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1 Introduction

In the field of complex dynamics and, in particular, iteration of functions of one complex
variable, the topic that has by far been object of the most attention is the iteration of the
family of quadratic polynomials Q. := 22 + ¢. In this paper we aim to answer the question of
why this very particular family of polynomials is important for the understanding of iteration
of general complex functions.

This is the third paper in the “Complex Dynamics” series of EWM 95. We assume that
the reader is familiar with the basic definitions and theorems concerning the dynamics of
quadratic polynomials which are the topic of the first article [Br3]. For other surveys we refer
also [Bl1, Brl] and [Mi].

As a first observation we may say that often, a good place to start is the simplest example,
in this case the group of Mobius transformations which are already very well understood.
The next simplest class of functions is the class of polynomials of degree two and even
that early along the way, we already bump into complicated dynamics which have occupied
mathematicians in this field for over twenty years, and still do.

But the real answer to the question has basically one name and that is the theory of
polynomial-like mappings of A. Douady and J. Hubbard. This theory explains how the
understanding of polynomials is not only interesting per sé , but helps understand a much
wider class of functions namely those that locally behave as polynomials do.

Most of the definitions and results in this paper may be found in the work of Douady
and Hubbard “On the Dynamics of Polynomial-like Mappings” [DH3]. Our goal is to state
their most important results as well as to give several examples that illustrate them. These
examples serve also as initial motivation: example B concerns families of cubic polynomials
whose dynamical planes exhibit homeomorphic copies of quadratic filled Julia sets (see Figs. 5
and 6), while their parameter spaces contain homeomorphic copies of the Mandelbrot set (see
Fig. 12); example C deals with the family of entire transcendental functions fy(z) = A cos(z)
for which the same phenomena occur (see Figs. 7 and 13); finally, example D shows how
we find copies of the Mandelbrot set in the Mandelbrot set itself (see Figs. 8, 9 and 14).
Examples of the same phenomena for Newton’s method may be found in [BC, CGS, DH3, T]
and in [F] for the family z — Aze®.



This work is divided in two parts, the first one concerning the dynamical planes and
the second one the parameter spaces. Section 2.1 contains the definition of a polynomial-
like map and sets up the examples that we follow throughout the paper. In Section 2.3
we state the straightening theorem (Theorem 2.2) which explains how polynomial-like maps
and actual polynomials are related. Along the way, we give a small survey of the different
types of conjugacies that may occur. Section 3 contains the parameter-plane version of the
straightening theorem, explaining why we find homeomorphic copies of the Mandelbrot set
in the parameter planes of other families of functions.

Figure 12 was borrowed from [Br2] by courtesy of Bodil Branner. All other computer
illustrations in this paper were created with the program It by Christian Mannes, whom I
thank for assistance and patience.

2 Dynamical Plane

2.1 The Definition of a Polynomial-like Map

Definition A polynomial-like map of degree d > 2 is a triple (f,U’,U) where U and U’
are open sets of C isomorphic to discs with U’ C U and f : U’ — U is a holomorphic map
such that every point in U has exactly d preimages in U’ when counted with multiplicity.

U
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Figure 1: The three elements (f,U’,U) that form a polynomial-like map.

Example A The obvious example is an actual polynomial of degree d, restricted to a large
enough open set. Let P be a polynomial of degree d > 2 and let I' be an equipotential
curve of P of some given potential 7 (see [Br3]) such that it is a single simple curve. Then,
I' := P(I') is an equipotential curve of potential dn. If we let U’ and U be the open sets
enclosed by I'" and T respectively then, the triple (P|y/,U’,U) is a polynomial like map (see
fig. 2). Note that we do not necessarily have to choose the open sets as regions enclosed by
equipotentials. In fact, if we let V' be any large enough disk then V := P~1(V') is an open
set contained in V' and (P|y+, V', V) is another polynomial-like map.

Example B In this example we want to consider some polynomials of degree three which
restricted to an open set form a polynomial-like map of degree two. Let P be a cubic
polynomial with one critical point w; escaping to infinity under iteration and the other
one, wy,remaining bounded. Let I' be the equipotential curve that has the critical value
v1 := P(w1) as one of its points and let U be the open set bounded by I'. Then, the preimage
of I' under P is a figure eight curve, since all points on I' have three preimages with the
exception of the critical value v; that has only two preimages (see fig. 3). This figure eight
bounds two connected components. Let U’ be the open connected component that contains



Figure 2: The restriction of two polynomials of degree two as polynomial-like maps. Left: @ _1(z) =
22 — 1 with connected Julia set. Right: Q.(z) where ¢ » —0.8 + 0.4i, with totally disconnected Julia
set.

the critical point ws with a bounded orbit. Then, U’ maps to U with degree two, i.e., every
point in U has exactly two preimages in U’. The triple (P|y/,U’,U) is a polynomial-like map
of degree two. (Notice that if we choose sets U’ and U as we did in example A, we would
obtain a polynomial-like map of degree three.) We have chosen a polynomial of degree three
for the sake of the example but it is clear that similar situations would occur with polynomials
of any degree, with critical points escaping and not escaping to infinity.

Figure 3: The restriction of a cubic polynomial to create a polynomial-like map of degree two.

Example C Let f(z) = wcos(z) and let U’ be the open simply connected domain
U'={z€C||Im(z)| < 1.7,] — 7 — Re(2)| < 2},

and set U = f(U'). One can check that U’ C U, as shown in Fig. 4. Since U’ contains only
one critical point w = —, it follows that f maps U’ to U with degree two. Hence the triple
(f|lur,U',U) is a polynomial-like of degree two.
Example D Sometimes a polynomial-like map is created as some iterate of a function
restricted to a domain. For example, let Q.(z) = 2% + c and let ¢y = —1.75778 + 0.01379614.
Set

U'={z€C||Im(z)| < 0.2,|Re(z)| < 0.2}.



One can check that the polynomial ng maps U’ onto a larger set U with degree 2, as shown
in Fig. 4. The triple (Q3 |;7,U’,U) is a polynomial-like map of degree two.

Q.

-0.5]

Figure 4: The restriction of f(z) = 7w cos(z) (left) and Q3 (z) (right) to create polynomial-like maps
of degree two.

This is an example of what is called renormalization. We say that a quadratic polynomial
is renormalizable if there exist open disks U’ and U and an integer n such that (f"|y,U’,U)
is polynomial like of degree two. Renormalization is a very important topic in the field of
complex dynamics. (See [Mc]).

2.2 The Filled Julia Set

The filled Julia set and the Julia set are defined for polynomial-like maps in the same fashion
as for polynomials, keeping in mind that a polynomial-like map is defined only in an open
subset of C.

Definition Let f: U’ — U be a polynomial-like map. The filled Julia set of f is defined
as the set of points in U’ that never leave U’ under iteration, i.e.,

Ki:={z€U"| f™(z) € U' for all n > 0}.

An equivalent definition is
Kp= (@),
n>0
and from this expression it is clear that K is a compact set.

As for polynomials, we define the Julia set of f as
Jy = 0Kj.

Notice that if the map f is the restriction of some polynomial F' to a set U’ then, in
general, Ky ; Kpr. As an example consider example B above where F' is a polynomial of
degree three and f its restriction to the set U’ in Fig. 3. Notice that U’ maps to U with degree
two. The other connected component of F~1(U) which we denote by V, maps to U with
degree one. Hence, there are points in U’ that map to V and come back to U’ afterwards,
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never leaving the set U. Such points do not belong to K since they are not in U’ at all times
but they belong to K since they do not escape to infinity under iteration. Hence K ; Kr
and moreover, a connected component C' of K is either a connected component of K or it
is disjoint from K, since F' maps connected components of Kz to connected components.
Therefore Kz might have more connected components than Ky but not larger ones.

2.3 The Relation with Polynomials

The Straightenning Theorem stated in this section shows that the relation between polynomial-
like maps and actual polynomials is actually very strong. In order to state it, we need to
review the different types of equivalences between holomorphic maps.

2.3.1 Equivalences or conjugacies of maps

Suppose f : U' — U and g : V! — V are two polynomials-like maps of degree d. The
weakest, but very important equivalence between f and g is what we call topological equiva-
lence or topological conjugacy and denote by ~,,,.

Definition We say that f ~,, g if there exists ¢ a homeomorphism from a neighborhood
N(Ky) of Ky to a neighborhood N(K,) of K, such that the following diagram

N'(Kf) —— N(K;)

o| |¢

N'(Kg) — N(XK,)

commutes, where N'(K;) C N(Ky) and N'(K,) C N(K,).

If two functions are topologically conjugate, their dynamics are qualitatively “the same”,
since the conjugacy ¢ must map orbits of f to orbits of g, periodic points of f to periodic
points of g, critical points of f to critical points of g, etc. In particular, Ky must be mapped to
K, but since ¢ is only a homeomorphism these sets could look quite different. For example,
all quadratic polynomials that belong to a given hyperbolic component of the Mandelbrot
set (except the center) are topologically equivalent. All polynomials in the complement of
the Mandelbrot set are also topologically conjugate. (In fact, these conjugacies are global
conjugacies. See remark below.)

On the other hand, the strongest type of equivalence between two holomorphic maps is
conformal equivalence, due to the rigidity of holomorphic maps.

Definition We say that f ~con g if f ~io, g and the homeomorphism ¢ is conformal.

Remark 2.1 If we were dealing with maps defined in the whole complex plane we could
consider also global conjugacies between them. In such a case, if two maps are conformally
conjugate then they must be conjugate by an affine map ¢(z) = az + b, since isomoprhisms
from C to itself are affine. For the quadratic family, one can easily check that there is a
unique representative in each affine class, that is, if Q. and @, are affine conjugate, then
C1 = Co.



The concept of quasi-conformal maps appears when we want to consider conjugacies that
are stronger than topological, but weaker than conformal.

Quasi-conformal mappings For a homeomorphism, we do not have any control whatso-
ever in how angles are distorted. On the other hand, conformal maps have to preserve angles.
Intuitively, a map is quasi-conformal if we have some control on the distortion of angles even
if these are not preserved, i.e. the distortion of angles is bounded.

The precise definition is very intuitive if we assume that the map is differentiable. This
is not such a crude assumption given the fact that quasi-conformal maps are differentiable
almost everywhere. If ¢ is a diffeomorphism, the tangent map at a given point zg, takes a
certain ellipse in the tangent space at zg to a circle in the tangent space at ¢(zp). We define
the dilatation of ¢ at zy, Dy(zp), as the quotient of the length of the major axis over the
length of the minor axis of this ellipse.

Definition Let ¢ : U — V be a diffeomorphism and D, = supD,(z). Then, ¢ is K-quasi-
z€U
conformal if D, < K < oo.

If we do not assume the map to be differentiable, we can express its distortion in terms
of moduli of annuli.

Definition Let ¢ be a homeomorphism. Then, ¢ is K-quasi-conformal if for all annuli A
in the domain

Zmod(4) < mod(p(4)) < Kmod(4)

Note that a map is 1-quasi-conformal if and only if it is conformal.
For those that prefer analytic definitions one can define quasi-conformal maps as follows:

Definition Let ¢ be a homeomorphism. Then ¢ is K-quasi-conformal if locally it has
distributional derivatives in L2 and the complex dilatation u(z) defined locally as

dz _ D¢ _ 5t d2
dz 0,0 ‘g_‘zpdz

1(z)

K-1
K+1

For more on quasi-conformal mappings see [A] and [LV].

satisfies |p| < := k < 1 almost everywhere.

Quasi-conformal conjugacies and hybrid equivalences We define a quasi-conformal
conjugacy (f ~q g) by requiring the homeomorphism ¢ in the topological conjugacy to be
K-quasi-conformal for some K > 1. We say that f and g are hybrid equivalent (f ~u, g) if
they are quasi-conformally conjugate and the conjugacy ¢ can be chosen so that d,p = 0
almost everywhere on K. If J; has measure zero, this simply means that ¢ is holomorphic
in the interior of K. Clearly

chonfg:hobg:qucg:fNtopg'



2.3.2 The Straightening Theorem

The relation between polynomial-like mappings and actual polynomials is explained in the
following theorem, whose proof can be found in [DH3|.

Theorem 2.2 Let f : U' — U be a polynomial-like map of degree d. Then, f is hybrid
equivalent to a polynomial P of degree d. Moreover, if Ky is connected, then P is unique up
to (global) conjugation by an affine map.

This theorem explains why one finds copies of Julia sets of polynomials in the dynamical
planes of all kinds of functions. Notice that if f is polynomial-like of degree two and K
is connected then f is hybrid equivalent to a polynomial of the form Q.(z) = 2% + ¢ for a
unique value of ¢ by remark 2.3.1. This may also be true for other families of polynomial-like
maps of degree larger than two, as long as the resulting class of polynomials has a unique
representative in each affine class. (As examples, consider the families A\z(1+2z/d)?, A € C\{0}
for any d > 2).

Example B.1 In the setting of example B in Sect.2.1, we consider the polynomial P,(z) =
23 — 3a’z — 2a® — a. One can check that for all values of a, the critical point wo = —a is
a fixed point. If we take, for example, a = —0.6 then the critical point w; = a escapes to
infinity. By the Straightening Theorem, P_g¢(2) restricted to the open set U’ as defined in
example B, is hybrid equivalent to a quadratic polynomial and hence, to a polynomial of the
form Q.(z) = 2% + c. In this case, we know that the parameter ¢ must be 0, since Qq(z) is
the only quadratic polynomial of this form with the critical point being fixed. In Fig. 5, we
show the dynamical plane of )y and that of P_gg.

Figure 5: Left: the filled Julia set of Q¢(z) = 22 in white. Right: the filled Julia set for P_¢¢(z)
in white. Note that only the largest component in U’ corresponds to the filled Julia set of the
polynomial-like map of degree 2.

Example B.2 Again in the setting of example B in sect. 2.1, we consider the polynomial
Ru(2) = 23 — 3a%2 + (1/2)(vV9a2 — 4 + a — 4a®). One can check that for all values of a, the
critical point co = —a is a point of period 2. In this case we take a = —0.75 and then, the
critical point ¢; = a escapes to infinity. By the straightening theorem, R_¢ 75(z) restricted
to the open set U’ as above, is hybrid equivalent to a quadratic polynomial and hence, to a



polynomial of the form Q.(z) = 22 + ¢. In this case, we know that the parameter ¢ must be
—1, since @Q_1(2) is the only quadratic polynomial of this form with the critical point being
of period two. In Fig. 6, we show the dynamical plane of R_( 75, to be compared with that
of )1 in Fig. 2.

Figure 6: The filled Julia set for R_g.75 in white. Note that only the largest component in U’
corresponds to the filled Julia set of the polynomial-like map of degree 2. This figure is to be compared
with Fig. 2 left.

Example C Even though the function f(z) = mcos z is an entire transcendental function,
when restricted to the set U’ (as defined in Sect. 2.1) it is a polynomial-like map of degree
two. In Fig. 7, we see in white the set of points that do not escape to infinity (in the imaginary
direction) under iteration of f. The largest component inside U’ corresponds to the filled
Julia set of the polynomial-like map. Since the critical point —7 is fixed under f, the filled

Julia set is homeomorphic to that of Qq(z) = 22.

Figure 7: The largest white component in U’ corresponds to the filled Julia set of f(z) = mwcosz
restricted to the set U'.

Example D Consider again Q.,(z) = z+co where ¢y = —1.7577840.0137961. As explained
in Sect. 2.1, Qg’o maps the square box U’ centered at 0 and with side length 0.4 onto a larger
set U containing U’ (see Fig. 4). By the Straightening Theorem, ng is hybrid equivalent to



Q. for some value of ¢. One can check that the critical point is periodic of period three under
iteration of ng, hence there are a limited number of posibilities for ¢. In this case the filled
Julia set of the polynomial-like map is homeomorphic to the Douady rabbit (see Figs. 8, 9).

Figure 8: The filled Julia set of Q.,, where ¢y = —1.76 + 0.01.

Figure 9: Left: the Douady rabbit or the filled Julia set of Q.,(2) = 22 — ¢; in white, where
¢ = —0.122 4 0.745¢. Right: magnification of the filled Julia set of ()., around the critical point. The
copy of the Douady rabbit is the filled Julia set of the polynomial-like map corresponding to ng-

3 Parameter Plane

As usual, the phenomena in dynamical plane are reflected in parameter space. Recall that
the parameter space of the family of quadratic polynomials Q.(z2) = z? + c contains the
Mandelbrot set defined as

M = {ce C|{QF(0)}n>0 is bounded }

or, equivalently, the set of ¢ values for which the filled Julia set of Q. is connected (see
Fig. 10).

If we look at the parameter space for other functions, we very often encounter portions that
resemble the Mandelbrot set. This fact is again explained by the theory of polynomial-like



Figure 10: The Mandelbrot set

maps. Since the Mandelbrot set appears when we consider families of quadratic polynomials,
it is reasonable to expect that it should also appear when we consider families of polynomial-
like maps of degree two, as long as these families are “nice” enough.

Remark 3.1 For the sake of exposition, we consider here only one parameter families of
polynomial-like mappings of degree two. For other cases see [DH3].
3.1 Analytic families of polynomial-like mappings

Definition Let A be a Riemann surface and F = {f\ : Uy — U,} be a family of
polynomial-like mappings. Set

U={(\z2)]z€el}
U ={\z|zeUy}
F2) = (A al2)

Then, F is an analytic family of polynomial-like maps if it satisfies the following properties:

1. U and Y’ are homeomorphic over A to A x D
2. The projection from the closure of U’ in U to A is proper

3. The map f : ' — U is holomorphic and proper

If these properties are satisfied, the degree of the maps is constant and it is called the
degree of 7. We denote K) = Ky, and Jy = Jy,. By the Straightening Theorem, for each A
the map f) is hybrid equivalent to a polynomial of degree the degree of F . By analogy with
polynomials, we define

Mz ={X € A | K, is connected }.

In the next section, we give some conditions under which the set M is homeomorphic to the

Mandelbrot set.

3.2 Homeomorphic Copies of the Mandelbrot Set
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Let F be an analytic family of polynomial-like maps of degree two. Then, for each A € M £,
f» is hybrid equivalent to a unique polynomial of the form Q.(z) = 22 + c. Hence the map

C: My — M
A — c=C(N)

is well defined.

Theorem 3.2 Let A € A be a closed set of parameters homeomorphic to a disc and contain-
ing Mx. Let wy be the critical point of f\ and suppose that for each A € A\ A, the critical
value fy(wy) € Ux\Uy. Assume also that as A goes once around A, the vector fy(wy) —wy
turns once around 0 (see Fig. 11). Then, the map C is a homeomorphism and it is analytic
in the interior of Mx.

.\
0A ) ‘~-o_;
\
/, A \
’ \
1 1
! A 1
! ]
\ I
\ ’
\\ Vi
So ,'

‘‘‘‘‘‘

Figure 11: Illustration of theorem 3.2.

Remarks 3.3

1. The assumption “fy(wy) € Uy \ Uy if A € A\ A” is equivalent to Mr being compact.

2. If the winding number of f)(w)) —wy around 0 is § > 1, then C is a branched covering
of degree §.

Example A The purpose of this example is to illustrate that the conditions of the theorem
are satisfied for the Mandelbrot set itself. Consider the parameter plane for the quadratic
family and let

A={c|Gulc) <2m}A ={c|Gu(c) <n}

where G denotes the Green’s function of the Mandelbrot set. Given the way the Green'’s
function of M is defined, if ¢ € 0A then c lies on an equipotential curve of potential 7 in
the dynamical plane as well. So, for each ¢ € 9A, let I, and I'; be the equipotential curves
in the dynamical plane of Q). of potentials n and 27 respectively. The open sets enclosed by
I, and T'. are the discs U, and U, respectively and F = (Qc|vz, U, Uc) the analytic family
of polynomial-like maps. Note that, by construction, for each ¢ € A\ A, the critical value
Q:(0) = c lies in U, \ U.. Also, as ¢ turns once around 9A, the critical value ¢ turns once
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around the critical point 0. In this case My = M.

Example B Consider the family of cubic polynomials P(z) = P, 4(2) = 23+ az +b. For any
given constants p and 6 we define the parameter space Ag = A, g to be the set of polynomials
P such that:

e one critical point w; escapes to infinity with escape rate p
e another critical point ws escapes to infinity at a slower rate or stays bounded

e the co-critical point W} of w; that is, the other preimage of P(w;) different from ws,
belongs to the external ray R() (see [Br3] for definitions of this terms and [Br2] for
more in this example).

Note that polynomials of this type are polynomial-like maps of degree two, as shown in
example B in Sect. 2.1. In [BH| Branner and Hubbard prove:

Theorem 3.4 The parameter space Ay is homeomorphic to a disc.

Hence, polynomials in Ay form a one-parameter family of polynomial-like maps of degree two.

Let By = B, ¢ be the set of polynomials in Ag for which the orbit of ws is bounded. Note
that examples B.1 and B.2 are in By for some values of p and 6. Also in [BH] we find the
following theorem:

Theorem 3.5 Let A\ € By and suppose that the connected component of co in K(P)) is
periodic. Then, the connected component of \ in By is a homeomorphic copy of the Mandelbrot
set.

Figure 12 shows the parameter space Ay with By in black.

Figure 12: The set By C Ag shown in black, with countably many components which are homeomor-
phic copies of the Mandelbrot set.
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Example C Let f\(z) = Acos(z) and let A be an appropriately chosen disc in the -
plane around A = 7. One can check that for appropriate choices of U} and Uy, the maps
(£l Ul Uj,U,) form an analytic family of polynomial-like maps. As X turns once around
0A, the critical point stays fixed at —7 while the critical value —\ winds once around —m
hence satisfying the conditions of theorem 3.2. In Fig. 13 we see the resulting copy of the
Mandelbrot set, with A = 7 as the center of its main cardioid.

Figure 13: Copy of the Mandelbrot set in the parameter plane of f)(z) = A cos z.

Example D

Let A C A be a small discs of parameters centered at ¢ = —1.755 and with ¢y contained
in A where ¢g is as in example D in Sect. 2.1. For @, , the critical point is periodic of period
three. One can check that for apropiate choices of A\, U, U, and A, the conditions of the
theorem are satisfied for the family F = {Q3 : U! — U.}cca. Figure 14 shows the Mandelbrot
set and a magnification of the homeomorphic copy that contains c¢g.

Figure 14: Copy of the Mandelbrot set in the parameter plane of Q.. Range:]—1.8,—1.72] x
[—0.038,0.038].
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