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Abstract

Using a family of higher degree polynomials as a bridge, together with complex surgery
techniques, we construct a homeomorphism between any two limbs of the Mandelbrot set
of equal denominator. Induced by these homeomorphisms and complex conjugation we
obtain an involution between each limb and itself, whose fixed points form a topological
arc. All these maps have counterparts at the combinatorial level relating corresponding
external arguments. Assuming local connectivity of the Mandelbrot set we may conclude
that the constructed homeomorphisms between limbs are compatible with the embeddings
of the limbs in the plane. As usual we plough in the dynamical planes and harvest in the
parameter space.
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1 Introduction

The Mandelbrot set has been a main object of interest and study in the recent years. It is
associated to the quadratic family of complex polynomials Q.(z) = 22 + ¢, for ¢ € C. Let K,
denote the filled Julia set of Q., i.e.

K =K,={z€C|{Q}(2)}nen is bounded },
and let J = J,. be the boundary of K., the Julia set of Q..

As for all rational functions, the dynamical behavior of the critical point w = 0 dominates
the dynamical behavior of the polynomial. The filled Julia set K. is connected when the
orbit of 0 is bounded and totally disconnected when it is unbounded.

The Mandelbrot set, M, is defined as the set of parameter values ¢, for which K, is
connected, or equivalently as the set of parameters for which the orbit of 0 is bounded.

The works of A. Douady, J. H. Hubbard [DH1] [DH2], D. Sullivan [MSS] and J.-C. Yoccoz
in the last decade contributed enormously to the understanding of the Mandelbrot set, but
there remain many interesting open questions. The main one is to prove that M is locally
connected (MLC conjecture). The following are some well known results about M:

1. M is full, compact and connected.

2. The interior of M contains connected components for which (). has an attracting pe-
riodic orbit. These are called hyperbolic components and it is conjectured that their
union equals the interior of M.

3. For each hyperbolic component (2, there is a conformal isomorphism pg : D —
such that Q. has a cycle of multiplier ¢ when ¢ = pq(t). The point pq(0) is called
the center of Q. This map extends to a homeomorphism of D onto Q. The function
Y(t) = ya(t) = lim,_,1 pa(re?™™) defines a parametrization of the boundary of 2. For
each t € R/Z, the point y(t) in 0 is said to have internal argument t. The point y(0)
is called the root of the hyperbolic component €.

4. There is a unique hyperbolic component, namely €}y, that is bounded by the main
cardioid, for which @, has an attracting fixed point. For any internal argument p/q €
Q/Z, there is a hyperbolic component €2, , attached to the cardioid at the point o (p/q)-
This hyperbolic component contains c-values for which Q). has an attracting periodic
cycle of period g. The point vo(p/q) is the root of the hyperbolic component €, ,.

5. There exists a conformal isomorphism ¢y : C\ M — C\D such that %92 — 1 when
¢ — 00. An external ray of external argument 0 is defined by

RM(H) = ‘P]T/[l({TGZMG}1<T<oo)-

(See Figure 1 and Sect. 2.1.1). Rays with rational arguments play a special role. They
are known to have a limit on the boundary of M as r — 1. The set of landing points of



these rays consists of all the roots of the hyperbolic components and all the Misiurewicz
points, i.e. ¢ values for which w = 0 is strictly preperiodic.
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Figure 1: The Mandelbrot set.

Let p and ¢ be positive integers, p < ¢, ¢ > 2 and ged(p,q) = 1.

We define the p/q-limb of M, M, /4, to be the connected component of M \ Q¢ attached
to the main cardioid at the point with internal argument p/q, i.e. at ¢ = yy(p/q) (see Figure
1).

We define the p/q-wake of M, WM, /4, to be the open subset of C that contains the
p/q-limb of M and is bounded by the two rays landing at ¢ = yy(p/q) union this point [At].

Definition Given two compact sets K and K’ in C, we say that a homeomorphism ¢ :
K — K'is compatible (resp. reversely compatible) with the embeddings of K and K’ in C
if there are neighborhoods N and N’ of K and K’ respectively such that ¢ extends to a
homeomorphism QAS : N — N', preserving (resp. reversing) orientation.

Some years ago, J.-C. Yoccoz observed (unpublished) that the limbs M 5 and My/5 are
homeomorphic and that corresponding polynomials have conjugate dynamics on the filled
Julia sets. Recently E. Lau and D. Schleicher [LS] have announced the existence of home-
omorphisms between any two limbs with equal denominator. The homeomorphism is not



compatible with the embeddings of the limbs in the plane, but compatible with the dynam-
ics, i. e., corresponding polynomials have conjugate dynamics on the filled Julia sets.

In this paper, we construct a homeomorphism between any two limbs with equal denom-
inator. The homeomorphism is not directly compatible with the dynamics but compatible
with the embeddings assuming local connectivity of M. In fact, we believe that the hypoth-
esis of local connectivity could be removed but we will discuss this fact in a forthcoming
paper.

Our goal is to prove the following theorems:

Theorem A Given p/q and p'/q, there exists a homeomorphism
— &7 .
b = Qpp’ X Mp/q — Mp’/q

which is holomorphic on the interior of My,.

Moreover, for each ¢ € M4, there exists a homeomorphism
. : Ko — Koo

which is holomorphic in the interior of K. and compatible with the embeddings of K. and
Kq)(c) mn (C

See Figs. 2, 3 and 4. In fact, a stronger statement is true: for all ¢ € M/, the homeo-
morphism ®, matches with the combinatorially defined map described in Theorem C.

Figure 2: The 1/5-limb and the 2/5-limb of the Mandelbrot set.



Figure 3: Corresponding filled Julia sets under ac. Left: ¢ € M5, center of a period 6 hyperbolic
component. Right: ¢ € My/5, center of a period 8 hyperbolic component.

Figure 4: Hubbard trees for the filled Julia sets in Fig. 3



Theorem B Given p/q, there exists a homeomorphism,
I=Tp)q: Myjq — Mpq-

which is an involution, i.e. I = Id, and is anti-holomorphic in the interior of My g The set
of points that are fized by I form a topological arc through the limb.

Moreover, for each ¢ € My, there exists a homeomorphism
i. :fc : Kc — KI(C)

reversely compatible with the embeddings, which is anti-holomorphic in the interior of K,.

See Figs. 5, 6 and 7.

I 1/3(i) * \

Figure 5: Arc of symmetry for the involutions 7, ;3 and Z, 4.

Theorem C Given p/q and p'/q, let G;E/q and 0;'[/ be the arguments of the external rays
landing at the root points of the limbs My, and M, ,, respectively. Then, there ezists an
orientation preserving homeomorphism

- +
[0, »/q’ p/q] - [ep’/q’ep’/q]
such that

1. For 6§ € [p/q, p/q] N Q, the ray Ry (0) lands at a point ¢ € M, if and only if
Ry (O] ,(0)) lands at ®F ,(c) € My /4.



Figure 6: Arc of symmetry for the involution Z; 1.

Figure 7: The Julia sets for the landing point of the ray Ra(1/4) and 7, 3(c) = i.



2. The map @gp, 15 induced by a homeomorphism
O — 07 .
0=0,,:T—T

such that for any 6 € T and any c € M4, the ray R.(0) lands at z € K. if and only if
the ray Rga ,(C)((:)(G)) lands at ®.(z) € Kga (o)
pp pp

It is remarkable that the map @Zp, in Theorem C does not depend on the point ¢ € M, /,.
A stronger statement than part one of Theorem C is in fact true (see remark 7.16).

Theorem D Given p/q and H;E/q as in Theorem C, there exists an orientation reversing

homeomorphism © = @p/q of [91)_/(1, 0;'/(]] onto itself such that

1. ©° = Id.

2. For6 e [H;/q, H;L/q]ﬂ(@, the ray Ry (0) lands at a point ¢ € My, if and only if Ry (©(0))

lands at T, /4(c) € My,
3. The argument 0° fized by © is rational.

4. The map @p/q is induced by an orientation reversing homeomorphism
0= ®p/q :T— T

such that given ¢ € My, and 6 € T, the ray R.(0) lands at a point z € K., if and only
if the ray Ry (©(0)) lands at I(z) € K1)

Theorem E Assume M is locally connected. Then the map @gp, (resp. Ip/q) is compatible
(resp. reversely compatible) with the embeddings of the limbs in C.

To prove Theorem A, we use complex surgery techniques which are analogous to those
used in [BD], where a homeomorphism was constructed between the 1/2-limb of M and a
limb in a cubic parameter space. The way we use this technique is somewhat unexpected,
since we use different families of higher degree polynomials, P, x = Az(1 + z/q)?, as a bridge
for the construction of the homeomorphisms. That is, we actually show that each of the
p/g-limbs of M is homeomorphic to the 0-limb L, to be defined in section 3. These families
of polynomials were introduced in [F] as a way to approximate the family z — Aze?, inspired
by [DGH] where they considered polynomial families approximating z — Ae®.

The homeomorphisms could be defined directly without reference to the higher degree
polynomials. But the similarity between corresponding quadratic polynomials becomes more



Figure 8: Some rays with corresponding arguments under the map 0, /3- The value of 6° is 11/56.

transparent when passing to these special higher degree polynomials. Moreover the involu-
tions together with the arc of symmetry on the limbs are immediate from the symmetry of
the 0-limb L4 o with respect to the real axis. Although the involutions also follow from the
symmetry of M with respect to the real axis together with the homeomorphisms in Theorem
A, it is not clear that the fixed points form a topological arc.

The statements given above for theorems A to D just mention existence of homeomor-
phisms. In this paper we actually construct such homeomorphisms. The homeomorphisms
constructed are not directly compatible with the dynamics. The underlying common dynam-
ics is revealed through the surgery.

The paper is structured as follows:

Instead of proving Theorem A-D directly we prove analogous theorems F-H, forming the
bridges to higher degree polynomials. In Sect. 2 we recall some general results which we use
throughout the paper. In Sect. 3 we introduce the families of higher degree polynomials that
we use as bridges, and formulate Theorem F, the parameter space analogue of Theorem A.
In Sect. 4 we emphasize the common dynamical features to be applied. Sect. 5 is by far
the most important part of the paper. Using surgery techniques we prove Theorem F and
also Theorem G, the dynamical analogue of Theorem A. Theorem C follows immediately.
Sect. 6 is dedicated to Theorem B. In the last section we state and prove Theorem H, the
combinatorial analogue of Theorem C. Theorem C-E follow.

We thank Bob Devaney, Ricardo Pérez-Marco, Alfredo Poirier, Dan Sgrensen, Dierk Schle-
icher and Tan Lei for many helpful conversations and especially, we thank Adrien Douady
not only for innumerable comments and suggestions but also for his constant encouragement.
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We thank the referee for numerous comments and corrections that made the paper better.
We also thank Christian Mannes for creating the program that produced all the pictures
in this paper. We wish to thank the Mathematical Sciences Research Institute at Berkeley,
the Mathematics Department at Boston University and the Mathematical Institute at the
Technichal University of Denmark for their hospitality. Research at MSRI was supported in
part by NSF grant DMS-9022140.

2 Preliminaries

2.1 Dynamics of Polynomials

If f is a complex polynomial of degree d > 1, the point at infinity is always a superattracting
fixed point. We define its filled Julia set as

Ky ={z€C|{f"(2)}nen is bounded},

and its Julia set J; as the boundary of K.

Proposition 2.1 Let f be a polynomial of degree d. Then, K is connected if and only if
the orbits of all critical points of f are bounded.

For a proof see [B]]

Assume f is monic and K is connected. Then, there exists a unique analytic isomorphism
tangent to the identity at infinity, 4y : C\ D — C\ K, which conjugates fo(z) = 2% to f.
The map 1) is called the Bottcher coordinate.

We can also lift fo to a map fo on the universal covering space, the right half plane H. If
we require that fo(R;) =R, we have that

fo(z) = My(z) ==d- 2
In summary, the following diagram commutes
fo
H — H

exp J, J, exp

c\D % c\D

vr | |¥s

C\K; —L C\ K;

We remark that in the case of K; being locaﬂy connected, 1y extends continuously to
the boundary of I, so that 1)y o exp is defined on H. Even in the case when K is not locally
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connected, there is a set of points of full measure on ) where 1); is well defined. This set
always includes the points with rational arguments.

Given t € R we denote by R(t) the horizontal line in H with imaginary part equal to 27t
ie.
R(t) :={p+2mit e H| p > 0}.

We define the external ray of argument t to be

Rp(t) = ¢s(exp(R(2)))
= Pr({(re™) [ 7 € (1,00)}).

If Ry(t) has a limit when r — 1 (or p — 0), then it tends to a point of the Julia set which
we denote by R}(t). We say that Ry(t) lands at R}(t) and we have:

f(R}(t)) = Ry(d - 1).

All external rays with rational arguments land and if K is locally connected all external rays
land.

The potential, G ¢, (Green’s function) of K satisfies Gy = log(|w;1|) on C\ Ky. We may
extend it to C defining Gy = 0 on K. We have that

Gy(f(2) =d Gf(2)

for all z € C. The positive level sets of the potential function are simple closed curves
around Ky called equipotentials, and the potential measures the rate of escape of points
under iteration. See Figure 9. A given equipotential {z € C\ Ky | Gf(z) = p} corresponds
in the exterior of the unit disc to a circle around the origin of radius e’ and on the right half
plane to a vertical line of real part p.

Rt (D) r @ 21it
2mi't R(t)
oFk--4----- - -
d
« e 0

Figure 9: Sketch of an external ray and some level sets of the potential function.
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2.1.1 The Quadratic family

Let Qc(2) = 22 + ¢ and set K. = Kg,, . = 9q., etc. Let M be the Mandelbrot set (see
Sect. 1). The results in this section can be found in [DH2].

The map @y : C\ M — C\ D defined as pj(c) = 1, *(c) is a conformal isomorphism.
So we define an external ray of external argument 0 as

RM(H) = (P]_\/[l({Te27ri9}1<r<oo)'

If Rpr(0) has a limit ¢ € OM when r — 1 we say that Rps(0) lands at c. We denote the
landing point of the ray Ry (0) by R},(0).

The conjecture that the Mandelbrot set is locally connected is equivalent to the continuous
landing of all external rays.

It is known that all external rays with rational arguments land. In what follows we relate
the external rays of M with the external rays in the dynamical plane of the corresponding
quadratic polynomials, as well as the relation between the landing points in the case of
rational arguments.

1. Suppose ¢ € C\ M. Then

c € Ry(0) <= c € R.(0) (1)

2. Suppose ¢ is a Misiurewicz point in M. Then
R.(0) lands at ¢ € K. <= Rj(#) lands at ¢ € M.

An argument 6 satisfying the above is rational with even denominator.

3. Suppose c is the center of a hyperbolic component 2 of M of period k. Let ¢y =
v(0) denote the root point of the hyperbolic component. Let U, denote the connected
component of Int(K,) containing ¢ and let zy denote the root point on 9U,, that is the
boundary point which is fixed by Q¥. Then

R.(0) lands at zg € K, adjacent to U, <= Rps(0) lands at ¢y € M.

An argument 6 satisfying the above is rational with odd denominator.

2.2 Tools

For the surgery in Sect. 5 we will use the theory of quasi-conformal mappings, the theory of
integrability by Morrey-Ahlfors-Bers and the theory of Polynomial-like mappings of Douady
and Hubbard (compare with [BD], [DH3]).

13



Quasi-conformal mappings, Beltrami forms and almost complex structures

Let X and Y be two Riemann surfaces isomorphic either to D (the unit disc) or C.
An almost complex structure o on X is a measurable field of ellipses (E;)z¢ x, equivalently
defined by a measurable Beltrami form p on X
dz
p=u_
The correspondence between Beltrami forms and complex structures is as follows: the argu-

ment of u(z) is twice the argument of the major axis of E;, and |u(z)| = g—ﬁ where K > 1
is the ratio of the lengths of the axes.

The standard complex structure o is defined by circles.

Suppose ¢ : X — Y is a quasi-conformal homeomorphism. Then ¢ gives rise to an
almost complex structure o on X. For almost every z € X, ¢ is differentiable and the R-
linear tangent map Ty : Ty X — Ty()Y defines, up to multiplication by a positive factor,
an ellipse F; in T, X:

E, = (Tup) '(S").

Moreover, there exists a constant K > 1 such that the ratio of the axes of E, is bounded by
K for almost every z € X. The smallest bound is called the dilatation ratio of .

Equivalently, ¢ defines a measurable Beltrami form on X

e Pdz | dz

An almost complex structure is quasi-conformally equivalent to the standard structure if
it is defined by a measurable field of ellipses with bounded dilatation ratio.

Given ¢ : X — Y a quasi-conformal homeomorphism, an almost complex structure
o on Y can be pulled back into an almost complex structure ¢p*c on X. If o is defined
by an infinitesimal field of ellipses (E,)ycy then ¢*o is defined by (E;)zex where E; =
(T )*lEtp(z) whenever defined.

To integrate an almost complex structure ¢ means to find a quasi-conformal homeomor-
phism ¢ such that (Typ) 1(S') = p(z)E, for almost every z € X. Informally, we will say
that o is transported to oy by ¢.

A quasi-regular mapping is of the form 1 = h o ¢ where ¢ is quasi-conformal and A is
holomorphic, but A may have critical points.

The Theorem of Integrability can be stated as follows:

Theorem of Integrability (Measurable Riemann Mapping Theorem) Let X be a
Riemann surface isomorphic to D or to C. Let o, be any almost complex structure on X

given by the Beltrami form
dz
= UuUu—
# dz

14



with bounded dilatation ratio, i.e.
[lloo == suplu(z)] <m < 1.

Then oy, is integrable i.e. there exists a quasi-conformal homeomorphism ¢ such that

_ o
:u’_a(p'

If X is isomorphic to D then ¢ : X — D is unique up to composition with a Mobius
transformation mapping D to D. If X is isomorphic to C then ¢ : X — C is unique up to
composition with an affine map.

In Sect. 5.5 we will need the dependence on parameters of the integrating maps, when
dealing with Beltrami forms defined in C.

Theorem of Integrability (Dependence on Parameters) Let A be an open set of C and
let (px = “A%)AEA be a family of measurable Beltrami forms on C. Suppose that X — uy(z)
is holomorphic for each fized z € C, and that there is m < 1 such that ||px]lcc < m for all
A€ A. Let oy : C— C be the unique quasi-conformal homeomorphisms that fizes two given

points in C and such that uy = %. Then for each z € C the map A — @x(2) is holomorphic.
Polynomial-like mappings
A polynomial-like mapping is a proper holomorphic mapping

f:U —U

where U’ and U are open sets in a Riemann surface X isomorphic to a disc, and U’ C U.
The degree of f is the number of preimages of any point z € U counted with multiplicity.

For a polynomial-like mapping f we define
Kr={z€U'| f"(z) €U for all n € N}.

Given two polynomial-like mappings f : U’ — U and g : V' — V with Ky and K, con-
nected we say that f and g are holomorphically equivalent (resp. quasi-conformally equivalent)
if there exists a holomorphic (resp. quasi-conformal) homeomorphism

(p:Ul—)Vl

where U; and V; are neighborhoods of Ky and K, conjugating f to g on U = f~1(U)
i.e. satisfying go o = po f on Ul.

A hybrid equivalence is a quasi-conformal equivalence which satisfies O = 0 almost ev-
erywhere on K, making ¢ holomorphic in the interior of K.
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If f and g are polynomials, a co-hybrid equivalence between f and g is a quasi-conformal
equivalence ¢ : C — C which is holomorphic on C \ Kj.

The Straightening Theorem Let f : U' — U be a polynomial-like mapping of degree d
with Ky connected. Then, f is hybrid equivalent to a polynomial P of degree d. Moreover,
this polynomial is unique up to an affine conjugacy.

We will also need the following result:

Proposition 2.2 Let f and g be polynomials with K; and K, connected. If f and g are
hybrid equivalent then they are conjugate by an affine map.

3 Families of Higher Degree Polynomials

Consider the family of complex polynomials P »(z) = Az(1 + z/q)¢, where A € C\ {0} and

g > 2. Each P, has degree ¢ + 1 and has exactly two critical points: —¢ with multiplicity

g—1,and w = q:L—ql with multiplicity one. Moreover, P, (—¢) = 0 and 0 is fixed. We now

show that polynomials with these features, can always be expressed in the form P, »(z).

Definition A polynomial P(z) of degree ¢+ 1 > 3 is of type Ej if it satisfies the following
properties:

1. P has two critical points: —¢ of multiplicity ¢ — 1 and w € C of multiplicity one.
2. P has a fixed point at z = 0.
3. P(—q)=0.
Proposition 3.1 Any polynomial P(z) of degree ¢ + 1 which is of type E, is of the form
Pya(2) = Az(1 + 2)‘1.
Moreover, if P, and Py of type E4 are affine conjugate with ¢ > 3, then A = X'

From here and throughout the paper, we will omit the subindex ¢ whenever it causes no
confusion.

Proof : The polynomial P has a zero of order ¢ at the point —g and a simple zero at 0 and,
since P is of degree ¢ + 1, it is of the form Az(1 + z/q)9.

For ¢ > 3, if an affine map A conjugates P, to P,y it must fix —g (because it is the
only multiple critical point for both polynomials) and 0 (because it is the image of —q), so
A is the identity.

q.e.d.
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Since the critical point of high multiplicity is always prefixed, the dynamics of P, ) are
dominated by the behavior of the free critical point, w. We have the following lemma, which
follows from Prop. 2.1:

Lemma 3.2 Let K, ) be the filled Julia set of P, x. Then, K, is connected if and only if
the orbit of w is bounded.

Proposition 3.3 Let Py, and P, be polynomials of type E4 with Ky and Ky connected.
If they are hybrid equivalent, then \ = X.

Proof : This is a direct corollary of Prop. 2.2. By this proposition P and P, y are affine
conjugate. By the Prop. 3.1 A = \.
q.e.d.

For each ¢ € N let A; be C* viewed as the parameter space of P, . Let L; denote the
connectedness locus, i.e. the set of A € A, for which K ) is connected. Observe that the set
L, associated with P, is the analogue of the Mandelbrot set for (). Figures 10, through 15
show the sets L1, Lo, L3, L4, L5 and Lig, respectively.

WLy, Lio

Figure 10: Parameter plane A;: the Connectedness Locus Ly and the 0-wake. Range: [—2.5,9.14] x
[-2.1,2.1].

Following this analogy, we will call a connected component € of the interior of L, a
hyperbolic component if the free critical point w is attracted to an attracting cycle (despite
the fact that the polynomial is not hyperbolic, since the orbit {—g,0} is contained in the
Julia set, see Sect. 3.1). As in the Mandelbrot set, a hyperbolic component 2 is parametrized
by the multiplier map pq : D — €2, a biholomorphic map that extends continuously to the
boundary. For all g, the sets L, share the following features:

17



Figure 11: Parameter plane A: the Connectedness Locus Lo and the 0-wake. Range: [—2.2,4.4] x
[—3.5,3.5].

Figure 12: Parameter plane A3: the Connectedness Locus L3 and the 0-wake. Range: [—3,13] x
[—4.7,4.7].
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Figure 13: Parameter plane A4: the Connectedness Locus L4 and the 0-wake. Range: [—3.5,23.4] x
[—9.5,9.5].

Figure 14: Parameter plane As: the Connectedness Locus L5 and the 0-wake.
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Figure 15: Parameter plane Ajg: the Connectedness Locus Lqg and the O-wake. Range: [—6,95]
[—45.6, 45.6].

1. If 0 < |A\| < 1, z = 0 is an attracting fixed point of P, 5, with w in its basin of attraction.
Hence the punctured closed unit disk is contained in L.

2. Let r/s € Q/Z such that r > 0, s > 0 and ged(r,s) = 1. At Az = 2™+, the polynomial
P, ) experiences a period s-tupling bifurcation. That is, when we exit the unit disk
through Az, z = 0 becomes repelling and a cycle of period s becomes attracting. Hence,
there is a ilyperbolic component of period s attached to the unit disk at )‘ﬁ-

For L4, the unit circle is the analogue to the main cardioid of M. Here, we do not have
a cusp and a hyperbolic component of period 1 is attached to Ao = 1.
1
As we did for M, we define the -limb of Ly, Lq,g, to be the connected component
of L, \ D attached to the umit circle at the point )‘ﬁ- The 0-limb, L4, will be of special
importance in our work.

One can define external rays in C\ L, similarly to C\ M, to be explained in section 3.2.
There are exactly two rational rays landing at A = 1, the root of 0-limb. Hence we may
define the 0-wake WL of Ly, as the open subset of C that contains the 0-limb of L, and is
bounded by the two rays landing at its root. In section 4.2, the 0-wake is discussed in detail.

The existence of a homeomorphism ¢ = @Zp, : Myq —> My 4 as stated in Theorem A
will follow immediately (see Sect. 5.6) from:
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Theorem F Let p and q be positive integers such that p < q, ¢ > 3 and ged(p,q) = 1. Then,
there exists a homeomorphism

b= pjq: Mpjq — Lqp,

which is holomorphic in the interior of Mpy,.

Note that we have restricted to ¢ > 3. The reason is that the connectedness locus L
is a ramified double covering of M and not related to limbs of M; the 0-limb Lo of Lo is
homeomorphic to M, [BD] and gives no new information with respect to Theorems A to E.

3.1 Monic Families of Higher Degree Polynomials and External Rays

Our goal in this section is to make precise definitions of external rays in the dynamical plane
of P, » as well as in the parameter plane. Also, we characterize the polynomials P, 5 with X
in the 0-wake.

As explained in Sect. 2.1, when P is a monic polynomial, the ray Rp(#) is defined using
the Bottcher coordinates 1/p which is tangent to the identity at infinity. Here we are dealing
with P, , which is not monic, hence there is no canonical choice of a map conjugating P, ) to
2+ 2971 on the complement of the filled Julia set. This will cause some minor complication.

Set B B
P,(z) =P;,(2) = 2z(z+v).

The polynomial ]5,1,,, is affine conjugate to P, with A = v9 through the map g,(z) = Lz.
Under this map, the special fixed point 0 is still at 0, the multiple critical point is at —v, the
free critical point is at w, = q_+—”1 and the free critical value is at

- —u a

w=P T = +q1)q+1 v, 2)

Let K, = Kﬁ., and zz,, :C\D — C\ K, denote the Béttcher coordinates for ]5,,, i.e. conju-
gating P, to z — z7t! and tangent to the identity at infinity.

For A € L, \R_ let 9 : C\ D — C\ K) denote the unique Béttcher coordinate

conjugating Py to z — 29! and being asymptotic to z )\1;!/‘12’ at oo, where ()1/ ? denotes

the principal branch of the g-th root. In other words ¥, = g, o 1’/;,, with v = A1/4,

We may now define the external ray of argument ¢ to be

RBA(t) = 9a(exp(R(2)))
= a({re’™ |1 € (1,00)})

and denote G, = log |15 '| the potential function.
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Proposition 3.4 A parameter X\ belongs to the 0-wake WLy if and only if z = 0 is a
repelling fized point of Py and the landing point of a fized ray.

In order to show this proposition we will need to define the external rays in parameter
space. We will work again with the monic polynomials.

Let Eq denote the connectedness locus of the monic family (see Fig. 16), i.e.

Zq = {v € C| K, connected}.

Figure 16: The connectedness loci Z3 and Ls.

Set A, = C* and let IT = II, : A, — A, denote the g-fold covering map defined by
II(v) = v?. Note that IT maps the wedge ¥y = {v € A, | |Arg(v)| < 3} conformally onto

Ay \ R_ and in particular, the 0-limb E(LO onto the 0-limb Lgg.
Let prq : C\ Eq — C\ D denote the unique Riemann mapping asymptotic to v kv

at 0o, where k is some positive real number. The relation between the dynamical maps and
the parameter maps is contained in the next proposition.

Proposition 3.5 Let v € C\ L,. Then

¥t (B0) = — (g, ()7 (3)
Proof : Note that the map

C\L, — C\D
v o 1551(’5:/)
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is a (¢ + 1)-covering map and that the asymptotic behavior as v — oo is given by eq. (2).
Moreover the map
C\L, — C\D
v — (¢ ()
q
is a (¢ + 1)-covering map with the asymptotic behavior as v — oo given by v katiyatt,
The proposition follows.
q.e.d.

9 _
qa+!
q+1 -

Remark 3.6 From the proof we also obtain k= Note that the radius of capacity of

ZNLq is % so it depends on gq.

Instead of proving prop. 3.4 directly, we prove the analogous proposition in the closed
wedge ¥, C Agq.

Proposition 3.7 1. The external rays Rz(ig(q—il)) land at v = 1, the root point of the
0-limb L.

2. A parameter v € 3, belongs to the 0-wake qu,o if and only if z = 0 is a repelling fized
point for Py, and the landing point of R,(0).

Proof : Note that if the ray R, (0) does not branch then it must land at a fixed point. The
situation is stable in v if the fixed point is repelling. It is unstable either if the fixed point is
indifferent (in which case it is parabolic of multiplier 1, due to the Snail lemma, see [Mi]) or
if the ray R, (0) branches at the free critical point &,. The stable set is open in 1~Xq and the
unstable set is closed in the same space.

The ray R, (0) passes through the free critical value v, if and only if

Arg (4, (7)) = 0
From eq. (2) it follows that this is equivalent to

2n—1
N Z
vE RL(2(q+1)), n €
i.e., restricted to the wedge X, we have v € Rz(i—Q(qlﬂ)).

For v = 2L the polynomial P, has a superattracting fixed point and Ry C C\ K,. By
symmetry, R,(0) = Ry and R,(0) lands at z = 0.

There exists p > 1 so that the polynomials P, for v = +pexp(mi/q) € 0%, have a
superattracting cycle of period two with @, < 0 < v,. By symmetry, R,(0) C R} but R,(0)
does not land at z = 0.

For v in the wedge the situation can change only if v = 1 for which 0 is a parabolic fixed

point of multiplier 1, or if v € RE(iQ(q—il)) for which the ray R,(0) branches at @,,.
q.e.d.
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Remark 3.8 For completeness we add that the connectedness locus f}q can be thought of
as the connectedness locus of a different family of polynomials of degree (¢ + 1), namely

P,(z) = z(v + 29).
Note that P, and P, are semiconjugate by the ramified covering map I (z) = 29, i.e. quﬁ,, =

B,o II;. A polynomial P, is characterized by having a fixed point at 0 and g ordinary critical
points arranged symmetrically around 0. Symmetrical points have symmetrical orbits, that

~ 27 2w~ ~
is P,(ea’z) =ea'P,(2). The symmetry is collapsed by II; when passing to P,. Note that
a hyperbolic component € of L, deserves the name hyperbolic when viewed in this other

family, i.e. if v € () then all critical points of P, are attracted to attracting cycles. All our
results could be obtained from the family P, with a different kind of surgery.

3.2 External Rays in the 0-wake

To end this section and for later use, we are going to rename the external rays in the 0-wake
so that their arguments may be read directly from the dynamical plane as it is the case for
the quadratic family (compare with eq. 1 on page 13).

Observe that eq. (3) gives the following result:
Ifve Wf/q,() \ f/q,() then

~ 1
Argg (0y) =[5 +(¢+1) Argg, (v)] (mod 1) (4)
v q
where Argz (resp. Arg; ) means the external argument with respect to K, (resp. Eq).
v q

Inspired by eq. (4) we define the affine map

At (Cogry aem) (0,1)
— 3+ (g +1)6.

Recall that II, : [~\q — A4 denotes the covering map v — A = v9. External rays of f/q are
mapped by II,; onto external rays of L,. For our purpose, the important external rays of L,
are these in the 0-wake. We parametrize them by arguments in (0, 1) as follows:

Ri,0(4q(0)) = Hq(qu(e))-

We say that € is the external argument of the ray relative to the 0-limb.

The following proposition explains why we choose this parametrization:

Proposition 3.9 Let A € L,o be a Misiurewicz point. Then, Ry(0) lands at the critical
value vy = )\(—1)‘1((1_%1)‘1"'1 if and only if Ry, ,(0) lands at .

The proof can be copied from [DH2] Part I, p. 74-75.
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4 Dynamical Characterizations

In this section, we describe the common dynamical behavior of all polynomials ). in a rational
wake of M as well as that of all polynomials P, ) in the 0-wake of L,. We will use the Julia
sets to construct the maps in Theorem F.

4.1 (@, with c in a rational wake

Let K. = Kg,, Y. = ¥q., etc. Since Q.(—2) = Qc(z), the filled Julia set K, is always
symmetric with respect to w = 0, the critical point. Let us denote by (. the repelling fixed
point where the ray R.(0) lands. The other preimage of . under Q., —f, is the landing
point for R.(1/2). For c¢ in g, the other fixed point, «., is attracting. When c leaves the
main cardioid to enter a p/g-limb, a, becomes repelling and a “pinching” point in the Julia
set.

Fix p/q. For each c € M, 4, in fact for all ¢ in the wake WM, ,,, there are g rays landing at
.. Their arguments are fixed throughout the wake and form a period ¢ cycle under doubling,
with combinatorial rotation number p/q. As a consequence they are rational numbers which
can be written with denominators 2¢ — 1 and numerators depending on p (see [GM]).

The other preimage of a, under Q). is the point o, = —a,. There are ¢ additional rays
landing at o, and their arguments are preimages under doubling of the arguments of the
rays landing at a.. Figs. 17 and 18 show examples of Julia sets in the 1/3 and 2/5 limbs
respectively, together with the rays described above.

_/
Re(®)=
Rc(1/7)

Ve

Rc(1/14)

Figure 17: The filled Julia set for the center of the main hyperbolic component in M; 3 and the five
subsets of the plane. The dots correspond to the period three orbit of the critical point w = 0.
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Ry(@Y)= Re(89)=

Ro@®)=
Re(9r31) R (s/31)

Rc(10/31)

Re(8%)=
Rc(9762)

4 Re(6%)=
Ve R (5/62)

R
Re(1e1) v

R(41/62) Re(62)=
| R¢(8Y)=R(49/62) R¢(51/62)

Figure 18: The filled Julia set for the center of the main hyperbolic component in M, /5 and the nine
subsets of the plane. The dots correspond to the period five orbit of the critical point w = 0.

The rays landing at o, and ¢, partition the dynamical plane into 2¢—1 closed subsets. We
denote the subset containing the critical point by V?, and the others by Vi or Vi = —V; for
1=1,2,...q—1 as shown in Figs. 17 and 18. Note that these subsets have their counterparts
in the right half plane for which we will not use the subscript ¢. For 0 < ¢ < ¢ —1 we let
6" € (0,1) be the argument of the ray on the common boundary of V! and Vc[i+1 (mod g)]
In the same fashion, ¢ denotes the argument of the ray R.(6!) = —R.(#"). Note that
R.(0%) = R.(6" +1/2).

Let Vo-4—1 = Ug;(} V. Then, Q. acts on these sets as follows:

2—1 nd
Ve =y
Vi, Vi L plite modal g0 ci<g—1itqg—p (5)

=

—p 1rg— -1 0...g—1
V'cq P,V'cqp -3 {/C q

We establish the following conventions: in the dynamical plane and in expressions with
integer indices like [i+p(mod ¢)] we will omit (mod ¢), while in expressions with arguments,
we will omit (mod 1). In both cases, it should be understood that expressions should be
taken (mod ¢) and (mod 1) respectively.

4.1.1 Sectors

In this part assume ¢ € M, ,. For later purposes, we need to define some subsets which we
call sectors. They should be viewed as neighborhoods of rays R.(6) that land.
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Instead of viewing the sectors in the dynamical plane, it is better to think about them in
the exterior of the unit disk or, even better, in the right half plane (see Fig. 19).

Definition For a fixed s > 0, we define the sector centered at R(#) with slope s as :
SO) =8°0)={p+2mitcH| |t — 0| < sp}.

The boundaries of the sector S(@) are straight lines of slope +27s which cross exactly at
2730 (see Figure 19). The doubling map My maps each sector S(#) homeomorphically onto
S5(20).

On the dynamical plane of (). we define

Sc(0) = 52(0) = tpe(exp(S5(0))-

R.(6)

SL(6) R(6)

; Weoexp

Ke

Figure 19: Sketch of a sector in the right half plane and its correspondent in the dynamical plane.

We will only need to consider the sectors S (51) and their preimages under My which, in
the dynamical plane, correspond to sectors around the rays landing at «, and their preimages.
Since these rays land, S.(6) includes the landing point R}(6).

Note that, as they are defined, any two sectors in H overlap and hence they also overlap
in C\ K,.. To avoid this we restrict ourselves to a vertical strip as follows.

Choose an arbitrary but fixed value n > 0 and let W,, denote the vertical strip in H with
real part less than or equal to 55. That is

. n
Wn:{p+27rztEH|p§2—n ,

where n € NU{0}. In dynamical plane, define the filled level set for the potential function as
Wen = Pe(exp(Wh,)) U K.

Note that My maps Wy, 1 onto W, homeomorphically while, in the dynamical plane, the
polynomial @), maps every W, ,1 onto W, , with degree 2.
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Ry(69)= R(82)= P W,
A
R.(1/7) R.(1/14) W,
11/1-
9114
R.(@1)= R@E S
R.(2/7) | R.(11/14)
277 S(217,
7 S(1/7
R.(89)= 114
R.(9/14)

Re(417) n4  ni2 n

Figure 20: Examples of relevant sectors in the right half plane for the 1/3-limb and their correspon-
dents in the dynamical plane.

We remark that this construction depends on the parameter ¢ only through the function
1.. Hence, sectors are defined in the same way for all parameter values.

Set S2(0) = S*(0) NW,,. The following proposition assures that the sectors landing at c
and their preimages do not overlap, if the slope s is chosen sufficiently small (see Fig. 21).

Proposition 4.1 FizxgeN, n>0and 0 < s < m

1. For each n € NU {0} the n-sectors

m

S
_ Z
are disjoint.
2. The sectors
SS =" meZ, and Si(———) KE€Z koddneN
0%9q 17 ’ nion(2¢ — 1) ’ ’

are all disjoint.

Proof : The second statement follows from the first. The first statement is proved by
induction on n. It is true for n = 0 since the lines

. S n l d 1 S n [+1
= — 1 = —_-——
ol Toa 1 ? o T2 1

do not intersect in W.

Suppose it is true for n > 0. Since
S m — S m
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it is true for n + 1.
q.e.d.

In figure 21 the 0-sectors S3(*),m =0,...,6, and 1-sectors Sf(lk—4), k odd between 1 and
13, are drawn with slope s = 7”—7] Two adjacent n-sectors intersect at the vertical line p = 5%

2me

6/7

5/7)

a7

37

207

7

114 >

0 P
n | ——n

2n+l on

Figure 21: 0-sectors and 1-sectors drawn with slope s = ﬁ and ¢ = 3.

4.2 P, with ) in the 0-wake

In this section we characterize the dynamical behavior of polynomials P,y with A in the
0-limb L, or, more generally, polynomials in the 0-wake W L, q.

Recall from sect. 3.1 that polynomials P,y with X\ in WL, are characterized by the
fixed ray R, (0) landing at z = 0. Since —q is the only preimage of 0 other than itself, the

preimages of R)(0)
1 2 q

—), R yeoo s R
1 ) Mo
land at the critical point —¢, independently of A.

Rx( )

These rays divide C into g closed subsets. Let us denote these sets by V)? , V/\l, e ,fol
as shown in Figure 22. We will always draw the dynamical plane for P, ) rotated by 180°.
The reason will become clear in sect. 5.2. The polynomial P, y maps each of these subsets as
follows:

Ve 2L ¢\ (Ry(0) U{0})

‘O/ZA 5 C\(RA(0)U{0}) for1<i<g—1 (6)

As in section 4.1.1, for § € R let S(9) = S*(f) denote a sector in H with slope s. The
map Mgy (multiplication by (g + 1)) maps S(6) homeomorphically onto S((g+ 1)§). When
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Rx(5/6) vt R,\(/2/3)

vy Ry(3/4)

vy

(—5&#

&

_RyOL _}o N R(1/2)
w=-5/6

o

S

Rl)\(ll4) 5{,\(1/5) Vy Ry(1/3)

Figure 22: The filled Julia set for the center of the main hyperbolic component in L3¢ (left) and
L5 (right) and the three (resp. five) subsets of the plane. In both cases w is fixed. The planes have
been rotated 180 degrees.

A € Ly we may transport these sectors to the dynamical plane by defining
Sx(6) = a(exp(S(0))).-

To avoid the overlapping, fix an arbitrary 7 > 0 and let W, be as above, substituting 5%

by Let also Wy » , be the filled level set for the potential function, i.e.

_n__
(g+1)" "

Wq,)\,n = ¢A(eXP(Wn)) U K)\

We will consider only the sector centered at the O-ray and its preimages (see Fig. 23). As

in section 4.1.1, one can show that if 0 < s < ﬁ, these sectors do not overlap for p < 7).

5 Surgery: Proof of Theorem F

5.1 Idea of the Proof

We prove Theorem F using surgery following the methods in [BD]. In this section we sketch
the steps of the proof .

Let p and g be positive numbers, p < ¢, ¢ > 3 and ged(p,q) = 1. Then, for any value
c € M, we will assign a value A € L.

We start in the dynamical plane of Q.. Through cutting and sewing, we construct a new
map fc(l), the first return map. This map has several lines of discontinuity.
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2m 8
/]

S(3/4) | R(3/4)

172 S@p) | R(1/2)

va S(1/4) | R(14)

S(0)
0 RO)

-1/a

-112

n/1e ni4 n

Figure 23: Sketch of relevant sectors in the right half plane for any A € L3 ¢ and their correspondents
in dynamical plane.

Next we smooth fc(l) on sectors and obtain a new map fc(2) which is quasi-regular and
has two critical points: one with multiplicity ¢ — 1 and the other with multiplicity one.

To obtain an analytic map, we define an fc(2)-invariant almost complex structure, o. By
the Measurable Riemann Mapping Theorem, this structure can be integrated by a quasi-
conformal homeomorphism ¢,, inducing the analytic map fc(?’) = (. 0 fc(2) ol

We then show that fc(3) is a polynomial-like map (see sect. 2.2 or [DH3]) of degree ¢ + 1.
By the Straightening Theorem, it is hybrid equivalent to a polynomial P of degree q + 1.

Finally, we show that P may be chosen to belong to the family L, o, and that it is independent
of the choices made in the above steps.

This process defines the map ¢,/, : M/ — Lq0. In Sec. 5.2, we explain the construction
in the dynamical plane. In Sect. 5.3, 5.4 and 5.5 we prove that ¢,/, is bijective, analytic in
the interior of M/, and continuous at points in the boundary of M, ,, respectively.

5.2 Construction of a polynomial of degree ¢ + 1. Definition of ¢,/,.

We start in the dynamical plane of a polynomial Q. with ¢ € M,,/,, for a fixed p/q, and with
We, Vi, V2-471G.(0), etc. as in section 4.1. Our goal is to obtain a value A = A(c) € L.

We construct a truncated space CL obtained from V9+4~! by identifying
R.(6°) with  R.(87°")

equipotentially (see Figs. 24 and 25), that is, we identify a point z € Rc(go) with the unique
point w € R.(#7 1) such that G.(z) = G¢(w). Throughout the rest of the section we let 0
denote this identified argument.
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Qe 2m 8

<N E
Rc(1/14) 817 Aot AAA A A7 "R( +1)
0
\
15/14} R(15/14)
0 ‘
v 2
R R(11/14)
11114 R(11/14)
2
Q? NE!
9/14 R(9114)
VO
17~417 R(g
VO
114 | R(1/14)
n/8 n/4 n/2 n

Figure 24: Left: The space CI' where a random equipotential has been drawn and its preimage

under fc(l), for ¢ € My 3. Right: The space H” with a vertical line and its preimage under f(!), when
working in the 1/3-limb.

2m e
144 §
+0 |y R(6+1)
1+0%
Vv 4
1+6° R(6%)
/?fm
3
\Y
[ > R(6?)
1 V. R(6Y)
Vv 1
iz 0
ot 1 R(6)
6 | R(®%)
n/8 n/4 ni2 n

Figure 25: Left: The space CI' where a random equipotential has been drawn and its preimage

under fc(l), for ¢ € My/5. Right: The space HT with a vertical line and its preimage under f), when
working in the 2/5-limb. For the values of 6, see Fig. 18.
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Note that the space ct can be viewed as the quotient of V9--4=! union some neighborhoods
of the rays R.(697!) and R.(6°) by the equivalence relation identifying the points in the two
neighborhoods

e(exp(p + 2mi(6° + 1)) ~ e(exp(p + 2mi(67" +1))).
Thus, C!' is a Riemann surface isomorphic to C.
Define the truncated filled Julia set as
T T g
K'=K.nCl =K nV>1l
Note that no identification takes place in K, so K! can be viewed as a subset of K.

We define now a map fél) :CY' — CL, the first return map, so that fc(l) acts on the sets
V. similarly to the polynomial P,  with A € L, o (compare with (6) on page 29). That is we
define o
(1 ifze VY,
QU ifzeVP
QT2 ifzeV?

Q. ifzeVUP vy

a if z =,

\

2m 8

Ty Y
o=
\
e
\\/
- / _~
§ Heszml s rrerrersrsssssssssrsss R )
92 -
nig nsa n/2 n

Figure 26: Left: The space CI and the domain and the image of fc(z), for ¢ € My /3. Right: The
space H' and the domain and the image of f(*) when working in the 1/3-limb.

Note that fc(l) is well defined on the identified ray Rc(é) and holomorphic everywhere

except at o, and at
R.=R.(0°) UR.(6")U---UR.(677)
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where it is discontinuous.

Informally, just to get some intuition, note as well that the first return map already has
some of the characteristics of a map of the family P, 5. For example, each of the subsets V7,

is mapped under fc(l) to the space CT' \ (Re(8) U {a}). The map has degree two in V9, and
degree one on the other subsets V', which justifies the hope that some variation of the first
return map will be a map of degree g + 1. Also, we can observe the creation of a new critical

point, at /. This is still a prefixed point, but a neighborhood around it now wraps g times
around a, under fc(l) , making o, a critical point of multiplicity ¢ — 1.

This ends the first step of the construction. We will now modify the map fc(l) to construct
a new map fc(Z) which will be quasi-regular. The modification is done only on neighborhoods

of the rays (the sectors defined in section 4.1.1) for which fc(l) is discontinuous. We denote
these sectors by S., i.e.,

Sl =8.(0°US.(0")U---US(077").

We will have to restrict the space so that these sectors do not overlap. We will do this
construction once and for all in the right half plane.

We define H” from H by cutting along R(n + 6°) and R(n+ 697'), n € Z and identifying
the two rays as we did for CI'. Then, the universal covering map 9. cexp : H — C\ K,
restricts to a universal covering map

(the 0 exp)” : H' — C \ K

which is holomorphic in both ¢ and the variable in HT .
Let R',S’, S and V' denote the sets in HT that project to R.,, S’, S¢(f) and V respectively.
Choose a lift 1) of fc(l). Then, the following diagram commutes

AN A =
(Geoexp)” | | Geoesp)
(1)

CI\KT L T\ KT

Note that f(!) can be chosen independently of ¢ and that one can actually write down such a
map explicitly in terms of iterates of My similarly to the definition of fc(l) in terms of iterates
of Q.. The map f (1) is holomorphic everywhere except at R(6* +n),0<i<qg—1,n € Z
where it is discontinuous.

We proceed now to restrict the domain. We will define two sets X’ and X which will be
the domain, respectively the image, of the new map f). Set X = W NHT and let v denote
the curve in H which bounds X. Let 7/ denote a C* curve which projects to a Jordan curve
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4. = (1 o exp)T'(¥') in CI' and which satisfies

& ifzeVvO\g

Re(y) _ L3 HZEVIS

1 ifzevlp\ g =vir\g

Let X' be the vertical strip bounded by 7' (see Fig. 26). In dynamical plane, set X, = W,NCL
and let X! denote the filled set in CI' bounded by +..

We shall modify the map f®) on the sectors around the rays of discontinuity as shown in
Fig. 26 so that it induces a quasi-regular map

X — X,

First we divide the sectors in S’ into quadrilaterals as described below.
For S(A) C (S"US) we have a homeomorphism

T, : S(8) —s S(0)

which is multiplication by 27 followed by a vertical translation that depends on 6.
For S(0) C S we define

To(0) = (S(6) N X) \ I, '(S(6) N X) (7)
and for k£ > 0

Ti(0) = T, (Tk—1(6))- (8)

For S(6) C S, define

To(9) = (S(6) N X") \ II; " ((S(8) N X"))
and T (0) as above.

Note that the map IIy restricted to Tj(0) is a conformal isomorphism from Tj(0) to
Tr—1(6).

We define @ : X! — X to equal f() outside of §’. On these sectors, f(@) is defined by
induction as follows. Let n; denote the integer determined by

O 0(S(6%) — d(S(ni +0)).
Then choose for 0 < ¢ < g — 1 a diffeomorphism

2 - Ty(6") — To(ni +6)
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so that f(V) and féi-) determine the same tangent map on the boundary of the sectors. For
k > 0 define \ . N
f,ﬁ,} : Ty (0") — Ty (ni + 0)

by induction as the map satisfying
(2) _ £(2) .
Hni+5° fk,i = fkfl,i o Ilgi.

Finally extend f® : X’ — X as a covering transformation so it is compatible with the
projection. The map fc(Q) : X! — X, is defined on CI' \ K7 by

, Ff@
X — X

(wcoexp)T l l (wcoexp)T
f(2)
XK —— X\ K]

and fc(Z)\KCT = f0(1)|KCT-

The map f® : X' — X is a diffeomorphism. The map fc(Q) : X! — X, is a degree
(g + 1)-ramified covering.

Lemma 5.1 The map f? is quasi-conformal. Hence fc(Z) is quasi-reqular.

Proof : We must show that the field of ellipses E, = (T3 f(®)~1(S") for € X', has bounded
dilatation ratio.

If z ¢ S', then E, is a circle, since the map f® outside S’ equals () which is analytic.

If z € Ty(#*) for some i, then the ratio of the axes of E, is bounded by some constant K,
since féi-) is a diffeomorphism and Ty(6?) is compact.

If + € Ty(6") for some k > 0 then the ratio of the axes of E, is bounded by the same
constant K, since f,gi) is féi-) composed with a finite number of analytic maps.

The same can be said for points that belong to the integer translations of this sectors
since f(?) is a covering transformation.
Hence, the dilatation ratio of the field of ellipses (E;) ¢ x’ is bounded by the same constant
for all z € X', and f® is quasi-conformal. Since (1.0exp)” is conformal, fc(Q) is quasi-regular.
q.e.d.

Remarks 5.2 1. It is important to note that orbits enter S’ at most once. This allows us
to bound the dilatation ratio by the same constant everywhere, since the diffeomorphism
féi-) has to be applied only once. Moreover it is essential for the next step in the
construction when we change the complex structure. This is the Shishikura principle
for surgery of this type.
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2. The map fc(z) is a degree (¢ + 1) ramified covering. It has two critical points: one at
w = 0 with multiplicity one and another one at o/, with multiplicity ¢ — 1, mapped to
the fixed point a.. These are the topological characteristics of maps in the family P, ,,

but the map fc(2) is not holomorphic.

The next step (holomorphic smoothing) is to construct a map fc(?’) which has the same
properties as f(gQ) but so that it also is a polynomial-like map of degree ¢ + 1. In order to do
so, we change the complex structure into a new almost complex structure with the property
that it is preserved under the map fc(Q) .

Lemma 5.3 There exists an almost complex structure o, on X, quasi-conformally equivalent
to the standard complex structure og, such that (fc(Z))*aC = 0. and 0. = o on the set KZ

This lemma, could also be phrased as follows: There exists a measurable field of ellipses

in X, with bounded ratio of the axes. These ellipses are invariant under fc(2) and the ellipses
are circles on K. As before, we will construct this almost complex structure in the right
half plane.

Proof : For z € S, we define the complex structure o to be the same as in lemma 5.1, i.e.
B, = (T.f®)~'(8"),

and then, the ratio of the axes is bounded by some constant K.

If z ¢ S', then either there exists n > 0 such that (f(?)"(z) € S’ or the orbit of z never
enters S'.

If there exists such n, then it is unique since a point in S’ is mapped to a point in S and
does not leave S as long as the map is defined. In this case define

Ey = (Tw(f(z))n)il(E(f(2))n(z))'

Since f(® is holomorphic outside of the sectors in §’, (f(2))" is holomorphic in a neighborhood
of z. Hence, the dilatation ratio of E, is the same as the dilatation ratio of E(3()yn(4), and
therefore bounded by K.

Finally, if the orbit of z never enters S’, define E, = S'.

By construction, o is invariant under f(2). Define o, on X, \ K!" as the pull-back of o by
the map ((. oexp)?)~! on a fundamental domain, and set o, = 0¢ on K. By construction,
0. is the required almost complex structure.

q.e.d.

By doing this construction once and for all in the right half plane and pulling back by

(1. 0 exp)T we have that o, and fc(Z) vary holomorphically with respect to c.
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Let 0. be the almost complex structure given by Lemma 5.3. We now apply the Mea-
o
surable Riemann Mapping Theorem (see Sect. 2.2) on X, a Riemann surface isomorphic
o]

to D, to obtain a unique quasi-conformal homeomorphism ¢, : X.— D integrating o, and
satisfying p.(w.) = 0 and ¢.(a.) € Ry. We have

(Tzc(Pc)il (Sl) = pe(T)Ey

where p.(z) € R;.
Now set D!, = (pc()of’c) C D and define fc(?’) by

) 0(2) o
X, —— X.

ee | |

3)
Dl =<+ D

c

Remark 5.4 In this particular case, the quasi-conformal homeomorphism ¢, is actually a
hybrid equivalence, since o, = ¢ on KCT

We show that fc(3) is holomorphic as follows: ¢! takes the standard structure oy of U’
to the almost complex structure o.. Then, the map fc(Z) preserves o, which is taken back to
oo by .. We conclude that fé3) takes o¢ to o¢ and therefore is holomorphic.

Since ¢, is a homeomorphism, fc(3) is still a ramified covering of degree ¢ + 1 with two
critical points (see remarks 5.2). Since D/ is relatively compact in D, we can conclude that
0(3) is a polynomial-like map of degree g + 1.
We now apply the Straightening Theorem to obtain a polynomial P () of degree g + 1
in Lg o, and a hybrid equivalence x. that conjugates fé?’) to Py x(c) on neighborhoods of K, r
and Ky ().

To justify this claim notice that the polynomial y. o fc(?’) o x- ! satisfies the following
properties:

e the point z; = x.(pc(ac)) is a repelling fixed point,
e the point 2o = x.(p.(0)) is a critical point of multiplicity one,

the point z3 = xc(pc(al)) is a critical point of multiplicity g — 1,

e 2o is mapped to z;, and

z1 is the landing point of one fixed ray.
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Since we may conjugate by an affine transformation sending z; to 0 and z3 to —¢q, we may
assume that the polynomial is of the form P 5 -

This concludes the construction on the dynamical plane. By this construction, given a
parameter value ¢ € M,,, we have obtained a unique A(c) € Lqo. We define the map

Ppjq s Mpjg — Lqp
by ¢p/q(c) = >‘(C)

Remarks 5.5 1. The value of A does not depend on the choices made throughout the
construction, i.e. the choice of the boundaries of X and X', the slope s, the diffeomor-
phisms féi-) and the integrating map .. Indeed, suppose that by other choices 7, '7’ , S,
fé? and @, we obtain a map @ and a polynomial Pq 5- Then, féQ) and %2) are hybrid
equivalent and also P\ and Pq,X would be hybrid eqhivalent (because of remark 5.4).

Hence by Prop. 3.3 we have A = .

2. Following the construction of the Straightening map in [DH3], one can check that x.
can be defined in all of ¢.(X,), since the boundary of X, is smooth and ¢, is quasi-
conformal.

The following proposition addresses the question of uniqueness of the conjugating maps.

Proposition 5.6 Suppose c € M,,;, and A = gbp/q(c) € Lgo. A hybrid equivalence between
(3)

¢ and Py is uniquely determined on @.(KI'), hence x.o @, is uniquely determined on K.

Proof : Suppose x. and x. are hybrid equivalences between fc(?’) and Py. Then ¢ = x.Lox.?
is a hybrid equivalence between P\ and itself. By copying the proof of Prop. 6 in [DH3],
p- 302 defining

] on K,
~ |1d on C\ K\

we obtain that @ is holomorphic and hence the identity on all of C.

The following theorem is the dynamical counterpart of Theorem F.

Theorem G Suppose c € My,;q and X\ = ¢p/4(c) € Lgo. Recall that X, is a neighborhood of
KT bounded by the truncated equipotential . and that W) is a neighborhood of K, namely
the filled level set of a chosen equipotential of Gy. There exists a homeomorphism

H.: X.— W,
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which satisfies OH, = 0 on K. and conjugates fc(2) to Py and such that H. maps relevant
sectors and rays for Q. to their counterparts for Py, i.e. H. maps S.(0), R.(9), and R.(6")

to Sx(0), Rx(0), and RA(?TD respectively.

Moreover, HC\KCT is uniquely determined and it conjugates the first return map fél) to P.

Proof : The map
Xe© @e t Xe = Xelpe(Xe))

is a quasi-conformal homeomorphism from X, to a neighborhood of K, conjugating by con-
struction the map fc(Q) to the polynomial Py. In particular, H, conjugates the first return
map fc(l) on K!' to the polynomial Py on K. By remark 5.4, it satisfies 0H, = 0 on K.

The map x.o ¢, sends S.(0), R.(0), R.(6") and ~, to some quasi-conformal image of these
objects. We claim that there exists a hybrid equivalence hy : x.(pc(X.)) — W) conjugating
P, to itself and such that H, := h) o x. o ¢, satisfies the properties in the theorem. In the
remainder of this proof we give the idea of the construction of hj.

Let 2l and A denote the annuli

A = xc(pe(Xe)) \P)\_I(Xc((Pc(Xc)))
A=W\ Wy

First define hy : 20 — A as a diffeomorphism conjugating Py to itself on the inner boundaries
and Sending Xc(0c(Sc(0))) N2, xe(we(Re(6))) N2 and xc(pc(Re(6°)))NA to Sx(0)NA, RA\(0)NA
and R)\(;;t—ll) N A respectively (see Fig. 27). This can easily be done constructing first such a
map in the right half plane.

h

4

Ry(3/4)

Rx(0) Ry(1/2)

Ry\(1/4)

Figure 27: The annuli 2 and A and the function hy.
Once h) is correctly defined on the annulus we use a pull-back argument to define it

everywhere else outside K}, that is if we denote A" = P, " () and A" = P, "(A), we define
hy = P, " o hy o P{ on A". Finally, define hy to be the identity on K. By an argument
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analogous to Lemma 1 in page 302 of [DH3], followed by Rickman’s lemma in page 303, one
can show that h) is a hybrid equivalence between P, and itself with the required properties.

That He|gr is uniquely defined follows from the proposition above.
q.e.d.

Remarks 5.7 1. If ¢ is Misiurewicz, i.e. if w, = 0 is strictly preperiodic for @, then
wy = q:_—ql is strictly preperiodic for Py. In particular if w, is eventually mapped to o,
then w) is eventually mapped to the fixed point 0.

2. If ¢ is hyperbolic, i.e. if w, is attracted to an attracting cycle by @., then w is attracted
to an attracting cycle by Py. Moreover, the multiplier of the cycle by Q. equals the
multiplier of the cycle by P, since H, is holomorphic in the interior of K.

!

3. The main branch point (Misiurewicz) in the p/¢-limb of M corresponds to Q4(w.) = o.
It follows that the main branch point in L, o corresponds to the polynomial that satisfies
Pia(wy) =—qor A= (¢g+ 1)1+ %)‘1. Hence this branch point tends to co as ¢ tends
to oo.

0=2

Figure 28: Left: The filled Julia set for P5 , where X is the center of a hyperbolic component of
period two in L5 o; A is the image of both c-values in Fig. 3 under ¢, /5 and ¢, /5 respectively. Right:
The Hubbard tree (compare with Fig. 4)

5.3 Bijectivity of ¢,/,
In this section, we construct a map

€pjq  Lao — My
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and show that it is the inverse of ¢, /.

We start with a fixed A € L, ¢ and our goal is to obtain a unique quadratic polynomial Q).
such that ¢ € M, ;. Note that this means that, from each Ly, we have to construct several
maps, one for each p.

Let V)f, etc. be defined as in Sect. 4.2. Since this construction is supposed to be the
opposite of the construction of Sect. 5.2, we first want to “add” the piece of dynamical plane
that we removed before.

Hence, we cut Vy along Ry(0) in such a way that now V) contains two copies of R, (0),
which we denote by R)(0) and Ry(1). For 1 <i < q—1, let 17)3 be an identical copy of V}
and let

T)i\ : V)f — YZ\’
be the identity map. The copies ‘7/\1 are sewn together in order to resemble Figs. 17 and 18, as
shown in figures 29 or 30. We glue the boundaries (the rays) together in order to construct a
Riemann surface (Cf isomorphic to C. However, we will not identify the rays equipotentially
as we did before. (If we did, the map that we are going to define would not be continuous
on these rays). In what follows, we describe these identifications. Figs. 29 and 30 show two

examples.
(1/4) o)
A(3/4
EA(IIZ) h ? \\

/ "“\‘h‘““" w el U P
7] N
; i!.d

.-
-

- Ry (1/4)

Figure 29: The space C¥ and the domain of f§2) for A€ L3p and p=1.

Let N be the bijective function that assigns to each integer 1 < ¢ < ¢ — 1 the unique
integer 1 < N(i) < g — 1 such that

N(@) p=i (mod q).

Intuitively, if this were the dynamical plane of a quadratic polynomial Q. (with ¢ € M,,,),
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R,\(16)

R\(5/6)

Ek(zls)

R, (5/6)

Figure 30: The space C{ and the domain of fﬁz) for A€ Ls o and p = 2.

N (i) would be the number of iterates that it takes for V) to be mapped to 17} for the first
time.

Pick 1 < i < ¢ — 1 and suppose N (i — 1) < N(i). Then, for each point z € Ry(i/(q + 1))
of potential p (i.e. Gx(z) = p), we identify

T H(z) ~ TX(Y),

N@i)=N(i—1)

where y € Ry)(i/(q + 1)) and has potential Gx(y) = p /(¢ + 1) a
Otherwise, if N(i — 1) > N(i), then we identify

(@) ~ 73 (),

N(i—1)—N(3)

where z,y € Ry(i/(¢ + 1)), GA(z) = p, and GA(y) = p/(¢+1)" ¢
If 1 = 1, for each x € Ry)(1) with potential p we identify

z ~ Ty (y),

NQ)

where y € Ry(1/(g + 1)) and has potential Gy(y) =p/(g+1) < .
If i = ¢ — 1 then for each z € R)(0), we identify

qfl(

T~T y)a

N(g—1)
where y € R)(¢/(g + 1)) and has potential Gi(y) = p(g + 1) . Finally, we identify the
landing points of the rays bounding the Vy with 0. We shall denote these ¢ rays by Ry (
for 1 <i<gq.

=),
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We define

g—1 ) qg—1 o
c=Uw u Uwvi/~
i=0 i=1

with the identifications above.

Define the extension of K, to be K/’\E = K, U Ug;ll T;\(K)\)/ ~. Note that K, can be
viewed as a subset of K f .

We define
-

so that f )(\1) acts on the sets V)?, V)f, 17; similarly to the quadratic polynomial Q. with ¢ € M, ,
(compare with (5) on page 26). It should be viewed as the “inverse” of the first return map.

Recall that Py : Vi — C\ (Rx(0) U{0}) is a homeomorphism and define
T)(\H—l)p o P)\|_%i+1)p oP, on V)fp, for0<i<q—2
(1) g -
f)\ =3\P on V/\q P
FW o (rip)-1 on VP, for1<i<qg-—1
Note that fﬁl) is well defined on the identified rays

2 =~ q
q+1) A(q

Ry = R)( ) U Ry(

qg+1

and holomorphic everywhere except at —g and at

1 2 q
Ry=R UR JU---UR
A ’\(q-l—l) ’\(q+1) ’\(q-l—l)

where it is discontinuous. As before, we shall smoothen the map on sectors and restrict the
space so that the sectors do not overlap. We will do this - once and for all - in the right half
plane.

We define HE from H by cutting along R(n), for n € Z, and gluing in copies of V' with
similar identifications along the rays R(n + —45),1 < i < ¢,n € Z, as in C¥. The universal

. q+1
covering map

yroexp: H— C\ K,
extends in an obvious way to a universal covering map

(1o 0 exp)” : HY — C \ K.

The map () o exp)¥ is holomorphic in both variables. Let .S, S, Vi denote the sets in HE
that project to US)\(qj_—l), USA(qj_—l) and V' respectively.
i i
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Choose a lift f(I) of f)(\l). Then the following diagram commutes:

(1)
we L we
(#roexp)” | | @roem)®
s

CY\KY —— CY\KY

Note that we can choose f (1) independently of A. The map f() is holomorphic, except at
R(n+ —=),1 <i < g—1,n € Z where it is discontinuous.

q+1
Let X C HEF denote the vertical strip in H¥ bounded by the curve v which satisfies
n in VO...qfl
Re(y) = 7 T
Grore m VY

Due to the identification of the rays, 7 is a vertical line. Set vy = (1) o exp)¥(y). Let o/
denote a C* curve which projects to a Jordan curve

Y = (a0 exp) ()

in C¥, and which equals

inV?P\§,0<i<q—1

Re(y/) = (0 = .
inV?P1<i<qg—1

_n
(@r)(FD7a

Let X' be the vertical strip in H” bounded by ' and let X, respectively X} denote the
filled sets in C¥ of 7y, respectively v}.

We shall modify the map f() on the sectors around the rays of discontinuity so it induces
a quasi-regular map
2
F& X, — X,
For 0 =n + #p n € Z,0 <1 < g we have a homeomorphism
Iy : S(6) — S(0)

which is multiplication by ¢ + 1 composed with a vertical translation.

For the same values of 6, the maps Iy induce homeomorphisms
Iy : S(0) — S(6).

Define

Ty(0) = (S(0) N X) \ I, (5(6) N X),
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and for k£ > 0 N L
Ty (0) = 1T, (Ti—1(0))-

For0:n—|—qi—.1,n€Z,1§i§q,deﬁne

To(0) = (S(6) N X") \ I3 (S(6) N X"),

and Ty(0) as above.

We define f@ : X! — X to equal f(!) outside of S. On these sectors, f(?) is defined by
induction. Let n; denote the integer determined by

1 TR 4
qul))—>8(S(nz+qul

F = a(s( ))-

Choose for 1 < ¢ < g a diffeomorphism

@ .ty Fy g LTP
04 * 0(q+1) O(nz+q+1)

so that f) and féi) determine the same tangent map on the boundary of the sectors.

Define f,gi) : Tk(q—%l) — Tj(n; + ?’TI{) by induction as the map satisfying

a . (2) _ £(2) .
Hm—}—;‘%’ © foi = frl1;0 Hqﬁ-

Finally, extend f® : X’ — X as a covering transformation so that it is compatible with
the projection. The map f)(\2) : X} — X, is defined on X} \ K¥ by

(2)
x I, x
(#noexp)® | | @rcemr®
f(Q)

X\ KY —— X\ KY

and 'f)(‘2)|Kf‘ = f)(\1)|Kf

The map f® : X’ — X is a diffeomorphism. The map f§2) : X3 — X, is a degree
2-ramified covering.

Lemma 5.8 The map f? is quasi-conformal. Hence f§2) is quasi-reqular.

Proof : As in Lemma 5.1, the map f® : X’ — X is quasi-conformal, since fé?i) are diffeo-

morphisms on compact sets and f,gi) is obtained from féi-) by composition with holomorphic
maps.
q.e.d.
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We change the complex structure (as we did in Sect. 5.2) into an almost complex structure
o, which is quasi-conformally equivalent to the standard structure, g, and such that it is
invariant under the map f®. Also, o coincides with o outside of S and its preimages.
Here, as in the quadratic case, orblts pass through these sectors at most once, since after one
iteration, a point in S is mapped to a point in S and does not leave S as long as the map is
defined.

By construction o is invariant under f(?). Define o on X \ K f as the pullback of o by
the map ((1, o exp)?) ! and set o) = 09 on K. (Compare with Lemma 5.3 on page 37).

We apply the Measurable Riemann Mapping Theorem to obtain the unique quasi-con-
formal homeomorphism (in this case also a hybrid equivalence (see remark 5.4))

("N Xa— ]D)a

integrating o and satisfying ¢y (wy) = 0 and ¢ (0) € R;. Then, let D} = ¢5(X") and define
3 2)
f>(\) :(p)\of}(\)ogo)\l:DS\—)]D).

The map f)(\?’) is a polynomial-like map of degree two, which has one critical point at
ox(—q/(q+1)). We now apply the Straightening Theorem to obtain a uniquely determined

polynomial Q) and a hybrid equivalence x, conjugating f)(\g) to Qc(r)- Hence we define
€p/a(A) = c(A).

Remarks 5.9 By the same arguments as in remarks 5.5 on page 39 the value of ¢ does not
depend on the choices made throughout the construction i.e. the choice of the boundaries 7y

and «', the slope s and the diffeomorphisms fo /- We may also assume X, to be defined on
all px(X»).

The following proposition is the analogue of Theorem G for the inverse function.

Proposition 5.10 Suppose A € Ly and ¢ = &,/4(\) € My, Recall that X is a neighbor-
hood of Kf bounded by the extended equipotential vy and that W, is a neighborhood of K.,
the filled level set of a chosen equipotential of G.. There exists a homeomorphism

H,\ : X,\ — Wc
which satisfies OHy = 0 on Kf and conjugates f)(\2) to Q. and such that Hy maps relevant
sectors and rays for Py to their counterparts for Q., i.e. H) maps SA((]j_;l), R)\(q_l%l), and

Ri( to S,(6°1), R(0"1), and R.(0"") respectively.

)

Moreover, H/\|Kf is uniquely determined and it conjugates fﬁl) to Q..

The proof is analogous to the proof of Theorem G.
Substituting ¢ by A, remarks 5.7 hold for &, .
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Proposition 5.11
1. ppig0&pjq = Idr,,
2. &pjq © Ppjqg = Ide/q

Hence ¢4 is bijective.

Proof : To prove the first statement start with A € L;o and, following the construction
above, obtain a polynomial (). and the map H) given by Prop. 5.10, where ¢ = fp/q()\). We
now apply the construction in section 5.2 on page 31 to Q. choosing

Ye = Hy(vy) NCE
v = H\(Py (7)) NCE

2 2 _
fc(,()),i = Hjo f)(\,(g,i o H, '

Let X' = ¢, /q(c) which, by the remarks 5.5 on page 39, does not depend on these choices.
Let H. : X, — Wy be given by Theorem G. It is easy to check that H.o H )\|W;’ is a hybrid
equivalence between Py and Py. Hence A = X' = ¢,/,(£,/4(A)) by Proposition 3.3.

To prove the second statement choose ¢ € Mp/, and set A = ¢p,/4(c) and ¢/ = &, /,(A). We
must show that Q. ~pp Q~ and therefore ¢ = .

Let H, be given by Theorem G. Besides the properties of H, stated in the theorem and
since H, conjugates fc(Q) to Py

e the curves ( 0(2))_”(%) are mapped to equipotentials of Py of potential n/(g+ 1)™t1)/4,

e the rays landing at . are mapped accordingly to the rays landing at —g. Moreover, if
potential p on R.(6) corresponds to potential o’ on R)(0), then for all ; € Ry, potential
p2~" in R,(f) corresponds to potential p'(q + 1)~%/7 on Ry (0).

We provide the idea of the construction, leaving the details to the reader.

To define the domain of f)(\2) : X} — X choose

7 N V)f)...qfl — Hc(')’c)
ANV = Ho(Q7 (ve)),

and complete the curves in ‘N/:\’ as usual.
We now extend H, : X, — W) to HE : W, — X, as

HE =

c A

T;‘p o P)\|‘;}p oH,0QI" ifze Wp
H,. otherwise
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One can check that HE is well defined along the rays landing at 0. It satisfies 0HY = 0 on
K..

Finally, we define f)(\Q) on the sectors where the first return map is modified so that
2 _
f)(\ : :HCEOQCOHCI

and fﬁl) elsewhere. One can check that this map is a valid choice and that the following
diagram
Wep —2 W,

HE | |z
i
X /'\ —— X\
commutes.

From the above, H” is a hybrid equivalence between Q. and f)(\2). Since ¢’ does not depend

on the choices, f )(\2) is hybrid equivalent to Q. Hence Q. and Q. are hybrid equivalent.
q.e.d.

5.4 Analyticity of ¢,/, in the interior of M,

Let 2y be a hyperbolic component of M, . Then ¢,,, maps Qy to 2z, a hyperbolic
component of Lo (as defined in section 3). By remark 5.7 on page 41, the multiplier of the
corresponding attracting cycles is preserved. Let pq,, : D — Qas (resp. pq, : D — Qr) be
the multiplier function that parametrizes Qs (resp. €1). Then, by the observation above

bpja o= Py ©paL, and & la,= pay © po. (9)

and hence ¢/, is holomorphic on all hyperbolic components.

The interior of M is conjectured to equal the union of its hyperbolic components. If this
was known to be true we would be done. However there might be non-hyperbolic components
in the interior of M (also called queer components). Such components might exist similarly
for Ly. In both cases, the filled Julia sets of polynomials that belong to non-hyperbolic
components have empty interior due to the classification of Fatou components.

Let Qs be a non-hyperbolic component of M, ,4- In order to prove analyticity of ¢,/, in
Qu we will use a parametrization similar to the parametrization of a hyperbolic component
given by the multiplier map. In what follows we describe how to obtain such a parametriza-
tion.

Definition Let X be a Riemann surface. A line field supported on £ C X is an L*®
Beltrami form p supported on E with ||u|. = 1.
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Proposition 5.12 A parameter c belongs to a non-hyperbolic component of M if and only
if J. has positive measure and carries an invariant line field.

(For the proof see [MSS] and in particular p.61 in [Mc])

Remark 5.13 The same proposition is true for a polynomial P, 5, with A in a non-hyperbolic
component of the interior of L.

Proposition 5.14 Let Qur (resp. Q1) be a non-hyperbolic component of M (resp. Ly), and

let ¢, € Qur (resp. A\, X' € Qr). Then, there exists a unique co-hybrid equivalence (see

Sect.2.2) Yoo : C— C (resp. Py : C— C) between Q. and Qy (resp. Py and Py ) such that
1 ~ ~

Yer(2) 4 q (resp. %'\T'(z) — (%)5) as z — 00. Moreover, if ¢; € Qpr (resp. A\i € Qp), i =1,2,

z — pa—
and p; = g:ﬁii: (resp. p; = gZi;\z ), i = 1,2, then there ezists t € C* such that p1 = tps.

Proof : We give the idea of the proof in the case of Q (compare with [Mc]). For the
first part, set ¥y = Yy o 1/);1 : C\ Ky — C\ Ky. By the A-lemma, 1)y extends to a
quasi-conformal map from C to C conjugating Py to Py. The uniqueness follows from the
uniqueness of 1) and 1y as defined in Sect. 4.2. Finally, observe that

v gy, (2 v A
—wa B LY (2

z z v

Q=

as z — 00.

To show the uniqueness of the Beltrami forms up to multiplication by a constant observe
that if that were not the case we could construct from the two parameter family ;1 +touo of
Beltrami forms, an injective map (¢1,t2) — A(t1,%2) giving rise to a two complex parameter
family of polynomials of the form F, ), which would be a contradiction.

q.e.d.

Corollary 5.15 For ¢ € Qu (resp. A € Q), an invariant line field on K, (resp. K)) is
unique up to rotation.

Proposition 5.16 Letc € Qur and let le denote an invariant line field of Q.. The Beltrami
forms (tpe)iep induce a conformal equivalence

Pepe 2 D — Qs

Similarly, if A € Qy, and pa denotes an invariant line field of P, , the Beltrami forms (tuy)ien
induce a conformal equivalence N
Pxpy - D— Qp.

Proof : We give the proof for the case of Qr, (compare with [Mc]). For the proof in the case
of Qs just replace A and P by ¢ and @ respectively.
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For t € D consider the Beltrami form tuy. Then |[tuy]lco = |t| < 1 and tuy is invariant
under Py. Apply the Measurable Riemann Mapping Theorem (dependent on parameters) to
obtain a quasi-conformal homeomorphism <pf\ that integrates tu) and fixes —q, 0 and oo. The
map ¢} o P o ()" is holomorphic and a degree ¢ + 1 polynomial of the form Pj. Define
PXux (t) = A(D).

To show that A(¢) is holomorphic note that the free critical point (resp. free critical value)
of Py must be mapped under ¢} to the free critical point (resp. free critical value) of Py).
Hence t ¢ g+l

— _ _ q+1 q+
Alt) = —px( A(q+1) ) . )T

Since tuy varies holomorphically with ¢, ¢! varies holomorphically with ¢ and therefore so
does A(t).

To show that A(t) is injective, suppose that A(t1) = A(t2). Then

P50 Pro(¢)) 7 =g o Pyo (o))
ie. P, = ((pf\2)_1 o (pf\l oPyo (9073\1)—1 o (pf\z.

Hence ¢ = (c,of\‘z)_1 o gof\l is a co-hybrid equivalence between Py and itself. Let 1\ be the
Bottcher coordinate on C \ K. Then ¢! ooy : C\D — C\ D is holomorphic and
conjugates z — 297! to itself. Moreover, ¢ maps the cycle of rays landing at the repelling
fixed point 0 onto themselves. Hence ¢ must be the identity. Since 1) is bijective, this implies
(,03\1 = (,03\2 on C\ K.

Since K = 9(C\ K)) and (pg\l and <,0f\2 are continuous, it follows that (pg\l = (,03\2 on K)
and therefore on all of C.

i

Finally, g—w% =t;uy for i = 1,2, so tyuy = touy. Since py # 0 on a set of positive measure
Lo
t1 = t2.

At this point we have obtained a holomorphic injective map from the unit disc to a
neighborhood of A in Q. To show that this neighborhood covers the whole component, pick
a point X' € Qr. By Prop. 5.14 there exists a co-hybrid equivalence 1)y between Py and Py

with p/ == g—%\;hj. Moreover, since 903 is a co-hybrid equivalence between Py and P, for any

t €D, p' = t*tpy for some t* € C. Hence 1hyy o 9§ ' is a conformal equivalence between Py
and Py and therefore \' = A\(t*1).
q.e.d.

Definition/Lemma 5.17 Let ¢ € Qur, A = bp/q(c) and H be a quasi-conformal homeo-

morphism as in Theorem G, uniquely defined on K. Given u. an invariant line field on K.,
let ul' be the restriction of . to CI'. Then the Beltrami form

o [ on K
0 on C\ K.

defines an invariant line field in Ky which we call the induced line field on K.
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Proof : Note that y is well defined since He|gr is unique. The fact that [|p[|oc = 1 follows
from 0H, = 0 on KCT
Let E C K. be the set of positive measure where ! # 0. Since quasi-conformal mappings

are absolutely continuous with respect to the Lebesgue measure, H.(FE) C K, has positive
measure. Hence py # 0 on a set of positive measure.

The invariance of uy by P, follows from the fact that H. conjugates fc(l) to Py. By
Prop. 5.12, A belongs to a non-hyperbolic component of L, .
q.e.d.

Theorem 5.18 Let Qu; be a non-hyperbolic component of My,q- Then, Q= qﬁp/q(QM) 18
a non-hyperbolic component of Ly .

Moreover, if we fix c € §~2M, A= </>p/q(c) and pe an invariant line field on K., then

— -1
¢p/q|§M = Pxux © Pe,pe

where py denotes the induced line field on Ky; hence ¢, , is holomorphic on all non-hyperbolic
components of M.

The rest of the section is dedicated to proving the theorem above.

Pick ¢ € Q and let e, pe and @l be as in proposition 5.16. To prove that ®p/q 18
holomorphic in Q. we will use notation from the construction of this map in section 5.2 on
page 31.

Let (ph)T = @hlcr
Lemma 5.19 The diagram

(2)
X, — X,
(b | [worr
1)
Xé(t) — Xe)

3 T
commutes and %(% =tul.
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Proof : Let ). and 9. be as above. We have the following diagram

c\D 2% c\D

ve | v

C\K, -2 C\K,

wél lwi

Qc
C\ Koy —2 C\ Ky

"pc(t)T T%(t)
c\D 2% cC\D
By the same argument as before @bc_(i) oploth. = Id|(c\ﬁ. It follows that ¢! maps rays to rays
and equipotentials to equipotentials. Hence (¢%)T(CL) = Cf(t).
Let _ -
(C\D)" = {exp(p + 2mit) € C\D | p + 2mit € H'}
and ! = '(/)cl(@\ﬁ)T- Then, f@ : X' - X (X' ¢ X c HT) induces a map f® : X = X
(X'c X c(C \ D)7) such that the following diagram commutes
— JT(2) ~
X — X
ve l le
(2)
X, —— X,

and the same is true replacing ¢ by ¢(t). Then,

(9" (fP WE (2))) = (9 (e (FP(2))

which proves that the diagram in the lemma commutes.

(T
Since (¢%)T is a restriction of ¢! we have that ggzggq« =tul.

q.e.d.

Lemma 5.20 The map H := H_.4 o ()T o HI! conjugates Py to Py, (c(t))- Moreover,

g—g =tuy on K,.
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Proof : The conjugacy follows from the construction of ¢/, together with lemma 5.19. Now
consider the Beltrami form tuy on K. By H., tu, is transported to tul since 0H. = 0
on K. The map (¢%)7 integrates tul which means that tul is transported to the standard
complex structure on KZEt)' Now, 0H, = 0 on K so in summary, tuy is transported to the
standard complex structure by H.

q.e.d.

We have proven that the following diagram commutes

Py, qte®))

N(Kp, (1)) N (K, (e(r))
N(K)) D, N(K))
A K
Py 1y

N(Kxw) N(Kxw)

Moreover, (¢ o H™') = 0 on Ky, (c(r)) since both maps H and ¢} integrate tuy. Hence,

@4 o H™! is a hybrid equivalence between Py, and Py (c(t)) and therefore A(t) = ¢;,/4(c(t))
by Cor. 3.3.

q.e.d. Thm. 5.18

Remark 5.21 One could state Theorem 5.18 in terms of §,/, concluding that this map is
also holomorphic. One should mimic the proof above considering the “extended” versions of
gof\ and p) as opposed to the “truncated” versions of ¢ and p..

5.5 Continuity of ¢,/, at points on the boundary of M,

Assume that c is in the boundary of the p/g-limb. The following will be a key lemma:

Lemma 5.22 Suppose A\ € 0Ly, N € C and Py ~gc Px. Then A = X.

Proof : Let ¢ be a quasi-conformal homeomorphism that conjugates Py to Py, i.e.

Py =poPyogp™!

Set u = g—i. Since ¢ is quasi-conformal, ||u|/. < 1.

Define a new Beltrami form z by

- |p on K,
a 0 ODC\K)‘
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Then k = || i oo < || oo < 1.
Consider the family of Beltrami forms p; = ¢, for |t| < 1/k. Then,

it lloo = [ 1l B [loo = [2] K < 1.

We then apply the Measurable Riemann Mapping Theorem (dependent on parameters) to
obtain the unique integrating maps s : C — C such that g—‘;i = u¢, and such that they fix
0, o0 and —gq. Since u; depends analytically on ¢, the maps ; also depend analytically on .

For each ¢, let P, = ¢ 0 P\ oy, ! which is a polynomial. Because of the choices made for
(1, it is easy to check that P, must be of type E. Hence, P, = Py = P ;) and or(w) = w,
where w = —¢/(q + 1) is the simple critical point. Also, the orbit of w by Py must be
bounded, so A(t) € L,.

By the same argument as in the proof of Prop. 5.16, A(¢) is an analytic function of ¢.

Now note that pg = 0, so ¢y = Id and hence A\(0) = A. Since A(t) is analytic then, by the
open mapping principle, it is either open or constant. If it is open, a neighborhood of t =0
must be mapped to a neighborhood of A, which is a contradiction since A € dLg and A(?)
belongs to L, for all t. Therefore A(t) is constant and since A(0) = X it follows that A(t) = A
for all ¢.

In particular A(1) = A. But for ¢ = 1 we have pu; = i. Hence, we have

c B, ¢

o [er

c -2, ¢

0| le

c -2, ¢

and @ o <p1_1 is another quasi-conformal homeomorphism that conjugates Py to Py. In fact,
we claim that it is a hybrid equivalence since it pulls back the standard complex structure
on Ky to the standard complex structure on K. It follows that Py ~p; Py and therefore
by Prop. 3.3, A=\

q.e.d.

We will also need the notion of holomorphic motion and what is known as the extended
A-lemma.

Definition Let S be a subset of C and DD, the open disc of radius 7 > 0. A holomorphic
motion of S is a map h : D, x S — C satisfying

(1) for a fixed z € S, the map ¢ — hy(z) = h(t, z) is a holomorphic mapping from I, to C,
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(2) for a fixed t € D, the map h; is an injection, and

(3) hyg is the identity map of S.

The original A-lemma in [MSS] and its improvements in [BR, ST, S] are stated in the
following theorem.

Theorem 5.23 Ifh: DD, xS — C is a holomorphic motion, then h(t,z) is jointly continuous
and has a continuous extension to H : D, x C — C which is a holomorphic motion of C; the
injections Hy : C — C are quasi-conformal extensions of hy with dilatation bounded by

Tt
o=t

K;

We apply this major result to prove the following lemma.

Lemma 5.24 Given c € My, there exists 7 = r(c) > 0 such that for each t € D, one can
find a quasi-conformal homeomorphism

Ht : X(: — Xc+t
with dilatation ratio bounded by

T+ |t]
r—|t]

K, =

and Hy = id|x,, making
Hi' o f& 0 Hy — &)

uniformly on compact sets of X, as t — 0.

v
Proof : Let X denote the subset of the dynamical plane of Q. which is bounded by the a.
fixed point, the rays R.(6°) and R.(#77') up to potential  and the equipotential of potential
_ N v
n of arguments between #7-! and #°. Then, X, is obtained from X, by identifying the rays
equipotentially.
Recall that we have analytic dependence on parameter of the « fixed point, a point of

fixed potential on the ray of argument §° (resp. 5‘1*1) and a point of fixed argument on the
equipotential of potential 7.

Hence, for each ¢ € M, and r = r(c) > 0 sufficiently small we have a holomorphic
motion

v v
h:D, x 90X, —C

v v
mapping 0X, to X .y for each t € D,.
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v
If we apply Theorem 5.23 to h we obtain a holomorphic motion

v
H:D.xC—C

v v v v v
extending h. Since 0X .y is a Jordan curve for all ¢, H; maps X, to X .4¢.

v v
It follows from the continuity properties of H that H; converge to the identity map
v

uniformly on compact sets of X, as ¢ — 0. Hence,

v—1l v(@) v v(2)
Ht Ofc—f—toHt_)fc

v(2)

v
uniformly on compact sets of X., where f_,; is the map fg_)t considered in the interior of
v

Xt

v
By construction of h; these maps are compatible with the “sewing”, i.e. with the equiv-

v
alence relation on the rays. Hence, for each ¢ € D, the map H; induces a quasi-conformal
map

Ht : Xc — Xc+t

with the same dilatation ratio. Also, Hy = id|x, and
Hi' o f 0 H — &

uniformly on compact sets as ¢t — 0.
q.e.d.

We proceed now with the proof of continuity. Given any sequence ¢, — ¢, let A, =
bp/q(cn) and A = ¢,/4(c). To prove continuity at ¢ we must show that lim, 0 Ay = A

Since LgoU{1} is compact it suffices to show that for any converging subsequence \,, — X
we have A = .
So, from now on we assume that we have picked a sequence ¢, = ¢ € OM,, ;. Let ¢p,

f7(,3), Xn, etc. be as in section 5.2, and for n large enough let H,, : X, — X, be the K,-quasi-
conformal homeomorphisms of above. To make the notation easier we denote the convergent
subsequence again by A\, — A\. We want to show that A = A.

Lemma 5.25 The polynomials Py and P; are quasi-conformally conjugate.

Proof : The mappings ¢, are all quasi-conformal homeomorphisms and they have a uniform
bounded dilatation ratio, since a new complex structure was constructed once and for all in
the right half plane and then pulled back by (¢ o exp)”. Let K be this uniform bound.
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Then, {¢, o H,} is a K'-quasi-conformal family where K’ > KK, for all n. We may assume
that the ¢,’s are normalized so that (for instance) ¢, o Hy(a.) = 0.

Now, the space of K'-quasi-conformal mappings from the analytic disk intX, to D (nor-
malized by mapping a. to 0) is compact with respect to uniform convergence (see [A] p.51).
Hence {¢p, o H,} form an equi-continuous family. Therefore, by Arzela-Ascoli’s theorem, we
can find a convergent subsequence ¢, o H,, — ¢*. The limit map is a K’-quasi-conformal
homeomorphism. The map

3 _
£ =0 fP o (p)
being the uniform limit of
is analytic and
3) o e
f( ) %qc f(Z) iﬁ“hb fc(g)-

Hence fc(3) ~ge ff").

Abusing notation we have now a sequence of polynomial-like mappings fr(l?’) converging to
f>$3) uniformly on compact sets of D and a sequence of hybrid equivalences x,, with uniform
bounded dilatation, since the moduli of the exterior annuli are uniformly bounded. By
remarks 5.4 and 5.5 we may assume Y, defined in all D and normalized so that x,(0) = 0 and
Xn(pn(Hp(we))) = —g. Then, by the same arguments as above (see also the lemma in p. 313
in [DH3]) we can find a subsequence x,, converging to a quasi-conformal homeomorphism
X

The polynomials Py, tend to the polynomial

P*:=x"o f>$3) o (X*)_l.
Then . ,
P* )’C"qc f>£ ) ~qc fc(s) )’%hb P;.
so it follows that Py ~g4. P*.

Finally, note that P* must be of the form Py~. Hence, P, — P* implies that A, — A*.
It follows that A* = X and therefore we have proved Py ~g. Ps.
q.e.d.

We now give the conclusion of the proof. From section 5.4 it follows that the interior of
M,/ is mapped bijectively to the interior of Lgo. Therefore since ¢ € M)/, we know that

A € 0Lg0. From lemmas 5.25 and 5.22 we conclude A = hy

This concludes the proof of continuity at points on the boundary and the proof of Theorem
F.

Remark 5.26 It follows that (9) in Sect. 5.4 is satisfied on the closure Q,/, so if ¢ has
internal argument ¢ then A = ¢,/,(c) has also internal argument ¢. In particular, roots of
hyperbolic components are mapped to roots of hyperbolic components.
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5.6 Proof of Theorem A
At this point, for every p/q, we have constructed a homeomorphism

bpjq + Mpjg — Lqp

which is analytic in the interior of M, ,.

Now, for any p/q and p'/q, define the map @], to be

-1
¢p’/q

3!, : My, Oela, Leo —% My,

pp’

Thus, @Zp, is a homeomorphism between M, and My, which by Theorem 5.18 is
holomorphic in the interior of the limbs.

For a given ¢ € M, the second part of Theorem A claims the existence of a homeomor-
phism &, between a neighborhood of K, and a neighborhood of K where ¢ = @gp,(c).

Let A = ¢p/4(c) = ¢y /q(c). Let He: Xo — Wy and Hy : X — W) be quasi-conformal
homeomorphisms as in Theorem G. Recall that these maps conjugate the first return maps

to the polynomial Py outside of the sectors and send the sector S.(0) (resp Se(6)) around

the identified ray (R.(f), resp. Ry (#)) to the sector S)(0) around R)(0). Define

-1

~ ~ HS ~
3T : X, \ S.(0) Hos Wi\ Sa(0) —= X, \ Swr(6).
Finally, extend (T)Z to W, - the filled level set of the chosen potential - by defining

- 37T if defi
B(z) = { ¢ (2) if defined

—®T(—z) otherwise
Lemma 5.27 The map &)c is well defined.
Proof : We must check that along the boundaries of S,(6°) and S.(89~!) in V2 we have
&7 (—z) = —&7 (2)-

We will actually prove it for all points in V.0 not in the interior of the sectors. We know that
in this region ®! conjugates Q¢ to Qg,. Hence

&7 (Q4(2)) = QL(% (2))
and the same holds for —z since —z € V2. But Q%(z) = Q4(—z) so

237 (2)) = Q% (3T (~2)).

Since Q? is two-to-one on V the conclusion follows.
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This concludes the proof of Theorem A.

Remark 5.28 The map P, is a quasi-conformal homeomorphism satisfying 0%, = 0 on K,.
This map does not conjugate Q. and Q» but it conjugates the first return map on K to the
first return map on Kg

5.7 Compatibility with Tuning

The Mandelbrot set contains copies of itself. For each center ¢y of a hyperbolic component
there is associated a copy of M obtained by tuning (see [D]):

M — My=clM
c — ¢ylc

The tuning map is a homeomorphism mapping centers of hyperbolic components to centers
of hyperbolic components and Misiurewicz points to Misiurewicz points; it is analytic in the
interior of M and dM,, C M. Moreover, Misiurewicz points are dense in M (see [Br]),
hence dense in OM,,.

Proposition 5.29 Let ¢y be a center of a hyperbolic component in M, ,,. The homeomor-
phism <I>gp, is compatible with tuning, i.e.

q>11

o (o Lc) = @gp,(co) le (10)

forallce M.

Figure 31: Left: the Hubbard tree for ¢y L (—2), where ¢g is the center of the period 6 hyperbolic
component in M5 (as in Fig. 3 left). Right: the Hubbard tree for ¢f,(co) L (—2), where ¢3,(co) is
the center of the period 8 hyperbolic component (as in Fig. 3 right). Compare also with Fig. 4.
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Proof : The parameter ¢ = <I>gp, (co) is the center of a hyperbolic component in My /.
Following the surgery constructions it is very easy to see that eq. (10) is satisfied for any
Misiurewicz point ¢ € M (compare the Hubbard trees, see Figs. 4 and 31 for an example),
hence satisfied for all ¢ € M, so @Zp,(aMCO) = 8M06 . The proof is completed through the
following topological lemma:

Lemma 5.30 Let Xo C X C C and X, C X' C C. Suppose Xy and X| are compact,
connected and full in C and satisfy 0Xo C 0X and 0X), C 0X'. If ¢ : X — X' is a
homeomorphism satisfying ¢(0Xo) = 0X|, then $(Xo) = Xj.

6 Involutions: Proof of Theorem B

If we look at the pictures of the connectedness loci L, (see Figs. 10 to 15), we observe a
symmetry with respect to complex conjugation. Indeed, the function

C: Ly — L

A = A

is a homeomorphism, and C? = Id. The map C maps the 0-limb to itself and the polynomials
P, ) and Pq 3 are conjugate through the anti-holomorphic map C': z + Z.

It is then clear that the function

-1

Pp/q C v/q
Ip/q : Mp/q — Lq,o — Lq,o — Mp/q

is a non-trivial homeomorphism from the p/g-limb of M to itself, such that Iﬁ = Id.

Since ¢/, is holomorphic in the interior of M, , it follows that 7, is anti-holomorphic
in the interior of M, ,.

From the construction, we see that Z,/, is like a reflection with respect to an arc of
symmetry. This arc is the preimage of the real axis (up to the “last” Misiurewicz point in
L) under ¢,,,, and hence it is always a topological arc (see Figs. 5 and 6).

The involution Z,, can also be obtained by using the symmetry of the Mandelbrot set
and the homeomorphisms between limbs given by Theorem A. The map C maps the limb

M,/, onto the limb M_,y/, and the polynomials Q. and Q¢ are conjugate through the
anti-holomorphic map C : z — Z. We have the following lemma;:
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Lemma 6.1 The homeomorphisms ¢y = My, ;g — Lqo are compatible with complez conju-
gation, i.e. the diagram

¢p/q
Mp/ q » Lgo

ol le

P(a-p)/q
Mig—p)/q > Lgo

commutes.

Proof : For this proof we use notation from section 5.2. Fix the potential n > 0 and the

slope s. The first return map satisfies fél)(z) = fc(l)(E). We can then modify the maps in a

similar fashion, i.e. set fE(Z) (2) = fc(2) (Z). The map wz(z) = p.(Z) is an integrating map and
it defines the polynomial-like map fz(3) to be

) = 19(z)

Finally, the map xz(z) = xc(Z) is a hybrid equivalence between fE(?’) and P 5
q.e.d.

From the lemma above it follows that

_ -1 _ -1 _
Ip/q - ¢p/q oCo ¢P/q - ¢p/q © (;)((I*P)/q oC= q)((]q—p)p oC
_ -1 _ q
=Co qﬁ(qu)/P © ppq =C'o (I)p(qu)'
Note that without reference to the polynomials F; ) it is not clear that the fixed points
under Z,,, form a topological arc.

Remark 6.2 The map 7,,, maps hyperbolic components to hyperbolic components and the
corresponding multiplier maps are complex conjugates of each other.

Note that the map Z,,3 gives a homeomorphism between the two main antennas in the
1/3-limb, sending ¢ = 7 to the landing point of Rjs(1/4) (compare with Fig. 7), and the
center of the hyperbolic component of period 4 to the center of the hyperbolic component of
period 5.

The dynamical statement of Theorem B follows similarly. Set Z = Z,/,. On one hand,
for c € M), /, and A = ¢,,,(c) we can define

I7: N(&T) 5 NK,) -5 NE;) -9  NEEL,)
—



where H, and Hz(,) are as in Theorem G. The map ch is an orientation reversing homeomor-
phism between N(K!) and N (K%( c)) (which in fact conjugates the two first return maps fc(l)
zind f&Z) on K CT and Kg( 0 respecti:/ely). rfhe map fg can be extended to a homeomorphism
Z. (similarly to the extension of ®] to ®.) between neighborhoods N(K.) and N(Kz )
respectively, as stated in Theorem B.

On the other hand, it follows from the lemma above that the maps in dynamical plane
are compatible with complex conjugation. That is, for any ¢ € M/, the following diagram
commutes:

N(K) —% N(Kgo )

p(a—p)
o| |
®;
N(Ke) —— N(Kz,,,()

~

so Zc: N(K;) — N(Kz,, () can alternatively be defined as

Z,=%;0C=Cod,.

7 Combinatorial Surgery:
Proof of Theorems H, C, D and E

7.1 Proof of Theorems H and C

The main goal in this section is to prove Theorem C. The strategy is the same as for proving
Theorem A, namely via the higher degree polynomials P, y with A € Lg .

We first introduce the necessary notation and formulate Theorem H, the analogue of
Theorem C building the bridge to the higher degree polynomials.

In Sect. 7.1.1 we prove the part of Theorem H which deals with the dynamical planes and
deduce the analogous part of Theorem C.

In Sect. 7.1.2 we prove the part of Theorem H which deals with the parameter spaces and
deduce the analogous part of Theorem C.

Let ¢ € My and A = ¢,/4(c) € Lgo. Recall from Theorem G that there is a quasi-
conformal homeomorphism
fIC : Xc — W)\
conjugating fc(Q) and Py. In particular, it is uniquely defined on K" and conjugates the first
return map fc(l) and P, on the filled Julia sets.

In this section we extend this conjugacy to the exterior of the filled Julia sets in a “com-
binatorial way” which is explained below.
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Let mg : T — T denote the map induced on the circle T = R/Z by M4 : R — R, where
My(z) = d - z is multiplication by d.
Set I,/ == [07-1,6°] as a subset of T (and hence with the metric of T). Define the
truncated circle to be
T" = TZ/(I =Tp/q/ ~
where ~ denotes the equivalence relation identifying the endpoints of I, /,. Denote as before

the identified argument by 6.

Let m$) = m() 17

. /a2 " Lpjg — ']I'Z/ a denote the first return map of the doubling map mo,
1.€.

(290 ifer-1 <p<g°
20-1lg ifgrl<h <P
m$V (@) = {2020 if g1 <9<

(20 if g9 P~ <9 < 9IP
The first return map mgl) is an orientation preserving, expanding covering map of degree
g + 1, fixing 6. Moreover, consider

Mg41 - T — T.

The map induced from multiplication by g + 1 is also an orientation preserving, expanding
covering map of degree ¢ + 1, fixing 0.

The lemma below is the tool we need in order to define the combinatorial extension of
H.,.

Lemma 7.1 Let T;, j = 1,2 be a metric space homeomorphic to T and with basepoint t; €
T;. Suppose E; : T; — Ty, j = 1,2 is an orientation preserving, expanding covering map of
degree d > 1, fizing t;. Then, there ewists a unique orientation preserving homeomorphism
T:Ty — Ty, conjugating E1 and Ey and mapping t1 to to.

Hence, it follows that there exists a unique orientation preserving homeomorphism
38 T
®:®p/q = Tp/q—>T (11)

conjugating mgl) and mgy1 and mapping 6 to 0. Note that © is defined independently of

ceE Mp/q and \ € Lq,O-

Proof of Lemma 7.1: We give a sketch of the proof. Choose any orientation preserving
homeomorphism 7y : Ty — To which maps ¢; to t3. Define by induction T}, : Ty — Ts to
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be the homeomorphism which makes the diagram

T, L}Tl

.| [T

TQ i}TQ

commutative and which maps £1 to t3. One can prove, using that F; is expanding, that 7T},
converges to a homeomorphism 7" with properties as claimed.
q.e.d.

For a given p/q recall that 0p_ .= 67! and 0;' ¢ = 6P are the arguments of the external
rays of M landing at the root point of the limb M, /. Moreover, recall that we have defined
0 and 1 to be the arguments relative to the 0-wake W L, of the external rays of L, landing
at the root point A = 1 of the 0-limb L, o. Note that the interval [0 . p/q] [6P—1 0P] is
mapped homeomorphically onto the interval I,,/, = [9q L 90] by the (¢ — 1)-st iterate of the
doubling map

-1 +
My < 0p1qOprql — Lo/a
Define the homeomorphism
[ p/qa p/q] [0’ 1]

as
G)p/q = ép/q o mgil (12)

: +
on the open interval (Qp/q, Hp/q)

Theorem H Given p/q, let @p/q and Oy /4 be as defined in egs. (11) and (12) respectively.

1. Suppose § = % € [0 o0 /q] with ged(r,s) = 1 and s even. Then the ray Rpr(0) lands
at a point c e v/q if and only if Ry, o(©,/4(0)) lands at ¢p/4(c) € Lgo.

2. Suppose ¢ € M, and A = gbp/q(c) € Lgpo. Recall that a hybrid equivalence H. between
fc(?’) and Py is uniquely determined on K. For any 0 € T};/q \ {0} the ray R.(0) lands
at a point z € K if and only if the ray R)‘((:)p/q(Q)) lands at H.(z) € K.
7.1.1 Dynamical Plane

Let ¢ € My, and A = ¢y, /4(c) € Lgp. Moreover let H. : X, — W) be given as in Theorem
G.
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Proposition 7.2 The map H. induces an orientation preserving homeomorphism

T
G)C.Tp/q—ﬂl‘

satisfying:
1. ©.(0) =0.
2. For any 0 € Tg/q \ {6}, the external ray R.(6) lands at a point z € KT if and only if
the external ray Rx(©.(0)) lands at H.(z) € K.

(1) O

3. ©. conjugates my ' and mgy1, hence O, = O /,.
Part 3 implies the following corollary:

Corollary 7.3 The homeomorphism ©. maps periodic (resp. preperiodic) arguments under
)

mgl to periodic (resp. preperiodic) arguments under mgy1.

Proof of 7.2: This would follow immediately from a stronger result called The Prime Ends
Theorem ([Pom]). However, we give here a proof for this weaker version. In order to define
the map ©, we need some preliminaries.

Given K a compact, connected and full subset of C, a point z € K is called accessible if
there exists a curve vy : [0,¢] — C with v(0) = z and v((0,¢]) C C\ K. The homotopy class
of such curves is called an access to z. If K is locally connected, then all points in K are
accessible.

We shall need the following result:

Suppose z is accessible. Then, to each access [y] there is associated a unique external ray
R(6) that lands at z and such that an arc of the ray belongs to the homotopy class [y] (see
[Pe, Mi]).

We define O, first in the set of arguments that correspond to accesses. Let

AKT) = {pe ’]I‘f/q | 6 corresponds to an access of K.},
A(K)) = {0 € T]|80 corresponds to an access of K}

Note that if K" (and hence K) are locally connected, then A(K!) = Tg/q and A(K)) =T.
Definition of O, on A(K7)

Given 6 € A(KT), let v(6) be the curve which is the connected component of R.(8) N N (K7)
containing z = R}(0) (the landing point of R.(0)). Then, H.(y(#)) is a curve landing at
H.(z). Define ©.(0) as the external argument of the external ray associated with [H.(v(9))],
R)(0.(0)). Rays landing at H.(z) have arguments in A(K)), so 0.(0) € A(K)).

Note that ©.() = 0.
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Lemma 7.4 The map O, is an orientation preserving bijection between A(KL) and A(K)).

Proof : To show injectivity, take two elements in A(K7), 8 # €' and first suppose that
R.(0) and R.(#") land at different points. Then, since H, is a homeomorphism, R)(0.(6))
and R (©.(0")) must land at different points. Hence ©.(0) # ©.(0"). Now suppose that R.(6)
and R.(0") land at the same point. Then 7(#) and v(6') are not homotopic which implies
that H.(y(6)) and H.(y(#')) are not homotopic. Hence ©.(0) # ©.(8").

To show surjectivity, let Ry(#') be a ray landing at 2’ € K so that 6’ € A(K)), and let
7(6") be the curve as in the definition above. Then, H;(y(#')) is a curve landing at H_ '(2').
Let § € A(K_.) be the external argument of the ray associated with [H, 1(y(6"))]. Tt is clear
that ©.(0) = ¢, since the homotopy classes are preserved by the homeomorphism.

The fact that ©, is orientation preserving follows from H, being orientation preserving.
q.e.d.

Corollary 7.5 For every accessible point z € A(KL'), the number of rays landing at z equals
the number of rays landing at H.(z) € K.

The map O, is now defined from a dense set in ’]IZ/ g toa dense set in T. Note that we

can also consider it as a map from a dense set in [67,0°] to a dense set in [0, 1] by defining
0,09 =0 and ©,(6°) =1.

The next step is to extend it to the whole interval.

If K is locally connected, then ©, is already defined in the whole interval. Moreover,
since it is bijective and order preserving between two compact sets of R, it follows that ©, is
a homeomorphism and we are done.

If KI' is not locally connected we will use the following topological lemma to extend ..

Lemma 7.6 Let S be a dense set in an interval [a,b], and 7 : S — [c,d] an order preserving
injective function. Assume also that 7(S) is dense in [c,d]. Then, T has a unique extension
to a homeomorphism 7 : [a,b] — [c, d].

The map O, : A(K!) — A(K)) satisfies all the hypothesis of Lemma 7.6. Abusing
notation, we obtain the unique extension

0,:10%,6° — [0,1] or O©,.:T —T,

which is an orientation preserving homeomorphism. By definition, this map satisfies the
second statement of Prop. 7.2.

To prove the last statement first suppose that 6 belongs to A(K7L), z = R:(0) € K.

Then @c(mg)(ﬁ)) is the argument of a ray landing at Hc(fc(l)(z)) € K. On the other hand
mg+1(©c(0)) is the argument of a ray landing at Py(H.(z)). Since H, conjugates f() to
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(1)

Py, these two points are the same. It follows that ©. conjugates msy’ to mgy1 at least up
to arguments of rays landing at the same point. Therefore, we must show that equivalence
classes of rays landing at the same point cannot be permuted, but this follows from the fact
that O, mgl) and mgy1 are order preserving for arguments that belong to the same V¢ (in

particular, for rays in the same equivalence class) and from ©.(8) = 0.

Therefore, the map ©, conjugates mgl) and mg41 on a dense set and hence everywhere.
By Lemma 7.1 such a homeomorphism is unique and therefore ®, = © This ends the

proof of Theorem 7.2

p/q-

q.e.d.

We proceed now to combine the maps above to construct

_ 6 e,
q \T .mT p/q p' /¢ T
(®pp’) tTp/q » T * T jq-
The next proposition follows from Prop. 7.2:

Proposition 7.7 Let c € My, and ¢’ = @gp, (c) € My g Then,

1. A ray R.(0) lands at z € KX if and only if the ray R.((61

pp,)T(H)) lands at &'CT(Z)

2. The map (@gp,)T conjugates the first return maps on the arguments in Tg/q and ']I‘Z/q
respectively, that is the following diagram commutes:

(1)

T Mp/q,2 TT
Tp/q p/q

a9 \T a9 \T
@, | c
m(})/

T P19 T
Tp’/q Tp’/q

Finally, we extend the map ((:)gp,)T to the rest of the arguments of the filled Julia set to
obtain the map claimed in part two of Theorem C. Note that this is a somewhat “artificial”
extension, since we will not use the dynamics of the polynomial. However, it is a nice
complement to the map ®,. on the filled Julia sets.

As before let ¢ € M, ), and ¢! = @] ,(c) € My ,.

Definition We define
by

87 ,(0) = (65, (6) if 0 €T,
—(©2 YI'(—0) otherwise



Note that this map is well defined since the arguments of external rays in V' satisfy
O \T(py — (89 \T'(_
(epp’) (0) - (epp’) ( 0)

The map @)Zq)p, is an orientation preserving homeomorphism satisfying part two of Theorem
C, that is:

Proposition 7.8 A ray R.(0) lands at z € K, if and only if the ray Rcz((:)gp, (0)) lands at
B.(2) € K.

Remark 7.9 We could have deduced the map on arguments directly from the homeomor-

phism ¢ : N (Kc) — N(K¢). Instead, we have once again applied the bridge to the higher
degree polynomials in order to show that the map @gp, only depends on p, p’ and q.

Proposition 7.10 Suppose K. (and therefore K. ) is locally connected. Then, there exists
a homeomorphism ;ﬁfc which coincides with $C on K. and which maps the external ray R.(0)
to the external ray Rc'(GZp,(Q)) equipotentially.

Remark 7.11 If K, is not locally connected, we can still define the homeomorphism from
C\ K. to C\ K. as above, but this map may not match continuously with ¢, restricted to
K..

7.1.2 Parameter Plane

We are now ready to prove the combinatorial part of the parameter space theorems.

We start by proving the first part of Theorem H. Then we obtain the first part of Theo-
rem C for rational arguments with even denominators. Finally, we extend it to all rational
arguments.

Proof of the first part of Theorem H: Let ©,,, = @p/q omd ™t (0;/(1,9;'/(1) — (0,1) as
defined earlier.

Suppose c is a Misiurewicz point in M, /,. Recall that
R.(0) lands at ¢ € K. <= Rp(0) lands at c € M.
Moreover

R.(0) lands at ¢ € K, <= R.(27'0) lands at Q% '(c) = Q¥(0) € K,.

Note that Q%(0) is the critical value of fc(3), hence mapped by H. to the critical value vy =
)\(—1)‘1((14%1)‘1+1 of Py where A = ¢,,/4(c).
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It follows from the dynamical part of Theorem H that
R.(277'9) lands at Q¥(0) € K. <= Rx(0,,,((297'6)) lands at vy € K.
Finally, apply Prop. 3.9 to obtain that

RA(0,,,((2979)) lands at vy € Ky <= Ry, ,(0,/,((27'6)) lands at X € Lqp.

q.e.d.

Define B

0! 1107, 07, 1-=2/% [0,1] 2N [0, .67, ]
pp' " Up/q "p/q T U e T qd

The first part of Theorem C concerning rational arguments with even denominators, that is
arguments of rays landing at Misiurewicz points, follows immediately from Theorem H.

The missing part is to prove part one of Theorem C for rational arguments with odd
denominators, that is arguments of rays landing at roots of hyperbolic components.

Remark 7.12 From Cor. 7.3 it follows that @gp, maps rational angles with even (resp. odd)
denominator to rational angles with even (resp. odd) denominators.

Lemma 7.13 Let ¢g € M/, be the root of a hyperbolic component and 6y € T the argument
of one of the rays landing at cy. Then, there exists a sequence of Misiurewicz points ¢, — ¢
and a sequence of arguments 0, — 0y such that R}, (0,) = cp.

Proof : Let 2 be a hyperbolic component of M/, and ¢y its root. Let 6 be, say, the smaller
argument of the rays landing at ¢y. Let a,, be the point in the boundary of Q with internal
argument 1/n and L;/,(2) the (sub)limb attached to a,. Let a; be the larger argument
of the two rays landing at a,. Since the boundary of 2 is a smooth curve it is clear that
an — ¢p as n — 0o. Due to combinatorial calculations we have that «,, — 6y (see formula
4.3 in Section 4.3.3 of [Sg)).

Since Misiurewicz points are dense in the boundary of M we can choose ¢, to be any of
those belonging to the (sub)limb L, (€2). Let 6, be the argument of an external ray landing
at c¢,. It follows that 6, — 6, since 6y < 0, < «a, and «a, — 6y. Finally, we conclude
that ¢, — co from the fact that a, — co together with |c, — a,| < diam(L,/,(£2)) and
diam(L;/,(£2)) — 0, which is due to Yoccoz inequality (see for example [Pe]).

q.e.d.

Fix ¢, 09, ¢n, and 0,, as in the lemma. Let ¢ = @gp, (co), ¢, = @Zp,(cn), 0y = @gp, (6p) and

0, = ©},(0n). By the remark above, 6 is rational with odd denominator. By continuity of
©], and ® , we have that 6;, — 6; and ¢;, — ¢;. By remarks 5.7 and 5.26, ¢], are Misiurewicz
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points and ¢ is the root of a hyperbolic component. It follows immediately from above that
Ry (07) = cp-
To conclude the proof of Theorem C we must show

Ry (0p) = cp- (13)

We recall the definition of the impression of an external ray of a compact, connected, full
subset K C C (see [Sg]).

Definition For any € > 0 and any 0 € T let Ix (0) denote the closed subset of 0K given
by

Ik (0) = Rk([0 —€,0+¢€]) \ Rx([0— €6 +¢]).
The impression Ik (0) is defined as

Ix(0) = [ Ix.e(0).

>0

Lemma 7.14 ¢} € Ip(6).

Proof : For each € > 0, there exists ne € N such that 0], € [6) —€,6) + €] for all n > n.. It
follows that ¢, € In(6;) for all n > ne, therefore that ¢ € Inr(6)) for all € > 0. Hence
66 S IM(06)-

q.e.d.

The conclusion will follow from the following lemma.

Lemma 7.15 Let ¢ € M be the root of a hyperbolic component Q and 0 a rational angle with
odd denominator. If ¢ € Ip(6) then In(0) = {c}.

Proof : There are two cases, depending on 2 being a satellite component or a primitive
component. The proof in the satellite case and “half” of the primitive case can be found in
[Sg]. The missing part is the following, using a technique from [DH2], part II.

Suppose € (different from Q) is primitive and §* are the rational arguments of the rays
landing at ¢. Then, there exists a sequence of Misiurewicz points on the combinatorial vein
in M between 0 and ¢, and sequences of arguments 6;, and 6, where R},(0],) = R},(6]) = cn
and 6!, 60~ and 67 N\, 0. The existence is proved by modifying the Hubbard tree for
the center of {2 to become the Hubbard tree of Misiurewicz points as described, transferring
arguments from the dynamical plane to the parameter plane as usual. (See also [L, Poi, T}).

q.e.d.

With this lemma, (13) follows immediately.

Remark 7.16 The result above can be carried over by the same technique to the set of
irrational arguments that correspond to rays that land at c-values on boundaries of hyperbolic
components and also to c-values described by Yoccoz para-puzzles.
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7.2 Proof of Theorem D

In this section we combine the symmetries of the 0-wakes W L, o with respect to complex
conjugation and Theorem C to obtain a non trivial homeomorphism from the set of argu-
ments of rays in a p/q-wake WM, , to itself. This map is the combinatorial analogue of the
involutions 7, /, in Theorem B.

Recall from section 6 that the map

C: WLq’O — W{Jq’()
A — A

is a homeomorphism mapping the ray Ry (6) to the ray Ry (1 — @) for § € (0,1). We define
the orientation reversing homeomorphism from [Hp_ 6%, ] onto itself by

/9> " p/q
oy — Op/q ;/lq —
0 = Op(0) = 1—-0,,0) = G)p/q(l — Op/4(0))

Note that this is an orientation reversing homeomorphism from the arguments of the rays
in W M,/, to themselves. It also satisfies @12, /q = 1d. In particular, the arguments that bound
the wake are mapped to each other.

The fixed point of O/, is 0° := @;/1(1(1/2), hence rational.

This proves properties 1 and 2. Tt is clear that by the properties of ©,/,, property 3 is
satisfied, i.e.

Ry (0) = c <= R*M(Gp/q(o)) = Ip/q(c)'

For property 4 in dynamical plane we define

)

~ 1

5 _
Ip/q L/g A[O’ 1] — [9’ 1] ol p/g

or 2
0 — O,,0) — 1-0,,0) — @;/1(1(1—@,,/4(9))

pla” L

Then, as we did in section 7.1.1 to define @gp,, we use the symmetries of K, with respect

: T — T

~

to the origin to extend @3; to an orientation reversing homeomorphism ©,/,

satisfying the required properties.
This concludes the proof of Theorem D.

7.3 Proof of Theorem E

It is clear that we can use the map @gp, in Theorem C to define a homeomorphism from
WMy \ Myq to WMy \ My, by mapping a ray of argument 6 to the ray of argument
@gp,(O) equipotentially. By the properties of @gp,, this homeomorphism would match with
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‘Dgp, at all the landing points of rays with rational arguments (together with the landing
points of rays with irrational arguments covered by remark 7.16).

Now suppose the Mandelbrot set were locally connected. It would follow that all external
rays of M land continuously and therefore, the radial extension would match continuously
with <I>Zp, at all points in the boundary of M, ,.

The extension of Z,,, to the p/q-wake would follow immediately by composition of the

extensions of @g(q_p) and complex conjugation.

This concludes the proof of Theorem E.

References

[A] L. Ahlfors, Lectures on quasiconformal mappings, Wadsworth & Brooks/Cole mathe-
matics series.

[At] P. Atela, Bifurcations of Dynamic Rays in Complex Polynomials of Degree Two,
Erg. Th. & Dyn. Sys. 12 (1991) 401-423.

[BR] L. Bers and H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986),
259-286

[Bl] P. Blanchard, Complex Analytic Dynamics on the Riemann Sphere, Bull. Amer.
Math. Soc. 11 (1984), 85-141.

[Br] B. Branner, The Mandelbrot Set, Proc. Symp. Applied Math., (1989), 75-105.

[BD] B. Branner & A. Douady, Surgery on Complex Polynomials, Proceedings of the Sym-
posium on Dynamical Systems, Mexico, 1986, Lecture Notes in Math., 1345 11-72,
Springer.

[BH] B. Branner & J. H. Hubbard, The Iteration of Cubic Polynomials. Part I: The Global
Topology of Parameter Space, Acta Mathematica, 160, (1988), 143-206.

[DGH] R. Devaney, L. Goldberg & J. H. Hubbard, A dynamical approximation to the Ex-
ponential Map by polynomials, Preprint.

[D]  A. Douady, Chirugie sur les Applications Holomorphes, Proc. Int. Congr. Math.,
Berkeley, 1986, 724-738.

[DH1] A. Douady & J. H. Hubbard, Iterations des Polynomes Quadratiques Complexes,
C. R. Acad. Sci., Paris, Ser. I 29 (1982), 123-126.

[DH2] A. Douady & J. H. Hubbard, Etude dynamique des polynomes complexes, I,II,
Publ. Math. Orsay (1984, 1985).

73



[DHS3]

[F]

[GM]

[H]

L]

[LS]

[Mc]

[Mi]

[MSS]

[Pe]

[Poi]

[Pom)]
[S]

[ST]

[Se]

[T]

A. Douady & J. H. Hubbard, On the Dynamics of Polynomial-like Mappings, Ann. Sci-
ent., Ec. Norm. Sup. 4¢ series, 18 (1985) 287-343.

N. Fagella, Limiting Dynamics of the Complex Standard Family, Int. J. of Bif. and
Chaos 3 (1995), 673-700.

L. Goldberg & J. Milnor, Fixed Points of Polynomial Maps II: Fixed Point Portraits,
Ann. Sci. Ec. Norm. Super. 26 (1993) 51-98.

J. H. Hubbard, Local Connectivity of Julia Sets and Bif. Loci: Three Theorems
of J.-C. Yoccoz, Topological Methods in Modern Mathematics, Publish or Perrish,
Inc. (1993) 467-511.

P. Lavaurs, Systémes Dynamiques Holomorphes: Explosion de Points Périodiques
Paraboliques, These, Univ. Paris Sud Orsay (1989).

E. Lau & D. Schleicher, Internal Adresses in the Mandelbrot Set and Irreducibility of
Polynomials, Prepint n. 1994/19, SUNY Stony Brook.

C. T. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics
Studies, 135, Princeton University Press, 1994.

J. Milnor, Dynamics on One Complex Variable: Introductory Lectures, IMS at Stony
Brook Preprint n. 1990/5 (1992).

R. Mane, P. Sad & D. Sullivan, On the Dynamics of Rational Maps, Ann. Scie. Ecole
Norm. Sup. (4) 16 (1983), 193-217.

C. L. Petersen, On the Pommerenke-Levin-Yoccoz Inequality, Erg. Th € Dyn. Sys. 13
(1993) 785-806.

A. Poirier, On Postcritically Finite Polynomials. Part Two: Hubbard Trees, Prepint
n. 1993/7, SUNY Stony Brook.

Ch. Pommerenke, Boundary Behavior of Conformal Maps, GMV 299, Springer 1992.

7. Stlodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc.
111 (1991), 347-355.

D. Sullivan and W. P. Thurston, Extending holomorphic motions, Acta Math. 157
(1986), 243-257.

D. Sgrensen, Complex Dynamical Systems: Rays and Non-Local Connectivity,
Ph. D. Thesis, 1994, Tech. Univ. of Denmark.

Tan Lei, Voisinages Connexes des Points de Misiurewicz, Ann. Inst. Fourier 42, 4
(1992) 707-735

74



