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Abstract

In this paper we describe the structure of the hyperbolic compo-
nents of the parameter plane of the complex exponential family, as
started in [BR]. More precisely, we label each component with a pa-
rameter plane kneading sequence, and we prove the existence of a hy-
perbolic component for any given such sequence. We also compare
these sequences with the more commonly used dynamical kneading se-
quences.
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1 Introduction

Our goal in this paper is to describe the structure of the hyperbolic compo-
nents in the parameter plane for the complex exponential family.

Let Ey(z) = Ae? with A € C. The map E) has a unique singular value at
0 (the omitted value). As is well known, the fate of the orbit of 0 determines
much of the dynamical behavior of Fy. For example, if F) admits an at-
tracting cycle, then the orbit of 0 must tend to this cycle. As a consequence,
E has at most one attracting cycle.

The parameter space of the exponential family was first studied in [BR]
and [El1] and later on in [Bo], [D] and [S].

Let €2, denote the set of A-values for which E) admits an attracting
cycle of period n. The connected components of €2, are called hyperbolic
components and it is conjectured that they are dense in the parameter plane.
As shown in [BR] and [Ell], any hyperbolic component is simply connected
and unbounded, with the exception of €; which is a cardioid-shaped region
containing 0. The region €2y consists of a single component which occupies
a large portion of the left half plane. Each €2, for n > 2 consists of infinitely
many distinct components, each of which extends to oo in the right half
plane.

The arrangement of these hyperbolic components in the A-plane is quite
complicated. A partial description can be found in [BR] where the authors
show the existence of infinitely many hyperbolic components of period n in
between two hyperbolic components of period n—1. Our goal in this paper is
to give a more precise description by using the dynamics of the corresponding
maps. In particular we shall give a label to each of the components which will
describe the dynamical behaviour of the critical orbit for those parameters
in the given component. We shall see that this label also determines the
position of the component in the right half plane. See Figure 1.

With this goal in mind, there is a choice to be made. Indeed, there are
two ways to identify the various hyperbolic components in the A-plane. Each
of these involves the association of a kneading sequence to the component.
This sequence is a string of n — 2 integers. For technical reasons we precede
the string with a 0 and end the string with a %. That is, a kneading sequence
assumes the form 0s;...s,_o* with s; € Z. The * denotes a “wild card”
that will be described below.

One of the two kneading sequences is a dynamical kneading sequence
(K-kneading sequence) which is useful mainly in the dynamical plane (see
[BD]), since it determines the topological structure of the Julia set of E)
for any X in the hyperbolic component. The other kneading sequence is a



Figure 1: The parameter plane of Ex. White regions correspond to hyperbolic
components. Black smooth regions are due to numerics. Dotted lines have been
drawn on the imaginary axis and on the horizontal lines with imaginary parts
—3m, —m, 7 and 3.

parameter plane kneading sequence (S-kneading sequence) and, as we shall
see, is more useful for describing the structure of the A-plane. The main
result in this paper is as follows.

Theorem A. Fizxn > 3 and let s1,... ,8,_o € Z. There exists a hyperbolic
component Wy, ., that extends to oo in the right half plane and such that
if A\ € Wy, 5,5, the map Ey has an attracting cycle of period n with param-
eter plane kneading sequence s = 08y ... Sp_ox. Moreover, the components
Wi, ...s._o are ordered lezicographically.

From the proof of this theorem one obtains the following corollary (see
Figure 2).

Corollary B. Let Wy, 5., be as in Theorem A. Then, in between this
hyperbolic component and Wy, s ,+1, there exist hyperbolic components
Wsl...(sn_2+1)k7 fOT any keZ.



Figure 2: Magnification of Figure 1 showing infinitely many period 4 components
in between two period 3 components.

In this statement the words “in between” refer to the ordering given by
the imaginary part, since all hyperbolic components extend to infinity in the
right half plane.

These results give a description of the ordering of the hyperbolic com-
ponents in the far right half plane as a function of their kneading sequence.
Note that these are existence type results. Although uniqueness is most
likely true, this fact does not follow directly from our work in this paper.
D. Schleicher [S] has announced some results in this direction using the
coding of hairs in parameter space.

In Section 2 below we define each of these kneading sequences and discuss
several of their properties. We also derive an algorithm for obtaining one
sequence given the other.

In Section 3 we prove Theorem A, that is, we show the existence of
hyperbolic components corresponding to any S-kneading sequence.



2 Kneading sequences

Let us consider a hyperbolic component 2 of period n > 2. The main goal
of this section is to define two different kneading sequences associated to the
parameter value A € ). We shall also study the relation between the two
sequences and give an algorithm that transforms one into the other.

We start by giving a topological description of the dynamical plane of
E)(z) = Ae® that holds for any parameter A in the hyperbolic component
Q.

2.1 The fingers and the glove

If A € Q, the map E)(z) = Xexp(z) has an attracting periodic orbit of
period n > 1. This orbit varies analytically with A\ as long as A lies in the
hyperbolic component. Let z5(A),z1(A) = Ex(20),. .. 2n—1(A) = Ex(2n—2)
be the points of the periodic orbit. To simplify notation we will omit the
dependence on A whenever it is understood.

Let A* denote the immediate basin of attraction of the periodic orbit
and, for 0 <7 < n — 1, define A*(z;) to be the connected component of A*
which contains z;. We name the points in the orbit so that the asymptotic
value 0 belongs to A*(zp).

We now construct geometrically and define what we call fingers. More
details can be found in [BD]. For v € R, let H, = {z | Re(z) > v}.

Definition. An unbounded simply connected F' € C is called a finger of
width ¢ if
a) F is bounded by a single simple curve v € C

b) There exists v such that FNH,, is simply connected, extends to infinity
and satisfies

FnNnH, C{z]|Im(z) E[¢—§,¢+§]} for some ¢ € R.

Observe that the preimage of any finger which does not contain 0 consists
of infinitely many fingers of width smaller than 27 which are 2wi—translates
of each other.

We begin the construction by choosing B = B()) to be a disk in A*(z)
that contains both 0 and 2z, and having the property that B is mapped
strictly inside itself under EY.

We now take successive preimages of the disk B. More precisely, let
B,,_1 be the open set in C which is mapped to B. Note that, since 0 € B,



it follows that B, 1 has a single connected component which contains a
left half-plane, and whose image under E) wraps infinitely many times over
B\ {0}. Clearly the point z,_; belongs to the set Bj,_;, which lies inside
A*(zn—l)-

We now consider the preimage of B,,_1. It is easy to check (by looking
at the image of vertical lines with increasing real part) that this preimage
consists of infinitely many disjoint fingers of width smaller than 27 which
are 2mi-translates of each other. We define B, o C A*(z,_2) to be the
connected component such that z,_ o € B,_5. The map E), takes B, _o
conformally onto B,_.

Similarly, we define the sets B,,_3,... , By, by setting B; to be the con-
nected component of E, '(B;;1) that contains the point z;. These inverses
are all well defined and the map E) sends B;4+1 conformally onto B;. Each
B; belongs to the immediate basin A*(z;). The following characterization of
the sets B;,i =0,...,n — 2 is proved in [BD].

Proposition 2.1. Letn > 2. Fori=0,... ,n — 2, B; is a finger of width
b; < 2m.

It follows from the above construction that the width of the finger B, _o
that is mapped by E) conformally onto B,, 1 (essentially By, 1 is the left half
plane) is much larger than the width of the other fingers B;, i =0,... ,n—3,
that map conformally onto B;11. So we will refer to B,_o as the big finger.

We proceed to the final step, by defining the set

GZ{ZEC|E,\(Z)EB()}

which we call the glove. We observe from the above construction that G
is a connected set and B, 1 C G C A*(z,-1). See Figure 3. Moreover,
the complement of G consists of infinitely many fingers, each of which are
27i translates of each other. We index these infinitely many connected
components by V;, j € Z, so that 2mij € Vj.

In fact, these V; form a set of fundamental domains for the Julia set of
E) in the following sense:

. J(E)\) C UjeZ VJ
e E) maps each V; conformally onto C\ By, and so Ex(V;) D J(Ey).

Hence, for each j € Z we have a well defined inverse branch of E)y:

Lj:L/\,j:C\Bo—)V}.
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Figure 3: Sketch of the sets By to B,_1, G and V; for j € Z. Points in grey belong
to the basin of attraction of the periodic orbit.

Note that By lies inside Vj since 0 € By. The other fingers By,... ,B,_o
may lie inside any of the fundamental domains Vj, depending on the value
of A. In particular, several B; may lie in the same V.

2.2 K-Kneading sequences and S-Kneading sequences

We first introduce the kneading sequence given by the fundamental domains
Vj. We define the K-kneading sequence of a value A € Q as

K(X\) = 0ky ko ks ... kp_g*

where Bj C Vi, for all 1 < j < n —2. We use  for the position of the
point 2, 1, since this point does not belong to any of the V. Since all the



boundaries of the B; move analytically with A, it follows that this kneading
sequence is constant throughout the entire hyperbolic component 2.
We define the K—itinerary of any point z € J(E)) to be

K(Z) :koklkgkg

where Eﬁ\(z) € Vi, for any j > 0.

One can then use these itineraries together with the kneading sequence
to give a complete description of the structure of the Julia set for E) in
terms of symbolic dynamics. See [BD].

We now define the S-kneading sequence of a value A € 2. This sequence
was introduced in [S]. If we look at the dynamical plane very far to the right,
we see that any finger is basically a straight horizontal band; therefore it
makes sense to define the order of fingers in terms of their imaginary part.
In this fashion, we can speak about fingers sitting above or below each other.
Likewise, we can talk about the upper boundary and the lower boundary of
a finger, as long as we look in the far right half plane.

Consider the half plane H, = {z € C | Re(z) > p} for a fixed p large
enough. Define the family of fingers F;, j € Z to be the infinitely many
connected components of the preimage of B, ;. We observe that the fingers
F}; are the 2kmi-translations of the big finger for any k£ € Z. We index these
sets consecutively so that Fp is the one immediately above By. For any
J € Z, let T; be the region in H, that lies between the upper boundaries of
F;_1 and F} (so, we have F; N H, C T}). See Figure 4.

Finally, we define the S-kneading sequence of a value A € Q as

S()\) 20813253 v Sp—9k

where B; N H;, C Ts; for all 1 < j < n — 2. It is easy to check that this
definition does not depend on the choice of i, as long as u is chosen to be
large enough so that the boundary of the fingers B;, j = 0,...n — 2 and
F;, j € Z crosses the boundary of H,, exactly twice. See Figure 4.

We observe that the regions T; do not define a family of fundamental do-
mains in the sense explained above. Consequently, the S-itinerary (defined
in the obvious way) is not well defined for all points in the Julia set, but
only for those whose orbits have sufficiently large real part. Although this
shows that S-kneading sequences and itineraries are not suitable for use in
the dynamical plane, we shall see that they are very convenient when the
parameter plane is considered. Therefore, it is of interest to be able to use
both of these kneading sequences



Figure 4: The families F; and T;.

2.3 Translation Algorithm

In this section we describe an algorithm that relates the K— and S—kneading
sequences. Let us denote the S—kneading sequence of E)y by

S =08182...8,_9%.
We will show how to compute the K-kneading sequence
K IOkle...kn_Q * .

associated to .

The algorithm is composed of two steps. The first step is to attach a
sign (+ or —) to each of the zero entries of S (with the exception of the first
entry of the sequence that will remain as 0). This sign indicates that the
corresponding B; is above (01) or below (07) By, at least far to the right.
The second step will determine each of the k; based on s; and s;41, except
for the last entry k,_o which will be determined by s,, o and s;.



Step 1: deciding on 0" or 0~

Let s; = 0. Then B; C V, and so either B; lies above or below By in the
far right half plane. We attach the superscript + or — to 0 depending on
whether B; is above (07) or below (07) By. We write x = oo for ordering
purposes.

Consider the words s1$2... and s;118;42-.. . Compare these two words
until finding the minimal j > 1 such that s; # s;;;. Then we set

ot if 85 < Si+j
S; — .
07 ifs; > 854

We show that this rule gives the correct superscript. Since s; = 0, B; meets
Ty as well as By. We must decide if B; is above or below Bj.

If 81 > s;41 (resp. s1 < 8;4+1) then B;;1 is below (resp. above) Bp. Since
the order is preserved inside one fundamental domain we can deduce that B;
is below (resp. above) By. Hence s; = 0~ (resp. 07). Observe that having
defined * = oo takes care of the case s;11 = #, i.e., the case of the big finger.

We end by induction. Let us assume s; = s;;; for j = 1,... ,k but
Sk+1 7# Sit+k+1- Then Bj and B;j live in Ty, j = 1,... , k, and hence, their
relative order can be decided by looking at their respective images By and
B;ik+1. There are two cases.

If sg41 > Sipk41 then B; gy is below By 1, and consequently, B;; is
below B; for all j =1... k. So, B; is below By and s; = 0™

If spy1 < sjyrgr1 we substitute “above” for “below” in the previous
paragraph and conclude that s; = 0.

In particular we remark that there are two cases that do not occur: (a)
si = 0" and s;11 <07 in the case s; > 07, and (b) s; = 0~ and s;41 > 0t
in the case s;1 < 0.

Step 2: obtaining k;

Let S be a modified S-kneading sequence by adding the corresponding 0"
and 0~ symbols. There are two completely symmetric cases: s; > 01 and
s1 < 0. Before starting we set 1 —1 =07 and —1+ 1= 0. Now, for any
twith1 <47 <n—2,

S; ifi=n—2ors;1 >0

(a) If sy > 0" then k; = )
si—1 ifsi <07

10



(b) If s <0 then k;= {Si+1 lfz =n-2orsin 207
8 if 541 <07

We now prove that for a given A € ) the above rule translates any S to a
unique K. We consider the case s; > 07, the other case is being symmetric.

We denote by g; the piece of the glove G that falls into the region 7.
Since s; > 0T, By is above By and hence, the glove go must be below Bj.

This implies that V; is the fundamental domain between the gloves gg and
g1 and, in general, each V; lies between g; and g; 11, in particular including
F;. This last remark implies that the last digit of the sequence will not
change. That is, k, o = s,_9.

Consider s; for 1 < i < n —2. So B; lies in Ty;,. By the observations
above, either (see Figure 5)

1. B; lies in V,, because the piece of the glove g, is below B; (case
k; = Si)a or

2. B; lies in Vj, 1 because the piece of the glove g,, is above B; (case
k,’ = §; — 1).

B

2 j2
[4D) B g2
T4
1
F
1 1 1 1
[05]
Bn—l Bn—l
Ty
do
T
I ¢

Figure 5: Example of the two possibilities: the S-kneading sequence 02x translating
either into 02x or into 01x.

It is straightforward to check that the first case occurs if and only if B;;

11



is above By, i.e., s;+1 > 07. The second case occurs if and only if B;; is
below By, i.e., siy1 < 07.
As an example, consider the S—kneading sequence

§=0-200—-12300—-1200 =*.
After the first step we have
S=0-20"0"-1230T0"—-120" 07 «,
and after the second step the corresponding K—kneading sequence is
K=0-110"0"341070"311 x.

We finally observe that the above 2-step algorithm can also be used in
the reverse direction, that is, for a given K with the symbols 0 and 0~ we
obtain, via the inverse algorithm, a unique S. Next section will refer to this
point taking into account the admissibility.

2.4 Properties

Why are we working with two distinct kneading sequences? The answer
to this question is based on the fact that the two sequences have different
properties and consequently, they are suitable depending on the problem
under consideration.

More precisely, the K-kneading sequences work well to study the dynam-
ical plane because they are defined by using fundamental domains. These
domains work for all points of the Julia set and give rise to good symbolic dy-
namics and consequently to a complete description of the Julia set (see [BD]).
In contrast, when working in parameter plane, one can find many different
hyperbolic components sharing the same K-kneading sequence. For instance,
for any n € N, all hyperbolic components of period n bifurcating from the
main cardioid have their K-kneading sequence given by K = 0000...0. To
fix this uniqueness problem we might consider the symbols 0T and 0~ as
before. But then, an admissibility problem arises, without an obvious way
to decide if a sequence is admissible or not (except, of course, going through
the inverse algorithm to check if the resulting sequence is possible).

The S-kneading sequences do not involve fundamental domains (in the
complete sense) and hence they are not as useful as the K-kneading sequences
to describe the dynamical plane. However, we prove in the next section that
all sequences are admissible, that is, we can find a hyperbolic component (2
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corresponding to any given sequence of integers. Moreover, these sequences
give plenty of information about the location of the periodic orbit.

The uniqueness of hyperbolic components having a given S-kneading
sequence seems a natural result but it is not straightforward from the con-
struction below.

Finally, we remark that the method of finding those hyperbolic compo-
nents in the next section makes it possible to provide a global picture of
their distribution in the plane.

3 Hyperbolic Components. Proof of the main re-
sult.

Our goal in this section is to construct a parameter value A, for which E) has
an attracting cycle with any given S-kneading sequence. We first consider
the special case where the S-kneading sequence consists of a single digit; the
proof in this case makes use of many of the ideas of the general case, but in
a simpler setting.

3.1 The case Okx*

The result follows from the next two propositions.

Proposition 3.1. Fiz k € Z. For a € R, let \, = a+ (2k+1)wi. Then, for
sufficiently large values of a, the map E), has an attracting cycle of period
3.

Proof. We assume throughout that a > |2k + 1|, so that | Arg(),)| < /4,
where Arg denotes the principal branch of the argument. Then )\, = E)_(0)
lies in the right half plane, but E?\a (0) = Ag exp()\,) lies in the left half plane
since B} (0) = —e®Xq. Choosing a large, we may assume that a < [Aq| <
a + 1. Since

3
T < | Arg(B, (0)] < v
it follows that

Re (E3,(0) = |Xa|e® cos(Arg (EX,(0)))

Dl

= v
< —ae?/V2.

13



Let Uy be the ball of radius 1 about Ef\a (0). The preimage of Uy con-
taining A, is an open set U; which is mapped univalently onto Uz by E,_,
and the preimage of U; containing 0 is another open set, say Uy, which is
mapped univalently onto Uy by E/%O. We claim that there is an attracting
cycle of period 3 whose orbit under E), lies in Uy, Uy, and Us. Let F denote
the appropriate branch of the inverse of E2 that takes Uy univalently onto
Up. See Figure 6. By the Koebe 1/4 Theorem we have

/ Ui
)

Figure 6: The sets Uy, Uy and U, in the proof og Proposition 3.1

1
dist(0,0Us) > - |F'(E3, (0))]

_ 1
T4 | [ heete
4
e—a
> —.
~ 4(a+1)?
Now
B3, (0] = [Xa|exp(Re E3,(0))
< (a+1)exp(-ae/VE)
e—a
<SS dar1?
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for large a. Hence E?\a (0) is contained in Uy. Moreover, if w € Uy, then

Br, () ~ B, O) < max|B, ()
< [Acexp(Re B3, (0) +1)]
< (a4 1)eexp(—ae?/V?2)
o=
<< 4(a +1)2

as before. Hence,

. e ¢
dist(0, BE'E)’\G (Uh)) < (a+1)(e+1) exp(—ae®/V?2) << et
and it follows that E’ia(Uo) is properly contained in Uy. Thus we have an
attracting cycle whose orbit visits Uy, U; and U,. This completes the proof
of the proposition. O

Before proceeding, we observe that the above estimates guarantee that
the entire half plane Re z < Re E}_(0) 4 1 is contained in the basin of the
cycle.

We now claim that the S-kneading sequence of A\, is 0ksx.

Proposition 3.2. Let k € Z and set A\, = a + (2k + 1)wi. Then for values
of a sufficiently large, Ey, has an attracting 3 cycle with S(Ay) = Okx.

Proof. Let y(t) =t + (2k + 1)7i for t > a. E)_ (7(t)) is a straight line which
lies to the left of Ef\a (0). By the above observation, E), (y(t)) lies in the
connected component of the immediate basin of attraction which contains
E3 (0). Hence ~(t) lies in the component of the immediate basin which
contains \,.

Let S be the strip {z| |Im z| < w}. There is a preimage of y(¢) contained
in the interior of S, at least for ¢ large. We claim that the entire preimage of
v(t) lies in S. The preimage of (t) can never meet the boundary of S, for
E), maps the boundary of S into the left half plane, far from ~(¢). Hence
the preimage of y(¢) lying in S must be the preimage that contains 0.

We then consider the set B as above so that B contains E;’\a (0). It
then follows that Bs contains Eiz (0) and Ej_ (v(t)). By taking one more
preimage, the big finger By contains A\, and ~y(¢) and its translations contain
the semilines {t + (2j + 1)7 | ¢ > a}. Moreover, the finger By contains 0
and the preimage of y(¢) in S. It follows then that the fingers are indexed
so that By = Fy and hence S(\,) = 0kx. O

15



3.2 The general case

Now we proceed to the general case. For the remainder of this section we
fix a kneading sequence s = 0s183...8, 2% Let § = max|s;| and define
M = (25 + 1)m. We assume throughout that a > M. Let H(a) denote the
closed half strip

H(a) = {#|Re z > a, |Im (2)| < M}.
We let L(a) denote the left boundary of H(a). We will prove:

Theorem 3.3. For each sufficiently large a, there is A\, € L(a) for which
E,, has an attracting n-cycle with S(\,) = s.

We will divide the proof in three parts, stated in Propositions 3.5, 3.6
and 3.7. Afterwards we will see how Theorem A (see Section 1) follows.
We denote the first n points on the orbit of 0 by w;, so wyg = 0, w1 = Ag,
wp = EY (0). As in the previous special case, we will construct A, so
that the orbit of 0 under E), has the following properties:
1. w; € H(a) fori =1,... ,n—2and Rew;y1 >> Rew; fori =0,... ,n—3.

2. wy—_1 lies in the left half plane and

|Re ’Ll)n71| >> Re w,_9

3. wy, lies close to 0 and, as in the period 3 case, there is an attracting
cycle of period n lying close to wg,... ,wp—1.
Let v = v(a) = |a+(25+1)mi| = max,cr(q) |2|, and note that v(a)—a — 0
as a — 00.
For —k <i <k, let H;(a) be the substrip of H(a) given by

Hi(a) ={z€ H(a)|[Re z > a,(2i — 1)7m <Imz < (2 + 1)7}.

See Figure 7. _

For j =1,... ,n—2, define the functions w;(A) = E4(0). Note that each
wj is a function of the parameter A and is analytic. For example, wi(A) = A
and wo () = Ae.

For j =1,... ,n — 2, define

Is,..s;(a) = {X € L(a)|w;(A) € Hs;(a) for i=1,... 5}

Note that Iy, (a) = L(a) N Hs,(a) and that the I, s, are nested, assuming
they are nonempty. The following Proposition shows that each of the I, s,
consists of a single vertical segment.

We say that a smooth curve p(t) in Hy,(a) is a vertical curve if the curve
connects the upper and lower boundaries of Hy,(a).

16



. :57” ”””””””””””””””””””””””””” Hy(a)
o , | Hy(a)
) Mm@
R — oL Ho@) H(a)
I H_(a)
T H_»(a)
H_3(a)
S L(a)

Figure 7: The sets H(a), L(a) and the substrips H;(a) for the case § = 3.

Proposition 3.4. There ezists ag > M such that if a > ap and 1 < j <
n — 2, the set {wj(\) | A € I5,. s;(a)} consists of a single vertical curve in
Hs,(a). Hence I, s; is a single vertical segment.

Proof. We parametrize the segment I (a) as A(t) = a + (2517 + t)i for
t € (—m,m) and consider the set

Js1s2(a) = {A € L5, (a) | wa(t) C H(a)},

where ws(t) := wa(A(t)) = A(t)eMB). We will show that given any ¢ > 0 and
taking a large enough,

s
|Argup(t) - 7| <, (1)

for any t such that A(t) € Js,s,(a). This implies that, when ¢ runs from
—7 to m, every time that the curve ws(t) crosses the strip H(a), its tangent
vector points upwards and it is almost vertical. It follows that at those
instances, the imaginary part of wy(¢) is an increasing function of ¢ and
hence, the curve can cross the strip only once. We proceed now to show (1).

Set ag large enough so that
€ !

| Arg A\(t)] < 3n—3) =c

17



for all t € (—m, 7).
The tangent vector to wo(t) is

wh(t) = N () D (1 + X)) =i XD (1 + A(t))
and thus
| Arguh(t) — 5| = | Arg ™ + Arg(1+ A1) < | Arg XV +¢.

If A(t) € Js,s,, it is clear that |wa(t)| > |A(¢)|- Since both are inside the
strip H(a), we have that &' > | Argws(t)| = | Arg A(t) + Arg e*®)|. It is then
easy to see that | Arg e)‘(t)| < 2¢'. Plugging this in the expression above, we
obtain.

T €
|Argw'2(t) - 5' < 3EI = m <eg,

as required.
We now proceed to look at I, 5,5, which will ilustrate the general case.
As above, consider

Is15953 (a') = {>‘ € Iy, (CI,) | w3(t) - H(a’)’}

where w3(t) = w3(A()) = A(t)e®>® and wy(t) € Hy,(a). For these values
of t, we will show

|Arguwi(t) — 5| <e, (2)
The tangent vector to ws(t) is
wh(t) = e O (N(1) + Mt)wh(t)) = €20 (i + Mt)w(t))
and thus
Argw}(t) = Arge™®) + Arg(i + M(t)wh(t))

We claim that

™ / . / ™ /

5~ 4e’ < Arg(i + A(t)wy(t)) < 2 +4e

Indeed, we showed above that

g — 3¢’ < Argwh(t) < g + 3¢
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Moreover, since | Arg A(t)| < €', we obtain

g — 4e' < Arg(\B)wh(t)) < g +4¢.
Finally, it remains to add the vector ¢ to this expression, which makes the
argument even closer to 7/2.

To finsih the proof of (2) observe that, by the same argument as in the
first case, Argws(t) = Arg(A(t)e¥>®) < ¢ and hence |Arge?>®)| < 2¢/.
Putting all this together we have

g — 6’ < Argwi(t) < g + 6¢’

as we wanted to prove.
It is easy to check that we may iterate this procedure and obtain that,
for j =2,...,n —2 and for all ¢ such that A(t) € Js, s, (a),

€
n—3

™ . .
| Argu(t) — 7 <3G — e’ = (j— ) —— <,

which concludes the proof of the proposition. O

Proposition 3.5. Let e > 0. There exists ag > M such that if a > ag, then
there is A\q € L(a) satisfying

1. wi(X\) € Hy,(a) fori=1,...,n—2.
2. Im (wp—2(As)) = (2sp—2 + 1)7.

3. B, (a—e) <Rew;(Ao) < [w;(\a)| < Bl (ate) forj=1,... ,n—

2, where Ej, is the real exponential Ey(x) = be®.

Proof. By the proposition above if A € I, s, (a), then the curve A — w;(A)
is a vertical curve in Hj, (a). We will show that, moreover,

Bl (a—¢) <Rew;(\) < E/ [ (a+e)

for each j. Then A, will be defined as the upper endpoint of I, s, ,(a).
If A € V;,(a), then exp()) lies on a circle of radius e® centered at 0.
Hence A — wz()\) = Ae? is a nearly circular arc contained in the annulus

Eu(a) <[z < Ey(v) (3)

where we recall that v = max,cy () |2|- This arc crosses Hs,(a) in a single
vertical curve 79, provided a is sufficiently large.
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Given € > 0, we claim we may choose a large enough so that, if A €
I5,5,(a) then

E, c(a—¢€) <Rewy(N) < |w2(N)| < Egyela+e). (4)

Indeed, both estimates are deduced from Equation (3). The lower estimate
holds since the circle of radius E,(a) meets H(a) in a nearly vertical arc.
The upper estimate follows since v(a) —a — 0 as a — oo and hence we may
choose a so that v < a +¢.

Now we exponentiate points on 772. The result is a curve whose endpoints
lie in R™. Multiplication of this curve by the appropriate A € I, (a)
expands this curve, but the image must cross H;,(a) in a single vertical
curve wich we denote by 7s.

As above, we claim that by choosing a large enough we have that, for
A € I 555 (a),

B; (a—¢) <Rews(\) < ws(N)| < EZ.(a+e). (5)
The upper estimate holds since
w3 (N)] = [\l exp(Re(w2(N))) < vexp(Eqate(a+¢)) < Efy.(a+e).

To obtain the lower estimate, first set R, . = aexp(E, .(a—¢)) and observe
that, by Equation (4),

s (W] = XN > Ry ..

By a simple trigonometric argument (see Figure 8) one can see that

Re(ws(N)) > 4/ Rq,e — M2. (6)

We then have, on one hand

Ra,g - \/RG,E _M2 — O
a—00

and, on the other hand
2
R, —E,_.(a—¢)=cexp(Eq—c(a—¢)) Aot
Putting everything together, we obtain the lower estimate in Equation (5).
It is now clear that, continuing in the same fashion we obtain the re-
quired Is;s,..s; (a). Note that, by construction, if A is the upper endpoint of
Is;s,..s5;(a), then z;(\) € OHj,(a). Hence, pick A to be the upper endpoint
of I, s,. s, ,(a) and then Im(wy,_2(Ag)) = (2sp_2 + 1)7. This completes the
proof of the Proposition. O
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0 — E(j—s(a’ - ‘;) Rﬂaf

Figure 8: The construction in Equation (6)

Proposition 3.6. Choose A, as in the proposition above. Then E), has an
attracting cycle of period n.

Proof. By the same arguments as in Proposition 3.5, it is clear that
Ej 2 a—¢) < |lwup1 (V)| < EfiZ(a+e).
We know that Imw, 2(Ag) = (28,2 + 1)7, and hence it follows that
Re wp_1(A) < —E" 2(a — €) cos(Arg \y)
since Arg wp—1(Ag) = Arg (Ay) + 7. Now | Arg \,| < /4 so that
Re wn-1(Aa) < —(By *(a) —1)/v2.

Let B be an open ball of radius 1 about wy,_1();). The preimages of
B containing w;(A,) for j = 1,... ,n — 2 are open sets, and E;f;l*] maps
them univalently onto B. Let U be the preimage of B containing 0. Then
Ef;l maps U univalently onto B.

Let F : B — U denote the appropriate branch of the inverse of Efa_l
taking wy,—1(Ag) to 0. We have

1
H]n;(? E:\a (wj(Aa))
1
H?;ll |wj()‘a)|
1

> .
T ICN(E e +e)

|Fl(wn—1(>‘a))‘ =
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by Proposition 3.5. By the Koebe 1/4 Theorem we have:

dist (0,0U) > i|F’(wn_1(Aa))l

1 1
2 Z n—1,mj7—1
Hj:l (Ea—|—5 (a + 5))

Now consider wy,(A,). We have

lwn(Xa)| = [Ex, (wn-1(Aa))] = [Aa| exp(Re(wn-1(Aa)))
< (ate)exp(-—Fi (e o)
1 1
<< .

AT 0 (B (a + )

The last inequality follows (for a large enough and for £ small enough) since
the expression for |E), (wp—1(As))| contains one higher iterate of E,. Hence
wn(Aq) lies well within U. We claim that E), (B) C U as well. Indeed, for
w € B, we have

|E$\a (w)| < |E$\a (wn-1(Xa) + 1)
= |Aa|exp(Re wyp—1(Ag) + 1)
1
< (a+eg) exp(—EEgjf(a —€e)+1)
1 1
<<

e
T (Ble(a+e)
as above. This shows that E), (B) lies well within U since

|Bxa (w) = B, (wn—1(Aa))| < max | B} (w)].

It follows that E), has an attracting cycle of period n that lies close to
wj(Ag) for j =0,... ,n—1. O

The following proposition completes the proof of Theorem 3.2.

Proposition 3.7. For A, as in Proposition 3.6 and a large enough, S(A\,) =
0s189...8p_9%.

Proof. Let y(t) = t + (2sp—2 + 1)7i with ¢ > Re wp—2(Ag) S0 wp_2(A,) is
the left hand endpoint of this horizontal line. We claim that (¢) belongs
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to the basin of attraction of the attracting cycle. Indeed, Ej, (v(t)) is a
straight line lying to the left of wy,_1(Xa). Hence |E3_(v(t))| < |wn(Xq)| and
it follows that this line lies in the immediate basin containing wy,_1(As).

For any € > 0 we let 7 = ¢/n. Then for a sufficiently large we have
|Arg wj(A,)| < 7 for j =1,...,n — 2. This follows since |Arg w;j(Aq)| <
|Arg (a + (25 + 1)74)| which may be made arbitrarily small as a increases.

Now let p;(t) denote the curve that contains wp_o_;(A,) and satisfies
Eia(uj(t)) = 7(t) for t > Rewyp_2(Ag) and j = 1,...,n — 2. So ui(t)
contains wp_3(Aq) while p,_o(t) contains 0. By construction, each y; is in
a different component of the immediate basin of the attracting cycle. To
prove the result, we will show that u;(t) C Hs,_,_;(a) for each j < n —3
and | Tm{jin_»(t))] <.

Consider p1(t). We have Ej_ (p1(t)) = v(t) so that

B}, (u1 (1) - p1(t) = ' (2).
Therefore
Arg B} (1 (1)) + Arg p1 () = Arg 7'(t) = 0

and consequently

|Arg pi ()] = |Arg E}, (a1 (t))]
|Arg Ej, (p1(2))]
= |Arg y(t)|
< T

In particular, this implies that u1(¢) lies to the right of its endpoint,
wpn—3(Ag), for t > Rewy_2(Ag)-
Continuing inductively, we find that

|Arg pj(t)] < 75

so that |Arg p}(t)| < e for all j, and that each y;(?) lies to the right of its
endpoint, wy,—,—j(Ag).

Now suppose that Im p;(to) = (2k + 1) for some k € Z. It follows that
E), (pj(to)) lies in the left half plane. But Ey, (1(t)) = pj—1(¢) if j > 1 and
E), (111(t)) = v(t). This contradicts the fact that 11,1 (¢o) lies to the right of
the endpoint of ;1; 1. Hence each p; must lie in a horizontal strip of width
at most 27 and contained between the translates of y(¢). This implies that
pj(t) C Hs, , ;(a), and the result follows. O
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This concludes the proof of Theorem 3.3. To end the proof of Theorem
A, observe that the result holds for any a larger than a certain value ag.
Following the construction, we then see that we have constructed a curve
of A, values, one for each sufficiently large a € R, having the property that
Re A; = a and S(X\) = s. Note that A\, lies in the intervals I, 5, ,(a) and,
by construction, we have Im (I, s, _sa(a)) <Im (I, .5, ,s(a)) if and only
if @ < B. Thus, the hyperbolic components of the same period are ordered
lexicographically. The following Corollary shows how the components of
period n + 1 insert in between the components of period n.

Corollary 3.8. Suppose A, and Xa have kneading sequences 01 ...Sp_o%
and 081 ... (sp—2+ 1) for a sufficiently large. Then, given any k € Z, there
is Ao (k) with Re A\o(k) = a and S(Aa(k)) =081 ... 8p—2 + 1 kx.

Proof. By construction, the A\ values in the vertical segment in between A,
and Xa, are exactly those belonging to I, s _,+1(a). Hence, if we iterate the
process one step further to obtain A, (k) with S(Ag(k)) = 0s1...8p_2+ 1 k%,
we must iterate once more for values of A in this segment. Hence, each of
the A(k) belongs to I, 5. ,+1(a). O
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