~ 28™ logi/ ¢ k, and in the last
one we use that a; tends to zero as k tends to infinity in order to conclude that aj logy" é
is bounded and the second series is finite.

]

113



CHAPTER 5. YANO’S EXTRAPOLATION THEORY

5.4.2 Extrapolation of T': LP1 — [PY near p =1

In this part, we will assume that (2, ) and (£23,v) are o-finite, non-atomic measure
spaces. This, for instance, guarantees that every decreasing, right-continuous function on
(0,00) is the decreasing rearrangement with respect to p of some p-measurable function
(see [5, Chapter 2|). In [33], the authors obtain an extrapolation result for operators
T : LP*®(u) — LP*(v). When both p and v are the Lebesgue measure, they apply
Antonov’s extrapolation theorem to the composition 7'M, where M denotes the Hardy-
Littlewood maximal operator:

1

Mi(w) =sw o | Ifldy. fe L
Q3z |Q| Q

It is easily shown that M is bounded from L into LP* with a uniform constant indepen-

dent of p (when p is close to 1), and hence TM : LP — LP* is bounded with the same

constant | T ro_ e as T. The key estimate for this operator is that (see |5, Chapter 3|)

M~ 10 = 1 [ s

and hence, for general o-finite, non-atomic measures, it is enough to consider some oper-
ator such that its decreasing rearrangement with respect to p is equivalent to f7*. Let us
give a constructive example:

Definition 5.17. Let (1, p1) and (s, p2) be o-finite measure spaces. A map p : 1 — s
1s said to be a measure-preserving transformation if, whenever E is a uo-measurable set,
then p~Y(E) is a pi-measurable set and

i (p(E)) = pa(E).

Now, let p be a measure-preserving transformation between (21, x) and (0,00) with
the Lebesgue measure®. Since these transformations induce equimeasurability (see [5,
Chapter 2, Proposition 7.2|), if we define

p(x)
MWFWW%iﬂLWW

it holds that

(Muf)i =12 (5.11)
Now, let us fix 1 < pg < ¢ < o0, m > 0, and assume that we have a bounded sublinear
operator T : LP9(u) — LP4(v), with constant less than or equal to ﬁ for every

1 < p < po. We will follow the ideas in [33| to obtain an endpoint estimate near p = 1.
First, however, we will need to study the boundedness of M, : LP(u) — LP9(p).

3 Actually, if (Qq,p) is a finite measure space, then the transformation will take values in (0, u(Q1))
instead of (0,00). If this were the case, everything would be identical with the obvious changes.
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Lemma 5.18. Let 1 < p < ¢ < . Then, the operator M, : L*(u) — LP(p) is bounded
with optimal constant equivalent to

1) GH)

Proof. This lemma is a particular case of [103, Theorem 2|. Nevertheless, in this article
the author is not concerned about the dependence on p of the constants, so we need to go
over the proof and check that the equivalence between the given bound for M, and the
real one is stable at least when p tends to 17. This can be done for general weights w1, wo
and the result gives us that, for 1 <p < ¢ < 0, M, : A (w;) — Af(wy) if and only if

amsp([[tos)” ([[enon) " <
e ([ 20r) ([ (2 L) o) "

with optimal constant equivalent to A + B. In our case, w;(r) = 1, wo(z) = x¥P~! and
making the computations we obtain the desired estimate. We need to mention that in
[103] all the rearrangements are with respect to the Lebesgue measure (they work with
f**), but, since we have (5.11), everything is identical if we work with respect to a general
o-finite, non-atomic measure . O

Theorem 5.19. Fix p and v two o-finite, non-atomic measures, 1 < py < q < o0, m > 0
and let
T: P9 (n) — LP(v)

be a bounded, sublinear operator with constant controlled by D™ for every 1 < p < pp.

Then,

1)m
T+ | L(og )™/ (log, 1) (1) | — Af(w)
1
is bounded with w(t) = min{t?"!, t4/Po—1}

Proof. By Lemma 5.18, we have that M, is bounded from L?(p) into L9(p) with constant

behaving hke 1)1/q when p — 17, and hence, the composition

TM, : (1) — L (v)

is bounded with constant like when p tends to 17. Now, we apply Theorem 5.16

to conclude that

1)m+1/q

TM, : Llog L)™Y/5(log, L) (1) —> AL(w)
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is bounded. Therefore,
IT(M, ) s f (6 Tog 7 T log!” Lt
<l j ) log? " Liogh” L
M 1om gy + f (M, )01 m“/“llog;/q La,

where in the last step we need to recall that (M, f =1 So f *(s)ds and apply Fubini’s
theorem. With this, we have shown that

T: En L(log L)™ /7 (logy L)Y7 (1) — A%(w),

where
E={geL"(u):g9=M,f, for some fe L (u)}.

Actually, as we said at the beginning of this section, this is also true if we replace M,
by any sublinear operator S satisfying (S f);i ~ fi*. Taking this into account, by* (33,
Remark 3.1], we actually have that, for every B > 0,

T : EP A L(log L)™ V7 (logy L)V (1) —> A%(w),

where
. ]- * EX3 *
EB = {g e LY*(p) : 3h with Egu(s) < hiF(s) < Bgu(s)} :
and using the same argument as in [33, Theorem 3.3 and 3.5| we get the result. O

Just as a remark, we see that the extrapolation result obtained in [33] for operators
mapping LP®(u) into LP*(v) (stated in Theorem 5.11) is still true if we weaken the
hypotheses to operators with domain LPP (1) instead of LP*(p). The result can be stated
as follows:

Theorem 5.20. Fiz a couple of o-finite, non-atomic measures p and v, 1 < pg < 0,
m > 0, and let
T: L (p) — L"(v)

be a bounded sublinear operator with constant controlled by = for every 1 < p < pp.
Then,

T [L(log L) logs L(p)], — R (v)
is bounded with R,,(v) as in Theorem 5.11.

4At this point is where the hypothesis of non-atomic measures is needed.
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Proof. The key to this improvement is given by the fact that M, maps LP(x) into the
smaller® space LP¥ (1) also with a uniform constant independent of p as p — 1%, and
hence, we have that

TM, : () — LV (v)

with constant W for values of p near 1 and the proof follows exactly as in [33]. To
prove this statement we use Lemma 5.18 with ¢ = p’ and check that the constant does

not blow up as p tends to 17. ]

5.5 A different behavior of the constant
In view of Theorem 5.5, it is interesting to know if we can apply this theory to operators
T: LP* () — LP"(v)

whose boundedness constant behaves like

| 1 1
Ogl p_l p_la

instead of ﬁ. The following proposition presents a slight modification of Theorem 5.11
so that we can apply it to an operator of this type.

Theorem 5.21. Let 1 < py < 0. Fiz p and v two o-finite measures and let T be a
sublinear operator. If we define

1 1
C o~log [ )
e (p—1>p—1’

then:

(i) Antonov type: If T : LP(u) — LP*(v) is bounded for every 1 < p < pog with
constant C,, then
T : Llog Llog, Llogs L(p) — Ry (v).

(ii) Carro - Tradacete type: If T : LP®(u) —> LP*(v) is bounded for every 1 < p < pg
with constant Cy,, then

T : [Llog, Llogy L(n)], — Ra(v).

Here, ﬁ’l(u) is the space of v-measurable functions such that

tfy(t)
HfHRl(y) = sup <X

5Tn [33] the authors use that M, maps LP(u) into LP* () 2 LP¥ () uniformly in p ~ 1.
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Idea of the proof. The first step in the proof of Antonov’s result (which goes exactly as
the proof of Theorem 5.16) is obtaining an estimate for integrable, bounded functions f.
In this case, we would get

. 1 1 (Ifle )"
TFH)*(t) < f 1 )
s < int tos, (1) L (M

Using Remark 5.4, we can compute the infimum and

12t t
(Tf)(t) < log log :
t YA 2 e
Hence t(Tf)*(t)
HTfHﬁl(y) = sup “ g D(Hf”Ll(/L))a

1

where D(t) = tlog, % log, . The proof now continues as in the classical case but with
this new function D that adds the log,-factor to the outcome. Concerning (i), the idea
(at least when p = v are the Lebesgue measure, otherwise replace M by M, and argue
as in Theorem 5.19), is to apply Antonov’s result to the composition T'M, where M is the
Hardy-Littlewood maximal operator. In our case, 7'M maps LP into LP* with constant
C,, so we need (i) instead of Antonov’s classical theorem in order to conclude that

TM : Llog, Llog, Llogs L —> Ry

is bounded. If we write what this means, we have

. 1 1 1 ! . 1 1
ITOLNIg, < | 7(@)og, §log, 1 logy it < |Mflae + [ (V)" (0)10g, ; o .
0 0
Therefore, we have shown that if E is the set of functions g € L%® such that ¢ = M f for
some locally integrable function f, then

T :E n Llog, Llogs L —> R;. (5.12)

From this point on, the proof follows exactly as in [33], but now (5.12) translates into
boundedness for functions in the space [Llog, L logs L|;. O

5.6 Back to the Rubio de Francia setting

Recall that, at the beginning of this chapter, we investigated the behavior in p of the
boundedness constants for operators related to the extrapolation theory of Rubio de
Francia. Let us see what we can deduce from that. We will start with the classical case
of the A, theory. The first natural step is to use Yano’s theorem in its original LV — L?
version (see Section 5.2) with the boundedness constant (5.1) that comes from Rubio de
Francia’s extrapolation. The (standard) result is the following:
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Theorem 5.22. Let 1 < py < o0, B> 0 and let T be a sublinear operator such that
T: LP°(w) — LP°(w)
is bounded for every w € Ap, with constant CponHim. Then,
T: L(log L)"™ D(R") — Ep(py-1)(R")
15 also bounded.

Next, we will start from a restricted weak-type (pg, pg) boundedness instead and ex-
trapolate an LP* — LP* estimate. The class of operators to which these two results
apply is the same, since interpolation together with Rubio de Francia’s extrapolation and
the Reverse Holder property of A, weights yield that a sublinear operator of restricted
weak-type (po, po) for every weight in A, is also of strong-type (po, po) for every weight in
this class. However, their boundedness constant can improve significantly, as we pointed
out in (5.2) and (5.3) with the maximal operator M.

Theorem 5.23. Let 1 < pg < o0, a > 0 and let T' be a sublinear operator such that
T : [P (w) — LPO%(w)
is bounded for every w € Ay, with constant Cp,|w|%, . Then, for every u e Ay,

T:[L(log L)l ro=b 60, L(u)], — Ra+1)po-1) ()
15 also bounded.

Proof. We just need to use Theorem 5.2 to conclude that such an operator maps
T: LP?(u) — LP%(u)

with constant behaving like o1 and then use Theorem 5.11 to extrapolate. [J

1
)a(p071)+p0 )

If we had o = 3, then
[L(log )™V~ log, L(R")], & L(log L)*™~D(R"),

but as we mentioned above, for a given operator T, the value of o in Theorem 5.23
might be much better (i.e. smaller) than the $ in Theorem 5.22. Moreover, notice that
Theorem 5.23 is valid for every u € Ay, and not just for the Lebesgue measure. Let us
give an example.

Example 5.24. Consider M* = Mo - oM, with k£ > 2. This is an operator that is
under the hypotheses of Rubio de Francia’s theorem but is not bounded from L' to L1,
not even in the unweighted case. Therefore, it is interesting to see what we can obtain at
the endpoint. We know that, for every p > 1 and w € A,,
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kl
&
wl %

@) [M*poy—rrw) € G=BF

1, k-1
p—1

y Jul
(1) [M*] 2 )ozre ) < ML) rrow) € oty

With (i), we can either apply Yano’s theorem directly with u = 1, or Theorem 5.22, with
po>1and g = 1%' In both cases, we get that

M*: L(log L)*(R") — E,(R").
With (ii), we can apply Antonov’s theorem only when u = 1, and conclude that
M* : L(log L)*'logy L(R™) — Ry (R™).

However, Theorem 5.23 admits any u € A;, and, for every ¢ > 0, starting from py > 1

_ po—1 _ _ 1 k—1
such that ¢ = oo T Do 1, and a = vo T ooty e get that

M* : [L(log L) logy L(w)], — Ri_12-(w).

Notice that, for u = 1, the best of the three conclusions is the one coming from Antonov’s
theorem, since the space L(log L)*~1log; L(R") is larger than both L(log L)*(R™) and
[ L(log L)k~ log, L(R")]l. However, by means of Theorem 5.23, we are able to obtain
endpoint results when u # 1.

This idea of finding an optimal relation between the theories of Rubio de Francia and
Yano has been gathered and further developed in [25]. The other computation that we
carried out at the beginning of this chapter was in Theorem 5.5, where we saw that an
operator 1" that was of restricted weak-type (po, po) for every weight in A, was bounded
from LP*(u) into itself for every u € A; and p close to 1 with constant behaving like

| 1 1

Now, we can use the extrapolation result in Section 5.5 to conclude the following:

Theorem 5.25. Let 1 < py < o0, and let T be a sublinear operator such that
T : LP (w) —> LP(w)

is bounded for every w € ﬁpo with constant SO(HUJ”A,,O)f where ¢ s an increasing function
on (0,00). Then, for every u € Ay,

T :[Llog, Llogs L(u)], — Ry(u).
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Proof. This is a direct consequence of Theorem 5.5 and Theorem 5.21. O

The next result will allow us to obtain a better endpoint estimate for operators under
the hypotheses of Theorem 5.25. As a first approach, we will start by considering only
monotone operators, and then, we will see that in fact, it can be extended to general
sublinear operators.

Definition 5.26. We will say that an operator T' is monotone if for every 0 < f < g, it
holds that |T f| < |Tg|.
Proposition 5.27. Fix an arbitrary weight uw on R™ and let T' be a sublinear, monotone
operator such that

(1) |TxE|Lrow < u(E) for every measurable set E, and

(i) T : LYu) n L® — L1 (u) is bounded.

loc
Then,
T: Llog? L( ) - Lloc (U’)

Proof. Take a non-negative function f = fo + f1, with fo = fx{r<1y and fi1 = fx(r>1}. By
density, we can assume without loss of generality that f € L®. Using that T is sublinear,
we have that

TfI<|Tfol +|Thl,
and hence, HTfHLllo,zo(u) < HTfO”LIIO’ZD(u) + HTleLllo,:o(u). Using (ii), we get that for fo,

”TfOHLllOZO(u) S HfOHLl(u) + ||f0||00 < ||fHLlog2 L(u) + 1.

To deal with f;, we write
foEk ~ szm, (5.13)

with By, = {2F71 < f < 2*}. Since f is bounded, this series is in fact finite. Using that T'
is monotone and sublinear, we have that

o0
(ZZkXEk> < 22k|TXEk|7
k=1

and therefore, using that Galb(L"*(u)) = flog¥, (i), and u(Ey) < A%(2"), we conclude
that

ThH]~

) )
”TleLllc;go(u) < ZQk‘TXEk’ Z logl 2 HTXEkHLlw
- Lyllw) A=l
o) )
> log, (k)2°A%(2%) < f A7(s)logy(s)ds < | f] Lrog, Lew)-
=1 0
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Summing up, we have shown that
71 1er ) S 1) 1oy 00y + L
and the result follows by linearity (changing f by af and letting a tend to infinity). O

Notice that the hypothesis that 7" must be monotone is needed because in (5.13)
we have an equivalence instead of an equality. If we want to avoid this monotonicity
assumption, we cannot use the standard dyadic decomposition of a function. In [110],
however, the author presents the following decomposition of a non-negative function f in

an inductive way:
0

flz) = Z Z 2"XE,,(x) ae xeR”, (5.14)

j=1keZ

where the sets Fj ; depend on f and are defined in such a way that, for every weight u,
u(Bz) < Aj(25).

We will not give the details of the exact construction, but the idea is very straightforward
(see [110, Lemma 4]). With this identity at hand, let us see how we can get rid of the
monotonicity assumption in the previous proposition:

Theorem 5.28. Fiz an arbitrary weight u on R™ and let T be a sublinear operator such
that

(i) |TxE|rrow < u(E) for every measurable set E, and

(i) T : LYu) n L® — L1 (u) is bounded.

loc

Then,
T : Llogy L(u) — L1 (u).

loc

Proof. Take a non-negative function f = fo+ fi, with fo = fx(r<1iy and f1 = fxqr>1)- As
before, we have that HTfHLll,oo(u) < ||Tf()HLll,oo(u) + HTfl”LII,oc(u), and for the term with fj,
we use (i) and || folloo < 1 to get

HTfOHL}(;jO(u) S [flzrog, ey + 1.

Now, to deal with f;, we make use of (5.14), which states that

0

filz) = 2 Z 2"XE,,(x), ae xzeR"

71=1keZ
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For every N > 0, set f{¥ to be the following truncated series:

= Z Z QkXEk,j(x>

Jj=1lk|<N

Since this is an equality, we do not need the monotonicity of 7" in order to obtain

Q0
IT 1N 1y < D oga () D 2% logy ([K)AY, (2549). (5.15)
j=1 keZ

Recall that u(Ej ;) < A} (25*/) and that the logarithmic terms come from the fact that
Galb(LY*(u)) = (log /. Here we have used that the series defining f1 is finite to apply
the sublinearity of 7', and once this is done, we majorize the result by the whole series.

Next, fix j > 1 and split the inner sum into three pieces: I} + I7 + I?. The first one will
be

0]
=Y 2% log (kDAL (259) < [ flriogy e Y. 27" logy (k)

k<—j k=7+1

Here we used that, since f; > 1, we have that )\1;1(2“7) < | flz10g, L(w) Whenever k < —7,
because in this case,

A%, (2"7) = Ap (1) < | £ 210gy £(u)-

The second term we need to consider is

2 2" log, (|k[)A7, (24+7) = 277 Z 2" Tog, ([k[) AT, (2°+7)

k=—j k=—j

j
277 fllz10g, Lew) Z log, (k)
k=0

Here we just used that tA}(t) < |f|L1og, L), for every ¢ > 0. Finally,

oo
Z 2 log, (k)XY (2879) < 279 3" 2M 9 log, (k + j) A}, (25+)
k=1

0
=2 fo A5 (s) logy(s)ds < 27| fl L 1og, Liw-

Now we go back to (5.15) and using the bounds for I7*, m =1,2,3, we conclude that
o0 j )
HTfZ{V”LII(;SC(u) < I f 2 rog, Lew Z log, (j ( Z 2" log, (k) Z log, (k) + 2j> .
j=1 k=j+1 k=0
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The second and third terms in parentheses, together with the log,(j) term outside, are
obviously convergent when j > 1. For the first one, a simple rearrangement of the sums
shows that

0 0 0 k—1 0
Dllogi(5) Y. 27" logy (k) = D127 log, (k) " log,(j) < Y2 Fklog, (k)* < w0,
j=1 k=2 Jj=1 k=2

k=j+1

which is exactly the second one but with the indices k, j interchanged. Therefore, we have
that HTleHLll,m(u) < | fllz10g, £w)- If we show that f{¥ converges to fi in Llog, L(u), then
we can conclude HTf1||L11(;2°(u) < | fz10g, £(uy) and hence,

HTfHLllc;go(u) S [ £l 2108, ewy + 1.

We finish the proof by linearity as in the previous proposition. To show that fI¥ — f
in Llog, L(u), we observe that the difference fi(z) — f¥(x) decreases to zero for almost
every x € R", since fIV is a partial sum of a convergent series of positive terms, and this
coincides with f; almost everywhere. In particular, its decreasing rearrangement with
respect to u satisfies that

(fi — fN*t) — 0, a.e. te(0,0).

u

On the other hand, |f; — f¥| can be pointwise controlled by f; € Llog, L(u), so

(= £50) 108, 3| < ()0 10w 1 € L. 0)

Therefore, by the dominated convergence theorem,
N * N 1
Ifi = fi ||Llog2L(u) = f (fi = fi")u(t) log, ;dt — 0,
0

as N — oo, so we finish the proof. O]

Corollary 5.29. Let T' be a sublinear operator such that, for some 1 < py < 0 and every
we Ap,,
T : P (w) — LP(w)

is bounded, with constant controlled by ¢, (|w|| APO) and @, an increasing function on
(0,00). Then, for every u € A;,
T : Llog, L(u) — L% (u)

loc

18 also bounded.
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Proof. In |28, Theorem 2.11 and Corollary 2.16], the authors prove that such an operator
satisfies, for every u € Ay:

(i) 1Txe|rreow < u(E) for every measurable set £, and

(i) T : L(log L)*(u) — L *(u) is bounded for every € > 0.

loc

We know that L!(u) n L® is continuously embedded in any rearrangement invariant space
with respect to the measure given by u (see |5, Chapter 2, Theorem 6.6]). In particular,
since L(log L)®(u) is rearrangement invariant, we have that

T: L'u) n L® < L(log L)*(u) — L.*(u),

so we can apply Theorem 5.28 to deduce the desired boundedness. Notice that we would
have enough with (ii) for some € > 0. O

Remark 5.30. This result can be seen as a self-improvement of [28, Corollary 2.16]. In
fact, Corollary 5.29 improves Theorem 5.25, that was already stronger than [28, Corollary
2.16/, since

L(log L)*(u) < [Llog, Llogs L(u)], < Llog, L(u).

Obviously, all these endpoint results close to L' make sense when the operator T is not
(g,0)-atomic approximable, because otherwise, we already have that

T: L'Y(u) — LY*(u).
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Chapter 6

Pointwise Bounds via Yano’s Theory

6.1 Introduction

In this last part of the thesis we will present another application of the ideas behind
Yano’s extrapolation. However, we will no longer deal with weighted estimates in the
context of A, weights. Our goal now is to take advantage of extrapolation techniques
to obtain pointwise bounds for integral operators. We will motivate this chapter! with
an example. In 1917, J. Radon [101] introduced a transformation that reconstructed a
function from its projections. Later, in 1972, G. Hounsfield was able to build the first
x-ray computed tomography scanner using the Radon transform to recover an object from
its projection data [74]. The special case in which all projections are identical and hence,
a single projection is enough for an exact object reconstruction, was already solved by
N. H. Abel [1] in 1826. He used the following integral operator, called the Abel transform:

o0
S
Af(z) = f ——dt. 6.1
In many papers dealing with the Abel transform, the starting condition on the function
f is that “it decays at infinity faster than 1/¢”. Obviously, if the information that we have

on the function f is just that f(¢) < %, then we cannot say anything about Af since
A (%) = o0. However, if we assume that the decay of f at infinity is a little faster, namely,

that there exists py > 1 such that, for every 1 < p < pg and every ¢t > 0,

, (6.2)

then Af(z) < oo for every x > 0 and

~

Af) 5 |
T \/tQ—xztlig

!The results that we present are gathered in [23].

127



CHAPTER 6. POINTWISE BOUNDS VIA YANO’S THEORY

Therefore, taking infimum over 1 < p < pg as in Lemma 5.3, we get that, for every = > 0,
1
Af(z) < log, —.
x

In this chapter we will prove that we can obtain the same upper bound for Af(z)
under a condition on the decay of f at infinity weaker than (6.2). It is clear from the
setting that the underlying idea (and hence, the techniques we will use) is the same as in
Yano’s extrapolation theory.

This problem seems to be of interest even when we are dealing with integral operators
of the form

Trf(x) = L - K(z,t)f(t)dt, (6.3)

with K a positive kernel. This class of operators includes

0
Saf(t) = J a(s)f(st)ds, (6.4)
0

with a being a weight. These operators were first introduced by Braverman [8] and Lai
[81] and also studied by Andersen in [2|. In particular, they cover the cases of Hardy
operators, Riemann-Liouville, Calderéon operator, Laplace and Abel transforms, among
many others.

The general setting will be the following: let w be a weight and, as usual, we write
W(t) = Séw(s)ds. This weight will be fixed and hence, the constants C' (explicit or
implicit) appearing in the inequalities of this chapter may depend on it. We will assume
that W(t) > 0, for every ¢t > 0. Moreover, since W is increasing, it is equivalent to a
strictly increasing function and hence, we can assume without loss of generality that W
has an inverse, that we will denote? by:

WEY (0, W (0)) — (0, ).
Let us consider positive, measurable functions f satisfying

1

f(t)SW—(t)’

t € (0,00),
and an operator Ty as in (6.3). Obviously, for such an f, it holds that
* K(z,t)
T < —=dt = M(x),
W) < | - )

and hence the function M is an upper pointwise bound for Tk on that set of functions.
However, on many occasions, M = oo and no interesting information can be obtained

2We use the notation W (1) for the inverse function because we will keep W~ to denote .
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without assuming some extra condition. As in the example of the Abel transform, we will
assume that M = oo but, for every 1 < p < po,

“ K(x,t)
"~ dt < 0.
J, W
In fact, we will need to have some control on how this quantity blows up when p is close
to 1 (as it happened in Yano’s theory with the boundedness constants), so to be precise,
L__ That is, there exists m > 0 such that,

we will assume that it can be controlled by (=
for every x,

Ux) = sup (p— 1) (Loo %dt)p <o, (6.5)

1<p<po

In Section 6.3, we will see that this is the case of many other interesting examples.
Since our goal is to find pointwise upper bounds, we will work with the following normed
spaces:

Definition 6.1. We say that a measurable function f € B(W) if and only iof W= is a
pointwise upper bound for f, that is

B(W) := {f measurable : | f| gy = sup f(H)W(t) < oo} :
t>0
We observe that if (6.5) is satisfied, then clearly

© K(x,t) , Ul(x)Yr 1 \m
L Wy s e S ) logy W) ’

but this computation fails completely whenever we are dealing with values of the variable
t close to zero. Hence, we want to find conditions on the functions f € B(W) so that the
above bound remains true for the whole operator, that is

'&ﬂwsvumb&ﬁégf

6.2 Main Results

In order to give the proof of our main theorem, we need the following result. This can be
regarded as a variant of Antonov’s theorem (see Theorem 5.7), since the spaces B(U~1/?)
are closely related to LP** spaces. However, since we do not use decreasing rearrangements
to define them, here the limiting space U~! as p tends to 1 (at least formally) is still
normed, so we can avoid the use of the Galb of quasi-normed spaces that made the extra
logs-term appear. In fact, the proof is more similar to Yano’s theorem.
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Proposition 6.2. If T is a sublinear operator such that

T : [P(w) — B(UP)

1s bounded, for every 1 < p < pg, with constant less than or equal to ﬁ, then
T : L(log L)™(w) — B(U,)
15 bounded with | m
Upn(t) = U(t)(logl W) . (6.6)

Proof. The proof follows the standard scheme of Yano’s extrapolation theorem in its
modern version (see [19, 30, 127]) but we include it for the sake of completeness. Let f
be a positive function satisfying | f]. < 1. Then,

supr(t)Ufl/p(t) < HfHLp(w) < Hf“},/iw)
t>0 ~ (p_l)m x (p_l)m’

and hence

_ 1 1/p ! h
Tf(t) < 1<11191<fp0 W (HfHLl(w)U(t» S e Ut) (10g1 m)

A

1 m
L e K}
1121 w)
From here, it follows that, if ||f|| < 1, then
ITfswsy = Dm(1flrw)), (6.7)
where D,,(s) = s (log; 1)™. Now, for a bounded function with |f| > 1, whenever f # 0,

we can decompose
f=>2""fa,
n=0
where f, = 27D fxp and E, = {2" < f < 2"™}. Clearly | f] 1wy < A¥(27), and
together with the fact that | f,[» < 1 and B(U,,!) is a normed space, we can use (6.7) on
every f, to conclude that

0 0
ITflw=ry S X, 2" Dl fal i) < D, 2" Dmn(XF(27))
n=0 n=0

o0
< j Do (N2 (1)) dy ~ | f]l 2105 137 ().
0

as we wanted to see. We extend this estimate to a general function (not necessarily
bounded) by a density argument. O
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Lemma 6.3. If f is a decreasing function, then

o0 1 m
lstostyon = | 1) (toms 7)o

Proof. We have that, for every s > 0,
Ar(s)
Af(s) = J w(x)dr = f w(z)dr = W(Ag(s)).
{z>0:f(x)>s} 0

Therefore,

inf{s > 0: W(As(s)) <t}

fu(t) =inf{s > 0: A7(s) <t} =
<WEV@)) = fFWED@E) = FWED (D),

= inf{s > 0: A\s(s)

and hence,

0 . 1 m 1 m
Iflzaogymwy = | fu(t) | log, n dt = f log, — ; dt
0

| " 1) (108, ) e

The following result follows immediately by Holder’s inequality:

Lemma 6.4. Let w be a weight on (0,00) and let P, be the generalized Hardy operator

Put(e) = g || Fowts)ts

P, : LP(w) — B(WY?)

Then,

1s bounded with constant 1.

Now, we are ready to prove the main result of this chapter, following the ideas intro-
duced in [33]. Again, this can be regarded as an extrapolation similar to that in Theo-
rem 5.11 or Theorem 5.19, where first we make a composition with a suitable maximal
operator (in this case, P, ), and then we use an Antonov-like result (now, Proposition 6.2):

Theorem 6.5. Let Tk be defined as in (6.3) and satisfying
U(z) := -1 < 0.
0= s =0 ([ )
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The function U, will stand for the expression in (6.6). Then, for every x,

Tr f(x) < | fl Dy Un(2),

where

1m0y = 1l + [ sup (omin (F0.1) 766 ) (1o 7)™ it

0

Proof. By (6.5), we have that
Tk : BWYP) — B(UV/P)
with constant less than or equal to (p — 1)~™ and hence, by the previous lemma,
Tx o Py : LP(w) — B(U7)

is bounded with the same behavior of the constant. Then, applying Proposition 6.2, we
obtain that
Ty o P, : L(log L)™(w) — B(U,Y)

is bounded. Now, since for ¢t small enough, say t < § < 1, it is easy to see that

m met w(s)
<1Og1 WL(t)> ~ Jt (logl Wl(s)> W)

we have that

fls g(t) ( log, WL@))mw(t)dt < Ll P,g(t) ( log, WL(w)m_lw(t)dt.

0

Therefore, by Lemma 6.3, if ¢ is decreasing,

TK(ng)(t) * m
U SL 9()<log1 W(t)) w(t)dt

<laloor + [ o0 (08 1) "wity
P, () (1ogy — )" by
<P, gt ( —) )dt. 6.8
Pagln + | Pus) (1021 55) " 0l (69
Let us now assume that f € B(W) is a decreasing function satisfying

Ll supsgr%;jzt(;)f@) <10g1 %)m_lw(t)dt o
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Set H(t) = sup,, W(s)f(s). With this definition, it is clear that H is an increasing
function such that H(0) = 0 and g,—((?) is decreasing, so we have that H (W (t)) is
quasi-concave on (0, W (c0)). It is known (see |5, Chapter 2|) that in this case, there
exists h decreasing such that H (WD (1)) ~ Sg h(s)ds, with equivalence constant 2, so

by a change of variables, there exists g decreasing such that

t

% H(t) < f g(s)w(s)ds < 2H(t).

0

On the other hand,

H(t) N Ség(s)w(s)ds
W(t) Wi(t)

ft) < = Pug(t),

and thus Tk f(t) < Tk (P,g)(t). Therefore, using (6.8)

T f(t) Ti(Pug)(?)
T T N ST )

< ” F S]H w + Jl -Z U 9<t) ( 10 ey ) 1 (t>dt
~ w .

Since
t
g(s)w(s)ds
|Pugloan, = sup W (BRI ey = 1o,
t>0 W(t> t>0
and
sup,<, W(s)f(s)
P,g(t) ~ = ,
g9(t) W)

we obtain that, for every decreasing function f € B(W),

gy < Voo = [ SRR (o ) w00

Finally, if we take a general function f € B(W), we can consider its least decreasing
majorant

F(t) = sup f(r).

r=t

We have that F' € B(W) is decreasing and f < F. Hence, Tk f(z) < TxF(x) and the
result follows immediately applying (6.9) to the function F', since we have the equality of
norms

|Flsav) = sup FOW (2) = supsup £ (1)W (1) = sup fOW (£) = | s,

t>0 r=>t
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and

sup,<; W(s)F'(s) _ sup,, W(s)sup,, f(r) _ sup,o f(r)W(min(, r))
W(t) W(t) W(t)
max (sup,<, [ ()W (s), W(t) sup,s, [ (1))
Wit

)
o (e (1) 40

Notice that the natural setting for Theorem 6.5 is that of decreasing functions, and
we just extend it to general functions by considering their least decreasing majorants. In
fact, if f is itself decreasing, the expression for | f|p,,w) can be written in a simpler way.
The next corollary is just the result that we get in this setting and corresponds to the
estimate in (6.9):

]

Corollary 6.6. Under the hypotheses of Theorem 6.5 we have that, for every decreasing
function f,

Tk [ (@) < | D wyUnm(),

where

1

<log1 W—@)>M1w(t)dt.

1
W
1 f Dy = || B +L Sups\W(t(;)f(s)

Extrapolation results (such as the analogous to Antonov’s theorem) for operators
that are only defined on the cone of decreasing functions can be found in [29]. Finally,
the following corollary gives a bound for the iterative operator of order n € N, TR f =

Tr(TR ' f):

Corollary 6.7. Assume that Ty satisfies (6.5), with U ~ W=, Then, for every n € N,
we have that

mn 1 nm
Tif(z) = HfHDnm(W)W (log, W ()™
Proof. Since T} satisfies (6.5), with U ~ W™, we have that
Tx : BOWY?) — B(WP),

with constant less than or equal to (p — 1)™™, so we can iterate to conclude that the
same holds for T}, with constant controlled by (p — 1)7™™. The proof now follows as in
Theorem 6.5. 0
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6.3 Examples and applications

In this section, we will use Theorem 6.5 on some interesting examples. Obviously, if one
is only interested in decreasing functions, all the conditions can be written as in Corollary
6.6 instead.

6.3.1 The Abel transform

Let us start by solving the initial question about the Abel transform.

Corollary 6.8. If a positive measurable function f(t) < 1/t satisfies that

[ s pymingy ) 5 < = (6.10)

then, for every x > 0,
1
Af(z) < logy —.
x

Before giving the proof, we should emphasize the fact that it is very easy to verify
that condition (6.10) is weaker than (6.2).

Proof. First of all, making a change of variables, it is immediate to see that, if g(s) =

f(5)z and

“g(s)
Tkg(x) = —————ds,
x9(T) L 2 2
then, for every x > 0,
1 1
Af(z) = -T, (—) 6.11
f(z) —Trg{ (6.11)
On the other hand, we have that
1) (Jx 1 p )P 1 o
su — ——ds | ~— )
1<pI<)2 b 0 Va2 — s2sl/p x
and therefore, applying Theorem 6.5, we get

1
Trg(z) < —8L7
X

whenever g € B(W) with W(t) =t and

Ll ilig <g(s) min (;, 1)) dt < 0.

The result now follows rewriting this condition in terms of f and using (6.11). 0
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6.3.2 The Riemann-Liouville operator

Given a > 0, let us consider the Riemann-Liouville operator
Rof(o) = [ 50 0 ar
0

This operator, and in particular its boundedness in the context of weighted LP spaces, has
been studied in many papers such as [29], [93] or [100]. Our contribution is the following:

Corollary 6.9. Fiz a > 0. If a positive measurable function f(t) < 1/t satisfies that

Ll sup <min (;, 1>f(5)> dt < o,

s>0
then, for every x > 0,
Rof(x) < 2 ' (log, o).

Proof. Making the change of variables y = %, we have that
1

Rof(z) - xaf (1-

0

Y)* ! f(yx)dy = 1, f(x),

SHE

and hence
1 p
su — 1) ]a<—>$> <
s (=17 (1 (35) @

%, we have that [, is under the hypotheses

Consequently, if we take W (t) = ¢t and U (%)

of Theorem 6.5 and therefore
1
I.f(r) < 222,
x

whenever f(t) < 1/t and it satisfies that

Ll sup <min (;, 1>f(s)> dt < oo.

s>0

Hence, under these conditions on f, it holds that, for every x > 0,

Rof(z) < 2 (log, z).
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6.3.3 Iterative operators

Observe that in the two previous examples, the function U coincides with W ~!, and hence
we can apply Corollary 6.7 to obtain the following:

Corollary 6.10. Let n € N and f be positive measurable function with f(t) < 1/t. It
holds that:

o If f satisfies

| sup (7w mingy. ) oz, 77 5 <o

then, for every x > 0,
1\n
A'f(@) < (1og~)
x

fl Suloa <min (;, 1> f(s)) <log1 %)nldt < 0,

0
then, for every x > 0,

o If f satisfies

R, f(z) < 2% (log, 2)".

6.3.4 Braverman-Lai’s operators

Let us now consider the operator S, defined in (6.4) and let us assume the following: there
exist an increasing function D > 0, with D(¢) = 0 if and only if ¢ = 0, and a function £
so that, for some m > 0 and every 1 < p < py,

LOO <Sﬁi¥3 g(fi))l/pa(s)ds < ﬁ- (6.12)

Then, one can immediately see that, for every ¢ > 0,

JOO a(s) s < 1
o D(st)Yr "~ (p—1)mE(t)Vr’

and hence, (6.5) holds with W = D and U < E~!. A direct consequence of Theorem 6.5
is the following:

Corollary 6.11. If (6.12) holds, then, for every f € B(D) satisfying

[ s (min (2003 59 (1o ) a0t <

(log, E(x))"
E(x)

we have that

Saf(z) <
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Sft) =

Notice that in the simplest case, when a(s) = x(0,1)(5), the operator S, f(t)
= {, we can

2 So s)ds is the Hardy operator. What we obtain is that, if D(t) = E(t)
take m = 1 to conclude that

Sﬁwsb??

[ sup (mi (o)==

By taking a function f such that f(t) = t, whenever ¢t > 1, we see that the pointwise
bound cannot be improved. However, in this particular example, in order to get that
pointwise bound, it is possible to weaken the condition on the function near 0 by simply
assuming that f e L'(0,1).

whenever f(t) < 1/t and

6.3.5 Other applications

In Theorem 6.5, the condition that we require on f is basically that its least decreasing
majorant F satisfies |F|p, w) < c0. To finish this section, we will present two more
versions of our main result in which the role of F'is played by the decreasing rearrangement
f* and the level function f°, respectively.

Assume that K (x,t) is decreasing in ¢. Then, by Hardy’s inequality |5, Theorem 2.2],
we have that, for every function f,

T f( Jth fot Dt = Tie(f*)(x),

so we can apply Corollary 6.6 to f* and write the following result:
Corollary 6.12. Under the hypotheses of Theorem 6.5 if, for every v > 0, K(x,t) is
decreasing in t € (0,00), then

Tr f(x) < [ D) Un ().

Similarly, assume now that we have a Volterra operator

Vief(a fmt

with K (z,t) decreasing in ¢t € (0,z). In [99], the authors show that, for every bounded
function f > 0 with compact support in (0, c0), it holds that

Vicf(x) < Vi () (),

where f° is a decreasing function associated with f called the Halperin level function (see
[65, 108]). Therefore, this estimate together with Corollary 6.6 and Fatou’s lemma yield:

Corollary 6.13. Under the hypotheses of Theorem 6.5, if K(x,t) is decreasing int € (0, x)
for every x > 0, then

Vi f(2) < || D ) Un ().
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6.4 (Generalization to sublinear operators

Although our motivation has been to study integral operators with positive kernels, our
main result can be extended to more general operators as follows:

Theorem 6.14. Let T be a sublinear operator such that, for every x

U(x):= sup sup  (p— 1D)P"Tf(x)?P < 0.

Then, we have that
Tf(x) < | flpmm)Un().

In the proof of Theorem 6.5, we make use of the fact that the operators Tk are
monotone. Since now we do not have this property on T, we will need to introduce
auxiliary functions x and p to get around this problem.

Proof. We will follow the proof of Theorem 6.5. Let x be an arbitrary function with
|k < 2. Define

T.f =T (kf).

By our assumption, it is easy to check that, for every 1 < p < py,
T, : BWYP) — B(U'7),

with constant controlled by (p—1)~™. As before, we get that, for every function |k, < 2
and every g decreasing,

T.(Pyg) (1) J
sup —————= < | P, +
) | Pwgl Bow .

Pog(t)(log, WL@))m_lw(wdt. (6.13)

Let us now assume that f € B(W) is a decreasing function satisfying that

Ll supsgﬁjzt(;)f@) <10g1 %)m_lw(t)dt L

If H(t) = sup,<, W(s)f(s), we have the existence of a decreasing function g such that

With this,
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so we can write, for some ||, < 2,

f(t) = r(t) Pug(t).

Therefore, for every function p with |p], < 1, we can use (6.13) with |kp[, < 2 to show
that

T(p.f) <t> Tnp(ng (t> Jl 1 m—1
su = su < | Py + | P,gl(t (10 —) w(t)dt
(6.14)
" sup,o, W(s)f(s) 1L oy\m-t
~ < 1 )" wbya
s+ | 2=z (o ) i)
Choosing p = 1, we finish the proof in the decreasing case. For a general function

f € B(W), we consider its least decreasing majorant F'(t) = sup,, f(r), which lies in
B(W) and satisfies f < F. Hence, we write Tf(z) = T(pF)(z) for some [p|, < 1, and
the result follows immediately applying (6.14) together with

IFllBowy = | f] Bow

and

iy g (o (1))
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