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1 Introduction

Renormalization is a topic of interest in many areas of mathematics. The following are some
informal notes on renormalization of complex polynomials and on the motivation that makes
this subject important in the field of complex dynamics. They are intended for mathemati-
cians whose research is in some other areas where renormalization is also a topic of interest.
They are in no way a complete or deep exposition of the subject though we try to give a gen-
eral idea of what complex renormalization is about and how it relates to the main problems
that are currently open in holomorphic dynamics, together with several examples.

This paper is mainly based on parts of the book Complex Dynamics and Renormalization
by Curtis T. McMullen [Mc] which we refer to for a complete exposition and many of the
proofs.

2 Preliminaries on the dynamics of complex polynomials

For a complex polynomial P(z) of degree d > 2, infinity is always a superattracting fixed
point, i.e., a fixed point where the derivative vanishes. Let A(occ) = Ap(oo) be its basin of

attraction, that is,
Aoo) = {z € C| P"(z) = oo}.

This is an open set and it has only one connected component, since the point at infinity has
no other preimage than itself. The filled Julia set of P is defined as
K(P)=C\ A(o0).

This set is totally invariant, compact and full (does not disconnect the plane) by the observa-
tion above. The boundary of the filled Julia set is called the Julia set, J(P), and intuitively
it is the set of points where “chaotic” dynamics occur.



A critical point of P is a point w € C such that P'(w) = 0. In a neighborhood of a critical
point the map is not locally injective. Many global dynamical properties can be derived from
the behaviour of the critical points. For example,

K(P) is connected <=> the orbits of all critical points are bounded.

The orbits of all critical points tend to co = K (P) is totally disconnected.

Renormalization works best when the filled Julia set of the polynomial is connected.
Hence, in these notes, we will be concerned mainly with polynomials with connected filled
Julia set.

In those cases, the dynamics in A(oo) are very simple. One can find a holomorphic change
of variables 1p : C\ D — A(oc0) (called the Bdttcher coordinates at infinity) that conjugates
P | A(o0) to the map z — 2% on the complement of the closed unit disk. This change is unique
if we require the derivative at infinity to be one.

The image under ¥p of a circle of radius exp(n) > 1 in C\ D is a simple closed curve in
A(o0) called an equipotential of potential 7. Hence an equipotential of potential 7 is mapped
d to 1 under P to an equipotential of potential dn (see Fig. 1). Parametrizing the arguments
of the unit circle between 0 and 1, the image under ¥p of a ray of argument ¢ is called an
external ray of argument t and denoted by Rp(t). Again, since ¥p is a conjugacy, an external
ray of argument ¢ is mapped to an external ray of argument d¢t (mod 1). Equipotentials and
external rays give us orthogonal coordinates in the attracting basin.
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Figure 1: Bottcher coordinates, equipotentials and esternal rays.
Remarks 2.1

e If K(P) is not connected, the Bottcher coordinates still exist. The difference is that
they are not well defined in the whole attracting basin but in some neighborhood of
infinity.

e Bottcher coordinates can be defined always in a neighborhood of any superattracting
periodic point. Indeed, if z is such that P(z) = 29+ (2 — 29)™ + h.o.t. for n > 2, then z,
is a superattracting fixed point of multiplicity n. The dynamics in some neighborhood



U of zy are holomorphically conjugate to those of the map z — 2" in the unit disk. If
in addition, zy is the only critical point in the immediate superattracting basin, then,
the neighborhood U is the whole immediate basin. In this case, the images of the rays
in the unit disk are called internal rays.

We will use internal and external rays when we speak about tuning in Sect. 3.1.

2.1 Quadratic polynomials and the Mandelbrot set

Any quadratic polynomial is conjugate by an affine map to a polynomial of the form Q.(z) =
2%+ c for some ¢ € C. Hence the space of quadratic polynomials is represented by the complex
plane, which we call the parameter plane. We set K, = K(Q.), J. = J(Q.), etc. A quadratic
polynomial @), has only one critical point, w = 0, in the plane. Hence, we have the following

dichotomy.
If {Q7(0)} is bounded then K, is connected.

If Q7(0) — oo then K, is totally disconnected.
The Mandelbrot set is defined as the connectedness locus of the sets K.. That is,
M = {c € C| K, is connected}.

A picture of M is shown in Fig. 2. The Mandelbrot set is a very complicated object which is
almost, but not yet completely understood. It is known that M is compact, connected and
full. Presently, one of the main conjectures in complex dynamics is the following.

Conjecture 2.2 M is locally connected.

Figure 2: The Mandelbrot set

The Mandelbrot set exhibits some kind of self-similarity. When we blow up around
random points of the boundary of M we are sure to find plenty of smaller copies of the whole



set. Moreover, one could keep doing this up to infinite scale. This phenomenom can be
explained by the theory of polynomial-like maps and, in particular, renormalization.

In general, a rational map is hyperbolic if the orbits of the critical points do not accumulate
on the Julia set or, equivalently, if they all tend to attracting cycles. In particular

Q. for ¢ € M is hyperbolic <= Q. has an attracting cycle in C.

This is clear since w = 0 is the only finite critical point while the other one, infinity, is always
superattracting.

A connected component €2 of the interior of M is called a hyperbolic component if Q). is
hyperbolic for some ¢ € €2 and it is known that in that case, Q. is hyperbolic for all ¢ € .
By the Implicit Function Theorem, the period of the attracting cycle is constant and it is
called the period of the hyperbolic component. The multiplier of the attracting cycle of Q.
determines a biholomorphic map from €2 to the unit disk. The preimage of 0 is called the
center of 0 and corresponds to a polynomial, for which the critical point itself is periodic
(and hence superattracting). It is a quite surprising fact that any point in the boundary of
M can be approximated by a sequence of centers of hyperbolic components. As we will see
in Sect. 4, it is not known if all connected components of the interior of M are hyperbolic.

3 Polynomial-like maps and renormalization

As their name indicates, polynomial-like maps are those maps that behave locally like a
polynomial.

Definition A polynomial-like map of degree d > 2 is a triple (f,U',U) where U and U’ are
open sets of C isomorphic to disks with U/ C U and f : U' — U is a holomorphic map such
that every point in U has exactly d preimages in U’ when counted with multiplicity.

Figure 3: The three elements (f,U’,U) that form a polynomial-like map.

Notice that any polynomial of degree d is a polynomial-like map of degree d. Indeed, one
can take U’ as the open set bounded by an equipotential of some potential 7, in which case
U would be the open set bounded by the equipotential of potential dy.

The most common examples of polynomial-like maps are given by polynomial, rational
or entire transcendental maps restricted to an appropiate open set (see [F] for particular



examples). On the other hand, restrictions of some iterate of a polynomial can also give a
polynomial-like map of the same or lower degree in which case we will speak of renormaliza-
tion.

The filled Julia set and the Julia set are defined for polynomial-like maps in the same
fashion as for polynomials, keeping in mind that a polynomial-like map is defined only in an
open subset of C.

Definition Let f: U’ — U be a polynomial-like map. The filled Julia set of f is defined
as the set of points in U’ that never leave U’ under iteration, i.e.,

K(f):={2€U"| f*(z) € U for all n > 0}.

An equivalent definition is

K(f)= () f"@),

n>0

and from this expression it is clear that K(f) is a compact set. As for polynomials, we define
the Julia set of f as

J(f) == OK(f).
Notice that any polynomial-like map (f,U’,U) must have a critical point in U’.

The importance of polynomial-like maps is their correspondence to actual polynomials.
This is explained by the Straightening Theorem which we state after the following definition.

Definition T wo polynomial-like maps f and g are hybrid equivalent if there is a quasi-
conformal conjugacy h defined in a neighborhood of their respective filled Julia sets and such
that 0h =0 on K(f).

Theorem 3.1 ([DH3]) Let (f,U',U) be a polynomial-like map of degree d > 2. Then, f is
hybrid equivalent to a polynomial P of degree d. Moreover, if K(f) is connected, then P is
unique up to affine conjugation.

In particular, a hybrid equivalence implies that the corresponding Julia sets are homeo-
morphic. Hence, the theorem explains why we find copies of filled Julia sets of polynomials
when we look at the dynamical planes of other types of holomorphic maps.

For convenience, when we speak about renormalization we restrict to quadratic polyno-
mials with connected filled Julia sets.

Definition Let Q. be a quadratic polynomial with connected filled Julia set. We say that
Q7 is renormalizable if one can find open bounded sets U’ and U such that 0 € U’ and
(P™|y,U',U) is a polynomial-like map of degree 2 with connected Julia set.

Remark 3.2 The restriction to quadratic polynomials is just convenient though not neces-
sary. It could be extended to polynomials P of any degree asking that U' contain a unique
critical point of P.



The choice of the pair (U',U) as above is called a renormalization of Q7. So, as we see, a
renormalizable polynomial Q7 and its renormalization is just a special case of a polynomial
like map.

To guarantee that the iterate process of renormalization makes sense it is important to

make sure that the choice of the open sets (U’,U) does not affect the resulting polynomial
(given by Theorem 3.1).

Theorem 3.3 Any two renormalizations of Q7 have the same filled Julia set.

Sketch of the proof If (U{,U;) and (U}, Us) are two renormalizations with filled Julia sets
K7 and K5, one can show that K = K; N Ky would be the filled Julia set of another renor-
malization (U',U) with U’ C U] N U. Since the degree of all the renormalized maps is the
same and the preimages of any point of a Julia set are dense in that Julia set it follows that
K =K, = Ks.

q.e.d.

The natural numbers n for which Q)7 is renormalizable are called the levels of renormal-
izations of (.. We denote the set of levels of renormalization of Q). by R = R.. If R is an
infinite set, we say that Q. is infinitely renormalizable.

Example A: Let ¢ = —1.772892.... This is the center of a hyperbolic component of period
6 and hence Q%(0) = 0. In this case Q2 and Q¢ are renormalizable hence R. = {1,3,6}. For
Q2, the critical point w = 0 is periodic of period 2. Hence, the renormalized filled Julia set
must be that of 22 — 1. For Q8, the critical point is fixed so the renormalized polynomial is
2%. Figure 4 shows the filled Julia set of Q. and, below, a magnification of the filled Julia

sets after renormalizing Q3 and Q9 respectively.

A
..
%

Figure 4: The filled Julia set of Q. for ¢ = —1.772892 and the filled Julia sets of the renormalizations
of Q2 and Q8.



Example B: Let ¢ = —1.401155.... Then, Q. is the Feigenbaum polynomial, that is the
limit of the cascade of period doublings in the real axis that starts at 0. For any n > 1,
the polynomial Q2" is renormalizable and all these renormalizations are hybrid equivalent to
itself. Fig. 5 shows the filled Julia set of (). and the filled Julia set of the renormalization of
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Figure 5: The filled Julia set of the Feigenbaum polynomial Q. with ¢ = —1.401155..., and the filled
Julia set of the renormalization of Q2.

Example C: Let ¢ ~ 0.419643 + 0.60629:, a Missurewicz point in the boundary of the
Mandelbrot set. For this map w = 0 becomes periodic of period two after three iterations (see
Fig. 6). Since Q? is renormalizable, w = 0 is fixed after two iterations of the renormalized
map. Hence, the renormalized filled Julia set is hybrid equivalent to 22 — 2, i.e., a quasi-
conformal image of the interval [—2,2]. No further iterates are therefore renormalizable.

3.1 Tuning

The process of tuning explains in a more geometric way how the Mandelbrot set contains
infinitely many copies of itself and, in addition, it provides plenty of examples of renormal-
izable polynomials. It was developed by A. Douady and the details can be found in [D3].
This procedure could be viewed as the complex version of the star product in real dynamical
systems.

To each center ¢ of a hyperbolic component there is associated a copy of the Mandelbrot
set, M., obtained by the tuning homeomorphism:

M — My=cl M
c — c¢lc

which works intuitively as follows. Since ¢y is the center of a hyperbolic component, the
critical point w = 0 is periodic under ).,. Let p be the period of the cycle. Let A be the
immediate basin of attraction of w = 0 and % be the unique holomorphic map that conjugates



Q0)=Q(0) ¢, Q0

QO"

Figure 6: The Julia set of Q. for ¢ ~ 0.419643 + 0.60629:. Emphasized, the Julia set of the renor-
malization of Q2.

Qco |4 to z = 22 in the unit disk (see Sect. 2). Then 1) provides internal rays in A and internal
arguments in A since 1 extends continuously to the boundary of the unit disk.

Now take (). any polynomial in the Mandelbrot set, with locally connected Julia set (for
the non-locally connected case see [D3]). Its filled Julia set K, has external rays in A.(c0)
that provide external arguments in 0K, = J.. Topologically, the tuning process consists
of replacing A by a copy of K., identifying points in @A with points in J. whose internal
and external angles are equal. Afterwards, replace the preimages of A by preimages of K,
accordingly.

One can show that the map can be modified to obtain a polynomial-like map whose filled
Julia set is hybrid equivalent to a new polynomial Q. with ¢ = ¢y L ¢, the tuning of ¢y by
c. Clearly, IC’, is renormalizable and its filled Julia set is K.

The tuning map is a homeomorphism mapping centers of hyperbolic components to cen-
ters of hyperbolic components and Misiurewicz points to Misiurewicz points; it is analytic in
the interior of M and OM,, C OM

Example : Suppose we choose ¢y = —1.75488..., the center of the hyperbolic component
of period three in the real axis whose filled Julia set is shown in Fig.7.

By tunning ¢y with all the points in M we obtain all the points in this copy. Some of
them are shown in Fig. 8.

As an example of a tunned Julia set we refer to Example A above and in particular to
Figure 4. That is the filled Julia set of (). where ¢ = ¢y L —1. As we see, the “disks” in K,
(Fig. 7) have been substituted by filled Julia sets of 22 — 1.



Figure 7: The filled Julia set of Q. with ¢ = —1.75488. .., the center of the hyperbolic component
of period three in the real axis.

Figure 8: Left: The Mandelbrot set. Right: Magnification of the small period 3 copy of the Mandel-
brot set in the real axis. Some of its points have ben marked as they would be obtained by tuning.



4 The importance of renormalization in complex dynamics

In this section we summarize the strong relation that exists between renormalization and the
main present conjectures in the field of complex dynamics.

Let Raty denote the space of rational maps of degree d.
Conjecture 4.1 The set of hyperbolic rational maps of degree d is dense in Ratg.
For quadratic polynomials this conjecture specializes to the following.
Conjecture 4.2 The set of parameters ¢ € C such that Q. is hyperbolic is dense in C.

The well known conjecture of local connectivity of M (Conj. 2.2) is stronger than the
above, i.e.

Theorem 4.3 ([DHZ2]) If M is locally connected then hyperbolic quadratic polynomials are
dense in C.

It is known (see [MSS]) that the set of parameters in C\ M form an open and dense
subset of C (those are the maps that satisfy a special type of structural stability). Since the
quadratic polynomials in C\ M are clearly hyperbolic (the orbit of the critical point tends
to the superattracting fixed point at infinity), conjecture 4.2 is equivalent to

Conjecture 4.4 FEvery connected component of the interior of M is hyperbolic.

There are many routes one can take to relate this conjecture to renormalization. One of
them is through the following theorem of Yoccoz.

Theorem 4.5 Let Q.(z) = 2% + ¢ and suppose that Q.
e has a connected Julia set,
e has no indifferent cycles and
e s not infinitely renormalizable.

Then, J. is locally connected. If moreover Q. has no attracting cycle, then c lies in the
boundary of the Mandelbrot set and M is locally connected at c.

The proof makes use of the Yoccoz puzzle, a Markov partition for the dynamics of quadratic
polynomials using equipotentials and external rays (see [H, Mi2, Y]).

Corollary 4.6 If M is not locally connected at ¢ € OM or c¢ belongs to a non-hyperbolic
component of the Mandelbrot set then Q). is infinitely renormalizable

Sketch of the proof: The first statement is immediate. If ¢ belongs to a non-hyperbolic
component of the Mandelbrot set then ¢ does not have any attracting cycle and does not lie
in the boundary of M. Hence one of the three conditions in Yoccoz’s theorem is not satisfied.
Since ¢ € M, the Julia set of (). is connected. If (). had an indifferent cycle, ¢ would lie in
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the boundary of M (since no such quadratic polynomial could be structurally stable). Hence
Q. must be infinitely renormalizable.
q.e.d.
Hence the complete understanding of the dynamics of infinitely renormalizable polyno-
mials is of main importance in the field. In fact, we have

Theorem 4.7 M is locally connected if and only if for any (strictly) decreasing sequence of
tuning copies of M in M, their intersection is reduced to a point.

For completeness we mention that Conjecture 4.4 is also related to the measure of the
Julia set and to the existence of invariant line fields. Intuitively, a line field supported in a
set B € J, of positive measure is an assignment of a line through the origin in the tangent
plane to each point z € E such that the slope is a measurable function of z. The line field is
invariant if f~'(E) = E and the derivative of . maps the line at z to the line at f(z).

One can show (see [MSS]):

Theorem 4.8 A parameter ¢ belongs to a non-hyperbolic component of M if an only if J.
has positive measure and carries an invarient line field.

Combining this result with Yoccoz’s theorem we see that an equivalent conjecture to 4.4
is

Conjecture 4.9 An infinitely renormalizable quadratic polynomial cannot support an invari-
ant line field on its Julia set.

A stronger statement would be that all Julia sets of quadratic polynomials have measure
zero. Recently though, the existence of high degree polynomials with Julia sets of positive
measure has been shown.

Finally, the main result in [Mc] is the following:

Theorem 4.10 FEwvery connected component of the interior of M that meets the real azxis is
hyperbolic.

In fact, this theorem is a corollary of two stronger facts which we do not include here since
they are beyond the scope of these notes.
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