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Abstract

Using holomorphic surgery techniques, we construct a homeomorphism between a
neighborhood of any limb of the Mandelbrot set and a neighborhood of any other of equal
denominator, in such a way that the limbs are mapped among each other. On the limbs,
the homeomorphism coincides with that constructed in [BF], which proves — without
assuming local connectivity of the Mandelbrot set — that these maps are compatible with
the embedding of the limbs in the plane. Outside the limbs the constructed extension is
quasi-conformal.
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1 Introduction

Given the family of quadratic polynomials Q.(z) = 22 + ¢, we define the filled Julia set of Q.
as the set

K, ={z€ C|{Q7(z)}n>0 is bounded}.

and the Julia set J, as the boundary of K.. Both sets are bounded and completely in-
variant under ).. The complement of the filled Julia set is the basin of attraction of the
superattracting point at infinity, which is always connected.

The polynomials (). have one single critical point in C which is w = 0. The behavior of
this point plays a crucial role in determining the dynamics of (). and the topology of K.
Indeed, the filled Julia set is connected if and only if it contains the critical point 0. If not,
it is a Cantor set.

This dichotomy is reflected in the definition of the Mandelbrot set which is defined as
follows (see Figure 1).

M={ceC|0e K.}

The Mandelbrot set is compact, full and connected and it is conjectured to be locally con-
nected.

The interior of M contains infinitely many connected components for which Q. has an
attracting periodic orbit. These are called hyperbolic components and it is conjectured that
their union equals the interior of M. The boundary of each hyperbolic component 2 can be
parametrized by a map 7q : [0,1) = 09 so that, at ¢ = yq(t), the indifferent periodic orbit
has multiplier 2™, The point ¢ = v (0) is called the root of the hyperbolic component €.

The largest hyperbolic component consists of all parameter values ¢ for which @, has an
attracting fixed point, and we shall denote it by 2. Its boundary is referred to as the main
cardioid. At each boundary point vo,(p/q), for any p/q € (0,1) N Q, there is attached a
hyperbolic component 2/, of period g.

We define the p/q-limb of M, M, ,, to be the connected component of M \ Qq attached
to the main cardioid at the point ¢ = yq,(p/q) union this point (see Figure 1).



1 10 9 g 1
3 31 31 7
w. Wss
2/5 M
2
31
Wi/s
A/Ml/5
1
31
30
31
~_M, s
4/5
29
31
6
7

Figure 1: The boundary of the Mandelbrot set and certain wakes.

In [BF], homeomorphisms between any two limbs of equal denominator were constructed.
More precisely, the following theorem was proven.

Theorem. [BF] Given p/q and p'/q in QN (0,1) and irreducible, there exists a homeomor-
phism

Ot Myrg — My
which is holomorphic on the interior of M, ,.

Moreover, it was shown that if the Mandelbrot set is assumed to be locally connected,
then these homeomorphisms are compatible with the embeddings of the limbs in the plane,
since a radial extension to the wake can be constructed. OQur goal in this paper is to prove
compatibility without assuming the extra hypothesis, in order to make this technique available
for other parameter spaces in which local connectivity is proven to be false.

We shall prove that the embedding is preserved by extending the homeomorphisms of
[BF] to a neighborhood of the limbs. As it turns out, this extension will be quasi-conformal
in the complement of the limb. It was pointed out to us by W. Jung that for this reason,
even after MLC is proved, this new extension will be better than the radial one (see Remark

4.28). A more precise statement is as follows.



Main Theorem. For any p/q € (0,1) N Q there exist open sets Vp/q and Vi, intersecting
M in M,,, and M, ,, respectively, and a homeomorphism

Apg = Vorg — Viyq

extending the homeomorphism <I>g1 : Mp)q — My,q, which is orientation preserving and quasi-
conformal in V,, 4 \ M.

See Figure 2.
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Figure 2: The map Ag/s.

Remark 1.1. Trivially, we can first restrict the domain of A,,, to obtain a map from 171, /q C

w, /q tO ‘71 /a C Wi /a0 and then extend it quasiconformally to the wake, thus obtaining a
homeomorphism Xp /q * Wp/q = Wi/, which is quasi-conformal from W),/ \ M,/ to Wy \
M; ;. Moreover, Branner and Lyubich have recently announced that the homeomorphisms
in [BF] between limbs are quasi-conformal, hence the maps above are quasi-conformal from

Whpyq to Wy

p/q

We will construct the extension using holomorphic surgery but, this time, we will have to
deal also with polynomials with a disconnected Julia set.

An essential step in proving the bijectivity of @gp, was that two polynomials that are
hybrid equivalent and have a connected Julia set must also be affine conjugate. Since this is
false if the Julia set is disconnected, the proof of injectivity will be completely different.

The paper is organized as follows. Section 2 contains some general preliminaries about
dynamics of polynomials (which the expert reader may skip). In Section 3 we build up the
necessary setup and notation to be able to give a precise statement of the main Theorem.
Section 4 is dedicated to the proof and divided in three main parts: the definition of the map
in Section 4.2, the proof of continuity in Section 4.3 and the proof of injectivity in Section
4.4.
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Notation. We shall denote the interior of a set A by int(A) and uniform convergence on
compact subsets by the symbol =.

2 Preliminaries

2.1 Dynamics of quadratic polynomials

An essential tool to study the dynamics of complex polynomials is the map known as the
Bottcher map or Bottcher parametrization. For any ¢ € C there exists a real number v > 0,
a neighborhood U, of infinity and a unique holomorphic isomorphism tangent to the identity
at infinity

’(pcI(C\Deu —>Z/Ic

which conjugates Qo(z) = 22 to the map Q.. The map 1. is called the Béttcher parametriza-
tion of f around infinity. Its inverse is called the Béttcher coordinate.

If the critical point, w = 0, does not belong to the basin of infinity, and hence K, is
connected, the set U, is in fact the complement of the filled Julia set and v = 0. In the
case where K, is disconnected, » > 0 can be chosen so that the critical point belongs to the
boundary of U.. See Figure 3. The Bottcher coordinates can be defined holomorphically past
the set C \ Dev (see Proposition 3.2) but not globally.

We can also lift @y to the map Ma(z) := 2z in the right half plane H, the universal
covering space.

In summary, the following diagram commutes

Mo

H, —— H,

exp Jv lexp

C\D,, —2 C\D.

o] [

C\Z/{c QC > (C\uc

where H, = {p + 2mit € H | p > v}, and keeping in mind that v = 0 when K, is connected.

We remark that in the case of K, being connected and locally connected, 1. extends
continuously to the boundary of D, so that 1), is defined on C\ D. Even in the case when
K., is not locally connected, there is a set of points of full measure on dD where the radial
extension of 9. is well defined. This set always includes the points with rational arguments.
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Figure 3: The Bottcher parametrization for both the connected and the disconnected case.

The potential G, : C\ K. — Ry (Green’s function) of K, satisfies

{Gc(z) = log (|, (2)]) ifzel,
Ge(2) = 3:G(Q2(2))  if Q¥(2) €U,

and hence G (Q.(z)) = 2G.(z) for all z € C\ K.. The potential measures the rate of
escape of points under iteration of (.. The level sets of the potential function are called
equipotentials. See Figure 4. Equipotentials in U/, are simple closed curves which correspond
in the complement of Dev to circles around the origin and on H, to vertical lines. If K,
is connected then all equipotentials are simple closed curves. If K. is a Cantor set then
v = G.(0) and the equipotential of potential v is a figure eight, the boundary of U,.

Given t € R we denote by R(t) the horizontal line in H with imaginary part equal to 27t,
ie.,

R(t) :={p+2mit € H| p > 0}.

If K. is connected, we may transport R(t¢) to the dynamical plane all the way. In that
case, we define the external ray of argument t to be

Re(t) = e (exp(R(2))

Note that R.(t) is an orthogonal trajectory to equipotentials.



If R;(t) has a limit when p — 0, then it tends to a point of the Julia set which we denote
by R}(t). We say that the ray lands at this point and we have

Qc(Rc (1)) = Re(2).

All external rays with rational arguments land and if K, is locally connected all external rays
land.

If K. is a Cantor set, we may transport R(t) under 1).oexp on the part that intersects H,,,
obtaining a ray in U,. For a given ¢ € R the ray segment extends unbroken as an orthogonal
trajectory to equipotentials of decreasing potential, either all the way to 0, or down to a level
where it branches at the critical point 0 or an iterated preimage of 0.

Re(r) exp(R(r)) : M,
A
' R(TH)
i
] log(# 2% (¢))
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Figure 4: Equipotentials and external rays in a disconnected case.

2.2 The parameter plane of quadratic polynomials

Let M denote the Mandelbrot set as defined in the introduction. The results in this section
can be found in [DH1] or [Br].

The map ¢y : C\ M — C\ D defined as v, !(c) is a conformal isomorphism. We define
an external ray of external argument 6 as

Ru(0) = 3 (exp(R(60))) = 37 (1" ocpecn)

If Ryr(0) has a limit ¢ € M when p — 0 we say that Ry (6) lands at c. It is known that all
external rays with rational arguments land at either a root of a hyperbolic component or at

a Misiurewicz point, i.e., a parameter value ¢ € M for which w = 0 is strictly preperiodic
under Q..

There are exactly two external rays landing at each root point in M (except at ¢ = 1/4).
Given p/q € (0,1) N Q, we denote by H;/q and 9;/(1 the arguments of the two external rays
landing at the root point of Q, /4, i.e., at ¥a,(p/q) € Q0. Then, we define the p/q-wake of
M, W, as the open subset of C that contains the p/q-limb of M and is bounded by these
two rays and 7o, (p/q) (see Figure 1).

The characterization of polynomials Q. for which ¢ € W/, is as follows. Consider the
dynamical plane of ().. The polynomial has exactly two fixed points, both repelling, denoted



by a. and S.. The fixed point 3. is the landing point of the ray R.(0). The fixed point «, is
the landing point of a periodic cycle of ¢ rays, with combinatorial rotation number p/q. The
arguments of these rays depend only on p/q and include 8, and 6, . Moreover, these rays
are unbranched, since the critical point and no preimages of it ever fall on them. It follows
that all the preimages of these rays are also unbranched.

2.3 Tools

In the surgery construction we shall use the theory of quasi-conformal mappings, the Mea-
surable Riemann Mapping Theorem, and what essentially is the theory of Polynomial-like
mappings of Douady and Hubbard. For the main definitions and statements we refer to the
Tools section in [BF], or to any of the original sources like [A, AB, DH2].

In this section, we point out a few important facts that we shall use when dealing with
quadratic polynomials whose Julia set is disconnected.

Recall that two polynomials f and g are said to be topologically equivalent (or locally
topologically conjugate) (f ~top g) if there exists a homeomorphism between a neighborhood
of Ky and a neighborhood of K, such that goh = ho f. If the homeomorphism A can
be chosen to be quasi-conformal we say that f and g are quasi-conformally equivalent and
denote it by f ~gc g. If moreover, Oh=0a.e on K > then we say that f and g are hybrid
equivalent and we denote it by f ~p, ¢g. Finally, f and g are holomorphically equivalent if h
is holomorphic. The strongest type of conjugacy is a (global) holomorphic conjugacy or affine
conjugacy which is given by h being holomorphic and defined on all of C or, equivalently,
affine.

Recall that the quadratic family is usually written in the form Q.(z) = 22 + ¢ because in
this way, there is a unique representative of each affine conjugacy class. That is to say, if Q.
and Q. are affine conjugate, then ¢ = ¢.

When dealing with polynomials (). with ¢ in the Mandelbrot set, the same is true for the
classes of hybrid equivalence because of the following fact.

Proposition 2.1 ([DH2]). Let f and g be polynomials of degree d > 1 with Ky and K,
connected. If f and g are hybrid equivalent, then they are affine conjugate.

But this is not true for polynomials with a disconnected Julia set. For quadratic polyno-
mials Q. with ¢ outside of M we have the following.

Proposition 2.2. All polynomials Q. with ¢ ¢ M are hybrid equivalent to each other.

3 The Main Theorem

The goal of this section is to build up the necessary setup and notations to give a more precise
statement of the main theorem. This setup will also be used in the proof. Throughout the
section we fix p/q € (0,1) N Q and consider polynomials Q. with c € W ,.



3.1 Dynamical Plane

Recall that for each ¢ € W) /4, there are g rays landing at a..

The other preimage of a, under Q). is the point &, = —a,. There are ¢q additional rays
landing at ., and their arguments are preimages under doubling of the arguments of the
rays landing at «.. Figure 5 shows an example of a Julia set in the 3/5-limb, together with
the rays described above.

The rays landing at a. and &, partition the dynamical plane into 2q — 1 closed subsets.
We denote the subset containing the critical point by V.2, and the others by V or 173 = -V
for s =1,2,...q9 — 1 as shown in Figure 5. Note that these subsets have their counterparts
in the right half plane, the same for all c € W, Ja> hence we shall use the same notation but
without the subscript ¢. For 1 <4 < g we let §* € (0,1) be the argument of the ray on the
common boundary of Vi1 and V2. In the  same fashion, 6¢ denotes the argument of the ray
R.(0") = —R.(6"). Note that R.(0") = R.(6" + 1/2).

Then, Q. acts on these sets as follows:

VcO - ch
‘/'ci’i7ci 1;1) ‘/C[Z+p (mOdq)] for0<qu—1J7éq_p (1)

ch—p’ ﬁcq—p = Vco U U;IZ_11 ‘71

We establish the following conventions: in the dynamical plane and in expressions with
integer indices like [ 4+ p (mod ¢)] we will omit (mod ¢), while in expressions with arguments,
we will omit (mod 1). In both cases, it should be understood that expressions should be
taken (mod ¢) and (mod 1) respectively.

3.1.1 Sectors

For later purposes, we need to define some subsets which we call sectors. They should be
viewed as neighborhoods of rays R.(#) that land.

Instead of viewing the sectors in the dynamical plane, it is better to think about them in
the exterior of the unit disk or, even better, in the right half plane (see Figure 6).

Definition. For a fixed slope s > 0 we define the sector centered at R(f) with slope s as
S(0)=5°0) ={p+2mit e H| |t — 0] < sp}.

The boundary of the sector is the two half lines of slope £27s which cross exactly at the
root point of the sector 276 (see Figure 6). For any positive real A € R, the map M) (z) = Az
maps the sector S(#) homeomorphically and holomorphically onto the sector S(\@), sending
a point of potential (i.e. real part) p to a point of potential Ap. Therefore, for all A € R, the
map

Ha(z) = Hap(z) = Az — 2miB(X — 1)

is a homeomorphism from any sector S(€) onto itself, mapping points of potential p to points
of potential A\p. The map H) is multiplication by A with respect to the root point of the
sector.
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Figure 5: Left: The Julia set for the center of the main hyperbolic component Q3,5 in Ms/5, the
relevant rays and the nine subsets in the plane. Right: the partition in H for all c € W3s.

Note that, as they are defined, any two sectors in H overlap. To avoid overlapping of
relevant sectors, we choose an arbitrary but fixed value > 0 and set

%W)=$FWM=M+QMte§wHPSé%,

where n € NU {0}. We are interested in the sectors around the rays that land at the fixed
point «, and its symmetrical point &., and iterated preimages of these (see Figure 7 for an
example). We set

S=S8@Yu---US(69)

S=8(0"Yu---US@E

The following proposition assures that the restricted sectors do not overlap, if the slope s is
chosen sufficiently small (see Fig. 7). We refer to [BF] for the proof.

Proposition 3.1. Fizn >0 and 0 < s < m The sectors
S5(09),1<i<q and S(0), neN
are all disjoint, where 20 = 67 for some 1 < j < q.

A sector, as defined in the right half plane, can be transported to a sector in dynamical
plane if the map 1. is well defined on exp(S*(6)). In that case we define

Sc(0) = 5:(0) = tpe(exp(S5(0)),

10
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Figure 6: A sector and the homeomorphisms #

which is a neighborhood of the ray R.(6) in the dynamical plane.

In order to have sectors around the rays landing at «, always well defined in dynamical
plane for ¢ € W),/,, no matter if the Julia set is connected or not, we shall restrict c-values
to a neighborhood of the p/g-limb. To find out what the appropriate restriction is, we need

to study the Bottcher coordinates further.

3.1.2 Slits

In this section we want to make precise what the maximal domain of the Bottcher coordinates
is.

Definition. Let 7 and v be such that v = G(0) and log(. ! (c)) = 2v+i2nT, where we have
chosen the branch of the logarithm for which 0 < 7 < 1. A critical slit in H is any iterated
preimage under doubling of the horizontal segments {p+ 27i(7+m) |0 < p <2v, m € Z}.
More precisely, the critical slits are the horizontal segments (see Figure 8) of the form

T+m

{p+2m(—

2
+k) | O<p§2—:, 0<m<2" neN, keZ}

The critical slits in C\ K. are the union of the singular points of the vector-field gradG. and
their stable manifolds. Equivalently, these correspond to the preimages under the polynomial
Q. of the ray segment of argument 7 and potential less than 2v; if 7 is periodic of period k
under doubling, then take iterated preimages of the ray segment of argument 7 and potential
between 2v/2* and 2v. Critical slits in the dynamical plane correspond to critical slits in the
right half plane.

Proposition 3.2. Let C; denote the plane minus the closed unit disk after removing all the
critical slits according to the chosen c-value. Likewise, let H} (respectively (C\ K.)*) be the
right half plane H (resp. (C\ K.)) after removing all the critical slits and their translates by
Z2mi. Then, the map 1. : C\ Dev — U, extends to a conformal isomorphism

pe: G — (C\ Ke)*

11
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Figure 7: Examples of relevant sectors in the right half plane for ¢ € M35 and their correspondents
in the dynamical plane. 0-sectors and 1-sectors have been drawn, with slope s < m (with ¢ = 5).

conjugating Qo to Q.. Hence, the map . o exp : Hy, — U, extends to a conformal map
peoexp: . — (C\ K,)*
conjugating the doubling map to Q..

Proof. (Idea) The extension of 1. is obtained inductively through succesive lifts. The con-
struction is similar to the extension of the Bottcher map in a neighborhood of infinity to the
set U.. Let K € NU {0} be given and assume that

e : Co N (C\ﬁey/2k) — {2z € (C\ K.)*|Gc(2) > v/2%}
is a conformal isomorphism conjugating Qg to Q.. Then we obtain the extension to
e : Co N(C\D,, per1) = {2z € (C\ Ko)*|Ge(2) > v/2F}

as the lift of ¥, o Q¢ which extends .. O

3.2 Parameter plane

Our goal in this section is to make sure that, by restricting the c-values of W), /, appropriately,
we can have the Bottcher coordinates always well defined on the relevant sectors. In this way,
we shall be able to work with the sectors on the right half plane, independently of the value
of ¢ in the (restricted) domain.

12
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periodic under doubling.

We define

Su(0) = S3,(6) = bz (exn(5(6))),

which is a neighborhood of the ray Ry (6) in the parameter plane. Let 9:/(1 be the arguments

of the two rays landing at the root point of the limb M, (observe that Gp_/q = 6P and

0p/q = gPth).

Definition. Given n > 0 and s < m we define the set (See figure 9)

Wihe = {c € Wyyq | ¢ ¢ iy (6,) and Gu(c) < n}.

The main proposition is as follows.

Proposition 3.3. If ¢ € Wp"’;, then sectors in S and S are contained in HF. Hence, they

project to sets S, and §c under (1. o exp) so that sectors around the rays landing at . and
a. are well defined.

Proof. There is nothing to prove if ¢ € M,,/,. Hence assume ¢ € Wg/’; \ M/, From the
hypothesis ¢ € Wp"’;, it follows directly that log(¢a(c)) ¢ SS(H;E/q) and hence, log(éas(c))

cannot belong to any sector in S or S. Therefore no preimage under doubling of log(¢s(c))
can belong to any of these sets, since M2 maps S to S, and S to itself (up to vertical
translation). It then follows that no critical slit can intersect S or S. O

13
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3.3 Statement

We are now ready to give a precise statement of the Main Theorem. For technical reasons
(to be explained later in Section 4.2.1) we set 5’ = 20=D0=1/P)y and s(n) = m Since

n' > n, we have s(n) < T
Main Theorem. Let p/q € (0,1) N Q. Then, for any n > 0 and any slope s < s(n), there

exists an injective map

Ap/q : WI?/,Z — C

such that,

e it is a homeomorphism onto its image;
* Ap/q |Mp/qE @g,l; hence it is a homeomorphism between both limbs, holomorphic in the

interior, and
e the map is quasi-conformal on W;’/’Z \ M, q-

Therefore, this map is an extension of the homeomorphisms in [BF]. It follows without
assuming local connectivity of M, that the homeomorphism @g)l : My q — M, 4 is compatible
with the embedding of the limbs in the plane.

4 Proof of the Main Theorem

4.1 Idea of the proof

We start with a quadratic polynomial Q). with ¢ in the p/g-wake. Without leaving the plane
and using this polynomial, we define a new map g, which presents the combinatorial properties

14



of a quadratic polynomial in the 1/¢g-wake. This new map is holomorphic everywhere except
on the rays landing at . and ag, where it is not even continuous.

To fix this problem, we chose some sectors around these rays (in the complement of the
filled Julia set) and we define a new map f. which is quasi-regular and equals g. everywhere
outside the sectors. This construction is done (up to where it is possible) on the right
half plane (conveniently restricted), and brought back to dynamical plane by means of the
Bottcher parametrization. Hence, the necessary choices are made, once and for all, for all
values of ¢. These choices are made in a very special way to obtain the following crucial fact:
although f. is only quasi-regular, its ¢ iterate f2 is holomorphic on the sectors.

Up to this point, f. is only defined on a topological disk X which contains the Julia set.
Moreover f. maps X. to another topological disk X, which contains X compactly.

In other instances of surgery (for example in [BD] or [BF]), at this point one would
construct an invariant almost-complex structure and integrate it to obtain a polynomial-like
mapping conjugate to f.. After that, the Straightening Theorem would be applied. In this
proof, we shall do both steps at once.

Hence, next step consists, as in the proof of the Straightening Theorem, of extending f. to
a globally defined map F, which is quasi-regular and conjugate to z — 22 on a neighborhood
of infinity, (precisely on C\ X.). We then construct an almost-complex structure o, on C
that is invariant under F,. It is at this point where a difficulty arises: we cannot apply
the Shishikura Principle which requires the map to be holomorphic everywhere except on
regions where the orbits pass at most once. Indeed, orbits pass an unbounded number of
times through the sectors where the map F, is not holomorphic. Hence, it seems a priori that
any invariant complex structure would have an unbounded dilatation ratio on these sectors.
However, this problem is eliminated by using the crucial fact mentioned above: the ¢'" iterate
F? is holomorphic on the sectors. Therefore, the principle can be applied to F9.

We finally apply the Measurable Riemann Mapping Theorem to integrate o, and obtain
a quadratic polynomial Q4 (. conjugate to F.

This process provides the definition of the map A,/ : W]:'/’Z — Cas Apjq(c) = A(c). In

Section 4.3 we prove that this map is continuous and that it is an extension of the map @g,l
in [BF]. In Section 4.4 we show that it is injective and quasi-conformal outside the limb.

4.2 Definition of Ap/q
4.2.1 The combinatorial construction

In this section, we start with a quadratic polynomial in the p/g-wake, and we construct a
new map ¢g. which exhibits the combinatorial properties of a quadratic polynomial in the
1/g-wake. This new map is holomorphic everywhere, except on the rays landing at o, and
Q., where it has a shift discontinuity. We also define a topological disk, whose boundary is
made of pieces of equipotential curves joined along these rays, such that g. maps this disk
outside itself (except for some pieces on these external rays).

Let p/q, 6, 6 for i = 1,...,q, V' and Vi for i = 0,1,...,9 — 1 be as in Section 3.1. We
first establish some combinatorial facts and then proceed to define the new map.
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Definition of n[i]. For 1 <i < g — 1, we define n[i] to be the smallest positive integer such
that

nlilp=1 (mod q).
We set also n[0] = 0 and n[g] = q.

Dynamically, n[i] is the number of iterates of the quadratic polynomial Q. that are nec-
essary to map V) to V/, for 1 <i < g — 1. Observe that 1 < n[i] < g — 1 and that n[i] only
depends on p/q. The set {n[0],n[1],...,n[q]} is a permutation of the set {0,1,...,q}.

Definition of k[i]. For 0 <4 < ¢ — 1, we define
k[i] = n[i + 1] — n[d].

Note that Z?;& k[i] = n[q] —n[0] = g. Suppose 0 < i < g — 2. Dynamically, if k[7] is
strictly positive it coincides with the number of iterates of Q. needed to map V! to Vi*!
injectively. If k[4] is negative we need |k[i]| iterates of Q. to map V! onto V! injectively.
Hence, for 0 < i < g — 2 we have

QICC[O] . Vco 2;1) VC1
Qi .y I pin if1<i<qg—2andk[i]>0
(Q;k[z]|‘/j+1)—1 S A S 75 if1<i<g—2andk[i] <0
Qs vt = UL viuv?
Lemma 4.1. Forall0<:i:<gqg—1,
Kfi] = n[1] if k[1] >0
n[l]—q ifk[i] <0

Proof. The set {n[0],n[1],...,n[qg]} is a permutation of {0,1,..., ¢}, hence there is a unique
element in {0,p,2p,...,(¢ — 1)p} which is congruent to each 0 < i < ¢ — 1. The same is

true for {—(¢ — 1)p,...,—2p, —p, 0} since, for each 0 < i < g — 1, we have —(q — n[i])p =i
(mod gq).
We now subtract the equalities
nli+1llp = i+1+ngq
nlilp = i+ mgq

obtaining (n[i + 1] — n[i])p = 1+ (n — m)q. Hence, k[i]p =1 (mod g). But —(¢+1) < k[i] <
g — 1. Therefore k[i] equals n[l] or —(q — n[1]) = n[l] —q. O

We observe that we have the symmetry n[j] + nlg — j] = ¢ for all j = 0,...,q. Hence,
k[j — 1] = k[g — j] and, in particular

k[g — 1] = k[0] = n][1].

It will be useful also to observe the following property.
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Lemma 4.2. For all 0 <i<gq,
nlilp <i+ (p—1)g.

Proof. We know that n[ilp = i (mod g). Hence n[i]p = i + ng for some n € Z. Assume the
lemma is false, i.e., » > p — 1. Then, n > p and n[i]p > 7 + pq. But this is a contradiction

since n[ilp € {0,p,2p,..., (¢ — 1)p}. O
We now proceed to define the map g.. Essentially, g. := Qf[i] on V}. More precisely,

Definition. On the complement of the set of rays that land at a, and a, we define the map
g. to be

Qg[l](z) if 7€ V! and k[i] >0,i=0,...,q—1
9c(2) = 1 ( gin[1]|w+1)_1(z) ifz€V:and k[i] <0,i=1,...,q—2
ge(—2) ifzevci,izl,...,q—l

By the remarks above, it follows that

g (Vi) = g(V}) = vit! for 1 <i<gq—2
ge( cqil) = gc( cqjl) = Ug;llvclUVcO

Hence we observe that, combinatorially, the dynamics of g. are those of a quadratic polyno-
mial in the 1/g—wake. Moreover, g. is continuous in K, and holomorphic in the interior of
K..

Remark 4.3. Observe that points with a finite orbit (periodic or preperiodic) under Q. are
still points with a finite orbit under g.. If Q). has an attracting cycle then g. must also have
an attracting cycle. Moreover, one can check that g¢ = Q%

Clearly, this map needs to be modified since it is not continuous on the set of rays that
land either at a. or @, (although it is holomorphic everywhere else). We will now study these
shift discontinuities in more detail.

Given any Jordan curve v we denote by B(+y) the bounded connected component of C\ 7.

Keeping in mind that our goal is to obtain a polynomial-like mapping, we want to start
by defining, for a given o > 0, two simple closed curves 7, = 7, . and ¥, = ,,, made out of
pieces of equipotentials joined along rays, such that

1) gc(ﬁé) = ¥, and
2) B(¥.) € B(Ye)
We call g9, ...04-1 (resp. oy, ...0, ;) the potential of 4, (resp. ;) on | A Vit

These potentials are not easy to find since the map g, is a forward iterate of the polynomial
on some regions while in others is a backward one. As a consequence, we cannot take 7. to be

an equipotential curve and obtain that its preimage under g, will be contained inside B(7,).
Neither is it possible to construct these curves out of pieces of equipotentials of potential 2"
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for n € Z. In between two equipotential curves of potential o and 20 respectively, we will
consider others of potential

p—1

12
2r0,270,...,2 7 0

and also these ones multiplied by 2, 22, etc, up to a maximum of oy = 2q_q%10. The idea
for choosing the numbers o; and o] is as follows. Set o, = 0. We know that, to map Vi to
Vi*1 we move k[i] (whole) potential levels up or down, depending on k[i] being positive or
negative. This forces o1 = 2k0l5. We take, by choice, o} = 2-1/pg, = 2k0]-1/P5 and this
again forces oo = 2K01+k[-1/p5 A before we take by choice o, = 27 /Pgy and continue this
procedure until we arrive at

k[0 +tklg=2)— 12 gnlg—1]-13F

1
Og1 =
and hence

50 = 2k[qfl]U;71 — oklO]++klg—1]-251 2q7‘1,%10,

where we have used that k[0] +--- + k[g — 1] = ¢.

We summarize this process in the following proposition (see Figure 10).

Proposition 4.4. Given o > 0, let 4. be the curve made of pieces of equipotential curves
(joined along rays) of potential
= 2"[1‘]7;70, on ch u I~/Ci, for0<i<qg-—1.

!
g;

Let 7. be the curve made of pieces of equipotential curves (joined along rays) of potential

g—1 ~.
— -1
o0 = 250 o VOUULV

o = 2ki-lg! |
i—1

= olil-5, on Vi for1<i<gq-—1

Then,
a) 9e(¥e) =Ae, and
b) B(3:) C B(V)

Proof. Statement (a) is clear by construction.

For the sets Vi .. .,ch_l, statement b) is clear from the definition. To prove it for
viu Ug:_ll Ve, we need to show that o} < o for any 0 <i < ¢g—1, i.e,

-1
a£<2q_q70, foral0<i<g—1.

We start with ¢ = 0. Since of, = o, we only need to show that ¢ — % > 0, or equivalently
%(q(p — 1) +1) > 0 which is clear since p > 1.

For 1 <7 < ¢ — 1 we must show

—1
nfij— >~ <q—1—2
18 D
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Rc(8%)

Rc(6%)  R:(8Y)

Figure 10: Sketch of the curves 7. (full-drawn) and 7, (dotted) and the map g. for a ¢ € W3,5. The
equipotentials drawn are of level 2¥/3¢ where —3 < k < 12.

or equivalently rearranging terms,
nlilp—i—pg+q—1<0.
From n[i]p < i+ (p— 1)q (Lemma 4.2) it follows that
nlilp—i—pg+q—1<i+(p—1)g—i—pg+qg—1=-1<0
and we are done. O

In Proposition 4.4 we refer to an arbitrary ¢ > 0 and in Propositions 3.1 and 3.3 to an
arbitrary 7 > 0 and a slope s bounded in terms of 1. In order to have the equipotential of the

critical point (the figure eight) completely contained in B(3%) and, at the same time, ensure
—a=1
that a slope is chosen so that sectors do not overlap within B(7.), we set n' =09 =27 7 o

and n = 20, i.e., n' = 2(‘171)(17%)7], and choose a slope s < m = s(n).

4.2.2 Smoothing on the right half plane

In this section we modify the map g, to construct a new map f. which will be quasi-regular.
The modification will be done only on the sectors around the rays where the discontinuities
occur, i.e., in the sets S, and S, as defined in Section 3.1.1. Recall that, by Proposition 3.3,

these are well defined sectors in the complement of the filled Julia set for all ¢ € Wp"/’z.

Since we want the entire process to vary continuously with the parameter ¢, we make the
construction (up to where it is possible) once and for all on the right half plane H, or rather
on the cylinder H/27iZ, unfolded as the infinite strip (0, 00) x [0,2m¢), and hence, once and
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for all for all values of c. Let us first redo or translate what we have done in the dynamical
plane up to now, to the cylinder H/2miZ. (See Figure 10).
' Let Z?, Vi and Vi for i = 1,...,q — 1, denote the sets in H/2miZ corresponding to V2,
V! and V! respectively.
We define the map g to be as follows.

Definition. Let (p,27i0) € H/27iZ such that 0 < 6 < 1. Then,

(p.216) (2l p, 27 (2K (6 — 0°) + 0F1)  if (p,27i0) € Vifori=0,...,q—1
,2m0) = ~ .
g\ 9(p,20(6 + 1 (mod 1)) if (p,27i0) € Vifori=1,...,q—1

It is easy to check that, if K, is connected, the following diagram commutes:
H/2miZ —L— H/2niZ
wcoewl lwcoexp
C.\K. —— C.\ K,

If K, is not connected, the same is true for at least all points with potential greater than
the potential of w = 0. Observe that g is independent of ¢ € M/, and it is holomorphic
everywhere except along those rays R(6") U R(0%) for i = 1,...,q for which k[i — 1] # k[i].
In dynamical plane, we constructed two curves 7, and 7/, made of pieces of equipotentials
joined along rays, such that B(¥.) C B(%.) and ¢.(7.) = .. Following the usual notation,
we denote by 4 and 4’ the corresponding curves in the cylinder. Then, ¥ and 5’ are made of
pieces of equipotential (vertical lines) of potentials o; and o} as defined in Proposition 4.4.

(See Figure 11 and compare with Figure 10).

We now proceed to restrict the domain of definition of g. To that end, we shall consider
sectors around the rays 6° and @ for i = 1,...,q and define two C*® curves v and 7/, which
equal 7 and 7' respectively, outside the sectors. That is, we will use the sectors to fix the
jump discontinuities of the curves 7 and 7’. We first observe that these jump discontinuities
can only be of three types. After a simple computation, one obtains the following lemma.

Lemma 4.5. Let o; and o) be as in Proposition 4.4. Then, fori=1,...,q—1,
2

o _okli--E 2= 2h i ki=1] >0

7i-1 =075 =92 G ki—1] <0

1

Tit1 Zk[i]—% _ 2n[1}7; =2N if k[z] >0
Ty - — 1

7 onlll=0=3 — 9 4 k] <0
éf’i_l =% = et g,

where we have set o4 = 0p.

Therefore, to join the curve discontinuities we basically need three types of curves. To
be more precise, let 3 = %% denote a standard sector, i.e., a sector of slope s centered at
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Figure 11: Sketch of the curves ¥ (full-drawn) and 4" (dotted) for all ¢ € W5,5. The figure is drawn
out of scale for clarity purposes.

the real axis (see Figure 12). Let us choose a C* curve, I'; , such that it connects the
points (1, —27s) and 2710(1,27s), and have vertical tangents at these two points. Likewise,
choose 'y (resp. I'3) joining the points (1, —27s) with 2/20(1, 27s) (resp. 2730 (1,27s)), and
having vertical tangents at these points. Observe that for any n € Z, the homothecy Mqn/p
“translates” any of these curves to the right or to the left n/p potential levels in a holomorphic
fashion. Likewise, the vertical translations Ty(p, 27t) = (p, 27(t + €)) move the curves to the
sector S(6).

2mit

T

o ‘20‘ ‘220'

g
2

o

a_
3

Figure 12: The standard sector and the curves I'y, T's and T3, for p/q = 3/5. The potential lines
are drawn out of scale for clarity purposes. In this case we have J; = 2 — %, Jy = =3 — % and
J3:—3+% :—2-1-%.

21



Finally, we define

(

5 on (H/2miZ) \ (S U S)
M, Ti+Tg  onS0),0€{0,6%},ifk[i] =n[l],i=1,...,g—1.

! o

TEIM, T2+ Ty onS(6),0€{0,0),ifkli] =n[l] —q,i=1,...,q 2

o

M, Ts+Ty  on S(6), 0 €{67,6%

\ o

and

v on (H/2miZ) \ S

! i s _
Hz%,aﬂ on S(0"),i=2,...,q—1

Mmrg+%1 on 5(91)
M%;lrl +7—9q on 5(9‘1)

Let X and X' denote the subsets of the cylinder H/2miZ to the left of y and ' respectively.
By construction, v and +' project under 1. o exp to C* curves 7, and «. in dynamical plane
such that X! C X,, where X/ := B(v.) and X, := B(7.).

We shall modify the map g on the sectors around the rays of discontinuity and obtain a
new C! map f: X’ — X, which induces a quasi-regular map f. : X’ — X.. The procedure
to define f on the sectors works as follows. Let us first define three types of quadrilaterals
T;, @ =11, 2,3, inside a standard sector X%, as the subsets of the sector bounded by the curves

T;, 27»T; and the two line segments of the boundary of ¥° (see Figure 13).
Set Ti(o) =T, and ™ — 2_%Ti. Choose a diffeomorphism from I'; to I'9 and extend it

]
to a diffeomorphism D) : T} — T4 such that D) determines the same tangent map on the

boundary of the sectors as the identity on the line segment with negative slope and Ms,-s,
on the line segment with positive slope. Moreover, we also require that

=M 10D

1
» 2 ’

=

DO 5 M
2

on M2;1 (Fl)
P
Inductively, define
D " ™
such that the following diagram commutes.

_ (n—1) _
T1(n 1) D T2(n 1)

2P 2P
(n)

Finally, set D : * — £° where D| D),

™ =
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Figure 13: Three types of quadrilaterals and the map D(©).

The map D : &% — %% is K-quasi-conformal for some constant K > 1. Indeed, D@ is a
diffeomorphism on a compact set, and D consists of compositions of D with holomorphic
maps.

Remark 4.6. Note that D could be defined as follows. Map the standard sector ¥ by (the
principal branch of) the logarithm onto a strip, symmetric around the real axis, with |y| <
where tan(k) = 2ws. We would choose a differentiable map d : log(I'1) — log(I'2) such that
d(z1(y),y) = (z2(y),y) where (z1(y),y) € log(l'1) and (z2(y),y) € log(I'2). Then, extend
to the left by d(z,y) = (z2(y) + =z — z1(y),y), where (z,y) satisfies x < z1(y). This is a
differentiable map which commutes with any horizontal translation, in particular translation
by log(2)/p. Set D = exp odolog, the D commutes with any multiplication by a real positive
number, in particular multiplication by 2!/? in 3.

We proceed now to define f on the sectors. Abusing notation let S(€) denote the restricted
sector S(A) N X, and let S'(6) = S(#) N X'. We shall send each sector to the standard sector
¥ by a conformal isomorphism, so that ¥’ is sent to I'!, I'? or I'? accordingly. We will apply D
or D! and then bring the image back to fit correctly with the image sector. More precisely
the procedure can be written as follows.

Fori=1,...,q — 1, we define f : S'(#*) — S(0"*!) as one of the following three compo-
sitions:
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(a) If k[¢ — 1] = n[1] and k[i] = n[1] — ¢, then we let f be

M_o oT
 MopoT TyproMog
S'(67) LN 5 BN 75 S0

(b) If k[ — 1] = n[1] — q and k[i] = n[1], then let f be

M oT i
G{:I —o D1 7—6i+1oMﬂ

S'(0) —=— 5 x2sy 7, S

(c) Finally, if k[¢ — 1] = k[i], then we let f be
S'(0%) -4 S(6Y).

For i = ¢, we define f : S'(69) — S(0') as f = g = Myauy. For the sectors in S we
define

Toi_gi

Fi80) % 1@ty L sty i=1,...,—1

We end the definition of f by setting f = g everywhere outside the sectors.
The following proposition will be essential later.

Proposition 4.7. The g-th iterate of the map f is holomorphic (wherever defined) on sectors
of S'US". In fact, f7 = Maa on these regions.

Proof. For any i = 1,...,q, the sector S(0%) is mapped onto itself after ¢ iterations of f
(wherever defined). At each step, the map is either holomorphic (if k[i] = k[¢ — 1]), or it is
basically D or D! (composed with holomorphic maps like translations or special homothe-
cies) depending on k[i] and k[¢ — 1]. Since D commutes with My1/,, it only remains to prove
that the number of times when D is applied equals the number of times when D! is applied
and that the composition of the homothecies equal Maq. If we set

0 ifkli—1] = k[4]
eil=<1  ifkli—1] > k[
“1if ki — 1] < kli],

for 1+ = 1,...,q, this is equivalent to show that Zg:_ll e[i] = 0. To this end, consider the
continuous piecewise linear map k : [0,q — 1] — R which results from joining the points
(,k[z]) for i = 0,...,9 — 1 by a straight segment (see Figure 14). Since k[i] can only take
the values n[l1] or n[1] — g, every time the graph crosses the real axis with negative slope
corresponds to a value €[i] = 1, while each time that it is crossed with positive slope, it
corresponds to a value €[i] = —1. Since k[0] = k[g — 1] = n[l] it is clear that the graph of
k has to cross the real axis the same number of times with positive slope as with negative
slope. Hence, Zf:_ll e[i] = 0.

On any sector S (51) the map f only differs by a vertical translation from that on S(6°).
Hence the ¢-th iterate is also holomorphic.

To see that f9 = Mos on S’ U S’ we note that 17, M;’ii = Moq. O

i—1
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Figure 14: The graph of the piecewise-linear map k in the proof of Proposition 4.7 for p/q = 3/5.

4.2.3 Back to dynamical plane

We have constructed a smooth map f on the cylinder which is a modification of g on the
relevant sectors. Since we are considering values of ¢ € W/, for which the filled Julia set
might not be connected, we cannot apply the Bottcher map to simply project f to a map f. on
the complement of K.. However, we showed in Proposition 3.3 that the Bottcher coordinates
are well defined on the relevant sectors. Hence, we define f. : S, — S, as the map for which
the following diagram commutes.

s L5
won| s
s, Ly s,
We complete the definition of f, : X! — X, by setting
— i <
e = {ﬁz;) X\ (L0
Remark 4.8. In fact, the diagram commutes as long as the Bottcher coordinates are well

defined, in particular, down to the potential level of w = 0. See Figure 15.

Proposition 4.9. The map f.: X! — X, is quasi-regular.

Proof. By construction, f. is holomorphic on X \ (S, U §é) On the sectors in S., the map
is defined as f. = () oexp) o f o (1. o exp) . Since f is K -quasi-conformal on sectors, so is
fe- This implies that f. is also quasi-conformal on sectors in S/, O

Remark 4.10. It follows from Proposition 4.7 and the definition of f. that f& = Q% wherever
defined on S, U S..

4.2.4 Extension of f, to C

The following step is to extend f. to a map F, : C — C which is quasi-regular and conjugate
to z — 2% in a neighborhood of infinity (precisely in C \ X_).
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Figure 15: The maps f : X' — X and f. : X! — X, in a disconnected case. The map (¢, o exp)
conjugates these two maps down to the potential level of 0.
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For convenience, we shall from now on view the cylinder H/27iZ as the complement of
the unit disk. Abusing notation, let v, 7/, X, X’ and f denote the analogs to the objects
with those names, now viewed on C\ D (see Figure 16). Note that X and X' are annuli
with their outer boundaries included. Let A be the closed annulus bounded by  and v or,
equivalently, A = X \ int(X’UD). In this model space we proceed now to extend f : X' — X
to F:C\D— C\D.

Figure 16: The set up in the complement of the unit disk.

Choose r > 1 arbitrary and a Riemann mapping R : @\ (XUD) — C \ D,2, mapping
o to oo.ASince X is locally connected, R extends continously to a map on the closed
sets R : C\ int(X UD) — C\ D.. We shall extend R to a quasi-conformal map R :
@ \ int(X' UD) — C \ D, in such a way that it conjugates f to Qo(z) = 22 on 4/, the outer
boundary of X’. Start by choosing R on ' with this property, i.e., the following diagram
commutes.

f
e

oD, —%°%, 4D,

Since we have R defined on the boundaries of the annulus A, and quasi-symmetric, we can
now extend it quasi-conformally to the interior of A. Therefore we have constructed a quasi-
conformal map R : C\ int(X'UD) — C\ D, such that it conjugates f to Qo on ~'.

We may now define the extension of f as F': C \D— C \ D where,

7o f on X'
TR 'oQoeR  onC\ (X UD).
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Observe that, by construction, F' is holomorphic everywhere except on AU (SUS), where
it is quasi-regular. Hence F' is quasi-regular on all C\ D.

Back to dynamical plane, we define F, : C—Cas

fe on X!
F, = .
Yoo Fotpot onC\ X..

Remark 4.11. Observe that if K is connected, the equality F, = ¢ 0 F o 1 ! holds in all
of C\ K,. If K, is not connected, it is true on (C\ X}) U (S. U S;) and, even more, down to
wherever the Bottcher coordinates are well defined, in particular, down to the potential level
of w=0.

In any case, F, is a quasi-regular map which is holomorphic everywhere except in A U
(ScUS,), where A, = 1.(A) (see Figure 17). The dilatation ratio is bounded by a uniform
constant since all choices were made once and for all on the complement of the unit disk.

fe

Figure 17: Shadowed, the region A, U (S. U §C) where F,, : C — C is not holomorphic.

4.2.5 Holomorphic smoothing and definition of A/,
We shall construct an almost complex structure o. on C which will be invariant under F..

As usual, the construction starts in the model space, the complement of the disk. The
dependence on the parameter ¢ occurs mainly through the Bottcher coordinates.

28



__ Let op denote the standard complex structure which we put on C \ D,. Define o on
C\ (X' UD) as the pull back of gy by the map R, i.e., ¢ = R*gg. Observe that, since R
is holomorphic on @\ (X UD) we have that ¢ = og on this set. Likewise, 0 has bounded
distortion on the annulus A since R is quasi-conformal on A.

We now use the Bottcher coordinates to transport o to the dynamical plane. To this end,
define o, = (1);1)*o on the set C\ X!. Since ¢! is holomorphic, 0. = o on C \ X; and o,
has bounded distortion on the annulus A.. Next we use the map F, to extend o, to X. by
setting inductively

.= (F)*o,, on F,"(Ac), n>0.

Notice that this is well defined since successive preimages of A. form a nested sequence of
sets with disjoint interiors (which are annuli as long as we are above the potential level of 0)
(see Figure 18). Moreover, they cover all the complement of K, since the orbit of any point in
X!\ K. has one and only one point in the annulus A. (after removing one of its boundaries).
Finally, define . = ¢ on K.

Figure 18: The complex structure o, on the successive preimages of A..

Remark 4.12. These pull backs can be done in the complement of the unit disk defining an
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almost complex structure o on this set. If K, is connected, then, o, = ()71)*c on C\ K. If
not, the equality is true at least down to the potential level of 0.

Proposition 4.13. Let o. be the almost compler structure on C defined above. Then, o,
is invariant under F, (i.e., Ffo, = o.) by construction. Moreover, o. is quasi-conformally
equivalent to the standard complex structure.

Proof. By construction, it is clear that Fo. = 0. on X.. We claim that F o, = o, holds
also on the annulus A.. Since F, maps A, into C\ X, where o, = 0y, we must show that F,
transports o, on A, to the standard structure oq. By definition, F, = 1.0 R toQpoRo1, .
Hence,
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It remains to be shown that o, has bounded distortion. We only need to prove it in
X, \ K, since 0. = 0y everywhere else.

Let E; be the infinitesimal ellipse defined at almost any point z € X\ K. by o.. Clearly,
if x € A., the ratio of the axes is bounded by some constant K;.

We first consider points on the sectors. Note that F¢| s/ is an injective map and consider
the compact set T' =T, = Ug:_& F1(A.NS.). On the set T, o, is obtained by a finite number
of pull backs of the structure on A., and therefore the distortion is bounded by a constant
K5. Moreover, T \ v is a fundamental domain for Ff : S, \ T — S, i.e., if x € S, \ T, there
exists a unique n > 0 such that F.'%(z) € T \ 7. Hence,

Ey = (Tchnq)il(Equ(m))’

and then, the ratio of the axis is also bounded by K since F{ is holomorphic on S, \ T (see
Proposition 4.7 and Remark 4.10). See Figure 19.

Ifze §é, the bound on the ratio of the axis of E, is also Ky, since F.(z) = F.(—x).

If ¢ (S, U S") then, either there exists n such that F*(z) € (S, U S) or the orbit of z
never enters the sectors. In the first case, let n denote the smallest such number and then,

Ey = (Tchn)_l(EFcn(z))-

This ellipse has also bounded dilatation ratio (with Ky as a bound) since F. is analytic on all
points FY(x) for j = 0,...,n — 1 (that is, outside of the sectors). In the second case, there
exists a unique n > 0 such that F*(z) € A.. By the same argument, the dilation ratio of E,
is bounded by K;.

This concludes the proof of the proposition. O
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Figure 19: The complex structure o, on the sectors S.. For simplification the sketch is drawn for
g = 3. Moreover, the ellipse field is drawn in a symbolic way underlining that FJ is mapping each
sector holomorphically into itself, so that the ellipse field in this sense repeats itself.

We proceed now to integrate the almost complex structure. Applying the Measurable
Riemann Mapping Theorem, we obtain a quasi-conformal homeomorphism ¢ : C > C
which integrates o.. That is, @0y = 0. and .0 F, 0. ! : C — C is holomorphic of degree
two. If we choose @, so that it fixes 0 and oo and is of the form R(z) + O(1), then it is
unique and the composition map is a centered quadratic polynomial. It is also monic, since
at infinity the map takes the form

peoFoop;!(z) =pcopeoR ™ 0QooRoy; 0p; ' (2) =2+ O(2).
Hence, it can be written as

QA(C) =2° + A(C),

which gives the definition of A/, : WI?/’; — Cas Apy(c) = A(c). We will write A(c) whenever

the dependence on p/q is understood.

We observe that A is well defined once we have chosen the slope s, the bound 7, the
boundaries of X and X', the smoothing f of g, the real number r > 0, and the map R.
However, recall that all polynomials outside M are hybrid equivalent. Hence, the resulting
A(c) may depend on these choices in the case when the Julia set is disconnected. This is
the reason why we have made all the choices once and for all in the right half plane (or the
complement of D).

4.2.6 The Bottcher map of Q)

A useful consequence of this construction is the fact that one can obtain an expression for
the Bottcher map of the new polynomial in terms of the integrating map. More precisely, we
have the following proposition.
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Proposition 4.14. Given c € WI?’;, let w¢, A(c), etc. be as above. Then, the Béttcher map
of Qa(e) can be written as

Ya@) = PcopeoR™" on C\Dy.
Proof. By construction, the following diagram commutes.

(E\]D)T &—) (/C\\]D)TQ

R R

C\(x'uD) - C\ (xuD)

Pe e
c\x: L5 C\x
Pe Pc
~ Qae)y =~
C\‘Pc(Xé) #} C\‘pc(Xc)

Observe that the map ¢, o 9, o R™! : ® \D, — ® \ ¢c(X,) transports the standard com-
plex structure to itself and therefore it is holomorphic. Moreover, it maps oo to oo, and it
conjugates Qp () to Q. It follows that it is the Bottcher map of Q()- O

Corollary 4.15. The boundaries of the sets ¢.(X.) and p.(X]) are equipotential curves of
the polynomial Q) of potential 21log(r) and log(r) respectively.

4.3 Continuity of A,/, and other properties

The goal of this section is to prove that the map A is continuous and that it coincides with
the homeomorphisms in [BF] on the limbs. Prior to that, we state some lemmas and observe
some important properties of the map.

The following rigidity lemma is crucial for the construction to work.

Lemma 4.16 ([DH2] p. 304). Let ¢; € OM and co € C. Suppose that the polynomials Q.,
and Q., are quasi-conformally conjugate. Then, c¢; = c3.

The following lemma is the analog to that in p.313 of [DH2].

Lemma 4.17. Let {cp}n>0, ¢n € Mp/q, be a sequence converging to ¢y € Mp/q. Let A\, =
A(ep) for n > 0. Assume A, is an accumulation point of the sequence {A\n}n>o. Then, the
polynomials @y, and Qy, are quasi-conformally conjugate.

Proof. Let ¢, = @, be the integrating maps which are all quasi-conformal maps of the sphere
with dilatation ratio bounded by a uniform constant K, and normalized so that ¢, (0) = 0,
©n(00) = 0o and ¢, is tangent to R(z) at infinity. Also, Oy, have support in a fix compact set.
Since the space of such maps is compact with respect to uniform convergence, there exists a
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subsequence {¢p, } which converges uniformly on compact sets to a K —quasi-conformal map
¢«. Abusing notation, we denote this subsequence by {p,}.

The quasi-regular maps F; constructed by surgery depend continuously on the parameter
¢, since the sectors involved in the construction do so. Then, F. = F,, and

Q)\n:‘-PnoFcno(Pr:lj(P*oFcoo(P*_l =: Q«

Observe that (), must be a holomorphic map of C of degree two since it is the uniform limit
of holomorphic maps of C of degree two. Moreover, @), is centered since the critical point
is ©.(0) = 0 and monic because the Béttcher map ¢, o 1, o R™! is tangent to the identity
at infinity. Hence @, is of the form 22 + X and in fact, Q.(z) = Qx,(2) = 2z? + ), since
Q», = Q. and A\, = A, by hypothesis. We conclude then that

Q)\* ~qc Fco ~qc Q)\o

and the lemma follows. O

The following proposition ensures that points are mapped by A where they should.

Proposition 4.18. The map A : W;”Z — C sends the interior of the limb My, to the
interior of the limb M, ,q; the boundary of M,,, to the boundary of My,,, and the rest of
points in W:/’; \ M,,q to points in C\ M.

Proof. If ¢ belongs to a hyperbolic component of M, , and hence has an attracting cycle,
then Q) (. also has an attracting cycle (see Remark 4.3) and therefore A(c) belongs to a
hyperbolic component of Mj /,.

If ¢ belongs to a non-hyperbolic component of the interior of M/, then the Julia set J.
has positive measure and it carries an invariant line field. Following the surgery construction,
one can check that Jj() must also have positive measure and carry an invariant line field.
Hence A(c) belongs to a non-hyperbolic component of the interior of M ;. (For more details
see [BF].)

Suppose ¢ € OMy, /4. Let {cy}n>0, ¢ € OM, )4 be a sequence of Misiurewicz points (i.e.,
w = 0 is strictly preperiodic under @).,) converging to c¢. Recall that this sequence exists
since Misiurewicz points are dense in the boundary of the Mandelbrot set. Let A = A(c)
and A, = A(cp). The critical point of @), must still be strictly preperiodic, and hence A, is
Misiurewicz and belongs to the boundary of M;/,. Now, let A, € dM;/, be any accumulation
point of the sequence {\,,} which must exist since OM; /q 18 a compact set. By lemma 4.17 the
polynomials @ and @, are quasi-conformally conjugate. But we also know that A, € M, ,.
Hence, it follows from lemma 4.16 that A = A, € OM,.

Finally, let ¢ € WZ/’Z \ M, /s Then, the critical orbit under Q. is unbounded. It is also
clear from the surgery construction that the critical orbit under @) is unbounded and
therefore A(c) € C\ M. O

We are now ready to prove the continuity of the map A. First observe that, since the
integrating map ¢, conjugates F. to the polynomial Q4 (), the critical point and the critical
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value of F, (i.e., 0 and F,(0)) must be mapped to the critical point and the critical value of
QA(c) Tespectively (i.e., 0 and A(c)). Hence,

Ale) = @e(Fe(0) = we(Q21M(0)), (2)

since 0 € VO \ S, and F, = Qg[l] on this set.

Theorem 4.19. The map A is continuous.

Proof. We consider two separate cases. Suppose ¢y & OM, /q- Let U be a neighborhood of ¢
in WI?/’Z such that U N oM, ,, = (. For ¢ € U we know that the almost complex structure o,
we constructed varies continuously with ¢. Hence, it follows from the Measurable Riemann
Mapping Theorem including dependence on parameters, that the map (c,z}+ (¢, p.(2)) is
jointly continuous where, as above, ¢, is the integrating map. Hence the map ¢ — goc(Q?[l] (0))

is continuous and this equals A(c) by Equation (2).

Now suppose ¢y € OM,,/,. The same argument cannot be applied since there is a discon-
tinuity of the almost complex structure at all parabolic points. Let {cy}n>0 be an arbitrary
sequence of parameter values ¢, € W:’Z such that ¢, — ¢g. Let A, = A(c,) for n > 0. For
any accumulation point A, of {\,} we must show that A, = Ao.

From Lemma 4.17 it follows that @), and @), are quasi-conformally conjugate. From
Proposition 4.18 we know that A\g € 0M,,,. Hence we conclude from Lemma 4.16 that
Ax = Ao O

The following proposition states that the map A coincides with the homeomorphism
constructed in [BF]. Recall that in this paper homeomorphisms

q
Qi Mg — My,
were constructed by surgery for any p/q,p'/q' € (0,1) N Q.

Proposition 4.20. If c € My, then Ay /q(c) = @3,1(0)- Hence, Ay, is a homeomorphism
on the limb M, ,, which is holomorphic in the interior.

Proof. In [BF] we constructed for each p/q € (0,1)NQ a homeomorphism ¢,,/, : My, /4 — Lg.o,
where L, o denotes the 0-limb of the connectedness locus L, of the family of polynomials
Py(z) = Xz(1 + %)q. The homeomorphism <I>g,1 : Mpq — My, equals the composition
qﬁl_/lq o bpsq+ Mpjq — My In order to prove that A/, = @g,l on M,,, we shall prove that
b1/q © Npjq = Ppjq o0 My .. We shall briefly recall the surgery construction in [BF] leading
to the definition of ¢, /4, leaving out technical details.

Let ¢ € My, be chosen arbitrarily. We truncate the plane by cutting away the wedges
Vi ..., VI8! and identify points equipotentially on the two bounding rays R.(6') and R.(67).
We denote this truncated plane by C! = (VO U Uf;ll V#)/ ~ . Then we construct the first
return map of Q. on the truncated plane, that is on V,? and each ffc] we apply the smallest
number of iterates of (). that maps the sets into the allowed space. The first return map

of Q. is then QI on int(V?) and z — Qg_n[j](—z) on int(VCj),j =1,...,q — 1. To obtain
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the polynomial Py with ¢, /q(c) = A, we restrict the first return map, and smoothen it on

sectors around the lines of discontinuity, ray segments of R.(67),7 = 1,...,q — 1, such that
the resulting map, say p., is quasi-regular. This map is hybrid equivalent to the polynomial
Py. In [BF] we argued that other choices in the construction result in maps that are hybrid
equivalent to p., hence also to Py. Starting from @, () we construct in a similar manner a
map pj()- By a rigidity argument analog to Proposition 2.1, to finish the proof we only need
to show that pe ~pp pa(c)-

Observe that if we form the composition gg_j on ch,j =0,1,...,9 — 1 then we obtain
gl = QZ‘"“] since
. k[j] . k[j+1] klg—2] klg—1] ~ .
ch] Qe ch]—|—1 c N c N cq—l Qc ‘/CO U UZq:—ll ‘/::Z,
and k[j] + k[j + 1]+ --- + klg — 2] + k[g — 1] = g — n[j]. It follows that the first return map
of g, equals Q¢ on int(V?) and z — Qqc_"m(—z) on int(V¢). Hence the first return map of
ge coincides with the first return map of Q..

We note that f. ~pp Qa(c), and if we carry through the surgery construction starting from
fc we obtain a quasi-regular map, say p., that is hybrid equivalent to pj(.). Since we can use
the choices made when starting from f. as choices when starting from Q. we have p, ~pp P
and all together

PA(¢) ~hb Pe ~hb Pe ~hb Px-
O

Remark 4.21. Note that since ¢.(7.) is an equipotential of level 2log(r), where r is the
arbitrary number chosen in connection with the Riemann mapping

R :C\int(X UD) — C\ Do,

it follows that

G (Ac)) = 21og(r),
if c € Wy,/q and Gas(c) =, while

G (A(c)) < 2log(r)
3 78
ifce Wp/q.

Note that the image A(W”) may not be contained entirely in W;,,. The Riemann
: IS p/q e o

mapping R is uniquely determined up to post-composition by a rotation. Hence when 7, s
and 7 have been chosen then the angle spanned by the arc R(y N (V! \ (S(8') U S(6?)))) on

0D, is determined. If this angle is larger that ﬁ, the span of Wy /4, then the image of

W:/’; cannot fit into W7y ,.

Note however that the map A do depend on the different choices. Let us choose for

instance an arbitrary ¢’ € WI?/’Z \ M,/, and let 7' > 0 be such that 2log(r) = G (A(c)).

Let R’ : C\ int(X UD) — C\ D)2 be a Riemann mapping satisfying R'(co) = oo. If we
continue the construction from here on to obtain a map A’ = A; /g WI?/’Z — C, then we can
be sure that A'(¢") # A(c'), since Gpr(A(c')) < 2log(r').
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4.4 Injectivity and quasi-conformality of A,/ outside the limb

To show that the map A,/ : Wp"/’z — C is a homeomorphism in all of its domain onto

its image it remains to solve the problem of injectivity on the complement of the p/g-limb,
Wala \ Mp/a-

We shall do so by giving an alternative expression for the integrating map ¢, in the cases
when K, is not connected. This will lead to a new expression of A(c) for which injectivity
will be simpler to check. We remark that this argument cannot be used for points in the limb

but only those in the complement.

To this end, let ¢y denote the center of €2/,
(that of period ¢) and let ¢ € Wp"’; \ M- Let 9, and 1. be the two respective Bottcher
maps. Recall that the set U, was ({eﬁned as the set of those points in dynamical plane that lie
in the complement of the filled figure eight that corresponds to the potential level of w = 0.

Define the map

the main hyperbolic component of M,/

he: U — C\Kco
z > (e 07 1)(2)

Note that h. is injective and holomorphic for any c € W;;;Z \ M, /q-

Remark 4.22. In fact, the set {(c,z) | c € W:/’Z\Mp/q, z € U} is open in (WI?;Z\MP/‘I) x C.

In other words, for any given ¢ € Wg/’z \ M, and any z € U, there exists a neighborhood

Uz € W;'/’Z \ My, of ¢, and a neighborhood V3 of Z, such that V; C U, for all ¢ € Uz

Moreover, the map (c,z) — (c, hc(z)) is well defined in Uz x V5 and it is holomorphic in
both its variables, ¢ and z.

he

(U Yeo

S

A

Geo ! (ve)

Figure 20: The set U, and the map h,.

An important property of this map is that it provides a conjugacy between F;, and Fy,.
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Lemma 4.23. The following diagram commutes.

U. —es Uy,
b
C\ K., —2, C\ K,
Proof. Recall (from Remark 4.11) that
Fe =10 Foy;,

on U,., where F' is a map defined on the complement of the unit disk independently of c.
Then,

heo Fo = (oo 007 ) 0 (the 0 Fotp; ) =1y 0 Fogp; .
On the other hand,
Feyohe = (they 0 Fotpy) o (e, 09, 1) = they 0 Fogp, .
|

We shall now make a parallel construction for polynomials in Wy, \ M; /q- et Ao =
Ay /q(co), this is the center of /4, the main hyperbolic component of the 1/¢-limb. Let U)
be as above in the dynamical plane of Q).

Similarly as before, we define a map

Hy,: U — (C\K)\O
z (a0t )(2)

which is holomorphic and injective.

The analog to Lemma 4.23 is also true and it is proven in the same way.

Lemma 4.24. The following diagram commutes.

Uy &) Uy

| |

C\ Ky, —2% C\ Ky,

The two maps h, and Hj(.), together with the integrating map for the center point co,
give the following key expression for the integrating map for any ¢ not inside the limb.

Proposition 4.25. The integrating map @, can be written as
Pe = HX(C) 0 Pey © he,

on U.N wgl(UA(C)).
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Proof. On the smaller set C\ X/, Proposition 4.25 can be also stated saying that the following
diagram commutes.

c\X,, <X c\(x'uD) %> C\x!

QDCOJ, ’R,l 1901:
C\po(Xl) ¢20  €\D, 29, ¢\ (X7

which we have proven in Proposition 4.14.

Observe that this argument cannot be applied deeper since the expression for the Bottcher
maps in terms of R applies only to C \ ID,. However, we shall use Lemmas 4.23 and 4.24 to
pull back the equality.

For any z € U, N @, ' (Up(c)), there exists n > 0 such that F'(z) € C\ X,. Hence the
proposition applies to F7'(z) and we have

Hi(e) (e (FE'(2)) = e (e (FE'(2))) -
Since z and F*(z) are in U, and the Bottcher maps are defined in this set we have that
he (FE'(2)) = Fg (he(2)) - (3)

Since z € (pc_l(L{A(c)), it follows that ¢.(z) € Up() and hence Hy()(pc(2)) is well defined.
Moreover,

Q3 (Ha) (#e(2))) = Haoy (@) (ve(2)) (4)

Now, by construction we know that ¢, (F7(z)) = QX(c) (¢c(2)). Hence, equation (3) can be
written as

Hye) (@i o) (9e(2))) = oo (FE (el2))
or, using (4), as

Q% (Ha(e) (0e(2))) = Q3 (0cq (he(2))) -

By taking the appropriate branches of the inverse of Q)),, we obtain that

HA(C) (pc(2)) = peq (he(2))

and the proposition follows. O

If c € W;}/’Z \ M,,,, the prospective critical value F.(0) = Q?[l](O) belongs to the set
U:nN wgl(UA(c)) (see Figure 21), Proposition 4.25 holds for this point. We have then proved

Proposition 4.26. Let c € WI?/’Z \ Mp,q- Then,

Ale) = o, (Q?[ﬂ (o)) =H,, (soco (hc (Q?[”(O)))) :
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Figure 21: The set U N ;" (Un()) and the location of F.(0) = Q?[”(o) and of Q4 (c)(0).

It remains to be shown,

Proposition 4.27. The map ¢ — A(c) is a quasi-conformal injection.
Proof. Let fi: W4 \ My, — int (Vg \ K¢,) be defined by

fi(e) = he(QE(0)) = he(QEM ' (e)).
We shall first show that this map is well defined and it is a holomorphic isomorphism.
Clearly, any ¢ € W,,/, \ M, can be viewed as well in V¥ \ K.. Then, the map Q?mfl
sends ¢ to a point in Vc1 \ K., which will be mapped, by the Béttcher coordinates ., o 1, L
into Vc% \ K¢,- The composition is clearly holomorphic since all maps are holomorphic with

respect to ¢ and z. Moreover, it is proper, onto and of degree one. To see this, observe

that 7 maps the rays RM(H;E/q) bounding W,,, bijectively onto the rays R, (6") and R, (6?)

bounding Vc%. Indeed, let ¢ € RM(O;/q) and be of potential p. Then, in dynamical plane,
¢ € R.(6P) and is of potential p (recall that 67 = 0;/(1); the image Qg[l]fl(c) € R.(0') and
is of potential 2"[1/=1p. It follows that hC(Q?[l]fl(c)) € R.,(0") and is of potential 2711 p.

Hence 7 maps RM(Op_/q) bijectively onto R.,(#') and, similarly, it maps RM(O;L/q) bijectively

onto R, (6?). To finsih the argument we observe that when c tends to dM,,,, then fi(c) tends
to 0K,,.

Next, consider the following map:

H: C\M — C\Kj

We observe that H is also a holomorphic isomorphism since we may write

HN) = (83 (V) =g (d1r(N))

which is a composition of the two holomorphic isomorphisms ¢ps : C\ M — C\ D and
w,\o : C\]D) — C\K,\O.
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A\

Peo

v

Figure 22: Commutative diagram relating parameter spaces and dynamical planes, as in Prop. 4.26.

Finally, observe (see Figure 22) that the map A = H~! o ., o #i is a quasi-conformal
homeomorphism onto its image, being a composition of two holomorphic isomorphisms and
a quasi-conformal map. Indeed, note that

, 1 92n[1]-1 ,
ROWE\ Myyg) = (V)™ 10\ K,
where (V%)Qn[l]_l”’s is the dynamical wake restricted by part of the equipotential of po-
tential 7 and slope lines of slope s of sectors around R.,(0') and R.,(6?). Thus the set
Do ((Vc%))zn[l]_ln’s \ KCO) is a quasi-conformal image within C \ K, which is finally mapped
by a holomorphic isomorphism onto a subset of C\ M. O

This ends the proof of the Main Theorem.

Remark 4.28. In this paper we have constructed an extension A/, of the homeomorphism
‘I’Z,l : My/q — My/q and proved that Ap/, is quasi-conformal outside M, ;. As noted in
the introduction we can deduce that A,/ (after a restriction — if necessary — followed by

an extension) gives rise to a homeomorphism from W)/, onto W/, which is quasi-conformal
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outside M, ,. As further mentioned in the introduction, the combinatorial extension of
@gl described in [BF] assuming local connectivity of the Mandelbrot is not quasi-conformal
outside M,,,,. We end this paper by describing why this is so. The combinatorial extension
is defined for each ¢ € Wy, \ M/, with ®p/(c) = ePt2mil ug

(0, 0) = ((0))

where O : [9;/(1,9;/{1] — [Hf/q,ﬁf/q] is obtained through combinatorial surgery as described
in section 7.1.2 in [BF]. The map is of the form (p,0)}» (p,h(0)) with h : I} — Iy a

homeomorphism between intervals. Indeed, such a map is quasi-conformal if and only if h is

bi-Lipschitz. In our case, © is not Lipschitz, thus @Zl is not quasi-conformal. To see that ©

is not Lipschitz we compare para-patterns in W, and Wy ,.

We call a parameter value ¢ an a-Misiurewicz point if the critical point eventually falls on
the fixed point a.. As usual fix ¢ and consider an arbitrary p/q. Each a-Misiurewicz point
in M/, is the landing point of ¢ rays of external arguments, say v1 < vo < --- < v, The
lengths of the intervals [v;,v;41] for j = 1,2,...,¢ — 1 are of the form 27°()) /D where D is
a common denominator depending on ¢ and o?(1),0%(2),...,0"(¢ — 1) is a permutation of
0,1,...,9—2. Note that for p = 1 the permutation is trivial, i.e. (¢P(1),07(2),...,0P(g—1)) =
(0,1,...,9 —2), and for any p we have o”(p) = 0. We consider in the limb M, , the tree
of - what we shall call - dominating a-Misiurewicz points together with the tree of external
arguments associated to those. Let ¢? denote the first dominating a-Misiurewicz point in
M,/ q, 1-e. the one of lowest pre-period, and let VP ..., V8 denote the external arguments in
increasing order of the g rays landing at ¢?. Let W? denote the sub-wake within Wp/q bounded
by RM(Vf ),RM(V;'-’ +1) and . Inductively, let ¢; . denote the dominating a-Misiurewicz

point in the subwake Wﬁ,...,jk i.e. the one of lowest pre-period, and let V;Jh___,jk,l, eee ’V;I')l,---,jk,q

denote the external arguments in increasing order of the ¢ rays landing at i here
P i P ’

W} . denotes the sub-wake within W7 . bounded by Rar(v}, ), RM(Vfl,...,jk_nLl)

and ‘3?1,..., o1t The surgery map @g’l respects the tree of dominating a-Misiurewicz points,
and the combinatorial surgery map © respects the tree of associated external arguments,

especially

P =t
G(le,,]k) - le,...,]k'
. . . . . . p p
Consider in particular the two arguments in the k-th generation: vy, . ppand v, .. A

simple computation shows that

O(vp,.ppi1) — ©h,..p0) — ok(p—1), (5)

D D
Vp,...p,p—f—l Vp,...p

Since 2¥(~1) is unbounded when k tends to infinity, the map © is not Lipschitz. See
Figures 23 and 24.
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Figure 23: Some external arguments of the tree of dominating a-Misiurewicz points in the 2/3 and
1/3 limbs, correpsonding to levels k = 1 and k = 2. Highlighted, we find the intervals in equation (5)
for these two levels. The ratios are 2' and 22 respectively.

Figure 24: Some external arguments of the tree of dominating a-Misiurewicz points in the 3/5 and

1/5 limbs, corresponding to levels k = 1 and k = 2. Highlighted, we find the intervals in equation (5)
. 1. A7/992-39/992  _ 171/3968—163/3968  _ o4
for these two levels. The ratio for £k = 1 is 5957992—695/992 — 22 and TTT11/15872—11109/16873 = 2% for

k=2.
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