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Abstract

In this paper we study the set of periods of holomorphic maps on compact manifolds,
using the periodic Lefschetz numbers introduced in [D] and [Ll], which can be computed
from the homology class of the map. We show that these numbers contain information
about the existence of periodic points of a given period and, if we assume the map to be
transversal then they give us the exact number of such periodic orbits. We apply this
result to the complex projective space of dimension n and to some special type of Hopf
surfaces, partially characterizing their set of periods. In the first case we also show that
any holomorphic map of CP(n) of degree greater than one has infinitely many distinct
periodic orbits, hence generalizing a theorem of [FS]. We then characterize the set of
periods of a holomorphic map on the Riemann sphere, hence giving an alternative proof
of Baker’s theorem in [Ba).

1 Introduction

In dynamical systems and, in particular, in the study of iteration of self maps of a given
manifold, periodic orbits play an important role.

Given a continuous map f : X — X, a point z € X is called periodic if there exists
k € N such that f¥(z) = z. The minimum of such k is called the period of = and the iterates
{z, f(z),..., f¥"Y(z)} form a periodic orbit. For such a map, it is natural to ask how many
periodic orbits it has or what are the possible periods that may appear. To deal with these
problems, differential topological methods have often proved to be very useful, since it is clear
that the topology of the manifold in question plays an essential role.

The Lefschetz Fixed Point Theorem was one of the main results in this direction. Knowing
the homology class of the map, one can compute its Lefschetz number L(f) and, if the result
is nonzero, conclude the existence of a fixed point. Clearly, the same process applied to the
k0 iterate of the function, f*, would give the existence of a periodic orbit of period k, or a
divisor of k. We have gone a long way from this theorem and there is plenty of literature on
its generalizations and applications (see [BB, Br, F, M]).
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To deal with the problem of existence of periodic orbits with a given period the periodic
Lefschetz number of period k, denoted by I( f*), was introduced in [D] and [L1]. These numbers
are defined for any continuous map but, in general, they become really interesting when we
restrict to the set of transversal functions. Recall that a periodic point  of period k of a C*
map f is nondegenerate if det(Id — df ™ (x)) # 0 for all m € N. We say that f is transversal
if all its periodic points are nondegenerate. For a transversal C! map on a compact manifold,
I(f™) # 0 implies the existence of a periodic orbit of period m if m is odd, and period m or
m/2 if m is even (see [L1] and [Getal]).

In this paper we deal with maps f : M — M where M is a compact complex manifold
and f is holomorphic. We will always assume that the periodic points of f are isolated in
the set Fix(f™) for all m, where

Fix(f™) = {o € M | f™(z) = a}.

For a holomorphic map this is not a strong assumption. Indeed, if that were not the case,
Fix(f™) would be a variety of (complex) dimension at least one (see for example [Wh]).
Hence we consider this a degenerate case.

D. Fried in [Fr] worked in this setting and gave criteria for these maps to have infinitely
many periodic orbits. Qur goal is to study the periodic structure of these maps. We will see
that the rigidity of holomorphic maps makes the periodic Lefschetz numbers a much more
powerful tool than in the C! case, since one can remove the hypothesis on the oddity of the
period m.

Let
Per(f) = {m € N | f has a periodic orbit of period m},

where as usual, N denotes the set of positive integers.
In Section 3 we will prove (see Theorem 3.1)

Theorem A Let M be a compact compler manifold and f : M — M be a nonconstant
holomorphic map. Then, there exists M > 0 such that for all p € N prime and p > M,
I(fP) # 0 if and only if p € Per(f). If furthermore f is transversal then, for allm € N, I(f™)
is the number of periodic points of period m.

We observe also that in some cases the use of these numbers can be twofold: computing
the periodic orbits of a few low periods we obtain some Lefschetz numbers from which we
can obtain the homology class of the functions in question, something that in general it is
not easy to compute.

In Section 4 we apply Theorem A to two different examples. The first application deals
with the complex projective space CP(n). For holomorphic maps of CP(2) Fornaes and
Sibony in [FS] used complex analytical techniques to show that they have infinitely many
periodic orbits. Using a criterium of [SS] and Theorem A we will show the following. (see
Theorem 4.2):

Theorem B Any holomorphic map f : CP(n) — CP(n) of degree d > 2 has infinitely many
periodic orbits. If furthermore we assume f to be transversal, then f has periodic orbits of
all periods.

The second application (Section 4.2) deals with some special type of Hopf surfaces for
which we first characterize their holomorphic self maps and then show a similar theorem.



For general holomorphic maps, that is, non necessarily transversal, the complete char-
acterization of the set of periods becomes very complicated. To our knowledge, the set of
possible periods (of holomorphic maps on compact complex manifolds) has only been stud-
ied for the 2-dimensional sphere by Baker in [Ba]. Using complex analytical techniques, he
showed (see Theorem 5.1) that any holomorphic map of C U oo must have periodic orbits
of all periods except, maybe, periods 2, 3 or 4. In Section 5 we give a different proof of
Baker’s theorem using the periodic Lefschetz numbers. The theorem becomes a corollary of
the following (see Theorem 5.1).

Theorem C Let f be a rational map of C of degree d. IfI(f™) > 2m(d—1), then m € Per(f).

This result uses heavily the strong relation between degenerate periodic points and critical
points of f (points of derivative 0). This is a special property of one dimensional holomorphic
dynamical systems, hence we think it will be difficult to generalize this technique to higher
dimensional systems. Using a somewhat different approach, work in this direction has been
done by Fried in [Fr].

The authors would like to thank P. Ahern, D. Fried, A. Gasull and F. Manosas for helpful
conversations. Both authors are partially supported by DGICYT grant number PB96-1153.

2 Lefschetz numbers

The key work of Lefschetz in the 1920’s was to relate the homology class of a given map with
the earlier work of Brower on indices of self-mappings of manifolds. These two contexts give
two equivalent definitions for the Lefschetz numbers and from their comparison, one obtains
the information about fixed points.

Let f : M — M be a continuous map and M a compact manifold of dimension n. Then,
f induces homomorphisms on the simplicial homology groups with rational coefficients

f*sz(M,Q) —>HZ(M5@)a 0<:<n,

where, as usual, Q denotes the set of rational numbers. These groups are finite dimensional
and hence, once we choose a basis, each of the homomorphisms f,; may be written as a
matrix with respect to this basis. The first definition of the Lefschetz number of f : M — M

as above is .

L(f) = Y _(~1)'trace(f.q).

=0

On the other hand, let x € M be an isolated fixed point of f. If B is a small closed ball
centered at x that contains no other fixed point of f, then the assignment

flz) ==
|f(2) — 2|

defines a smooth map F : 8B — S™ ! where S" ! is the sphere of dimension n — 1. The
degree of this map is called the (Poincaré) index of f at x and we denote it by ind(f,z). On
the plane, the Poincaré index is the winding number of the vector field f(z) — z about the
fixed point z. Equivalently, one can think of the Poincaré index as the local degree of f—Id
at the fixed point z, i.e. the number of solutions of f(z) — z = ¢ in B (each one with a plus



or minus sign depending on if f—Id preserves or reverses orientation at that point), where
¢ € M is sufficiently close to zero and a regular value of f—Id. It is important to note that
the Poincaré index is constant under small perturbations of the map (see [Br, CJ).

In this context, the Lefschetz number can also be defined as follows. Let f : M — M be
as above, and assume all its fixed points are isolated. Then,

L(f)y= Y ind(f,z).

z€Fix(f)

The assumption on f having only isolated fixed points is not important since L(f) only
depends on the homotopy class of f and any map of M is arbitrarily closed to a homotopic
map with isolated fixed points.

Now, this implies that L(f) is always an integer and leads to the celebrated Lefschetz
Fized Point Theorem: If L(f) # 0, then f has a fixed point. In consequence, if L(f™) # 0
then f has a periodic orbit of period a divisor of m i.e. not necessarily of period m. The
converse of the theorem is not true.

The growth of the sequence {L(f™)}men contains plenty of information about the growth
of the periodic points. This is a consequence of the following fact.

Theorem 2.1 ([SS]) Suppose that f : R* — R is C' and that x is an isolated fized point
of f™ for all m. Then the sequence {ind(f™,z)}men is bounded.

Remark 2.2 In fact, looking closely at their proof, one sees that they give a complete
description of this sequence as follows. Suppose m is a multiple of k1,... ,kp, where these
are orders of some of the roots of unity that appear as eigenvalues of df (z). Suppose also
that m is not a multiple of kp41,... , ks, where these are the orders of the remaining roots
of unity that appear as eigenvalues of df. Then, they show that ind(f™,z) = +ind(f?*,z)
where A = lem(ky, ... ,kp). Hence, the sequence {|ind(f™, z)|}men is periodic.

We will use the following corollary in Section 4. If A is a finite set, let #A denote its
cardinality.

Corollary 2.3 ([SS]) Let f and = be as in Theorem 2.1. If the sequence {L(f™)}men is
unbounded then f has infinitely many periodic orbits.

Proof : Let PP denote the set of periodic points of f which we assume to be finite. For each
x € PP we let p(z) be its period. Then, we can define

C = max max ind(f*® z).
z€PP keN
It follows then that L(f™) = Y ind(f™,z) < C(#PP) for all m € N.
z€Fix(fm™)
q.e.d.

Although the Lefschetz numbers contain information about the growth of periodic orbits,
they cannot be used to study the existence of periodic points of a given period. To deal with
this problem the periodic Lefschetz numbers were introduced in [D] and [Ll]. The Lefschetz
number of period m is defined as

(™ =Y u(r)L(f+),

r|lm
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where p is the Mdbius function given by

1 ifr=1,
p(r) =40 if k2|r for some k € N,
(—=1)F if r = p;...p}, distinct prime factors.

By the Jacobi inversion formula (see for example [NZ]),

L(f™) = Y _Uf")-
rlm

The periodic Lefschetz numbers become really interesting when we restrict to the class
of transversal maps, i.e., maps whose periodic points are nondegenerate. If the graph of a
transversal map intersects the diagonal of M x M it does so transversely, hence all periodic
points of a given period are isolated.

For fixed points of transversal maps, the Poincaré index can only be 1 or —1, depending
on if f preserves or reverses orientation at that point. That is, if  is a fixed point of f™,

ind(f™, ) = sgn(det(I — df(x))) = (—1)"+(®, 1)

where u (z) is the number of real eigenvalues of d f™(z) that are strictly larger than one (see
for instance [F]). This fact is essential in the proof of the following theorem.

Theorem 2.4 (see [Ll] and [Getal]) Let f : M — M be a transversal map on a compact
manifold. Given m € N, if [(f™) # 0 then

(a) m € Per(f) if m is odd,
(b) {m,m/2} NPer(f) # 0 if m is even.
We include the idea of the proof for completeness as well as for its later use in Section 5.

Sketch of the proof: The Lefschetz Zeta function of f is defined formally as

Zs(t) = exp (Z #tm) .

m=1

Using the two equivalent definitions of L(f™) and after some calculations, one has two
formal expressions for Z¢(t), namely
ad ™)
Zi(t)= [ a=t™ =" (2)
m=1
and
(—1)¥+MFu—(n+1
Z;t) = ] (1 —(—1) tp(v)) , (3)
yePO
where PO is the set of periodic orbits of f, p(7y) is the period of v € PO, and u, (y) (respec-
tively u_ (7)) is the number of real eigenvalues of df?(?) (z) strictly larger than 1 (respectively
strictly smaller than —1) for any = € . Comparing these two expressions, the theorem
follows.
q.e.d.

We remark that expression (2) holds for any continuous map while expression (3) holds
only for transversal maps.



3 The complex setting

Let M be a compact complex manifold of complex dimension n and f : M — M a holomorphic
map. Since M can be understood as a differentiable manifold of real dimension 2n, all the
definitions and results above on transversal maps can be applied to this case. However, in the
complex setting, the Lefschetz numbers give more information about periodic points than in
the real setting.

Set
Fix(f™)={z e M | f™(z) = =}, and

Per,,(f) = {z € M | z is periodic of period m}.

Theorem 3.1 Let M be a compact complexr manifold and f : M — M be a nonconstant
holomorphic map. Assume that all periodic points of f are isolated. Then

(a) L(f™) > #Fix(f™), for all m € N.

(b) I(fP) > #Pery(f), for all p € N prime.

(¢) There exists M > 0 such that for all p € N prime and p > M, I(fP) # 0 <= p € Per(f).
(d) If all fized points of f are nondegenerate then (c) holds for all p € N prime.

(d) If f is transversal, then I(f™) = # Perp,(f), for all m € N.

We remark that (d) only assumes the fized points to be nondegenerate. As opposed to
transversality, this condition can be checked in many cases.

For the proof we need the following well-known facts stated in the following lemma.

Lemma 3.2 Let A be an n x n complez matriz and let B : R?" — R?™ be the linear map
A:C* = C* considered in R?™. Then, any real eigenvalue of B has even multiplicity and
det(B) > 0.

Proof : With a convenient choice of basis, the matrix B may be written as

B Red —ImA
~ \ImA Red /°

If X is a real eigenvalue of B and v = (z,y) € R” x R” is an eigenvector of eigenvalue A\ then
(—y,z) is a different eigenvector of eigenvalue A. Hence the subspace associated with A has
even dimension.

To see that det(B) > 0 we can change basis to write B in the form

B ReA +4ImA 0 (A O
N 0 ReA —ilmA) — \0 A)/°

Hence det(B) = det(B') = det(A) det(A) = | det A]?> > 0.
q.e.d.



Proof of Theorem 3.1: To show (a) notice that a holomorphic map, thought as a real
map, always preserves the orientation at any point. Indeed, if A = df™(z) for any z € M and
B is defined by A as in Lemma 3.2, it follows that det(B) > 0 and hence f™ preserves the
orientation at all points of M. Hence, the local degree of f—Id near any point z € Fix(f™)
is the multiplicity of this fixed point, which must be positive since the map is nonconstant.
We then have

ind(f™,z) >0, for all z € Fix(f™),

and hence
L(f™ = Y ind(f™x) > #Fix(f").

z€eFix(f™)

To show the remainder of the theorem we combine de definitions of L(fP) and I(fP) for p
prime to obtain

WfP) = L(fP) — L(f)
= Yserix(sr) MA(fP,2) = X pepin(p) Ind(f, 7) (4)
= EwGPerp(f) ind(f?, ) + ZweFix(f) (ind(f?,z) — ind(f,z))

If x € M a fixed point of f, then ind(f?,z) > ind(f,z). Indeed, this is clear since the
multiplicity of a fixed point z can only increase with the iterates of the map. Alternatively,
one can also think that any zero of f —Id — ¢ has to be also a solution of (f — )P — Id which
is a perturbation of f? —Id. Then from (4) we obtain

I(f7) > ) ind(f7,2) > #Pery(f),

z€Pery(f)

and (b) follows.

Moreover, from Remark 2.2 it follows that ind(f?,z) # ind(f,z) only when df (z) has an
eigenvalue which is a primitive p*! root of unity. Since f has a finite number of fixed points,
the number of such roots is finite. Hence, for p large enough, these two indices are equal and
(c) follows.

We now assume that all fixed points are nondegenerate. Let z € Fix(f) and A = df™(z)
for any m € N. Since f™ is holomorphic, any real eigenvalue of the real matrix B defined
by A as in the statement of lemma 3.2 has even multiplicity. Since there cannot be any
eigenvalue equal to 1 we may compute the index from (1) and we get ind(f™,z) = 1 for all
m € N. Therefore, from (4) we obtain

(f7) = ind(f?,),
zEPerp(f)

for any prime p, hence proving (d).

Finally, to see (e), assume that f is transversal, i.e., that all periodic points are nonde-
generate. Then, the argument above holds for any periodic point and not only for the fixed
points. Hence, from (1) we have ind(f™,z) = 1 for all z € Fix(f™) and all m € N. Therefore
the Lefschetz number L(f™) defined above is exactly the cardinal of the set Fix(f™), i.e. the
number of periodic points of period some divisor of m. Hence

L(f™) = #Per,(f).

rlm
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By the Jacobi Inversion Formula (see [NZ]), we have #Per,(f) = I(f") as defined above.
q.e.d.

An immediate corollary of this theorem is the following criteria.

Corollary 3.3 Let f be as in Theorem 3.1. Then the following statements are equivalent.
(a) The map f has infinitely many periodic points of prime period.

(b) The set of p € N prime such that [(fP) # 0 is unbounded.

(c) The Zeta function Z(t) has infinitely many factors of the form 1 — P for p prime.

We remark that the third part of the corollary comes from expression (2) for a Zeta function.

V. Arnold in [A] posted the following question: “If f : M — M is a (real) analytic
diffeomorphism of a compact analytic manifold, is the number of periodic points of period m
bounded above by an exponential function of m?” We remark that, in the special case of a
holomorphic map, the answer can be viewed as a corollary of Theorem 3.1.

Corollary 3.4 Let M be a compact complex manifold and f : M — M a holomorphic map.
Assume that all periodic points of f are isolated. Then,

#Fix(f™) < C\™,
for some positive real numbers C' and .

Proof : By Theorem 3.1 (a), the number of fixed points of f™ is bounded by the Lefschetz
number L(f™). By definition,

2n
L(f™) =Y (—1)'trace(f1}),
i=0
where n is the complex dimension of M. Since for all values of ¢, the matrices f,; are finite
dimensional and their traces are the sum of their eigenvalues, we have that

L(f™) = A"+ ...+ X0 — (N + .-+ A7),

where the \;’s are eigenvalues of the matrices f.; and we have done all possible cancellations.
Finally, let

A= A
ggggsl il

and the conclusion follows taking the constant C' = s.

3.1 Computation of [(f™)

In this section we include some criteria that allow us to determine when the periodic Lefschetz
numbers are different from zero. In general it is not easy to find an explicit expression for
I(f™) in terms of m, though, in some examples, it is easy to do so for L(f™). Clearly, the
growth of the Lefschetz numbers contains a lot of information about the periodic Lefschetz
numbers. For the remainder of this section we assume f to be a continuous map from a
compact manifold M to itself, where M has dimension n. We will use the following proposition
in the two applications of Section 4.



Proposition 3.5 Suppose that f is a continuous map from a compact manifold M to itself
and it satisfies
dkm < L(an) < dkm+1

for some d > 2, k> 1 and for all m € N. Then, I(f™) > 0 for all m > 3.
For the proof we need the following lemma.

Lemma 3.6 The polynomials
Pyd)=d*—d" ' —...—1
satisfy Pp(d) > 0 for all d > 2 and for all n > 1.

Proof : Clearly
dr—1

1 24 4dv =
+d+d*+...+d -

<d",

and we are done.

q.e.d.
Proof of Proposition 3.5: Let P,(d) be as in Lemma 3.6.
Let m = p$" ---p$s where pq,... ,ps are distinct prime numbers. Then, by definition of
1™,
(™) = ur)L(fr)
rlm
=Ly - Y L(pr) + 3 L(fﬁj) g (C1)L (fﬁ)
1<i<s 1<i<j<s
m km m s—
Sdm o S w3 @ g (—1yrdm DT
1<<s 1<i<j5<s
> P (d),

where the last inequality holds because km > lch + 1 for all m > 3 and all £ > 1 together
with the fact that p = 2 is the smallest prime number apart from 1.
Since Py, (d) > 0 for all d > 2 the result follows.
q.e.d.

Remark 3.7 The same proof would work if the condition of Proposition 3.5 were d*™~! <
L(f™) < db™.

For completeness we also include a criterium that was proved in [GL].

Let f, be the block matrix which has the matrices f,; on the diagonal for 0 < k < n, and
zeroes elsewhere. Let (f,)¢ (respectively (f.)°) be the block matrix which has the matrices
f«x for k even (respectively k& odd) on the diagonal and zeroes elsewhere. Given a matrix
A, define its spectral radius o(A) to be equal to the maximum of the absolute values of its
eigenvalues.

Theorem 3.8 ([GL]) Suppose that the lim,,_,o |trace(F™)|/™ ezists for F, € {(f)¢, (f«)°}
and that o((f«)¢) # o((f«)°)- If there is an eigenvalue of f. different from a root of unity
and zero, then there exists M such that [(fP) # 0 for all p € N prime, p > M.

1/m
If furthermore we assume that the limit limg, ‘ZT‘mu(r)trace (F,Zn / r)‘ exists for

F, € {(f«)¢, (f«)°}, then there exists M > 0 such that [(f™) # 0 for all m > M.



4 Applications

4.1 Holomorphic mappings of CP(n)

The complex projective space of dimension n is the quotient of C"*! by the equivalence
relation

(20,21, ,2n) ~ N(20, 21, ,2p) for all A € C\ {0}.
Points in CP(n) are represented in homogeneous coordinates by
[20:21: - :12,), 2 #0 for some 0 <i<mn;

which denotes an equivalence class.

The space CP (n) is then the natural compactification of C* and can be thought as adding
at infinity a subspace of dimension n — 1. For example, CP (1), the Riemann sphere, is the
compactification of C, obtained by adding the point at infinity. This makes holomorphic
maps of CP(n) the natural generalization of rational maps of the Riemann sphere.

Holomorphic maps of CP(n) are characterized as follows.

Theorem 4.1 ([FS]) Let f be a non constant holomorphic map from CP(n) to CP(n).
Then, f is given in homogeneous coordinates by [fo : f1: ... : fn] where all components are
homogeneous polynomials of the same degree and with no common zeroes except the origin.

Under the assumptions of Theorem 4.1, we will call the degree of the polynomials fy,... , fn
the degree of the holomorphic map f.

The goal in this section is to prove the following theorem.
Theorem 4.2 Let f: CP(n) — CP(n) be holomorphic of degree d > 2.
(a) f has infinitely many periodic orbits.

(b) There exists M > 0 such that for all p > M prime, p € Per(f).
(c) If f is transversal, then Per(f) = N.

We remark that part (a) was shown for d = 2 in [FS]. The proof is done from a complex
analytic point of view and it is quite tedious.

We will show Theorem 4.2 by computing the Lefschetz numbers and the periodic Lefschetz
numbers of f.

Let f : CP(n) — CP(n) be a holomorphic map. In order to compute the Lefschetz
numbers of f we need to find its homology class. The following are well known facts from
topology.

Proposition 4.3 The homology groups of CP(n) with rational coefficients are

Q fori=0,2,4,...,2n,

0 otherwise.

Moreover, any continuous mapping f of CP(n) induces homomorphisms on the homology
groups

frok = (a'k)
for k=0,1,... ,n and for some a € Z that depends on f.

10



For a proof see for example [V].

We now need to learn how the number a depends on f. This follows from the fact that
the last homology group of a compact manifold can be computed from the topological degree
of the function. We state this result in a more general form below (see for example [K]). As
usual, Int(A) denotes the interior of the set A.

Proposition 4.4 Let f : M — M be a C' map and M a compact, connected and oriented
differentiable manifold of dimension n.

(a) If g € Int(M) is a regular value of f, then f1(q) is a finite number of points p1,--- ,py.

(b) The group H,(M,Q) has one generator and hence f., is multiplication by an integer D
called the topological degree of f.

(¢) Under the assumptions of the above statements, let D; = 1 (respectively —1) if f preserves
(respectively reverses) orientation at p;. Then D = Zle D; and it is independent of
the regular point q chosen.

We apply this proposition to show,

Proposition 4.5 Let f : CP(n) — CP(n) be a holomorphic map and let d be its degree.
Then, the homomorphisms induced by f on the homology groups are

foor = (d¥) fork=0,1,... ,n.

Hence,
2n

L(f) =) (-1) trace(fui) = 1+d +d* +--- +d".

=1

Proof : Since we have seen that holomorphic maps always preserve orientation, the topo-
logical degree of f is the number of preimages of a regular point. By Bezout’s Theorem (see
for example [FS]), the number of preimages of a regular point is the product of the degrees
of the polynomial coordinates, that is d". Hence

From Proposition 4.3 the result follows.

q.e.d.

Proof of Theorem 4.2: Since the nonzero homology groups of CP(n) are one-dimensional,
by using Proposition 4.5, we have that for any m > 0

L(f™) =1+d™+d*™ +... +d"™.

Since d > 2, the sequence {L(f™)}men is unbounded and hence, (a) follows from Corollary
2.3.

Moreover, it is clear that

4V < L(fm) < dnm—l—l
and we can apply Proposition 3.5 with & = n to conclude that [(f™) # 0 for all m > 3. Also,

I(f)=L(f)=1+d+... +d"

11



and
I(f*) = L(f*) — L(f)
=1l+d+d*+...+d* - (1+d+... +d)
>P2n(d),

where P,,(d) is as in Lemma 3.6 and hence greater than 0 for d > 2. One concludes then
that [(f™) > 0 for all m € N. Statements (b) and (c) follow then from 3.1.
q.e.d.

4.2 Holomorphic maps on some Hopf surfaces

A compact complex surface X is called a Hopf surface if its universal covering is biholomor-
phically equivalent to C? \ {0} and its fundamental group equals Z.

The group of covering transformations of a Hopf surface is generated by a contraction
M:C* -, M) =0,
which, after a change of coordinates, can always be written as
M(z,w) = (az + AP, fw)
where p € N\ {0}, and «, 3, A € C subject to
0<l|of<|Bl <1 and (a—pP)A=0.

The Hopf surface X defined by a particular M (z,w) is the space C? \ {0} after identi-
fying points that belong to the same orbit under M. Holomorphic maps from X to X are
holomorphic maps f : C? \ {0} — C? \ {0} that send orbits of M to orbits of M; that is,

foM=Mof, for a unique d € N.

There is a classification of Hopf surfaces that depends on the values of «, 3, A and p (see
for example [W]). In this subsection we deal with Hopf surfaces that are generated by a

contraction of the type
a 1 z
e = (5 2) (2)

where 0 < |a| < 1. From now on and unless otherwise specified, when we refer to a Hopf
surface we mean a surface of this type.

Proposition 4.6 Let X be a Hopf surface and f : X — X a holomorphic map. Let d be the
positive integer for which fo M = M%o f. Then,

f(z,w) = (aw? + dbzw®™, bw?),
for some a € C, b€ C\ {0}.

The proof is very technical and it is included in the appendix.
In an analogous way to the case of CP(n), in this section we show the following theorem.

Theorem 4.7 Let X be a Hopf surface and f : X — X a holomorphic map as in the
statement of Proposition 4.6, with d > 2. Then the following statements are satisfied.

12



(a) f has infinitely many periodic orbits.
(b) There exists M > 0 such that for all p > M prime, p € Per(f).

(¢) If f is transversal, then Per(f) = N.

As in the application to CP(n), we will show that the periodic Lefschetz numbers are all
different from 0.

Since every Hopf surface X is homeomorphic to S' x S? we have

Q ifi=0,1,3,4,
H;(X,Q) =
(X0 {0 otherwise.
To compute L(f™) we need then to compute the homology class of f, that is f.o, fe1, fs3
and f.4. Since X is connected, we already know that f.o = Id, hence trace(f.o) = 1. To
compute the last one, we will use Proposition 4.4.

Proposition 4.8 The topological degree of a holomorphic map as in Proposition 4.6 is D =
d?. Hence
trace(fus) = d°.

Proof : Recall that the topological degree of a holomorphic map f is the number of preimages
of any regular point, since f preserves orientation at all points. In this case, for (zg,wy)
generic, the system
aw® 4+ dbzw® !l =z,
bw® = wy,

has d distinct solutions in C2. When we consider the map f on X we must do this d times,
i.e. we must look for points (z,w) such that

f(z,w) = M*(z0, wp), 0<i<d.

Those will be all distinct and there cannot be any others. Hence, by Proposition 4.4 we
obtain D = d? and that f,4 is multiplication by d2.
q.e.d.

To determine the remaining necessary traces for the computation of L(f™) is not at all
trivial. However, one can use the Lefschetz numbers of f and f? to compute them. First, we
show an auxiliary lemma.

Lemma 4.9 A map f as in Proposition 4.6 has (d — 1)® fized points and (d*> — 1)? fized
points of f2.

Proof : A point (z,w) satisfying f(z,w) = M"™(z,w) for some n > 0 is a fixed point of f.
Those are the solutions of the following system

aw? + bdzw®™! = oz +na"lw,
bt = a"w.

It is easy to check that there are d — 1 solutions for each 7.

13



Note that if f(z,w) = M™(z,w) then, for all k¥ € N,
F(M* (2, w)) = MM (f (z,w)) = M*7 (2, w) = M™HHED(MH (2, w)),

where we have used the relation f o M = M%o f. Hence, if (z,w) is a solution of f(z,w) =
M™(z,w) then, its orbit by M contains solutions of f(z,w) = M™k(d=1)(z ) for all k and
not of any others. So the fixed points of f are the solutions of

flz,w) = M (2, w), 0<i<d—-2.

Since there are d — 1 of these equations and we have seen that each has d — 1 solutions, we
obtain that f has (d — 1) fixed points.

For the periodic points, observe that f2(z) is also a holomorphic map of X where d is
substituted by d2. The same argument as above gives the existence of (d2 — 1)? fixed points.
q.e.d.

Proposition 4.10 Let X and f be as in Theorem 4.7. Then

trace(fy1) = trace(fi3) = d.

Proof : Let A =trace(f.1) and B =trace(f.3). Then, by definition of the Lefschetz numbers,

1-A-B+d* = L(f), 5)
1-A2—-B?>+d* = L(f?.

Since f is holomorphic and transversal, L(f) (respectively L(f2)) is the number of fixed
points of f (respectively of f2). Since we have an expression for f we can compute those.

Therefore, system (5) becomes

1-A-B+d® = (d—-1)2
1-A2-B2+d* = (d?-1)2,

and its solution is A = B = d. This concludes the proof of the proposition.
q.e.d.

Proof of Theorem 4.7: We now have an explicit expression for the Lefschetz numbers that
is

L(f™) = d*™ — 2d™ + 1.
Since d > 2, the sequence {L(f™)}men is unbounded. Hence, statement (a) follows from
Corollary 2.3.

We observe that

& < L(f™) < &P
Hence, by Proposition 3.5 (see Remark 3.7), [(f™) > 0 for all m € N. Statements (b) and
(c) follow then from Theorem 3.1.

q.e.d.
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5 Another proof of Baker’s Theorem

In 1964, Baker completely described the periodic set of any holomorphic map of the Riemann
sphere, i.e., a rational map, and also in the special case of a polynomial.

Theorem 5.1 ([Ba]) (a) Let P be a polynomial of degree at least two and suppose that P
has no periodic points of period n. Then n =2 and P is conjugate to 2 2> — z.

(b) Let R be a rational function of degree d > 2, and suppose that R has no periodic points
of period n. Then (d,n) is one of the pairs (2,2),(2,3),(3,2),(4,2).

The proof of this theorem can also be found in [Be]. In this subsection we will give an
alternative proof which uses the Lefschetz numbers. The main tool is the following theorem
which is the analogue to Theorems 2.4 and 3.1 for general holomorphic maps of the Riemann
sphere.

Theorem 5.2 (a) Let P: C — C be a polynomial of degree d > 2. If [(P™)/m > d—1 then
m € Per(P).

(b) Let R : C — C be a rational map of degree d > 2. If (R™)/m > 2(d — 1) then
m € Per(R).

The proof follows the idea of the proof of Theorem 2.4. Thus, by using the two definitions
of the Lefschetz numbers we will find two expressions for the dynamical zeta function. From
their comparison the result will follow.

Let R be a rational function of degree d. Let PO be the set of periodic orbits of R. Given
a periodic orbit v € PO, let p(y) be its period. If v = {2,,) = 20,21,... ,2(y)—1} With
zi = R'(2p), we define the multiplier of y as

p(7)—1

p=p(r) = (B ()= [] R(z)-
1=0

With this notation, R is transversal if and only if there is no periodic orbit whose multiplier
is a root of unity. Since we allow R not to be transversal, we must account for this kind of
periodic orbits.

The first step is to find an expression for the Poincaré index of R™ at any periodic point.
Let PONMT C PO be the set of periodic orbits whose multiplier is a root of unity. Then, if
v € PO\ PONT,

ind(R™,z) =1 for all z € y and for all m € N.

Now take v € PONT with multiplier p(y) = exp(27ir/s) with 7 and s coprime and assume
for the moment that <y is a fixed point zy. The index of R™ at zy will be different from 1 only
for those m for which (R™)'(z9) = 1. That is,

ind(R™,z9) =1 for all m such that s{m.

The dynamics around a non transversal fixed point are described by the Leau-Fatou Flower
Theorem. We state this theorem below, together with some well known fact of complex
dynamics (see for example [Be]).
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Theorem 5.3 Let R be a rational map and zy be a fized point of R with multiplier exp(2mir/s),
where r and s are coprime. Then, there exists k € N such that for all | € N

RY(2) = (2 — 20) + (2 — 20)** ™! + h.o.t.
Moreover,

(a) there are ezactly 2ks elliptic sectors around zy, and

(b) there are k critical points (points of derivative equal to 0) attracted to z.

By the Bendixson Index Formula (see [L]), we have

ind(RY,z) = ks + 1 for some k € N and for all [ € N.

Returning to periodic orbits, let v = {20, ... , zp(y)—1} be a periodic orbit of period p(v)

and multiplier p(y) = exp(2mir/s(7y)). Applying Theorem 5.3 to RP(") we obtain a natural
number k& = k(vy) € N such that

RPN () = (2 — 2;) + (2 — 2)¥O*OH L hot. foralll € Nand 0 <i < p(y).

Then
kE(y)s(y) +1 if m =Ip(y)s(7y) for some [ € N,

1 otherwise.

ind(R™, ;) = {

Proposition 5.4 Let R be a rational map of degree d > 2. Then the dynamical zeta function
of R can be written as

Zp(t) = H (1 — p0))=1 H (1 — 2=k

YEPO ~yEPONT

Proof : This proof uses ideas of [F]. For v € PO let L,,(R,7) be the contribution of 7 to
L(R™), i.e.

0 if p(y) tm
> zey nd(R™, 2) if p(y) |
Then
L(R™ = Y ind[R™z2)= Y Ln(R,7)
z€Fiz(R™) Y€PO
For v € PO \ PO we have
0 if m,
Ln(R,) = POt
p(y) otherwise;
and, if v € PONT, then
0 if p(y) t m,
Lin(R,v) = { p(7) if p(y) | m but s(7) { m,

(M(EM)s(y) +1) if p(y) [ m and s(v) | m.

i
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Therefore,

o0
= exp ( Z ngfﬁ) t™m

yePOmMm=1
[e'e) I R,
= exp Z Z%()wtlp(”r)
vePOI=1
_ ™) 7)k( !
(DL e T S
7EPOI=1 YEPONT I=1
= ][ exp(-log(1 _tp(v))) [1 exp(—k(y)log(1 — 2
YEPO YePONT
— H (1 —¢pOy=1 H (1 — sy =k(),
v€PO yePONT

q.e.d.

The second expression for the dynamical zeta function of R uses the definitions of the
Lefschetz numbers in terms of homology. With some computations, one can show (see for
instance [BB])

n=T[a- = (6)

m=1

Finally, the last ingredient in the proof of Theorem 5.2 is the second part of Theorem
5.3. By the Riemann-Hurwitz formula (see for instance [S]), a rational map can have at most
2(d — 1) critical points. Clearly, a polynomial can have at most d — 1 critical points. By
Theorem 5.3, this translates into the following upper bounds:

Z k(y -1 if R is a polynomial,
EPONT (d —1) otherwise.

Proof of Theorem 5.2: Assume P is a polynomial and [(P™)/m > d — 1. Then, from
expression (6), the Zeta function has more than d — 1 factors of the form 1 — ™. On the
other hand, by Proposition 5.4,

Zr(t) = H (1 — POyt H (1 — tPMs(M))=k(),

~yePO yePONT

Since . cpont k() < d— 1 it follows that there can be at most d — 1 factors of the form
1 —t™ coming from the second product, for values of p and s such that ps = m. This implies
that at least one of them must come from the first product. That is, there is at least one
orbit 7 such that p(y) = m.
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For a general rational function, apply the same argument substituting d — 1 by 2(d — 1)
and the second part of the theorem follows.
q.e.d.

We now apply Theorem 5.2 to prove Baker’s Theorem.

Proof of Theorem 5.1: Recall that for a rational map R, L(R™) = 1 + d™. Since
E”m,u(r) = 0 we have
[(R™) = d™ — Py(d),

where ﬁk(d) is a polynomial with coefficients equal to 1 or —1 and no constant term. Let
Pu(d) =d* +d*'+ ... +d
Then I(R™) > d™ — Py(d) where k < m/2. By induction it is easy to see that
d™ — Py(d) > 2m(d — 1), for allm >4 and d > 2.

Hence rational functions and, in particular polynomials, have periodic orbits of all periods
greater or equal to 4.

We now compute
I(R?) =d?>—d >2(d—-1) ifd>2,
I(R?) =d>—d >4(d—1) ifd>4,
(R} =d>—d >6(d—1) ifd>2,

and thus, from Theorem 5.2, we obtain the remaining cases.
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Appendix: Proof of Proposition 4.6
Proposition 4.6 Let X be a Hopf surface and f : X — X a holomorphic map. Let d be the
positive integer for which f o M = M%o f. Then,

f(zw) = (aw® + dbzw® !, bu?),

for some a € C, be C\ {0}..

Proof : Since M(z,w) = (az + w, aw), if f(z,w) = (fi1(z,w), f2(z,w)) then,

filaz +w,ow) = alfi(z,w)+ da"!fo(z, w) (7)
folaz +w,ow) = alfa(z,w). (8)

By Hartog’s theorem (see for example [Wh]), f extends to a holomorphic mapping of
C? with f(0) = 0 and hence it can be expanded into its Taylor series around 0. We will
expand the functions on both sides and compare the coefficients of the same degree to get,
by induction, the conditions on f. We start with fs.

Suppose fa(z,w) = Zk’jeN by,;z*wI. Then, equation (8) becomes
Z b j(az +w)falw! = ot Z by j2"w. 9)
k,jEN k,jEN

Since

(z +w)k = zk: (f) i

i=0
the left hand side of (9) becomes

Z b j(az +w)kajwj = ZszZbk,j (f)) P Tiqpkti—p

k,jeN pEN  JEN N
k>p
+14 Coa
= Z P Z bitp.j (p QP iyt
peEN  ijEN p
+1 ;
= D A D bipy (p Pt
p,q€EN i+j=q p
q .
+1 .
— Z 2Pl (Z bp—|—i,q—i (p oPte | .
p,g€N 1=0 p

Comparing the coefficients of the same degree in (9) we get the equations

: p+i ;
Z bpisg—i ( )ap+q" = ab, 4,
i=0 p

or, equivalently

_ +
bp’q(CMIH—q — Oéd) + bp—|—1,q—1(p + ].)Oép+q 1 + ...+ bp—|—q,0 (p p q) ap =0. (10)
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We claim that b, , = 0 for all (p,q) # (0,d). We show this claim by induction on ¢. For
each d > 1, we treat the cases ¢ < d and ¢ > d separately.
Case g < d. For q = 0, equation (10) reads b, o(a? — a?) = 0.

Hence byo = 0 for all p # d. But for ¢ = 1 and p = d — 1 we have bd_l,l(ad —af) +
bd,oalozd*1 = 0. Hence bgo = 0.

We now assume b, 41 = by g2 =--- = by = 0 for all p. Then, equation (10) becomes
bp,q(aPT? — a®) = 0. Hence, byq = 0 unless p + ¢ = d. In particular, by, = 0 unless ¢ = d.
For p+¢=d and p > 1 we have by_1 4+1(a® — a?) + by gpa®~! = 0 and therefore b, , = 0.
Case ¢ = d+i with i > 0. If i = 1 equation (10) says b, 41 (Pt —ad)+b,.1 4(p+1)aPt =
0. Since p+1 > 0 this implies that b, 4 = 0 and consequently, b, 411 = 0 unless p+d+1 =d
which is impossible.

Suppose by, = 0 for all p > 0 and d + 1 < g < d + i. Then, again from (10) we obtain
that by 44 (aP T4t — a4) = 0. Hence b, 41; = 0 unless p + d + i = d which is impossible.

This concludes the proof of the claim and we have shown

fa(z, w) = bw? for some b € C.

We note that b must be different from zero. Indeed, if that were not the case, the same cal-
culations applied to fi(z,w) would lead to fi(z, w) = aw® for some a € C, and consequently
2(z,w) = (0,0) ¢ X.

To find the expression for fi(z,w) assume that fi(z,w) =>_
ing the above arguments, equation (7) becomes

q .
Z .
E 2Pl (E Aptig—i (p+ )ap"'q_’) = E ap g2Pw? + da® Thw?.
p

p,geN 1=0 p,gEN

. oland -
ijeN GigZiw. Then, repeat

For p = 0 and ¢ = d the terms with ag 4 cancel out and we have
al’d,ladfl + a2’d72ad72 +...+aq0= da? b, (11)

Otherwise, like before, we get the equivalent equation to equation (10), i. e.
_ +
ap (T —a%) +api1 g 1(p+ 1) 4t apigo (p ’ q) o? =0. (12)

We claim that a, , = 0 for all (p,q) ¢ {(0,d),(1,d — 1)}. We will show this claim in four
steps.

Case ¢ < d — 1 with d > 2. Then ap, = 0 for all p > 0. If ¢ = 0, by equation (12) we get
apo(af — a®) = 0. Hence apo = 0 unless p = d. But we have ad_l,l(ad —a?) +ad,0dozd_1 =0
and therefore a4y = 0.

Suppose it is true until ¢ — 1. Then, from (12) we have that a,,(a?™® —a?) = 0. So
apq =0 unless p = d—q. But ag_q—1,4+1(a? — a?) + a4_g,40% ! = 0, and therefore a4_q 4 = 0.
Case g =d—1. If p # 1 then a,q—1 = 0 and a1 4—1 = bd. From equation (11) we have
apd—1(aPt@ !t —ad) = 0. Hence a4 1 = 0 unless p = 1. On the other hand, from equation
(12) we obtain ao,d(ad —at) + al,d_lad_l = da® . Therefore aiq—1 = db.

Case ¢ = d. If p # 0 then a, 4 = 0. This comes from a, 4(a?*? — a?) + ap11,4-1 = 0 and the
case ¢ =d — 1.
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Case ¢ > d. Then a, 4 = 0 for all p > 0. If ¢ = d+1 we have ap 4+1(c?T4 —a?) +ap; 14 = 0.
From the case ¢ = d and the fact that p +d + 1 # d we obtain ap 41 = 0 for all p > 0.

Suppose it is true for ¢ = d + i — 1. For ¢ = d + i we have a, 44;(a?*?** — o) = 0, and
therefore ay, ¢4, = 0 since p +d + i # d.

These four steps conclude the proof of the claim. We have shown,
fi(z,w) = aw? + dbzw® !

for a,b € C, b # 0. This concludes the proof of the proposition.
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