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Abstract

It is well known that the Hubbard tree of a postcritically finite complex polynomial
contains all the combinatorial information of the polynomial. In fact, an abstract Hubbard
tree as defined in [24] uniquely determines the polynomial up to affine conjugation. In this
paper we study how much of the “dynamical information” is captured by the Hubbard
tree of a quadratic Misiurewicz polynomial. More precisely, we study dynamical features
such as entropy, transitivity or periodic structure of the polynomial restricted to the
Hubbard tree, and compare them with the properties of the polynomial on its Julia
set. Our results show that there is a strong connection between the renormalization
properties of the polynomial and the mentioned dynamical features of the polynomial
on its Hubbard tree. As a consequence of this relation we obtain criteria to check if a
quadratic Misiurewicz polynomial is renormalizable by means of its Hubbard tree.

1 Introduction

In this paper we study the dynamical information that is captured by the Hubbard tree of a
postcritically finite polynomial in the complex plane. In what follows we introduce notation
and summarize the basic facts which are necessary to motivate and state the main results of
this paper. For more details and general background we refer to [7, 8, 12, 16, 20, 26).

Let f be a complex polynomial and let z € C. We will denote by O}L(z) the forward orbit
of z under f, i.e. the set {f*(z) | n € N}. If f¥(2) = z for some k € N then z is a periodic
point. The smallest such k is called the period of z. If z is not periodic but O}L (2) is finite
we say that z is preperiodic.

For a complex polynomial f of degree d > 2 the point at infinity is a superattracting fixed
point. This allows us to define the filled Julia set of f, denoted by K(f), as the complement
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of the basin of attraction of infinity. That is,
K=K(f)={2z€C| O}F(z) is bounded}.

The filled Julia set is clearly compact and totally invariant (that is, f(K) = f~}(K) = K).
The common boundary of K(f) and the basin of attraction of infinity, is called the Julia set
of f and denoted by J(f). The Julia set is also totally invariant and is the set of points
where “chaotic dynamics” occur.

Next we are going to describe the basic properties of the Julia set with respect to periodic
points, topological entropy and transitivity. The notion of topological entropy was introduced
by Adler, Konheim and McAndrew in [1], which we refer to for a precise definition and basic
properties (see also, for instance, [13] or [2]). In what follows, the topological entropy of a
map f will be denoted by A(f). Next we recall the concept of transitivity. Let f: X — X
be a continuous map of a compact metric space. We say that f is (topologically) transitive
if for any two non-empty open sets U and V in X, there is a positive integer k such that
fEU)YNV # 0. Tt is well known (see [29]) that if either X has no isolated points or f is onto,
then f is transitive if and only if it has a dense orbit (i.e. if there exists z € X such that
O}L (z) is dense in X'). When f" is transitive for each n € N then f is called totally transitive
(see [6]).

The following proposition states some basic properties of the Julia set, all of which are
well known (see for example [7]).

Proposition 1.1. For a complex polynomial f of degree d > 2 the following statements
hold.

(a) Periodic points are dense in J(f).
(b) f|J(f) is totally transitive.

(c) The topological entropy of f|J(f) is log(d).
(d) f|J(f) has periodic points of each period except maybe period 2.

We say that a point w € C is a critical point of f if f'(w) = 0. Then, its orbit is called a
critical orbit. The behavior of the critical points under iteration determine in many ways the
topology of K(f) and the dynamics of f. As an example, let C(f) denote the set of critical
points of f. Then, K(f) is known to be connected if and only if C(f) C K(f).

We are interested in the special case where the critical orbits are finite. We call these
polynomials postcritically finite (or PCF for short) and they can be of three types. If all
critical orbits are periodic then f is called a center. If the critical orbits are all preperiodic
then f is called a Misiurewicz polynomial. In this case K(f) has empty interior and hence
K(f) = J(f) (see [14]). Finally, a PCF polynomial could exhibit both types of critical orbits.
In all cases K (f) is connected and locally connected (see [14]). In this paper, we are mainly
concerned with Misiurewicz polynomials of degree two. Generalizations to higher degrees will
be the object of a later paper.

A tree is a topological space which is uniquely arcwise connected and homeomorphic to
the union of finitely many copies of the unit interval. Douady and Hubbard in [14] introduced
a combinatorial description of the dynamics of PCF polynomials by representing each filled



Julia set as a tree, called the Hubbard tree. For Misiurewicz polynomials this is defined as
follows. Given a subset A of J(f) we denote by [A] the conver hull of A in J(f), i.e. the
smallest closed connected subset of J(f) that contains A.

Definition. Let f be a Misiurewicz polynomial and let Q(f) = UwEC(f) O}' (w) be the post-
critical set which in this case is finite and contained in J(f). We define the Hubbard tree of

f as

We note that each Hubbard tree is a tree. Indeed, for any two points z,y € J(f), there
is a unique Jordan arc in J(f) that joins z and y. The existence of this arc follows from the
fact that J(f) is connected and locally connected in S? and the uniqueness from the fact that
J(f) has empty interior and is simply connected. Therefore, since H(f) is the union of the
Jordan arcs in J(f) joining z,y € Q(f), it follows that H(f) is a tree.

If T is a tree and z € T, the valence of z is defined to be the number of components of
T\ {z}. A point of valence 1 is called an endpoint and a point of valence greater than 2 is
called a branching point. We define the set of vertices of H(f) as

V(f)=Q(f)U{v € H(f) | v is a branching point}.

The closure of the arc in H(f) in between two consecutive vertices is called an edge. Note
that any endpoint of H(f) belongs to Q(f) and, hence, V(f) contains all points of H(f) with
valence different from 2.

It is easy to check that the Hubbard tree is a forward invariant subset of the Julia set
(see Lema 1.10 in [24]). The set of vertices is also forward invariant since Q(f) is forward
invariant and non-critical branching points must be mapped to branching points (because
the map is a local homeomorphism). For this and other basic properties of Hubbard trees we
refer to [24] although, in Section 2, we study the features that we use in proving the main
results of this paper.

Remark 1.2. Hubbard trees are in fact defined for any PCF polynomial (see [14, 24]). If f
is not Misiurewicz, it follows from the definition that the Hubbard tree intersects the basins
of attraction of points of Q(f) in K(f) \ J(f)-

The interest of Hubbard trees lies on the fact that they contain all the combinatorial
information of the polynomial. Indeed, Douady and Hubbard showed that if we retain the
dynamics and the local degree of f on the set of vertices, the way the tree is embedded in
the complex plane and a little bit of extra information (which we will not make precise here),
then different PCF polynomials (not conjugated as dynamical systems) give rise to different
Hubbard trees. A variation of the converse is also true and was proved in a general version
by A. Poirier in [24].

In this context it is natural to ask the following question. Apart from the topological
and combinatorial structure of the Julia set, which dynamical information is contained in
the Hubbard tree? In this case, by dynamical information we mean those dynamical features
as transitivity, topological entropy, density of periodic points and periodic structure. More



Figure 1: The Julia set and the Hubbard tree of f.,, where ¢c; = —1.430357....

precisely, which of the properties in Proposition 1.1 (if any) are still true when we consider
the map f | H( f)? If the answer depends on the polynomial, what is a characterization of those
polynomials for which those properties hold? We will see that these features are intimately
related with the renormalization properties of the polynomial.

From now on the polynomial f is of degree two and therefore it is affine conjugated to
one of the form f(z) := f.(z) = 22 + ¢ for some ¢ € C. A quadratic polynomial f, has only
one critical point wy = 0. We will denote the critical orbit by wg,w1,... where w; = £(0).
If f is a center, as mentioned in Remark 1.2, the Hubbard tree has edges in the basin of
attraction of the critical orbit. These edges cannot contain periodic points in their interiors.
Thus, periodic points cannot be dense in this case and hence, f | H(P) is not transitive (see

Proposition 2.8). With respect to the topological entropy and the set of periods, one can find
examples of quadratic centers having zero entropy and finitely many periodic points. For this
reason, from now on we consider only Misiurewicz polynomials. Hence, we assume that there
exist n > 2 and 0 < k < n such that w, = wg.

In order to get some intuition on the different possible behaviors one can expect, we first
look at some examples.

Example 1. Let ¢; = —1.430357.... This parameter value is the last point of the period
two copy of the Mandelbrot set on the real axis. The Julia set and Hubbard tree of the
polynomial f., are shown in Figure 1. Note that E = [w1,w3] U [w4,ws] is a proper forward
invariant subset of H = H(f.,) and each point in the complement of E (in H), except a
repelling fixed point of f., in (w3, ws), eventually falls in E. Consequently, periodic points
cannot be dense in H and f, | 5 18 not transitive (see Proposition 2.8). Moreover, any periodic
point in H must have period multiple of two. On the other hand, by using Theorem 2.9 (see

also [9]), it follows that h(f, ‘H) = lﬂf—.



Example 2. Let ¢co = —1.790327.... The polynomial f.,, whose Julia set and Hubbard
tree are shown in Figure 2, can be found at the end of the small period three copy of the
Mandelbrot set on the real axis. Note that E = [w1,ws] U [wg, ws]U[ws,ws] is a proper forward
invariant subset of H = H(f.,). However, in this case, by using standard arguments (see [9])
one can check that there is an invariant Cantor set C in the complement of E (in H) which
contains periodic points of all periods. Still there is an open dense set of preimages of F in

H \ E. Consequently, periodic points cannot be dense in H and f,, | 18 not tramsitive. By

using the arguments above it follows that h(fe, | ) = log ‘[H
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Figure 2: The Julia set and the Hubbard tree of f.,, where ¢; = —1.790327 ... ..

Example 3. Let ¢ = —1.222863...+40.316882.... The Julia set and the Hubbard tree of
fes are shown in Figure 3. It can be seen that in this case, the subtrees Ty = w5, w2, ws] and
T} = [ws,w1,ws] are mapped to each other cyclically. Therefore, each of these trees is forward
invariant by fg3 which implies that ffs is not transitive. Hence, f., is not totally transitive.
However, by using straightforward arguments it can be seen that ffS‘Tl (and, hence, f023|T0)
is totally transitive, which implies the transitivity of f., (in fact, the transitivity of f., can be
checked easily by using Theorem A). Consequently, periodic points are dense in H(f¢,) (see
Proposition 2.8) but their periods must be multiples of two. Concerning the entropy, by using

the methods of the previous example, one can see that h(f, ‘ H( )) = log 1.302160040. . . .

Example 4. Let ¢4 = 0.419643 ... +¢0.606291.... In Figure 4 the Julia set and Hubbard
tree of f., are shown. As in the previous example one can see that f., is transitive on H(f,);

2 is not transitive because w4, ws] is mapped by f., to [ws,w;] and viceversa; periodic points

) _ log2

are dense but their periods can only be multiples of two, and h(fe, oBE

s,

Example 5. Let ¢ = —0.228155... +41.115142... (see Figure 5). We note that the map
fes is conjugate to fc23|T0. So, f65‘ H(for) is totally transitive (this also can be checked by
c5
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using Theorem B). Hence, periodic points are dense in H(f.,) and there is not, in principle,
any restriction on the periods that may appear. Concerning the entropy though, we have
W fes| (1., ) = 2P(fes ) = 210g 1.302160040 ...
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Figure 5: The Hubbard tree of f.,, where ¢s = —0.228155...+¢1.115142. ..

From the above examples we deduce that, in general, periodic points are not dense, f ‘ H(p)
is not totally transitive (sometimes not even transitive) and the entropy can be strictly smaller
than log 2. However, they also show that this is not the case for all polynomials.

Before stating the main results of this paper we still need to recall some definitions (mainly
following [19]).

Definition. Let f(z) = 2% + ¢ be such that J(f) is connected. For n > 1 we say that f"
is renormalizable (or that f is renormalizable for n > 1) if there exist open bounded sets U
and V isomorphic to disks such that

(1) UcV,

(2) fM(U) =V and f™ : U — V is proper of degree two, i.e. every point in V has two
preimages in U counted with multiplicity.

(3) fk*(0) € U for all k > 0.

We define the small filled Julia set of the renormalization, K,,, as the points that never leave
U under iteration of f”.

It follows from the Straightening Theorem (see [15]) that there exists a unique (up to
affine conjugation) quadratic polynomial @ such that f™ and @ are hybrid equivalent in
neighborhoods of K,, and K(Q) respectively. We refer to [15] for a definition of a hybrid
equivalence but we remark that, in particular, it means that f™ and @) are quasiconformally
conjugate on the mentioned domain.



Hence the small filled Julia set K, is homeomorphic to the actual filled Julia set of a
quadratic polynomial (see Figure 6). We define the cycle

K,(0) = K,,K,(1) = f(K,(0)),...,Kny(n—1) = f(K,(n — 2)),

where f(K,(n —1)) = K,(0). We call each set K, (i) a small filled Julia set of the renor-
malization. McMullen in [19] showed that these sets can intersect each other in at most one
single point which of course must be a fixed point of f.
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Figure 6: The Julia set of f, with ¢ = —1.772892.... The map f2 is renormalizable and the
small filled Julia set is quasiconformally homeomorphic to the filled Julia set of f_; (lower
figure). This is an example of renormalization of disjoint type.

Definition. Let f(z) = z?4cbe such that K(f) is connected. We say that f is renormalizable
of disjoint type if f is renormalizable for some n > 1 and all the small filled Julia sets K (i),
0 <1 < n are disjoint.

Let Per(f) = {n € N | f has a periodic point of period n}. Recall that a set A C N is
called cofinite in N, if N\ A is finite. We are now ready to state the main results of the paper.

Theorem A. Let f be a Misiurewicz polynomial of degree 2 and H(f) be its Hubbard tree.
Then, the following statements are equivalent:

(a) f is not renormalizable of disjoint type.
(b) Periodic points are dense in H(f).
(¢) The map f|H(f) is transitive.

(d) For all edge I of H(f), U,>o f"(1) = H(f).

Theorem B. Let f be a Misiurewicz polynomial of degree 2 and let H(f) be its Hubbard tree.
Then, the following statements are equivalent:

(a) f is non renormalizable.



) f| () totally transitive.
(c) For all edge | of H(f), there exists n > 0 such that f™(I) = H(f).
Moreover, if f‘H(f) is totally transitive then Per(f|H(f)) is cofinite in N.

We remark that the converse of the last statement of Theorem B is not true. Indeed,
the map f02| H(fsy) from Example 2 has periodic points of all periods while it is not even
c2

transitive. However, one can show that if f ‘ H(P) is transitive but not totally transitive then
its set of periods is not cofinite in N.

We observe that Theorems A and B give an easy criterium to check if the polynomial f
is renormalizable and, in that case, of which type. One only needs to construct the Hubbard
tree and check the images of its edges. We also note that, in general, density of periodic
points does not imply transitivity. It does though in the above cases.

Theorem C. Let f be a Misiurewicz polynomial of degree d > 2 and let H(f) be its Hubbard
tree. Then, h(f‘H(f)) <logd and the equality holds if and only if H(f) = J(f).

From [4, Theorem B] it follows immediately the following corollary of Theorem A.

Corollary 1.3. Let f be a Misiurewicz polynomial of degree 2 such that it is not renormal-
izable of disjoint type and let H(f) be its Hubbard tree. Then,

log 2
MIlun) > Bnaga oy

where End(H (f)) denotes the number of endpoints of H(f).

Hence if a Misiurewicz polynomial f of degree 2 is not renormalizable of disjoint type, the
entropy of the map f | H() is always bounded below by a positive quantity which depends on
each particular polynomial. One might then ask whether there exists a universal lower bound
for the topological entropy of such polynomials. The answer to this question is negative as
shown in the following proposition.

Proposition D. There exists a family of non renormalizable quadratic Misiurewicz polyno-

mials {gn}n>1 such that h(gn‘H(g )) tends to zero as n tends to infinity.

In fact one can also find sequences of quadratic Misiurewicz polynomials verifying the
same property which are either renormalizable of disjoint type or renormalizable of S—type
(see Subsection 2.1 for a definition of these terms).

The rest of the paper is organized as follows. Section 3 contains the proofs of Theorems A,
B and C, and Proposition D, while Section 2 is meant to be a summary of the definitions
and tools needed for those proofs. These preliminaries are distributed into independent
subsections, according to the subject they belong to.
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2 Definitions and Preliminaries

2.1 Quadratic polynomials, renormalization and the Yoccoz puzzle

The Yoccoz puzzle (see for example [18, 21]) is a useful tool to deduce renormalization
properties of quadratic polynomials. To define the Yoccoz puzzle we use an orthogonal set
of coordinates in the basin of attraction of infinity: equipotentials and external rays. These
coordinates are defined in the same way for polynomials of any degree d > 2 with a connected
Julia set.

Let f(z) = 22 + ¢ have a connected Julia set. Since the point at co is a superattracting
fixed point, the dynamics in its basin of attraction, A(co), are very simple. One can find
a holomorphic change of variables 1y : C\ D — A(oo) (called the Bottcher coordinates at
infinity) that conjugates f| A(oo) to the map z + 22 on the complement of the closed unit
disk. This change is unique if we require the derivative at infinity to be one.

The image under v of a circle of radius exp(n) > 1 in C\ D is a simple closed curve in
A(oo) called an equipotential of potential . We denote the potential function defined this
way by G(z) := Gf(z). Thus an equipotential of potential 7 is mapped 2 to 1 under f to
an equipotential of potential 27 (see Figure 7). Parameterizing the arguments of the unit
circle between 0 and 1, the image under ¢ of a ray of argument ¢ is called an ezternal ray of
argument t and denoted by Ry(t). Again, since 1) is a conjugacy, an external ray of argument
t is mapped to an external ray of argument 2¢ (mod 1). Equipotentials and external rays
give us orthogonal coordinates in the superattracting basin.

Figure 7: Bottcher coordinates, equipotentials and external rays.

From now on, we assume that both fixed points of f are repelling. Then one fixed point
(to be called 3) is the landing point of the external ray of argument zero and the other (called
«) is the landing point of a cycle of g external rays where g > 2 (see for example [20, 22]).

Remark 2.1. By a simple combinatorial argument on external rays, using that 6 — 260
(mod 1) is order preserving, one can show that 0, f(0),..., f971(0) lie in different components

of J(f)\ {e}

Suppose f is renormalizable for n > 1 as defined in Section 1 and let K,,(i) for 0 <i < n
be the small filled Julia sets. For 0 < ¢ < n we denote the boundary of K, (i) by J,(i). The

10



sets Jp, (%) are called the small Julia sets. Each of these small Julia sets is homeomorphic to
the actual Julia set of the renormalized polynomial. Thus, each J,,(7) is f™forward invariant,
and hence f(Jp(7)) = Jp(i+1 (mod n)). We denote the  and (3 fixed points of J, (i) (under
™) by an(i) and B, (z) for 0 < i < n. From [19], the renormalization can only be of one of
the following types.

(i) f™ is renormalizable of disjoint type if the small Julia sets are all disjoint.
(ii) f™ is renormalizable of S—type if all intersections among small Julia sets occur at their
[ fixed points.
(iii) f™ is renormalizable of a—type or crossed type if all intersections among small Julia sets
occur at their a fixed points.

We now give some examples (without proofs) of renormalizable polynomials of each type
above.

Examples.

(i) The polynomial in Example 1 (see Figure 1) is renormalizable of disjoint type for
n = 2 and of f—type for n = 4. Indeed, the subset E defined in the example has two
disjoint components which are the Hubbard trees of the small Julia sets for ffl. This
map restricted to the right most component of E (which contains the critical point) is
conjugate to 22 —1.543689.... On the other hand, éll restricted to w4, ws] is conjugate
to 22 — 2.

(ii) The polynomial in Example 2 (see Figure 2) is renormalizable of disjoint type for n = 3.
Indeed, the subset E defined in the example has three disjoint components which are
the Hubbard trees of the small Julia sets. The third iterate of f., restricted to the
middle component (which contains the critical point) is conjugate to 22 — 2.

(iii) The polynomial in Example 3 (see Figure 3) is renormalizable of 5-type for n = 2. The
second iterate of f.,, restricted to the small Julia set, is conjugate to the polynomial in
Example 5. The tree T defined in the example is, under f023, the Hubbard tree of the
renormalized map. Note that the small Julia set K5(0) and its image, meet at their
corresponding S—fixed points (52(0) = B2(1)), which is the a—fixed point of f,.

(iv) The polynomial in Example 4 (see Figure 4) is renormalizable of crossed type for n = 2.
The arc [wg,wy] is the small Julia set J5(0), homeomorphic to the Julia set of 2% — 2.
The two sets J2(0) and Jo(1) = f(J2) “cross” at their « fixed points, which is also the
a-fixed point of f,.

(v) The polynomial in Example 5 (see Figure 5) is not renormalizable for any n > 1. As
it was shown in [19], a small Julia set K, (i), cannot contain the S—fixed point of the
original polynomial, since that would make K, (i) for ¢ > 0 intersect K,(0) in more
than one point. In particular, when some iterate of the critical point hits the S—fixed
point (as in this example), the polynomial is not renormalizable.

In what follows we define the Yoccoz puzzle construction and summarize its basic prop-
erties and applications, mainly following [21]. As always, let wp,w1,... be the critical orbit,
where w; = f%(0). Let G(z) be the potential function and set D = {z € C | G(z) < 1}. This
is a compact set isomorphic to a disk that contains the filled Julia set. The Yoccoz puzzle of
depth zero consists of the pieces Py(wp), Po(w1), ..., Po(wg—1) obtained by cutting the region

11



D along the ¢ rays landing at « and labeling them so that the piece Py(w;) contains the point
w;. Each piece is a compact set whose boundary contains the « fixed point, two segments of
external rays and a piece of 0D (see Figure 8).

217

a7

Figure 8: Some pieces of the Yoccoz puzzle of f., of Example 5.

The puzzle pieces of depth d > 0 are defined by induction as the connected components
of f~1(P) where P ranges over all puzzle pieces of depth d — 1. The puzzle pieces of depth
d have disjoint interiors and each of them is contained in a unique piece of depth d — 1. Any
point z € K(f) which is not a preimage of « is contained in a unique puzzle piece at each
depth, which we denote by Py(z).

In the next section we will use the following three lemmas to deduce renormalization of
disjoint type, —type and crossed type respectively. We always assume that f is a quadratic
polynomial with a connected Julia set, with both fixed points repelling and g external rays
landing at a.

Lemma 2.2 (Lemma 2 of [21]). Suppose the orbit of the critical point avoids the o fized
point. If P4(0) = Py(wp) for all depths d and some p > 1 then fP is renormalizable.

Lemma 2.3 (Lemma 3 of [21]). If the critical orbit is entirely contained in the closure of
Pi(wo) UP (w1) U+ U Pi(wg—1) (that is, of the union of the puzzle pieces of depth one that
touch the fixed point ), then f? is renormalizable of disjoint type or B—type.

Lemma 2.4. If there exists n € N such that n divides q, 2n < q and {wpk }ren lies entirely
in the closure of

Pl(O) U P1 (wn) J---u P1 (wq,n) U P1(—wn) U Pl(—wgn) u---u P1(—wq,n),

12



then f™ is renormalizable.

The proofs of the lemmas above make use of the so called thickened puzzle pieces. Intu-
itively, a thickened puzzle piece Py(w;) (for 0 < i < q) is a slight enlargement of the puzzle
piece Py(w;) (see Figure 9! and [21] for details). By the usual inductive procedure, the thick-
ened puzzle pieces of depth d > 0 are the connected components of f !(P), where P ranges
over all the thickened puzzle pieces of depth d — 1. The main virtue of these thickened pieces
is the following: If a puzze piece Py(z) contains Pyi1(z) then the corresponding thickened
puzzle piece Py(z) contains Pyyi1(z) in its interior. Indeed, in all the the three lemmas above
one can find puzzle pieces (pg(0) for d large enough in the case of Lemma 2.2 and P;(0) in
the case of Lemma 2.3) that satisfy all the requirements in the definition of a renormalizable
map, except for the fact that these pieces are contained, but not compactly contained, in
their images under the appropriate iterate of f. The use of thickened pieces takes care of this
problem.

Figure 9: Sketch of a puzzle piece Py(w;) and its corresponding thickened puzzle piece Py (wi)-

Remark 2.5. Lemma 3 of [21] (Lemma 2.3 here) is included in a chapter where it is generally
assumed that the critical orbit does not hit the fixed point . To prove it though, one only
needs to work with thickened pieces up to level one and hence this assumption is not necessary.

Proof of Lemma 2.4. Set

U' = Pn(0) U Py(wn) U Po(wan) U+ U Py(wg—n) U Po(—wn) U Po(—wan) U -+ - U Pu(—wg—n)
and

V' = Py(wn) U Py(wan) U Py(wsn) U+ U Py(0).
Notice that the pieces Py(wp), Po(w2n),---, Po(wg—n) do not contain any n'® (or smaller)

preimage of «, so the rays bounding P,(w;) are the same as the ones bounding Py(w;), for
i=mn,2n,...,q—n (see Figure 10).

! Although this figure has been made by the authors, the design is obtained from [21].

13



Figure 10: Sketch of the construction in the proof of Lemma 2.4 for n = 3 and ¢ = 6.

It is easy to check that U’ C V' and that f™ maps U’ in V' with degree two. Moreover, the
orbit of the critical point (under f™) is contained in U’. To conclude that f™ is renormalizable
we would need to see that U’ is contained in the interior of V' and that the critical orbit
(under f™) is entirely contained in the interior of U’ (which is not the case if the orbit hits
the fixed point «). This is obviously not true but if we replace all puzzle pieces by thickened
puzzle pieces then all requirements are satisfied. U

2.2 Hubbard Trees

Let f be a Misiurewicz polynomial of degree d > 2 and let H(f) be its Hubbard tree. To ease
notation, in the rest of this subsection, we set H = H(f). The following proposition states
some properties of Hubbard trees that we will need in the proofs of the main theorems. For
a complete description we refer to [24]. In what follows, when speaking about the interior of
[z,y] we will rather mean the set [z,y] \ {z,y} instead of the usual topological interior.

Proposition 2.6. Let f be a Misiurewicz polynomial of degree d > 2 and let H be its Hubbard
tree.

(a) If the interior of [z,y] does not contain a critical point then f is one to one on [z,y].
(b) Preperiodic points are dense in H.

(c) Let x,y € H be two preperiodic points. Then, there exists n > 0 such that the interior
of [f™(x), f*(y)] contains a critical point.

(d) Given z,y € H there ezists n > 0 such that [f"(x), f"(y)] contains a whole edge of H.
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Moreover, when d = 2,

(e) H has no invariant subtree.
(f) The fized point « of f is a point of H of valence greater than one.

Proof. Statement (a) is trivial. To show (b), let z,y € H and assume that [z,y] contains
no preperiodic point in its interior. Choose ¢ in the interior of [z,y] and choose ¢ € J(f),
periodic and sufficiently close to ¢ so that g can be joined with H by an arc in J(f) through a
point in the interior of [z, y| (this is possible because J(f) is connected and locally connected,
H C J(f) and periodic points are dense in J(f)). Let p be the joining point in the interior
of [z,y]. It follows that J(f)\ {p} has more than two connected components. For a PCF
polynomial, every such point is preperiodic (see Prop. 3.2 in [24]). Hence p is preperiodic
contradicting the assumption that [z,y] contained no preperiodic point in its interior.

Statement (c) is Proposition 1.18 in [24] but we include its proof for completeness. Assume
the conclusion is false. Then, the interior of [z, y] contains no preimage of a critical point and
hence f™ is injective on [z,y] for all m > 0. By taking high enough iterates we may assume
that = and y are periodic. Let m be the least common multiple of the periods of z and y. Since
there are a finite number of fixed points of ™, we may assume that [f™(x), f™(y)] = [z, y]
does not contain any other one. But both endpoints are repelling (since f is Misiurewicz)
and f™ is a homeomorphism of [z, y] onto itself. It follows that there must be another fixed
point of f™ in its interior in contradiction with what was assumed.

To show (d), take two different preperiodic points in the interior of [z, y]. This is possible
by part (b). By Statement (c), there exists k& > 0 such that [f*(z), f*(y)] contains a vertex in
its interior (recall that each critical point is a vertex by definition). If it contains two vertices
we are done. Otherwise, let v be the unique vertex in the interior of [f*(x), f¥(y)] and apply
the above procedure again to [v, f¥(y)], to obtain n > 0 such that [f™(v), f"T*(y)] contains
a vertex v’ in its interior. Then, since the set of vertices is forward invariant, we have that
[f™(v),v'] contains the desired edge.

To see (e) let T'C H be an invariant subtree of H (i.e. a nonempty, compact, connected,
forward invariant subset of H). Applying part (c) we obtain that 7" must contain the critical
point and hence the critical orbit. Thus, since T is connected, the convex Hull of the critical
orbit, i.e. the Hubbard tree H must be contained in 7" and we are done.

As we saw in the preceding section (see Remark 2.1), wyp and w; belong to different
components of J(f) \ {a}. Hence, by definition, @ € [wy,w1] C H. This proves (f). O

2.3 Transitive maps on trees

This subsection is summarizes some results and techniques about continuous maps on trees.
The first proposition shows that a transitive non-totally transitive map gives a useful de-
composition of the space. Its proof follows from a more general theorem of Blokh (for non-
connected graphs) stated in [11] and proved in [10] (see also [6] for a version of this result for
locally connected compact metric spaces).

Proposition 2.7. Let T be a tree and let f : T — T be transitive. Then, either f is
totally transitive or there exist X, X1, ..., Xg_1 closed, connected subsets of T' with nonempty
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interior and o fized point y of f of valence larger than or equal to k such that
(a) T = U’c L x;,
(b) XiNX; = {y} for all i # j,
(c) f(Xi) = Xit1 (moak) fori=1,....,k—1.

In particular, f* ‘X, is transitive for all i € {0,1,...,k —1}.

The next result is proved by Blokh in [11] when the space is a graph, by using a spectral
decomposition (and in [5] for other types of metric spaces).

Proposition 2.8. Let T be a tree and let f : T — T be transitive. Then the set of periodic
points of f is dense.

The rest of this subsection outlines a common technique to compute the topological
entropy of tree maps which are “monotone” restricted to each of its edges.

Let f: T — T be a tree map and let P C T be a finite forward invariant set of f which
contains all endpoints and branching points of f. The closure of a connected component of
T\ P will be called a P-basic interval. Notice that each P-basic interval is homeomorphic to
a closed interval of the real line. The f—graph of P is the oriented generalized graph having
the P-basic intervals as vertices and arrows working as follows. If K and L are P-basic
intervals and K has m subintervals with pairwise disjoint interiors such that the f-image
of each of these intervals contains L, then there are m arrows from K to L. The transition
matriz of the f—graph of P is the matrix of size equal to the number of P-basic intervals
such the the 7, j—entry is the number of arrows from the vertex ¢ to the vertex j. If M is
such a matrix, let its largest eigenvalue be denoted by p(M). We note that, since M is a
non-negative integral matrix, in view of the Perron—Frobenius Theorem (see [17]), p(M) is in
fact the spectral radius of M. The map f is called P—monotone if the image of each P-basic
interval is homeomorphic to a closed interval of the real line and is monotone considered as
an interval map.

The next result gives the desired formula for the topological entropy of a P—monotone
map. It can be proved in a similar way to [2, Theorems 4.4.3 and 4.4.5].

Theorem 2.9. Let f : T — T be a tree map and let P C T be a finite forward invariant
set of f which contains all endpoints and branching points of f. Let M denote the transition
matriz of the f—graph of P. Then h(f) > log(p(M)). Moreover, if f is P-monotone then

h(f) = max{0,log p(M)}.

3 Proofs of the Main Results

Let f be a quadratic Misiurewicz polynomial and set H = H(f). For the proof of Theorem A
we need the following three lemmas.

A closed subset I G H is called proper if Int(I) # 0. Note that the interior of the
complement of any proper set is also non-empty.

Lemma 3.1. Let I be a proper, forward invariant subset of H. Then, there exists a forward
invariant set E C I which is a finite union of edges of H (in particular E is also proper).
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Proof. Since the interior of I is nonempty, we can choose z,y € I such that [z,y] C I. By
part (d) of Proposition 2.6, there exists n > 0 such that [f™(z), f"(y)] C f™([z,y]) contains a
whole edge of H. Since I is invariant it follows that I contains an edge, which we denote by
[. Then, since the set of vertices is invariant, the set E = J,,~, f"(l) is obviously the union
of a finite number of edges and is a proper, forward invariant subset of I. O

Lemma 3.2. Any proper, forward invariant set E C H must contain the critical point of f.
Moreover, E is not connected.

Proof. The first statement follows from parts (b) and (c) of Proposition 2.6. Moreover, if
E were connected, it would be an invariant subtree of H (since it is proper and closed); in
contradiction with part (e) of Proposition 2.6. O

Lemma 3.3. Suppose f™" is renormalizable for some n > 1 and let J,(i) for 0 <i<n—1
be the small Julia sets. Then, the set J,(i) N H has non-empty interior for all0 <i<n—1.

Proof. 1t suffices to show that J,,(0) N H contains at least two points. Indeed, since J, (i) N H
is connected and simply connected it follows that if z,y € J,,(0) N H with z # y, then [z,y] C
J.(0) N H. Moreover, f*([z,y]) C J,(k) N H has non-empty interior for all 0 < k < n — 1
because f is non constant.

So, let us assume that J,(0) N H contains only one point. Since 0 € J,(0) N H it follows
that this point must be w = 0. But J,(0) is invariant by f™ and so is H. Hence, f™(0) =0
which contradicts the fact that f is Misiurewicz. O

Now we are ready to prove Theorem A.

Proof of Theorem A. We denote by (a’), (b’), (¢’) and (d’) the opposite statements to (a),
(b), (c) and (d) respectively. We will prove Theorem A by showing

(a7) = (b") = (¢/) = (') = (a).

To show (a’) = (b’), assume that f™ is renormalizable of disjoint type for some n > 1.
For i = 0,1...,n —1 let J,(i) be the small Julia sets and set E; = J,(i) N H which have
non-empty interior because of Lemma 3.3. Set £ = (Jy<;<,,_1 Ei- Then, E is a closed,
forward invariant subset of H. Moreover, E # H because the E;’s are disjoint (since the
renormalization is of disjoint type) and H is connected.

Since f(E;) = Ei}1 (mod n) and the E;’s are disjoint it follows that o ¢ E. Let C be the
connected component of H \ E that contains the fixed point «. Since E # H and E is closed
it follows that C' is open (in H). If C is invariant then the closure of C is a proper invariant
subtree, in contradiction with Proposition 2.6(e). Hence, f(C) # C. Note that f(C) is open,
connected and intersects C. Therefore C' contains open sets whose image is contained in E.
These sets cannot contain any periodic point of f, so periodic points are not dense in H.

The fact that (b’) implies (¢’) follows from Proposition 2.8.

To show (c¢’) = (d’), assume f is not transitive on H. Then, there exist two open sets U
and V in H such that f¥(U) NV =0 for all kK € N. Then, the set I = Uken f¥(U) is proper
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(since VNI = () and forward invariant. By Lemma 3.1 we may assume that I contains an
edge [. Then, Ukeka(l) CIGH.

Finally we prove (d’) = (a’). Let | C H be the edge such that E := (J, o f"(I) & H.
Since the set of vertices is forward invariant we have that E is a finite union of edges and
hence closed. Also note that E is proper and forward invariant. Thus, by Lemma 3.2, FE
is disconnected and contains the critical point. Let Ey, E,..., Ep_1 be a cycle of (pairwise
different) connected components of E such that wy € Ey and f(E;) = E;1q fori =0,1...,p—
2. To see that such a cycle exists note that since F has finitely many connected components
there must be a cycle among them. Also, by Proposition 2.6(c) this cycle has to contain
the critical point. Without loss of generality we may assume that p is the smallest possible
number satisfying these properties and that wy € Ey. Moreover, p must be larger than one
for Ey cannot be an invariant subtree by Proposition 2.6(e). Therefore wy and wy, = fP(wo)
lie inside Ej.

Now E, and in particular Ey, cannot contain any preimage of . Indeed, that would
imply that « belongs to all of the Els, contradicting the fact that they are disjoint. Hence
the arc [wp,wp] does not contain any preimage of . This implies that P;(wp,) = Py(0) for
all depths d, where these are the Yoccoz puzzle pieces defined in Section 2. Indeed, pieces
with disjoint interiors only have preimages of a as common boundary on the Julia set. By
Lemma 2.2, fP is renormalizable. It is easy to check that this renormalization is of disjoint
type since the puzzle piece ﬁd(O), for d large enough, does not contain F; for any 1 # 0. [

Proof of Theorem B. Let (a’), (b’), (¢’) denote the opposite statements to (a), (b) and
(c). We will prove Theorem B by showing

(@) = (¢)) = (b)) = (a),

and (b) implies that the set of periods of f ‘ g 18 cofinite in N.

To see that (a’) = (c’), suppose that f” is renormalizable for some n > 1 and let J,(3),
0 < i < n be the small Julia sets. Define E; = J,(i) N H and let E = |J; E;. Recall that
the sets E; have non-empty interior by Lemma, 3.3. Since the union of the small Julia sets is
invariant and so is H, it follows that E is invariant. Moreover, E; N E; consists of at most
one point, for all 1 # j (see Subsection 2.1) and hence, E; # H for all i. By part (d) of
Proposition 2.6, £ must contain an edge which we denote by [. If, say, [ € Fy, it follows that
() € B, (mod n) for all k > 0. Hence we have fE(1) # H for all k € N.

To show (c¢’) = (b’), suppose that there exists [ an edge of H such that f™(l) # H for
all n € N. If [ is not contained in |J, ¢ f™(f({)) (which is a union of edges because the set
of vertices is invariant), then f is not transitive (by definition) and we are done. So, there
exists ¢ > 1 such that | C f!(I). We will show that f’ is not transitive. Clearly we have
an increasing sequence of sets [ C f*(I) c f?(1) c f3(l) C ---, such that, by hypothesis,
f¥(l) # H for all k € N. Therefore, we have

k

Uuro = o #H

1=0

for each k € N and each of the sets [ J}_,(f*)(1) is a union of edges. Therefore, [ J;y(f!) (1) #
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H because H has a finite number of edges. Consequently, f! is not transitive by definition
and so f is not totally transitive.

Finally we show (b’) = (a’). We note that if f is not transitive then it is renormalizable
of disjoint type by Theorem A. So, we may assume that f is transitive. We divide the proof
in two cases: the case where —a is not in the interior of H and the case where it is.

Case 1. If —a ¢ Int(H) it follows that the orbit of the critical point is entirely contained
in the closure of the puzzle pieces of depth one that touch the fixed point « (see Section 2).
Indeed, if w, € Ug:_ll Py (—w;) for some n, then [wp,wy] must contain —« in its interior.
Hence we may apply Lemma 2.3 to conclude that f? is renormalizable. We remark that
this renormalization is of S-type for it cannot be of disjoint type since f is transitive (see
Theorem A).

Case 2. To deal with this case we need to introduce some notation. Let Ly be the closure of
the connected component of J(f)\{a, —a} that contains the critical point, let L1, Lo, ..., L1
be the closures of the connected components of J(f) \ {a} that do not contain Ly labeled
in such a way that f(L;) = Liy1 for 0 < i < ¢ — 1. Let also L; = —L;. Then, f(Ls—1) =
LyU ([_Jf:_l1 L;) Clearly, H N L; is nonempty for all 0 < i < ¢ — 1 and since we are assuming
that —a belongs to the interior of H, we have that H N L} is nonempty for some 0 <7 < g—1.
For 7 in this range, let H; = H N L; and H; = H N L, (which might be empty).

Since f ‘ 7 18 transitive but not totally transitive, in view of Proposition 2.7 there exist
Xo,X1,...,Xp—1 closed, connected subsets of H with nonempty interior such that H =
UM o X, XiNX; = {a} for all i # j and f(X;) = Xip (mod n) for i =1,...,n —1. We
also may assume that Xj is such that 0 = wg € Xj. Clearly, each connected component of
H \ {a} is contained in some X;. Since w; = f*(0) € H; for all 0 <i < ¢ — 1, it follows by a
simple combinatorial argument that the partition must be as follows.

Xo=Hy UH, UHy U---UH;,UH,UHy U---UH, ,
X1=Hy UHpy1 UHoyppU---UHy py

Xpn1=H, 1UH2, 1UH3, 1U---UHg 1,

where all the H] except one could be empty. It is clear that for the partition to exist we
need that n divides g. If ¢ = n then any H; contained in X, must be mapped to X; = H;.
Since there does not exist such H] it follows that ¢ > 2n. It follows easily that we are
under the hypothesis of Lemma 2.4, and hence f™ is renormalizable. We remark that this
renormalization is of a-type. Indeed, w, = f™(0) belongs to H, and hence [0,w,] C J,(0).
Since H; N H; = {a} for all i # j, we have that « belongs to the interior of this arc. Hence, it
follows that o must be the a—fixed point of J,,(0). On the other hand a belongs to f([0,wy])
which is included in J,(1), so J,(0) N Jp(1) = {a}.

The last step of the proof of Theorem B is to show that (b) implies that the set of periods
of f ‘ 5 is cofinite in N. In order to show this we need some preliminary definitions. Given
a periodic orbit P of f|H we define the map f,, : [P] — [P] as f, =ro f‘H where
r: H — [P] is the natural retraction from H onto [P]. Choose a fixed point y of f,, where
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we let P be a periodic orbit of f | y With period larger than one. We say that P has a division
with respect to y if there exist My, My, ..., M;_1 such that

(i) 1>2,

(ii) each M; is a union of connected components of [P] \ Hp,, where Hp, denotes the
connected component of [P]\ P which contains y,

(iii) f(M; N P) C M1y (mod 1)-

From [3, Theorem A], if a continuous map from a tree to itself has a periodic orbit P having
no division with respect to any fixed point of f[P], then the set of periods of such a map is
cofinite in N. So, in view of [3] we only have to show that such a periodic orbit exists for f ‘ 0
The strategy will be to construct a periodic orbit P that shadows the orbits of all vertices of
H. For such an orbit, a will be the only fixed point of f,,. If P had division with respect
to « it would imply that a partition as in Proposition 2.7 can be obtained, contradicting the
assumption of total transitivity. To construct this orbit we proceed as follows.

Set V =V (f)U {a}, where a denotes the a—fixed point of J(f) and V(f) is the set of
vertices of H. In view of the fact that V' (f) is invariant and finite there exist z1,z9,...,zk+ €
V such that z; ¢ OF(x;) for i # j and V = U5, O (x;). Moreover, for each i = 1,2,...,k*
denote by n; the cardinal of O (z;). Now let us choose a neighborhood U of a in H such
that U NV = {a}. If v denotes the valence of o, then U is homeomorphic to a star of
v branches having « as a branching point. Let us choose v points, one in each connected
component of U \ {a}, and denote them by Ty« 11, Zp 19, .., Tpryy- We also set k = k* + v,
Npry1 = Mg = - = Ngrgy =0 and VT =V U {Tg+11, Tk 42, - ., Tr}. Note that, for each
i€ {1,2,...,k} and j € {0,1,...,n;} we have f/(z;) € V. Moreover, f/(z;) = fm(z;) for
some m < j if and only if j = n; and 7 € {1,2,...,k*}.

By continuity of f and the fact that f is holomorphic it follows that for each ¢ €
{1,2,...,k} we can chose an open neighborhood U; of z; (in H) such that f7(U;) is open
and f1(U;) NVt = {f(x;)} for each j € {0,1,...,n;}. Moreover we also require f!(U;) N
f™(U;) = 0 for all 4,5 € {1,2,...,k}, 1 € {0,1,...,n;} and m € {0,1,...,n;} such that
FUYNVH £ Uy n VT

Now set Wy = Uy. Then, since f|,, is transitive, there exists I, > 1 such that f~% (W) N
f=1(Up_1) # 0. So, the set Wj_; = f~%"™-1(W}) N Uy, (when chosen the appropriate
branches of the inverse) is open and non-empty. We iterate this procedure until we get an open
set W1 C Uy. By Proposition 2.8 there exists a periodic point z € W1 of f ‘ g With period larger
than 1. Set P = O*(z). By construction of the sets W; we see that for each i € {1,2,...,k}
and j € {0,1,...,n;} there exists a point ¢; ; € P such that ¢;; € f/(U;) and t; ; = f(t; ;1)
when 5 > 0. Therefore, by the choice of zy+y1,Zgxt9,...,z and Ugsi1,Ugryo,...,Ug it
follows that & € [tg*41,0, tk*+2,05- - -+ tk0] C [P]. Moreover, it is not difficult to see that « is
the only fixed point of f[P].

To end the proof of the theorem we only have to show that P has no division with
respect to a. Otherwise, there exist My, M, ..., M| , verifying (i-iii) above. Note that, by
construction, Hp o C [tg+41,0,tk*+2,05- - - » tk,0] and it is homeomorphic to a star of v branches
having « as the branching point. For each i € {0,1,...,1 — 1} let M; be the unique union of
connected components of H \ Hp, such that M; N [P] = M'i.
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We claim that f(M; NV (f)) C Mit1 (moa sy U {a} for i =0,1,...,1 — 1. To prove this
fact note that, by choice of the sets U;, Hpqo N f7(U;) = 0 for each i € {1,2,...,k*} and
j € {0,1,...,n;} such that o ¢ f/(U;). Consequently, since each of the sets M, is in the
complement of Hp,, it follows that

()ifforsomere{O,l, JA—1},i€{1,2,...,k*} and j € {0,1,...,n;} we have a ¢ fI(U;)
and M, N (U, );é@thenfj( ;) C M,.

Now fix r € {0,1,...,] — 1} and a point in M, N V(f). Since @ € Hp, and M, is
contained in the complement of Hpa, this point is of the form z;; = f/(z;) € f/(U;) with
i€{1,2,...,k*}, j € {0,1,...,n; — 1} and « # z; ;. In particular we have o ¢ f7(U;). We
have to show that f(z; ;) € Mr—|—1 (mod n)U{a}. If f(zi;) = a we are done. So, we assume that
f(zij) # . By (*), f1(Us) C M,. Hence, t;; € M, and, thus, f(ti;) € Myi1 (moa nNS? T (Us)
by (iii). Also, since f/T1(U;) N VT = {f(zi;)} and f(z;;) # o we get a ¢ fIT1(U;). Hence,
again by (*), f(z;;) € f7TY(U;) C M,y (mod 1)- This ends the proof of the claim.

Now set M; = [M; U {a}]. From the claim above, the fact that V'(f) contains the critical
point of f and Proposition 2.6(a) it follows that if L is the closure of a connected component
of H\'V then L C M, for some s € {O, 1,...,0—1} and f(L) C M,41 (mod 1)- In other words,

f(M ) C Ms+1 (mod 1)- Consequently, MO, Ml, Ml 1 give a partition as in Proposition 2.7
and hence f | y cannot be totally transitive. U

Proof of Theorem C. By Proposition 1.1(c) and [2, Lemma 4.1.3] we get
h’(f|H) < h(f|](f)) = log d,

because H C J(f) and H is forward invariant. So, we only have to show that h(f ‘ g) <logd
whenever H # J(f). To this end we will use the techniques from Section 2.3 (see also [9], [2,
Section 4.4]). Let M be the matrix of the f—graph of V(f). From the fact that V' (f) contains
the critical point of f and Proposition 2.6(a), it follows that f is V(f)-monotone. Hence,
by Theorem 2.9, h(f‘H) = max{0,log(p(M))}. Thus, it is enough to prove that if H # J(f)
then p(M) < d. So, in what follows we assume that H ¢ J(f) and, to simplify notation, we
will denote f ‘ 1 by ».

We claim that for each z € H there exists n(z) € N such that Card(¢ "®)(z)) <
d"®@) where Card(-) denotes the cardinality of a set. To prove the claim we assume the
contrary. Then, there exists z € H such that Card(¢™™(z)) > d™ for each m € N. Note
that Card(f~"™(z)) = d™ for each m € N. Hence, =™ (z) = f~™(z) for each m € N. On the
other hand, since H C J(f), it is closed, and the preimages of any point are dense in J(f)
(see for example [7]), then

J(f) =Un1f~™(2) = Un_i9™(2) C H;

a contradiction. This ends the proof of the claim.

From Proposition 2.6(a) and the fact that V(f) is invariant it follows that if L is an edge
of H and U is an open set (in H) contained in the interior of an edge then either f(L)NU = ()
or f(L) D U. The inductive use of this fact shows that each point in the interior of an edge
has the same number of preimages by ¢™ for each m € N. So, by the above claim, for each
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edge L there exists a positive integer n(L) such that for each z in the interior of L we have
that Card(o ") (z)) < d™"). Note that, for each m > n(L) we have

Card(p™"(2)) = Card(y~ ™" D (e (@)) = Card | |J ™™ (y)
yep~H)(z)
< dm_n(L)CaI‘d((p_n(L) (.’L‘)) < dm—n(L)dn(L) = dm.

Therefore, for all v > maxn(L) where L ranges over all edges of H, we have Card(p ¥ (z)) <
d” for each z € H\ V(f). Consequently, by [2, Lemma 4.4.1], the sum of each column of M”
is smaller than d”. So, there exists v < d such that the sum of each column of M" is smaller
than ”. Let v denote the vector of size r (where r denotes the order of the matrix M) which
has all entries equal to 1. Clearly, vM” < 4v. By induction we have vM% < 4"y for each
l € N. Hence, the sum of all entries of M¥ is vMWv' < 4" v’ = ry", where v denotes the
transpose of v. Thus, (see [25]),

M) = lim VoM’ = lim VoMW < lim Yryw = (lim ¥r)y=v<d.
p Y
l—o00 l—00 l—o00

=00

This ends the proof of the theorem. O

Before proving Proposition D we recall the notion of an n—star. An n—star X, is a tree
which has a unique branching point denoted by b which has valence n. The closure of a
connected component of X, \ {b} will be called a branch of X,.

We endow each branch of X, with a linear ordering such that b is the smallest point on
the branch while the endpoint is the largest one.

Proof of Proposition D. For n € N consider an (n + 1)-star X,,; and a set W C X1
such that (see Figure 11):

(i) W= {wOa Wiy .- awn-f—l}'
(ii) The points wi,ws,...,wy+1 are the endpoints of X, 1.
(iii) b < wo < Wp1-

Now consider a continuous map ¢, : X,+1 — X1 such that ¢, (b) = b, v, (w;) = wit1
for i = 0,1,...,n, op(wnt1) = wpy1 and @, is injective on the closure of each connected
component of X, 1\ (W U {b}). Note that then ¢, is (W U {b})-monotone.

It can be seen that X, is homeomorphic to the Hubbard tree of a non renormalizable
quadratic complex polynomial g, and that ¢, is conjugate to gn| Hgn)" Moreover, wy is the
critical point of g, and, consequently, g, is Misiurewicz. In fact, Example 5 shows the Julia

set of gs.

To end the proof of the proposition we only have to show that lim, o h(p,) = 0. To
prove this we use Theorem 2.9. We start by computing the ¢,—graph of W U{b}. To this end
we label the closures of the connected components of X, 1\ (W U{b}) according to the largest
endpoint. That is, let [z,y] be the closure of a connected component of X1 \ (W U {b}).
Clearly, [z,y] is contained in a branch of X,;1. So we may suppose that z < y. Hence,
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Figure 11: The (n + 1)-star and the points wg, w1, ..., wWn41.

y = w; for some ¢ € {0,1,...,n+ 1}. Then, [z,y] will be denoted by I;. With this notation,
the ¢, —graph of W U {b} is:

In—|—1 — In+1
/" he

L —»> L - ... — In wL I

hV a
Iy

Let M,, denote the transition matrix of the @, —graph of WU{b}. To compute its characteristic
polynomial we use the “rome” method from [9] (see also [2, Section 4.4]). Indeed, we take Iy
and I, as a “rome” and we get that the characteristic polynomial of M, is (—1)"z(z"*! —
z™ — 2). Note that p(M,) is the unique point larger than 1 where z" intersects the curve
%. Since z™ < z™ for all m > n, we see that p(M,,) < p(M,) and lim, . p(M,) = 1.

Therefore, by Theorem 2.9 it follows that
lim h(pg) = lim max{0,log(p(Mn))} = lim logp(My) = 0.

This ends the proof of the proposition. O
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