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Abstract

The complexification of the standard family of circle maps Fy3(0) = 0 + o +
Bsin(f) mod (2r) is given by Fop(w) = wel®eB/D@=1/w) and its lift fo5(z) = z+a+
Bsin(z). We investigate the 3-dimensional parameter space for F,g that results from
considering o complex and g real. In particular, we study the 2-dimensional cross
sections 3 =constant as 3 tends to 0. As the functions tend to the rigid rotation Fy g,
their dynamics tend to the dynamics of the family G\(z) = Aze* where A\ = e,
This new family exhibits behavior typical of the exponential family together with
characteristic features of quadratic polynomials. For example, we show that that the
A-plane contains infinitely many curves for which the Julia set of the corresponding
maps is the whole plane. We also prove the existence of infinitely many sets of A

values homeomorphic to the Mandelbrot set.



1 Introduction
There has been much interest in the two parameter family of maps of the circle given by
F.5(0) =0+ a+@sin(f) (mod27), #€R (1)

where o and [ are real parameters and 0 < 0 < 27.

This family is known as the “standard family” and its parameter space contains the
well known Arnold Tongues (Arnold [1961]) (see Fig. 1). These tongues correspond to
parameters for which there exists a periodic cycle of a given period and a given rate of

rotation around the circle.
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Figure 1: Sketch of the Arnold tongues and their periods: parameter space for o, 8 € R.

In order to better understand this picture, we will investigate the standard family in
the complex plane allowing not only the variable but also the parameters to be complex.

In the complex plane, the standard family is represented by

Slw=3),

Fos(w) =we™e



where w is now a complex variable. It is easy to check that for o, 8 € R, F,,3 preserves the
unit circle and that, on this circle, F,3 coincides with the standard family F,g. For each
a and 3, F,p is an entire function of C* (C — {0}) with two critical points and essential
singularities at 0 and co. Such maps have been studied by Keen [1988], Kotus [1990] and
Kotus [1987].

When considering «, # € C, the parameter space for this family is 4-dimensional and
includes the Arnold tongues picture as a 2-dimensional slice. In this paper we will analyze
the 3-dimensional slice that corresponds to # € R and o € C. More precisely, we will
reduce to the case |3| < 1 and describe the changes that occur when 3 decreases.

When [ tends to zero, we encounter a striking phenomenon: while the function is
tending to the trivial map w — w €@, its dynamics are tending to the dynamics of another
map definitely different from a linear map. Our results, stated and proved in Sec. 4, concern
the parameter space of this new family, G,(z) = A ze?. The diffeomorphism analogue of
this family, known as the semi-standard family, has been studied by Gelfreich et al. [1992],
among others. We show that G, combines characteristic features of polynomial families
with those typical of entire functions (see Baker & Rippon [1984], Devaney [1991], Devaney
& Krych [1984], Devaney & Tangerman [1986], Eremenko [1989], Eremenko & Lyubich
[1984], Eremenko & Lyubich [1992], Goldberg & Keen [1986]). Baker [1970] and Jang [1992]
proved that for a certain sequence of parameter values, the maps GG, have Julia sets which
coincide with the whole complex plane. We show that, as in the case of the exponential
family (see Devaney et al. [1990]), there are infinitely many curves of parameter values
for which the Julia set of the corresponding map is the whole plane. On the other hand,
we find many regions in parameter space for which the maps behave in a quadratic-like

fashion, which is never the case in the exponential family.



2 The Complex Standard Family

We consider the standard family of circle maps from a complex point of view, that is, a
family of complex maps whose restriction to the unit circle is described by Eq. (1). In
order to find an expression for them we first define their corresponding lifts on the covering
space C by:

fag(2) = 2+ a+ B sin(2) 2)

with z € C. Now we conjugate these functions by the projection e** which sends the real

line to the unit circle. We get:
Fop(w) =we™ ez (=), (3)

with w € C*.

This is a family of entire functions on C*. They also fall into the category of functions
of finite type since the set of singular values consists of two critical values. We also have
asymptotic values at 0 and oo, which coincide with the essential singularities and therefore
neither of them are in the domain.

Given a complex function f we will denote its Julia set by J(f). It is defined as the
set of points z € C for which the family of iterates {f"} is not a normal family in any
neighborhood of z. Alternatively, it may also be defined as the closure of the set of repelling
periodic points. Fatou [1926] showed that the Julia set of an entire transcendental function
is a closed, non-empty, perfect set, that it is completely invariant under f and that periodic
points are dense in J(f). The same is true for J(f)U{0} if f is entire in C*, as is F,3. The
complement of the Julia set, C — J(f), is called the stable set and we denote it by N(f).
Keen [1988] and Kotus [1990] proved that every component of the stable set of an entire
function on C* of finite type is periodic or preperiodic. This establishes the nonexistence of
wandering domains and gives an alternative definition for the Julia set as the closure of the
set of points that tend to 0 or co (in certain fixed asymptotic directions) under iteration.

Since each attracting periodic orbit must attract a critical or asymptotic value, there are



at most finitely many of these orbits and in the case when all the singular values tend to
zero or 0o, the Julia set is the whole complex plane.

For each o and 3 # 1, F,3 has 2 critical points given by

e = o arccos - oy = e—iarccos%l
When =1, ¢ = —1 is the only critical point.

In the cases we are considering, 3 is always a real parameter less or equal than 1. Hence,
the critical points for F,,4 always lie on the negative real line . Since they are the projection
of the critical points for f,3 , which are complex conjugates , we have that ¢, and c, are
symmetric with respect to the unit circle. This symmetry holds also for their entire orbits

in the following way:

Proposition 2.1 If 8 <1 and a is any complexr number, then, for alln > 0, Fo’}ﬁ(cl) and
Fzs (co) are symmetric with respect to the unit circle. That is, their arguments are equal

and their moduli are inverses of each other.

Proof : A simple computation shows that for any complex number z,

fas(2) = fap(2).
Since the critical points of f,3 which we denote by c and ¢ are complex conjugates, we have
that all their iterates are also complex conjugate. The projection by e** of two complex
conjugate points gives two points which are symmetric with respect to the unit circle.
Hence, since the projection of the iterates of ¢ and ¢ by f,4 are the iterates of ¢; and ¢y by
F,s, the result follows.
O

We consider two dimensional slices of parameter space that correspond to the a-plane
for a a fixed real -value. The real axis of such a slice reflects the different intervals we
encounter when we cross the Arnold tongues horizontally (see Figs. 1, 2). In the computer

pictures (see Fig. 3,4) we color black any a-value for which the orbit of the critical point
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does not “escape” to 0 nor to oo in 100 iterations. We consider that the orbit has escaped

10 i1 modulus.

if an iterate is larger that €' or smaller than e~

Figure 3 shows the result of applying this algorithm for # = 1 and Fig. 4 is for 8 = 0.5.
We observe that each tongue-interval in the real axis has an extension in the complex
plane. When 3 = 1, case for which there is one critical point only, there is a not surprising
symmetry with respect to the real axis. For 8 < 1 this symmetry disappears. This does not
mean that the dynamics of F,3 are different for o and @, but only means that the roles of
the two critical points are different. When we consider @, these roles interchange. In other
words, if we flip these pictures with respect to the real axis, we obtain the information
about the other critical point. This difference in the two critical orbits allows the existence
of plenty of bistable regions, i.e. regions of parameter values for which each critical point
is attracted to a different periodic orbit. Note that this is never the case when both

parameters are real (and 3 < 1).

Re (B)

Re (a)

Im (a)

Figure 2: 2-dimensional slices of 3-dimensional parameter space.



Figure 3: a-plane for § =1 fixed. Range: [—1.4,7.7] x [—4.5,4.5].



Figure 4: a-plane for § = 0.5 fixed. Range: [—1.4,7.7] x [-4.5,4.5].



3 Limiting Dynamics

When we look at slices for values of 3 tending to zero we observe a curious fact: while
the maps are tending to the trivial map F,(w) = we™, their dynamics are not. In the
upper half plane there seems to be a clear limiting shape. This corresponds to following
the behavior of the critical point that tends to 0 as f — 0. Symmetrically, the limiting
shape appears on the lower half plane when we follow the critical point tending to —oo. It

appears that each tongue is tending to a Mandelbrot set! (see figs.5,6).

Figure 5: a-plane for § = 0.1 fixed. Range: [—1.4,7.7] x [—4.5,4.5].

This suggests the possibility of finding a new family of maps conjugate to Fi,g which
does not become trivial when [ is zero. To find this family we will rescale so that one of the

two critical orbits has a limit in the interior of C*. More precisely, consider the following
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X [—4.5,4.5].

]

7.7

Figure 6: a-plane for 3 = 0.01 fixed. Range: [—1.4,
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two conjugacies:

Proposition 3.1 Let hi(w) = £ w and hy(w) = £

) _ 2
1. hy conjugates F to G1(z) = e"*ze” e72=

) _n2
2. hy conjugates F to Go(z) = e z€* et

Proof : Both computations are essentially the same. We show the second:

Go(2) = ha(Fw)) =4+
— 8 1 p—ia =3 wegi
2 w )
=e " zefe s
where the last step comes from
w=h )=
2z

O
The basic idea is: h; contracts the whole complex plane by a factor of /2. This
guarantees that one of the critical orbits remains bounded as (§ tends to zero. In the
second case we do the same thing but first we interchange the roles of the critical points.
Because of the symmetry mentioned above, the resulting function G, is the same as G
when we substitute o by —a. It is therefore equivalent to work with either map. We choose
to work with G(z) = Ga(z).

We now set 3 equal to zero. The resulting map is:
Go(2) = e ™ zé,

Proposition 3.2 Gy has a fized point at 0, which is also an asymptotic value. There exists

a unique critical point at z = —1 independently of «.
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Proof : It is clear that 0 is a fixed point. When Re(z) — —o0, G, tends to 0 which

makes this point an asymptotic value. The derivative is
Gl (2) = e ™ e*(1 + 2)

and it has a unique root at z = —1.
O
Note that one of the two critical points of Fig has collapsed to 0 when setting 3 equal
to zero.
This new family is very interesting by itself. Not only does it reflect the limiting
dynamics of the original family F, 3, but it also combines the presence of a critical point at
z = —1, a fixed asymptotic value at z = 0 and an essential singularity at co. Throughout

the rest of the paper, we will concentrate on the study of this new family.

4 The Family z — A 2z exp(z)

In order to eliminate the periodicity in o, we define A\ = e ** so we will be dealing with
the family of maps:

Gi(z) = Az €.

With this change, we have wrapped the a-plane around the unit circle. The real values
of o are now reflected in the unit circle of the A-plane. The tips of the Arnold tongues that
were located at a = 27mp/q are now at A\ = e~2™P/9. All the values of o in the lower half
plane have been sent inside the circle while the upper half plane is now the complement of
the unit disk.

Since the derivative of G at z = 0 is precisely A, this fixed point is an attractor for all
values of A\ with modulus less than 1. Attached to the unit circle we find all the extensions
of the Arnold tongues to the complex plane.

Let us define the set B of parameter values for which the critical value does not escape

to oo under iteration. A computer picture of this set is shown in Fig. 7 and with a larger
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range in Fig. 8, where black indicates critical orbits that remain bounded for 100 iterations.
Note that plenty of scattered black points are due to the fact that z = 0 is an asymptotic
value and a fixed point. Points that are sent very close to zero may take a lot of iterations

to leave a neighborhood of this point.

Figure 7: Parameter plane for G,. Range: [—4,16] x [—10,10].

When we look at these pictures we notice the combination of two very distinct features:
on one hand we encounter structures similar to those one finds for the exponential family
(hairs in parameter space, see Devaney et al. [1990]). On the other hand, the obvious
component of the set B reminds us of the structure of a quadratic bifurcation set. In this
section, we investigate these two different aspects, and we organize it as follows: first we

study the dynamical and parameter planes of some families of polynomials P, and their
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Figure 8: Parameter plane for G. Range: [—10,90] x [—50, 50].
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relation with the parameter space for G, which will explain the quadratic-like features of
the set B. Later on we prove the existence of continuous curves of parameter values for
which J(G,) is the whole plane (i.e. hairs). Finally, we show that there exist infinitely

many Mandelbrot sets in the A-plane, organized by some symbolic dynamics.

4.1 () as a Limit of Polynomials

When we look at the component of B that contains the extensions of the Arnold tongues
(Fig. 7) we notice a striking similarity between the structure of this set and that of the
Mandelbrot set for the logistic function (as well as many differences). The link between

the two is provided by the family of polynomials given by

Pin(z) =Xz (1+ g)d.
It is clear that P, converges to G uniformly in compact sets as d — oo, but it is also
true as we will see, that it converges, in some sense, dynamically.

Unlike entire functions, for a polynomial p of degree k, oo is always an attracting fixed
point. We define the filled-in Julia set, K (p), as the set of points whose orbit does not tend
to infinity under iteration. Then, the Julia set J(p) coincides with the boundary of K (p).
It is well known (see Blanchard [1984]) that K (p) is a compact set and it is connected
if and only if all the critical points of the polynomial belong to K(p). In general, there
exists a neighborhood U of oo, a real number r > 1 and a unique analytic isomorphism
¢, tangent to the identity at infinity, that conjugates p | to the map z — 2* restricted
to the exterior of Dg ( the disk of radius R). In the case where all the critical orbits are
bounded, this conjugacy can be extended to a conjugacy between the exterior of K(p) and
the complement of the unit disk. This allows us to define the ezternal rays of K(p) in an
analogous way to the case of quadratic polynomials (see Douady & Hubbard [1982]). A

ray of external argument 0 is defined by

Rp(a) = 90;1({7“62ﬂw}R<r<oo)-

15



As long as A # 0, the functions P, always have two critical points:

—d
d =

C:m,c

The first one appears always with multiplicity one and tends to —1 (the critical point of
G,) as d — oo. The second one has multiplicity d — 1 and tends to —oco when d — oc.
Since Py (c2) = 0, and zero is fixed, only ¢¢ can escape under iteration. Hence, K(Py,) is
connected if and only if the orbit of ¢ is bounded (see Blanchard [1984]).

We define the connectedness loci as
By ={X € C|{P},(c})}, is bounded}.

These sets are the analogues to the Mandelbrot set for quadratic polynomials. In fact, B,
is homeomorphic to the logistic Mandelbrot set. Since only one critical point is free, many
of the facts proved by Douady & Hubbard [1982] about the Mandelbrot set are also true

for the By’s. In particular:
Theorem 4.1 For all d > 0, B, is connected.

Proof : The proof is the same as in Devaney et al. [1990], when they showed that the
connectedness loci of the family A(1 + z/d)? are connected. In our case, Py, is conjugate
to the monic family of polynomials M,,(z) = (2 — dv)(z + v)? + dv via the affine map
Z = d%dluz + dv. If we let B, be the analogue of By for M,,, then one can construct a
conformal isomorphism 14 : C — By — C — Dy (see Douady & Hubbard [1982]). Hence By
is conformally equivalent to a disk, and therefore connected for each d. Furthermore this
also shows that By is connected, since By is the image of B, under the d-fold covering map
Av) = ((d+ 1)v)s.
O
We define the sets

H, = {) € C| P, has an attracting cycle}.
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Recall that the attracting cycle is unique since it must attract ¢{. Following standard
notation we call a connected component W of Hy, a hyperbolic component of By. The
hyperbolic components are open and simply connected. For any d, z = 0 is a fixed point
with eigenvalue A. Therefore, if A is in the interior of the unit disk, P, has an attracting
fixed point. The points A = €?™/? are period ¢-doubling bifurcation points. When X
changes from being inside the unit circle to inside the hyperbolic component Wﬁ/q, z=0
changes from attracting to repelling, and a cycle of period ¢ changes from repelling to
attracting. We call the point A = e?™/4, the root of the hyperbolic component Wi, The
limb Bg/q of By is defined as the connected component of By — D; that contains Wﬁ/q,
together with the root point.

We can approximate the sets By with the computer as we did with B. The results for
d =1,3,6,90 are shown in Figs. 9 to 12. As d gets larger we observe the two following
facts: first it appears that parts of the sets B; remain constant as we change d and only
new antennas and ramifications are added. We will refer to this part as the main body of
By. Second, the B,’s appear to be “converging” to the set B. In the rest of the section we
will try to make these two statements precise.

We start with the convergence. We show that the hyperbolic components of B, converge
to components of B and viceversa. The same phenomenon was found by Devaney et al.

[1990] concerning the polynomial family that approximates the exponential map.

Theorem 4.2

1. If Gy has an attracting cycle of period k, then there exists d* such that for all d > d*,

P, has an attractive periodic point of period k.

2. If Py has an attracting cycle of period k for infinitely many d’s, then G has a

periodic point of period k which is either attracting or indifferent.

Proof :

1. This is clear from uniform convergence of Pf, , and the Schwarz lemma.
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Figure 9: Parameter plane for P, ;. Range: [—2.5,4.5] x [-3.5,3.5].
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Figure 10: Parameter plane for P, 3. Range: [—3,14] x [-5, 5].
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Figure 11: Parameter plane for Pyg. Range: [—4,30] x [—12,12].

20



s 5
A a— :
ot ki

e | e ity o -

e
e,y

i = Ay

r Y
111
r
P
pEE S
g s
[ B et

Figure 12: Parameter plane for P, g9. Range: [—50,500] x [—-275, 275]
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2. We need the following lemma:

Lemma 4.1 If 2y, ..., 2, s an attracting periodic orbit for Py, then for some 1

2d

< —
< g5

Proof : The derivative of P, can be expressed as

Pya(z )(1+z+z/d).

Faal) = = 27

Hence, for any £ =1,2,...,n,

HPd,\

sz+1H( + 2z; + 2;/d) H
1211+ 2/d) 1+zz/d

|(Py)'(2)] =

Since the cycle is attracting, this derivative must be less than 1. Thus for some i,

|2

|zz|<2|1+—|<2—|—2 ¥

and the result follows.

Now assume that for infinitely many d’s, P, 5 has an attracting cycle of period &, and
let 2? be the points on those cycles satisfying the lemma above. Then, the sequence
{z%}4 has an accumulation point z*. Since P, — G% as d — oo, z* is a fixed point
for G%. Given that the convergence is uniform in compact sets, we have that this

fixed point is either attracting or indifferent.

We now discuss the structure of the main body of B;. We have the following conjecture:

Conjecture 1 For any d > 0 and for any p/q, the limb Bg contains a set homeomorphic

/q
to the Mandelbrot set, whose “cardioid” is Wp/q
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We provide the evidence supporting this conjecture. The case d = 1 is clear since B; is
a logistic Mandelbrot set. The function ¢ = A(2 — A\)/4 maps the 1-limb of By ina 1 —1
fashion to the Mandelbrot set, while maps each p/g-limb of B; to the p/g-limb of M. The
technique of tuning, introduced by Douady & Hubbard [1985], shows that each of these

limbs contains a set homeomorphic to M.

Figure 13: Graph of P, 1, for A € R.

For the cases d > 1 we need to look at the Julia sets of Py 5 to see why our conjecture
might be true. We first concentrate in the 1-limb B¢, that is, the connected component of
By attached to the unit circle at A = 1 . Hence it contains the interval I; = [1, A{], where
A{ is the parameter value for which c¢¢ — —d — 0. Figs. 13, 14 show the graphs of Py ; and
P, in the cases of d even and odd respectively, for A € I;. Note that, in each case, the
interval [—d, 0] is invariant and P, has a unique critical point in this interval. Moreover
as A decreases from 1 to A%, the critical value decreases monotonically to —d. Hence we
expect the dynamics of this family for A € I; to be similar to those of the quadratic family.

For any A € B¢, not necessarily real, the Julia set has the following characteristics:

1. The point z = 0 is a repelling fixed point. There is exactly one ray attached to 0.

This follows since the bifurcation that occurred at A = 1 was simply a change in
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Figure 14: Graph of Py for d odd (d = 3) and d even (d = 2).

stability type at 0, from attracting to repelling.

. The critical point z = —d is the only nonzero preimage of zero, and it maps to 0
with multiplicity d. Hence there are d rays that land at z = —d, with arguments
12 d

T T a See Fig. 15. These rays divide the complex plane into d different
open sectors S1,Ss...S; where S; is the sector that contains zero. Note that in the
quadratic case, d = 1, only S; is present. S; always contains the interval (—d, oo]

and hence the free critical point.

. With the exception of Sy, all the other sectors map onto the whole plane minus the

0-ray in a 1 — 1 fashion. S; does it in a 2 — 1 fashion.

The idea is the following: the A-values in B¢ for which the critical orbit is entirely

contained in S; correspond to maps P, which are conjugate to P,y when restricted to

the set of points that never leave S; under iteration. Hence, these A\ values form a set in

B¢ homeomorphic to the Mandelbrot set. This explains why, when we increase d, we only

see new antennas or ramifications appearing on the B,’s: the Mandelbrot-like set remains

while A\-values for which the critical orbit leaves S; in the new possible ways are added.
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R,(112)
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Figure 15: The filled in Julia set for Py 3 when \ € B}.
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In order to prove the statement above rigorously, we would need to use the technique of
surgery on complex polynomials as it was done by Branner & Douady [1986]. Using surgery,
one can construct a quadratic polynomial on the 1/d limb of the Mandelbrot set for every
polynomial in B¢, and viceversa. This process constructs a homeomorphism between these
two limbs. The statement then, follows by tuning (see Douady & Hubbard [1985]). The
complete proof will be included in a later paper.

A similar situation occurs for all the other limbs Bg/q. The Julia sets in these cases
have a different structure than the one described above but they all share the following
characteristics: when A = e/9, z = ( ceases to be attracting and a cycle of period ¢
becomes attracting. Hence the point z = 0 has ¢ different rays attached to it, whose
arguments are g-periodic under the function § — (d+ 1)@. These rays define ¢ sectors in C
which we denote by S?,...,S), where S} is the sector that contains the critical point. The
only preimage of 0, z = —d, has d ¢ rays that attach to it which correspond to the preimages
of the rays at 0 (see Fig. 16). As before, these rays define d g sectors Sy, ..., Ssq, where S;
denotes the sector containing the critical point. Consider now the set S = S N.S;. One can
easily check that, under Pg, »» O maps to the whole complex plane minus the complement
of S? with degree 2. As above, the A-values for which the entire orbit of the critical point
stays inside S U Sg11 U Sg12 form a set homeomorphic to the Mandelbrot set.

We now describe a phenomenon that occurs as d — co. We have already shown that
the hyperbolic components of B; tend to hyperbolic components of B. Hence one might
think that the Mandelbrot-like structure would also be preserved in the limit. In fact, we
conjecture that this may be the case but with a major difference: among others, all the
Misiurewicz points for which the critical point is eventually mapped to 0 are missing (they
tend to oo as d — o0). Let us illustrate this fact in the case of real values of A\. When
A is positive, the end of the Mandelbrot-like set corresponds to the A-value for which the
critical value is —d, and hence P}, (cf) = 0 (see Fig. 17). Since —d is tending to —oco, this
endpoint must be tending to co. In the case of A\ negative, the Misiurewicz point that is

tending to —oo is the A-value for which P7,(cf) = —d (see Fig. 18). This must also be
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R,(13/20)

S, R,(3/5)

R,(17/20)

R,\(9/10) S,

Sy

R,(0)

Ss

R,(1/10) Se

S, R,(2/5)
R,\(7/20)

R,(3/20)

Figure 16: The filled in Julia set for Py3 when A € B ;.
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the case for any Misiurewicz points of the type described above since the only preimage of
z = 0 by Py has gone to —oo, making 0 into an omitted point for Gy. Hence the limit of
the M,’s cannot be really homeomorphic to a Mandelbrot set. However, we believe it is
homeomorphic to a Mandelbrot set with these particular arms stretched to reach infinity.

A more precise study of this peculiar set will be given in a later paper.

Figure 17: Graphs of P;(d = 3) and G for Apositive.

Figure 18: Graphs of P;,(d = 3) and G,for Anegative.
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4.2 Hairs

As mentioned above, when we look at Fig. 8 we can observe structures similar to those
found in the exponential family: the “hairs”. In this section we will establish the existence
of some hairs in parameter space, that is, continuous curves of parameter values for which
the critical point escapes to infinity and therefore, the Julia set for these values is the whole
complex plane. As in the case of the exponential family (see Devaney et al. [1990]), these
hairs probably correspond to the limit of the parameter space rays of P;,. However, we
will not use the the polynomial family in this description.

We first need to study the dynamical plane for the functions G,.

4.2.1 Dynamical Plane

The goal in this section is to prove that for values of A in some set A of parameters, the
repelling fixed point at z = 0 comes equipped with a continuous invariant curve of points
that tend to infinity under iteration. We call this curve the “fixed hair” and itself and its
preimages will be crucial in constructing the hairs in parameter space.

To fix ideas let us give an easy example where the presence of the fixed hair is obvious.
Consider the case A € R, A > 1. For these values of A\, z = 0 is repelling and the real line
is invariant. In these cases, the positive real line is the fixed hair attached to z = 0 (see
Fig. 19), since all points escape to infinity under iteration.

First we set up some fundamental domains. For any A in the upper half plane (not
including the real line) consider all the preimages of the negative real line. We denote

them by 0. Each o} is determined by the equation:
k k

Im(z) = (2k + 1)m — arg(z) —arg(\), k=0,£1,%+2,... (4)

where arg(z) € (—m,7) and arg(\) € (0,7) are well defined because o7 cannot intersect

R~ for any k. From the equation, it can easily be checked that these curves look as shown
in Fig. 20.
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Figure 19: Graph of Gfor A € R

_________ A
O3
————————— 6re-arg(A)
A
D 2 _________ O_ A
2
————
_______ iy 4r-arg(A)
D 1 e - e e - o A
1
————————— 2r-arg(A)

A
pA = %
=~

______ —arg(A\)
A
) N e —————— (0}
-1
D -1
_________ —2m-arg(\)
—_— — = ]
A
(0}
A - = = = = == -2
D
_________ —4tt-arg(A)
A
_________ O3

Figure 20: Dynamical plane: preimages of the negative real line and fundamental domains.
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As their real parts tend to oo, the o}’s are asymptotic to the lines Imz = —arg(\) +
(2k + 1)w. As their real part tends to —oo they are asymptotic to the lines I'mz =
—arg(\) +2(k+1)m when k < 0 or Imz = — arg(\) + 2km when k > 0. o) is the preimage
that contains z = 0 and therefore it connects this point with oo.

If A belongs to the lower half plane, the preimages of the negative real line are the
complex conjugates of the curves we just described. For any A in the lower half plane, we
define

For every ), these preimages define fundamental domains. Denote by D; the strip
between o7 and o?,. This is a double fundamental domain in the sense that any point in
C (except zero and the critical value), has two preimages in D}. Denote by D} the rest of
the strips in the natural way (see Fig. 20). For k nonzero, each D3 is a simple fundamental
domain. This strip maybe divided in two parts, D}, and D;_ separated by the preimage
of the positive real axis. For A in the upper half plane, this preimage is determined by the
equation:

Im(z) = 2km — arg(z) — arg(A).

The semistrip D}, maps to the upper half plane by G, while D}~ maps to the lower half
plane.

We now start the construction of the fixed hair. Consider the ray from zero to infinity
that goes through the critical value —A/e. On that ray, let py be the segment from —\/e
to infinity. Let [ be the preimage of uy in D}. Since D} is a double fundamental domain, [
consists of two continuous curves joined at the critical point z = —1 (see Fig. 21), precisely
the two curves that map to (—oo, —1] by the function G1(z) = ze®. They do not depend

on A and they are represented by the equations:
Im(z) = £7 — arg(z). (5)

Let L be the region bounded by /. L is a fundamental domain. It is totally contained in

D and it contains D(’)\+ which implies that the positive real line and the fixed point z =0
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are always in its interior. L is the region where the fixed hair will lie. For later purposes,
we need the intersection of L with ) to be empty. In order to have this property, we need

the following proposition:

Figure 21: Dynamical plane: the set L.

Let A be the set of A-values satisfying:
A={\eC||Im()\)| > earg())}.
(See Fig. 22)

Proposition 4.1
1. A contains the sets {\ | [Im()\)| > me} and {\ € R |\ > e}.

2. If X € OA and Im(\) > 0, then the critical value —\/e lies on .

Proof : If we write arg()\) as a parameter §# € (—m,7), the boundary of A can be

parametrized by: .
e
0) = f) =ed.
o(0) = gy VO =
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Figure 22: Parameter plane: the set A.

From these equations, it is clear that

%1_1)1(1) z(0) = e,
while

limy(f) =me
and

lim y(0) = —7e

[
These limits, plus the fact that the imaginary part of OA increases when arg()\) increases,
prove the first statement.
By symmetry, it is enough to prove the second statement for values of A in the upper
half plane. Hence we must show that if A € A, then the critical value satisfies Eq. (5) for
—m. By definition of A:

Im(—X/e) ==t earg(\)
= —m — (arg(\) — 7)
= —m —arg(—\/e).
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Hence, Eq. (5) is satisfied.

Corollary 4.1 For all A\ € A, LN uy = 0.

Proof : By construction, if A € A then the critical value is always in the exterior of M
and hence, the same holds for p.
O
Corollary 4.2.1 assures us that the relative position of L and pu, is topologically as shown
in Fig. 21. Therefore a branch of the inverse of GG, taking values in the interior of L is well
defined. That is,
Gy':C—puy — L.

We now define a sequence of functions from parameter plane to dynamical plane. Fix
tZOandletHTtL:A—ibe
HL(N\) = G™ o GR(1).

For each n, H!()) is an analytic function. It iterates ¢t n times forward by the function
G1(t) = te', and afterwards, n times backwards by G3'. Since the positive real line is

entirely inside L, G7(t) can never lie on py and hence these functions are well defined.

Lemma 4.2 {H,} is a normal family on A. Hence, there exists a subsequence that con-

verges uniformly to an analytic function H*, which is not identically equal to infinity.

Proof : Since [ is included in D}, U, H,(A) omits many more than three points on

C. Therefore by Montel’s theorem, { H,,} is a normal family on A. This gives the uniform
convergence of subsequences to an analytic function H!. We prove that H! cannot be
identically equal to oo by showing that it is finite for all the real values of A in A. If
A € ANR, then A > e and therefore A = G',(0) > G'1(0) = 1. This means that we always
go back much faster by G, than we go forward by G;. Hence for all n and for all ¢,

0< HL(N) <t (6)
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Consequently , no subsequence of {H,} can tend to oc.
O

Lemma 4.3 If two subsequences of H. converge uniformly, then they converge to the same

limit.

Proof : Fixt > 0 (we drop the superscripts for this proof) and suppose two subsequences

tend uniformly to two different functions:
{Hm} = H '

{Hmz} == H?.
We prove that H! = H? by showing that the two functions agree on the real line. Since
they are analytic functions of A, this implies that they have to agree on all their domain of

definition.
Fix A\p € RN A. Then,

1. {H,(X\o)} is bounded because of inequality (6):
for all n.

2. {H,(\o)} is decreasing since

Hpii(No) =G 'GHHY(1)
= GGy, GTH (1)
< GrGTIGTH(1)
= H, (o).

Hence, {H,(\o)} is convergent. This implies that {H,} converges pointwise to a function
H()) for real values of \. Therefore, H' and H? have to be equal to H for all A € R.
O
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Proposition 4.2 For all t > 0, the sequence {H.} converges uniformly on compact sets

of A.

Proof: Once we fixt > 0, we deal with a sequence { H, } of elements of a metric space such
that every subsequence has a subsubsequence converging uniformly to a unique element
H. We must show that all subsequences converge themselves uniformly to H. Suppose
a subsequence {H, } does not converge uniformly (if it does, by lemma 4.3 it converges
to H and we are done). Then, we can find ¢ > 0 and infinitely many H, s such that
|H,, — H| > €. These H,,’s form a subsequence which does not have any subsubsequence
converging uniformly to H, which contradicts the assumption.
|

Now that we know that the sequence {H!} itself converges uniformly, we may define

the analytic function
H'()) = lim Gy (GR(1)

which, if we fix A, is a function from dynamical plane to dynamical plane:

HMt) = H'(\) , t€]0,00).

(Note that H°(\) = 0.)
We will see that for every ), the function H*(¢) parametrizes the fixed hair attached to
z=0.

Lemma 4.4 The function HM(t) conjugates Gy to Gy, i.e., the following diagram com-

mutes: .
R /&5 R
{ {u>

My % M,

HA

Proof : For all n > 0 we have:
H)(G.(t) =GMGTT (1)
= GGG (1))
= GA(Hp (1))
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We know
{H, (G1(t)} — {HNG1(1))}

while
{GAHp 1 (D)} — {GA(HA (1))}
Hence H*G1(t)) = Gx(H*(t)) for all t.

Theorem 4.3 Given any \ € A, the function H(t) is continuous with respect to t.

To prove this result we need several lemmas.
Lemma 4.5 For all A € A and for all z € L
G (2)] = Gy (12]).

Hence, for all c € R,
2] > Ga () = |G (2)] > c.

Proof: We know
GA(2)] = |A||z]e"=).

Since Re(z) < |z|, we have:
GA(2)] < Al|zle = Gy (|2
Applying this inequality to G5 '(z) we get,
2] < G (1GX ' (2)])
which, since G 5((|z|) is an increasing function on |z|, implies:

G (12]) < 1GX(2)-

37



For the same reason,
2| > G (c)
= G|_)\|1(|z|) >c
= |Gy'(2)] >

O
Lemma 4.6 For all A\ € A and for all z € L such that Re(z) > 0 and Re(G5'(z)) > 0,
Re(Gy'(2)) < Glj\‘l(Re(z) + 27).
Hence, for all c € RY and for all z € M such that Re(z) > 0,
Re(z) + 21 < G5 (c) = Re(Gy'(2) < c.

Proof : Let w = Gy '(2). Since L is bounded by the horizontal lines Im(z) = £, the
imaginary part of any point in L is bounded by 7. That is,

Re(Gi(w)) 2 |GA(w)| —
and
lw| > Re(w).
because of the assumptions on w and z = G (w). Hence,

Re(Gr(w)) +m > |Ga(w)]
= D jufer
> |A|Re(w)efe®)
= G5 /(Re(w)).

Going back to z,
Re(z) + m > Gy (Re(Gy'(2)))

which, since G5 /(Re(z)) is an increasing function on Re(z) says:
Gﬁ\‘l(Re(z) +7) > Re(G,'(2)).
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Now assume Re(z) > 0 and Re(2) + 7 < Gy (c). If Re(Gy'(2) < 0 it is always less

than ¢ and we are done. If not,
Re(z) +m < G (c)

= G;\‘I(Re(z) +7)<c
= Re(Gy'(2)) <e.

Proposition 4.3 Let M, N € R be such that e > |\ and eV >

t>0, for all n > 0,
1. |HMt)| >t — M and
2. Re(H)t)) <t+ N.

3. if Re(H*(t)) > 0,
t—M — 7 < Re(H(t)) < t+ N.

4. if Re(HM#)) > 0,
t— M < |HMt)| <t+ N+

Proof : We prove the first two statements by induction on n.

1. For n =1 we want to show:
GYH(Gi(t)| >t — M.
By lemma 4.5, setting ¢ =t — M, this is implied by:
Gi()] = Gy (t = M)

or,
tet > |A\|(t = M)ele™.

39

O

(1+ %)/IAl. Then, if



This inequality is satisfied if
" M
e’ > [Al(1— 7)

which, since M > 0, is true by assumption.

Assume it is true for n. We must show:
[Hapa(8)] >t — M,

or equivalently, using lemma 4.4:

Gy HN(GL(1))| > ¢ — M.
Applying again lemma 4.5, this is implied by:

[H2(G1(1)] = Gy (¢ — M).
By the induction hypothesis for G;(t), it reduces to show:

Gi(t) =M > G (t— M)

or,
te! — M > |A|(t — M)ele ™.
Dividing both sides by te' > 0, the inequality is equivalent to:

M M
M1 — 2y > (1= 2.
e’ (1—-7) 2 (=)

Since e/ > 1 we have (1 — %) > (1 — &), and hence, the inequality is satisfied if

eM > || which is true by assumption.

. For n =1 we must show:
Re(Gy'G1(t)) < t+ N.

If the left hand side is negative or 0 then we are done. If not, we can apply lemma

4.6 setting ¢ =t + N, and then the inequality is equivalent to :
Re(G1(t) <G\(t+N)—m
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ie.
te! < |A|(t+ N)e'e —,

or,
tet + 7
— < |\l€N.
tet + Net — [Ale
Since t, N > 0, we have:
tel+m tel+m
tet+Net — tel+N
T
<14I

Therefore the inequality is satisfied if e > (14 £)/|A[, which is true by assumption.

Assume it is true for n. For n 4+ 1 we must prove:
Re(GY'(H)G1(t))) < t+ N.
As before, we use lemma 4.6 to reduce it to:
Re(Hp(G1(1))) < GAl(t+ N) —,
and the induction hypothesis to get
te! + N < |A|(t + N)eleV — .

This is implied by
tet +7m+ N

N
tet + Net < [Afe”.

Since t, N > 0 we have:
tel+m+N tel +m+N
tel+Nel tet+N
tet + N + T
tet+N T tet+N

1+ .

IA

IA

Hence, by assumption the result follows.
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3. The right hand inequality comes from taking the limit in statement 2. Taking the

limit on statement 1, we have
|H )| >t — M.

Since H*(t) € L , the imaginary part is bounded by 7. Therefore, since its real part
is positive,

Re(HA(t)) > [H(t)| — 7.
Combining both inequalities, the result follows.

4. The left hand comes from taking the limit in statement 1. For the right hand, we
have
|H*t)| < Re(H*t))+ 7 <t+N+7

by statement 3.

Lemma 4.7 For all A € A and for all z,w € L such that fori =1,2...,n Re(Gy'(z)) >0

and Re(Gy'(w)) > 0,
Gy (2) = GYM(W)] < [z = wl /A"

Proof : In general, for any z € L with positive real part, we have

GA(2)] = M1+ 2] > |A]

and by the inverse function theorem, this implies

1
G (2)] < =
GG <
If Re(Gy'(2)) > 0fori=1,2...,n, we have
1

(G (2)] < (W)"
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and therefore, using the mean value theorem :

G™(2) - Gim(w)| < <|71‘>“|z —ul.

O
We will now put together all these estimates to prove that H,(t) is continuous with
respect to .
Proof of theorem 4.3: We first assume ¢y, > M = log(|\|) + 7. Fix ¢ > 0 and pick
n > 0 such that (1/|A|)"(3M + 27) < . Using continuity of G7, choose 6 > 0 such that if
|to — t| < ¢ then |GT(ty) — G7(t)| < M. By proposition 4.3,

GT(ty) — M < Re(HMG%(t))) < G (to) + M and
G (t) = M < Re(HM(G7(1)) < GI(t) + M.
Subtracting these two inequalities,
|Re(H*(G1 (to))) — Re(HX(G1(1)))| < 3M
and since the imaginary parts are bounded,
[HA (G (t)) — HNGL(t))| < 3M + 2.
Using the conjugacy in lemma 4.4 and lemma 4.7, we have

[H?(to) — HA(t)] = |G\"HAG (o) — Gy"HAGL ()]
< (1/|IA\)™(3M + 27)
<eg
which proves continuity at any ¢y > M. Note that the hypotheses of lemma 4.7 are satisfied
by the results on proposition 4.3.
Now suppose ty < M. Pick n > 0 large enough so that G?(ty) > M. By continuity of
G3™, there is a 0 s.t.for any z,w € M),

z—w| < d = |G"(2) - GMw)| < e.
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By continuity of H* at G?(t,), we can find §° > 0 such that
T - Gi(to)| < 8" = [HNT) — HNG' (b)) < 0.
Now choose § > 0 so that if [t — to| < & then |G?(t) — G*(t)| < 6. Then,
[HNG (1) — NG (to))] < &

and hence,
|G HNGEH())) — G (HA (G (1)) < e

Using the conjugacy in lemma 4.4, this says

|Ht) — H(ty)] < e.

Remarks :

1. Because of the estimates in proposition 4.3, H*(t) escapes to infinity under iteration
of Gy for all t € (0,00) . Therefore, H*(t) € J(G)) for all A € A. We call this

continuous curve the fixed hair attached to z = 0.

2. Recall that this construction works only for A € A. However, the same construction
would prove that, independently of A, the tail of this fixed hair is always present. We
just have to pick ¢ > T'()\), T()\) large enough, in order to assure that we are far
from the critical value. From there, the same estimates hold and the inverses are all
well defined. One can show that, for values of A such that the critical value lies inside
D}, this fixed hair always attaches to the repelling fixed point z = —log()). This
region of parameter values which we denote by A’ is depicted in Fig. 23. For values of
A neither in A nor in A’, we conjecture that the fixed hair must always attach either
to z = 0 or to z = —log(\), except for those A’s for which the critical values lies

exactly on the fixed hair, and hence, the Julia set of G is the whole plane.
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Figure 23: Parameter plane: the set A'.

3. The fixed hair is not the only one in dynamical plane. As in other entire functions
(see Devaney [1991],Devaney & Krych [1984],Devaney & Tangerman [1986]), these
types of curves come attached to any repelling periodic cycle, as well as to other

points with bounded itinerary but belonging to the Julia set.

The preimages by G of the fixed hair we just constructed will be important in our

construction of some hairs in the parameter plane. These preimages consist of a set of
continuous curves which we denote as follows: (see Fig. (24))
Definition For each A € A, t > M = log(|\|) + 7, k € Z, we define ¥)(¢) as the preimage
of H*(t) that belongs to D}. We define 7, as the continuous preimage of H* that contains
the points v)(¢) for ¢t > M. This defines v} (t) for ¢ < M as the preimage of H*(¢) that
belongs to ;.

The fact that all the 77’s are preimages of the same line, make the regions bounded
by them fundamental domains. For each k = 1,2, ..., we denote by S} the fundamental
domain bounded by the curves 7, and 7, (72 and 7;_; if k < 0). The region Sy, bounded

by v, and ~} is a double fundamental domain.
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Figure 24: Dynamical plane: sketch of the fixed hair and its preimages.

4.2.2 Parameter Plane

Our goal in this section is to prove that there are continuous curves of parameter values,
for which the critical value escapes to infinity under iteration of GG, in a particular fashion.

Hence, the Julia set for these parameter values is the whole plane. More precisely:
Theorem 4.4 For any k # 0, the set of parameter values

Te={AeA| ey
form a continuous curve in parameter plane.

By symmetry of G, with respect to the real axis, it is enough to consider parameter
values in the upper half plane. Therefore, from now on we fix £ > 0 and we will work on

the region
AT ={xeA|Im()) > 0}.

Without loss of generality we reduce to the case £ = 1. The other cases can be proved with

totally analogous arguments.
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Fix t > 0. For these parameter values we define the following functions:

Pt. At — AT
A= —eA (1)

We are interested in finding fixed points of P?, since those are \’'s for which —\/e

belongs to ;.

Proposition 4.4 P! maps AT into its interior. Hence, for each t > 0 there is a unique

fized point py (which may be infinity).

Proof : Recall we defined the boundary of AT as the curve of parameters for which the
critical value belongs to the boundary of L, together with the real line. Since the preimage

7}, is always below the preimage of R* contained in D?,, we have:

Im(y2,(t)) < =27 — arg(v2,(¢)) — arg())
for all t > 0. Therefore,

Im(P'()\)) > 2er + earg(y?,(t)) + earg())
> 2em + e(—7) + earg(\)
= em + earg(A),

which by definition implies that P*(\) belongs to the interior of A* (see Fig. 25).

Now consider P* as a map from At U {oo} to itself. Topologically, this is a map from
the closed disk to itself which, by the Brouwer fixed point theorem, must have a fixed point
p;. If p; is finite, consider P! as a map from the interior of A™ to itself. By a Mdobius
transformation that sends the interior of AT to the open disk and the p; to 0, it can be
considered as a map from the open disk to itself that fixes 0. Applying Schwarz lemma, p;
is a global attractor for P* and therefore it must be unique.

O

Proposition 4.5 There exists T* > 0 such that for t > T*, the fized point p; is finite.

47



0 e

Figure 25: Parameter plane: image of A by P?.

Proof : We will show that for values of ¢ larger than a certain 7, the function P maps
a bounded region in A totally inside itself. That will give as a finite fixed point for P
which must coincide with the unique p;. The following lemmas will make this construction

precise.

Lemma 4.8 Givent > , there exists My > 0 s.t. if [\| < M, then Re(H'()\)) > 0. Hence
H'(\) ¢ R~ for any |\| < M;.

Proof : By proposition 4.3 we know :
Re(H'(X\)) >t —log(|A]) — .

Hence, as long as |A| < e/~ = M; we have that the real part of H*()\) must be positive.
O
Let A; be the set of X’s inside Lambda™ with modulus less than M;. Then, for those
A € Ay, the fixed hair at ¢ has not touched the negative real line yet. This means that its
preimage v, (¢) must still be inside the fundamental domain D?,. Hence the imaginary
part of P'()\) is bounded above and below (see Fig. 26). Note that this constant M
increases with ¢ while these bounds do not. We want to take t big enough so that the circle

with radius M; covers the strip as shown in the figure .
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Figure 26: Parameter plane: image of A; by P.

Lemma 4.9 There exists My < M, such that if Re(P*(\)) <0 then |PY(\)| < M,.

Proof : We defined the function P! as P*(\) = —evy_;(t). This implies that, if we apply
G, to both sides:
GA(=P'(A)/e) = H'(N).

Therefore, by proposition 4.3, the inequality
|GA(—P'(\)/e)| <t+ N+

must be satisfied, where N is defined as in the mentioned proposition. Since A € A implies
|A| > e, and by assumption , the real part of P(\) is negative,

—P')
€

GA(=P'(N)/e) = (1/e)|A[|P'(N) e > [PY(N)].

Hence, a necessary condition is
PPN <t+1+7= M,

for which we have used that N must always be smaller than 1. If ¢ is big enough (¢ > 5.5),

then M, < M;.
O
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The lemma above works for all A\. However, in particular it tells us that the image of
A1 by P must be bounded also in its left side. So, in order to show that P*(A;) is totally

contained inside A, it remains to find a bound for its right side.
Lemma 4.10 There exists M3 < M, such that if |\| < My then Re(P'()\)) < Ms.

Proof : As in the proof above, by proposition 4.3 we must have:
[GA(=P'(N)/e)| > t —log(|A]) < 7

where, for the last inequality we have imposed [A\| < M; = €™ . By lemma 4.8, this
condition also implies that the imaginary part of P*()\) is bounded by some constant c.
Hence

[PY(N)] < Re(P'(X)) + ¢

and therefore

—pPt(a
e( ))'

(GA(=P'(N)/e)| < (1/e)e"™ ™ (Re(P' (X)) +¢) €l

The condition then becomes

Re(P*(\ o
e(P'(A) + ¢ GRe(FER) o et

e

The left hand side is a function that decreases with Re(P*()\), tending to zero as Re(P*()\)
tends to infinity. Hence, there exists Mj3, such that the condition is satisfied only when
Re(P'(\) < Mj3. One can check that for ¢ large enough , M3 is always smaller than M;.

O

Consequently, for any t larger than a certain 7* (the maximum from the three lemmas

above), the function P’ maps the set A; (which gets larger with ¢) into itself. By the
Brouwer fixed point theorem, A; must contain a fixed point. By the Schwarz lemma, if A
has a finite fixed point, this must be unique. Hence this is the fixed point p;.

O
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Theorem 4.5 For all t > T*, the function I'y : t — p; defines a continuous curve of
parameter values. Moreover, T'1(t) has bounded imaginary part and its real part tends to

—o00 when t tends to oo.

Proof : The maps P! form a continuous family of analytic functions from C to C.
The fixed points p; correspond to the intersection of the graph of P! with the diagonal of
C2. Since for all t > T*, the p;’s are global attractors , these intersections are at least
topologically transverse and hence, the fixed points must vary continuously with .

By lemma 4.8, we know that the imaginary part of I';(¢) is bounded. By proposition

4.3 , it is necessary that

T\ (1) -
1) (1) 5y og(Iy (0))):

IA
e

In order for I'y(¢) to satisfy this condition, its real part must tend to —oo as t increases.
O

It is clear that we can substitute 7 by any value 77 for which p; is finite for ¢t > Tj.
This extends the curve of fixed points I';(¢) to some interval (77, 0cc) where 77 > 0 and the
limit as ¢ tends to 7} is infinity (because we know it cannot tend to the finite boundary of
A).

The same construction also applies for any k£ # 0. Thus we have a family {T'; :
(T, 00) — A} of continuous curves in parameter plane (see Fig. 27) which satisfies that
if A = I'x(¢) for some k£ and some ¢, then the critical value for G escapes to infinity. Hence
J(Gy) =C.

Although it is not proven at this point, we expect T} to be equal to zero for all £ as
well as the imaginary part of [';(¢) to be bounded for all ¢.

Remarks :

1. The hairs T'y(¢) correspond to A-values for which the critical value lands on the fixed
hair H*(t) after one iteration. We conjecture that there exist other hairs in A that

correspond to critical values landing on the fixed hair after more than one iterations.

o1



Figure 27: Parameter plane: sketch of the hairs ' (¢).

The itinerary of the orbit of the critical value before it lands on the fixed hair,

determines the position of the hair in parameter space.

2. We conjecture the existence of a different type of hair in parameter plane. This curve
would be composed of A-values for which the critical value itself lies on the fixed hair.
This curve does not live in A nor in A’ (see remarks in the section above). In fact it
should separate the region of \’s for which the fixed hair attaches to z = 0 , from the
one for which it attaches to z = —log()). For real values of ), it is easy to see that
this boundary corresponds exactly to A = 1. That is, for 0 < A < 1 the fixed hair
coincides with [—log()), 00), while for A > 1 it coincides with [0, co).

4.3 Baby Mandelbrot Sets

When we randomly magnify small regions in Fig. 8 we are very likely to see a picture like
the one shown in Fig. 28. The appearance of small copies of the Mandelbrot set in the

parameter plane is something that never occurs in the case of the exponential family.
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Figure 28: Parameter plane: magnification of small region of Fig. 7.
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In this section, we will prove the existence of infinitely Mandelbrot-like sets, distributed
according to some symbolic dynamics. To do so, we will use the theory of polynomial-like
maps of Douady & Hubbard [1985], plus the construction of the hairs in the section above.

We start by defining the itinerary of a point under the function G.

Definition Fix A € C. For each z € C we define the itinerary of z as the infinite sequence
sx(z) = (so, S1,--.), where

si=k +— Gi(z) € Sp.

For each k£ > 0, let R denote the region in parameter plane bounded by the hairs I'y
and I'yyy (g and T'y—y if £ < 0; 'y and 'y if £ = 0) (see Fig. 27).

We have the following theorem:

Theorem 4.6 For each k # 0, there exists a subset of Ry, My homeomorphic to the
Mandelbrot set. Its main cardioid corresponds to A-values for which there is an attracting

cycle of period 2 with itinerary s = (0, —k,...).

This theorem will follow from applying the polynomial-like mapping theory of Douady
and Hubbard. Douady & Hubbard [1985] prove the following major result:

Theorem 4.7 Suppose fy is an analytic family of analytic functions. Let D denote a set
homeomorphic to the closed disk. Assume that for each A € D the following conditions are
satisfied:

1. There exist open disks Uy, U} depending continuously on A, U} relatively compact in
Uy, such that f\ : Uy —> U, is proper of degree two. Any map with this property is

said to be a polynomial-like map of degree 2.

2. There is a unique critical point zy in Uy and as X turns around 0D once, fr(z\) — za
turns around 0 once. A family of maps with this property is said to have parametric

degree one.
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Then, there is a subset M C D which is homeomorphic to the standard Mandelbrot set
via a map ¢ = c(\). The set M is given by {\ € D | f{(z)) € Uy forall n > 0}. Moreover,
for each A € M, the map f,\|U£ is topologically conjugate to z — 22 + c(\) on the filled in
Julia sets of each, where the filled in Julia set of f’\‘US 1s defined as the set of points that

do not leave U} under iteration.

Proof of theorem 4.6: For simplicity of notation we will prove only the case k£ = 1,
dropping all the subscripts that indicate dependence on k. It will be clear though, that the
proof is the same for all the k-values.

Consider the set D of parameter values defined by
D ={\ € R, | Re(\) > R},

where R is a negative number to be defined. Clearly, D is homeomorphic to a disk. By
construction of the hairs, for each A € D, the critical value lies in the fundamental domain
S?, in dynamical plane. We denote by O, the set of points in S that map to S*, under
one iteration of G (see Fig. 29). To determine the topological shape of this set consider
the preimages of v*, and 7*, inside S}. Since S} is a double fundamental domain, it
contains two preimages of each of the mentioned curves. Given the position of the critical
value, one computes easily that the preimages of 4, consist of two “C-shaped” curves,
each intersecting the negative real line in a single point. Also, the preimages of 4}, are two
C-shaped curves, in the upper and lower half planes respectively. To check this, one may
compute the images of vertical lines in S} and note their intersections with S*,.

Therefore, O, is a set homeomorphic to a disk that maps onto S*; with degree 2 under
Gy, and hence, to the whole plane with degree 2 under G3. Note that the fixed hair 7}
never intersects the boundary of O,.

We define the open sets
Uy, ={z€ O, | Re(z) < R'}

where R’ is large enough so that the image of U} by G2 covers itself. To see how that there

is such an R’ consider the image under G of Uj. This image consists of the strip S*; cut
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Figure 29: Dynamical plane: sketch of the set O,.

right and left by the image of the vertical segment { Re(z) = R'} U S} in S*,. By taking R’
large enough, the image of the right bound is a huge disk that includes U}, and the image
of the left bound is a small neighborhood of z = 0 which does not intersect U}. The image
of the upper and lower bounds are, by construction, the fixed hair (see Fig. 30). Hence, if
we define Uy as the image of U} by G5 , then U, is relatively compact in Uy and G3, [y; is
proper of degree 2. Therefore we have verified the first hypothesis of theorem 4.7.

The second hypothesis is also satisfied. As A comes from infinity along the upper
boundary of D, the critical value is on the fixed hair coming from zero. Taking R large
enough, the critical value goes around a large circle when A goes along the left boundary of
D. The lower boundary corresponds again to —\/e on the fixed hair, this time returning
to 0.

With this setup, the result follows from theorem 4.7.

O

We expect that similar techniques will allow us to extend this result to other itineraries.
Conjecture 2 Given any repeating sequence of the form s = (0,81, ..., 8k, ...) with s; #0
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Figure 30: Dynamical plane: sketch of the sets U, and U,.

for all i, there exists a set My, s, homeomorphic to the Mandelbrot set. Its main cardioid
corresponds to A-values for which there is an attracting cycle of period k+ 1, with itinerary

S.

This conjecture is based on the existence of the hairs in parameter space for which the
critical value lands on the fixed hair after more than two iterations (see remarks in section
above). Once the existence of those hairs is established, the result follows from theorem

4.7 with a very similar construction.
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