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Abstract

The complexification of the standard family of circle maps § — 6+ a+ Fsin(6) mod (2),
whose parameter space contains the well-known Arnold tongues, is given by Fog(w) =
wel@el#/2)(@=1/w) "3 holomorphic map of C* with essential singularities at 0 and co. For
real values of the parameters, we study the dynamical plane of the family F,5. Near
the essential singularities we prove the existence of hairs in the Julia set, an invariant
set of curves organized by some symbolic dynamics, and whose points (that are not
endpoints) tend exponentially fast to 0 or co under iteration. For g < 1, we give a
complex interpretation of the bifurcations of the family of circle maps. More precisely,
we give a new characterization of the rational Arnold tongues in terms of some of the
hairs attaching to the unit circle. For certain irrational rotation numbers, we show that
the Fatou set consists exclusively of a Herman ring and its preimages. For § > 1 we prove
that, under certain conditions, all hairs end up attached to the unit circle as we increase

the parameter.

1 Introduction

The standard family of maps of the circle is the two parameter family given by
Fop(0) = 0 + a+ fsin(f) mod (27), 6 € R, (1)

where a and (8 are real parameters. We restrict to the case 0 < a < 27 to obtain a degree one
map and to 3 > 0 because other real values of § give rise to dynamical systems equivalent to
the ones we consider. These maps are interesting because they are simple perturbations of
rigid rotations and it is possible to study how the dynamical properties such as orbit structure
vary with the parameters. For example, for a given map in the family, it is possible to assign
a rotation number to each point on the circle, which measures the asymptotic rate of rotation.
For a map with 8 <1 this rate is the same for all points on the circle.

Real techniques have been used fairly successfully to describe the decomposition of the
parameter plane into subsets on which the rotation number is constant; these are called
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Arnold Tongues (see Figure 1). They are curves when the rotation number is irrational but
they have interior when the rotation number is rational. When the parameter § reaches
the value 1, the maps are no longer homeomorphisms of the circle and the parameter plane
structure becomes more complicated (see [Bo]).
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Figure 1: Sketch of the Arnold’s Tongues for § < 1.

In this paper, we use complex techniques to find new invariants to characterize the Arnold
Tongues. The family

Fog:C — C  Fap(w) = we™ eg(w_vl?),

defined on the punctured plane C* restricts to the standard family on the unit circle. For
each pair of parameter values the iterates of I}, 3 define a holomorphic dynamical system on
C.

As we will describe in Section 3, the dynamics of F}, 3 near the essential singularities have
a structure similar to that of entire functions of finite type (like the exponential map) as it
was studied in [DT]. Some modifications of their arguments (unfortunately, their theorems
cannot be directly applied to this type of maps) will show that the Julia set (or chaotic set)
contains an invariant set of curves, the tails, with a well defined combinatorial structure. In
fact, this combinatorial structure characterizes the Arnold Tongues. Points on these tails
tend exponentially fast to the essential singularities under iteration (see Theorem 3.3).

These tails often terminate in an endpoint, whose orbit is bounded away from the essential
singularity. This fact was proved in [DT] for entire functions of finite type (satisfying certain
conditions). In Section 3.3 we show that, under some conditions, periodic tails always land at
an endpoint, which of course must be a repelling (or parabolic) periodic point (see Proposition
3.6 and Corollary 3.7). In fact, the combinatorial information is coded by these periodic
points. This proof is general, i.e., it does not depend on the map we consider. It is an open
question if, in general, every repelling periodic point is the landing point of at least one tail.
Each of these tails, together with its endpoint, is called a hair of the Julia set.

The hairs of Fi,3 can intersect the invariant circle only at their endpoints, for all points
of the tail must escape to 0 or oo under iteration. In Section 4 we show that the bifurcations
that occur when we vary the parameters a and 3, can be seen from the point of view of the



complex plane as certain hairs attaching to the unit circle, then pulling away. More precisely
(see Theorem 4.2), we show that for 8 < 1, the parameters (a,3) belong to a p/¢-Arnold
tongue if and only if a periodic cycle of ¢ hairs lands on the circle. In this case the Fatou
set (or stable set) conmsists exclusively of the basin of attraction of the attracting g¢-cycle.
Figure 2 (right) shows a sketch for (a, ) in the 1/2-tongue. Figures 2 (left) and 3 (left) are
numerical observations of the dynamical plane for (a, ) in the 1/2-tongue and in the 3/4-
tongue respectively, where the orbits of points in black have not come close to the essential
singularities after 100 iterates, and hence are assumed to belong to the stable set. Truncated
black regions are a consequence of numerical truncation. Hairs live in the grey areas and the

unit circle has been emphasized by a dashed white curve.
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Figure 2: Left: w-plane for («, ) in the 1/2 tongue. a« = 3.1, = 0.8. Range: [-2,2] x [-2,2].
Right: Sketch of the hairs of J(F,g), for (a, 3) in the 1/2 tongue.

If (@, 8) lie on an irrational curve of rotation number r satisfying some arithmetic con-
ditions, it follows from a theorem of Yoccoz that the Fatou set contains a Herman ring, i.e.,
an annulus where the map is holomorphically conjugate to a rigid rotation. We show that
in fact, the ring and its preimages are the only components of the stable set. For all other
values of @ and 3, we conjecture that the Julia set is the whole plane.

In Section 5 we describe the dynamical plane of F, 5 for values of § larger than one. As
[ increases, numerical experiments indicate that more and more hairs attach to the circle
(see Figure 3 (right)). We give necessary and sufficient conditions for a hair to attach to the
circle and never pull away again (see Theorem 5.1).
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Figure 3: Left: w-plane for (a, #) in the 3/4 tongue. o = 4.57, 3 = 0.8. Range: [—1.7,1.7]x[-1.7, 1.7].
Right: w-plane for @« = 3.1 and 3 = 5. Range: [-2,2] x [-2, 2].

2 Preliminaries

In this section we give some preliminary definitions and results, together with the notation
that will be used throughout the paper.

2.1 Circle maps

We refer to [A, Bo, He| and [Y] for the contents of this section.

For a map Fj,g in the Standard family (1) we denote by p,g(#) the rotation number of a
point # € S'. Given r € R, the r—Arnold Tongue is defined as the subset of parameter space
for which there is a point on the circle with rotation number r. That is,

T, ={(a,)| 3 0€ 8" st pup(0) =27mr}.

If p <1, all points on the circle have the same rotation number. Hence, Arnold Tongues
of different rotation number do not overlap (see Figure 1). For a rational number p/q, the
following are well known facts:

e The p/q-Arnold tongue is a closed region with nonempty interior;
o If (a,f) € 1,/4, the map F,5 has an attracting periodic orbit of period ¢. The converse
is also true.
Let r be an irrational number. Then,
e The r-Arnold tongue is a curve;
o If (o, 3) € T,, the map F,z is topologically conjugate to the rigid rotation R.(8) = 6+ r

mod (27). Depending on the arithmetic properties of r, this conjugacy can be shown to
be analytic.

When 3 > 1, the rotation number is no longer the same for all points of S§'. Several
tongues overlap but they do so in an orderly fashion.



2.2 Holomorphic maps of C or C*
For a holomorphic map g of C or C*, the Fatou set (or stable set) of g is defined as
N(g)={z]{¢"}, 20 is a normal family in some neighborhood U of z}

The complement of the stable set is called the Julia set, J(g). Alternatively, one can define
J(g) as the closure of the repelling periodic points of g.

It is well known that singular values play an essential role in the dynamics of holomorphic

1is not well defined

maps. We recall that » is a singular value for a holomorphic map ¢ if g~
in any neighborhood of v. We say that an entire function, g, of C or C* is of finite type if
g has a finite number of singular values. For entire maps of finite type, a singular value can
be of two kinds: v is a critical value if v = g(c) where ¢'(¢) = 0 (in this case c is called a
critical point); or else v is an asymptotic value if there exists a path y(¢) — oo such that
g(7(t)) — v as t — oo. (For example, » = 0 is an asymptotic value for the exponential map.)
The importance of singular values lies on the fact that each periodic component of the stable

set must have the orbit of a singular value associated to it.

Functions of finite type have been studied extensively in [Ba, Be, DT, EL2, GK, Ke, Kol]
and [Ko2]. In particular, it is known that all connected components of the stable set must
be periodic or preperiodic. Moreover, if U is a periodic component of period p of N(g), then
we have one of the following possibilities:

e U contains an attracting periodic point zg of period p. Then g™ — zy for z € U as
n — oo and U is called the immediate basin of attraction of z;. Some iterate of U must
contain a singular value of g.

e The boundary of U contains a periodic point zg of period p and g™ — zy for z € U as
n — oo. Then, (f?)'(29) = 1 and U is called a parabolic domain. Some iterate of U must
contain a singular value of g.

e The map g? on U is analytically conjugate to an irrational rigid rotation R, on the unit
disc (then U is called a Siegel disc) or on an annulus (then U is called a Herman ring).
The latter can only occur if ¢ is a rational map or a holomorphic map of C*. The orbit
of a singular value of g must accumulate on the boundary of U.

For an entire transcendental map g of C*, we have an alternative definition of the Julia set
as the closure of the set of points that tend to 0 or co under iteration.
2.3 Complexification of the Standard family

To find an expression for the complexification of the standard map we first define its corre-
sponding lift in the covering space by

fap : C—=C;  fap(z) =z + a+ Bsin(z). (2)

Note that f,g(z+ 27) = fap(z) + 27, for all z € C. Semiconjugating these functions by the
projection e**, we send the invariant real line to the unit circle and obtain

[N

(w=2).

Fop:C = C;  Fop(w)=we®e



These functions, when restricted to the unit circle, are exactly those described in equation
(1). Note that this is a family of entire functions of C*, with essential singularities at 0 and
00.

Clearly, the stable set of F, 3 lifts to the stable set of f,3 and the same holds for the Julia
set. Hence it is equivalent to work with either family of maps. Throughout the paper, we
will usually state results for /7,5 but prove them on the covering space.

The maps f,p are entire functions of C although not of finite type. Indeed, f,3 has an
infinite number of critical values at

Jap(E arccos(%) + 2kr), ke€Z.

However, since f,g is the lift of /{3 which only has two critical values, this infinite number
is only due to the branches of the logarithm. Thus, we essentially have two critical values
and their translations by 2k7, where k € Z.

Functions of the family f,s may have wandering domains. These are components of
the stable set which are neither periodic nor eventually periodic. However, these wandering
domains for f,s exist because of the branches of the logarithm, and project to basins of at-
traction of attracting (or parabolic) cycles for the functions /5 under €. As a consequence,
the Julia set of f,p is the closure of the points whose orbits have imaginary part tending to
oo or —oo (the two asymptotic directions).

3 Dynamics near the essential singularities

Our goal in this section is to show that, near the essential singularities, the Julia sets of the
maps of the standard family contain a collection of curves, the tails, where the function acts
essentially as the well-understood shift automorphism. That is, f,3 simply permutes these
tails according to some symbolic dynamics. At the same time, points on the tails always have
orbits tending to the essential singularities.

This structure of the Julia set is usual for entire transcendental maps. For periodic
functions like exp(z), sin(z) or cos(z) this phenomenon was described mainly in [DK]. The
existence of these Cantor sets of curves together with their endpoints was then proved in
[DT] for a geometrically defined class of entire functions of finite type. Following that paper,
we call the curves with their endpoints Cantor bouquets.

The maps of the standard family do not fall into this class. We believe that no modification
of the arguments in [DT] can be made in order to make their theorems hold for entire maps
of C* or entire maps of C with an unbounded set of singular values. However, the existence
of the tails needs to be established since they play an essential role in the bifurcations of the
standard family.

The main theorem in this section is Theorem 3.3. First we must set up the symbolic
dynamics (Subsection 3.1), after which we can give a precise statement and its proof (Sub-
section 3.2). Finally, in Subsection 3.3 we study some cases for which these tails (for a general
map) have a well defined endpoint.



3.1 Fundamental domains

In what follows we construct some fundamental domains in the complex plane, that is, regions
of C which map under f,3 to the whole plane in a one to one fashion. Thus on these domains,
a branch of fa_ﬁ1 is well defined.

Consider the curves on the plane defined by the equation

y + [ cos(z)sinh(y) = 0 (3)

Note that these curves map to the real line under one iteration of f,3. The strip {—7 <
Re(z) < 7} contains two of them which we denote by 7y and pg respectively, as shown in
Figure 4. We denote the remainder of the solution curves by n; and ux where k € Z and

Mg = fg—1 + 27 (4)
Nk = Ng—1 + 27. (5)
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Figure 4: Fundamental domains for f,5 with 3 < 1 (left) and with 8 > 1 (right). Black dots denote
the critical points.

It is easy to check that for all k& € Z, the curve 7 (resp. py) is asymptotic to the vertical
line {Re(z) = 37/2+4 2(k — 1)7} (resp. {Re(z) = 7/2+ 2kn}). Their shape is different for
the cases § > 1 and < 1. In the first case, each curve is continuous and crosses the real
axis at a critical point. In the second case, it has a jump discontinuity from a point of the
form z = (2n 4+ 1)7 + 4y to its conjugate, where y is the positive solution to the equation
y = fsinh(y). When g = 1 the intermediate case occurs; each g meets 7,41 on the real line,
exactly at the critical point.

We denote by Dy the regions bounded by the curves pr—1 and px. Inside these strips, we
label different subregions as follows: let Lj and Ry be the left and right components of Dy,
that is, the regions bounded respectively by pz_1; and n; and by 7 and pg. Let D,j and D



be the components of Dy in the upper and lower half plane respectively. Also, following the
same notation we may talk about the components L]':, Ly, R;: or Ry .

Proposition 3.1 For all k, f,g maps each L;‘ and Ry to the lower half plane in a one to
one fashion, while it maps each L, and RZ’ to the upper half plane. Thus, each region le
forms a fundamental domain for f.5 .

Before we prove Proposition 3.1, we need some intuition (and estimates) on how these
regions are mapped to their images.

Definition For any k£ € Z and yo € R — {0}, a (k, yo)-skewed ellipse is the image by f.3
of the segment of the horizontal line Im(z) = yy whose end points lie on the curves p;_; and
1 respectively.

In order to describe the shape of a (&, yo)-skewed ellipse we first consider the image of the
horizontal segment by the function z — fsin(z). We parametrize the segment by h(t) =
t+ 1y for zp_1 <t < xp_1+ 27 = xp. Then,

Bsin(h(t)) = Bsin(t) cosh(yg) + 7 5 cos(t) sinh(yo)

is an ellipse centered at zero with major and minor axis equal to §cosh(yg) and Ssinh(yp)
respectively. When we now apply f.s to the segment h(t) we are adding the vector h(?) + a
to each point on the ellipse Bsin(h(t)). That is

e(t) := fap(h(t)) =t + o+ Bsin(t) cosh(yo) + ¢ (yo + B cos(t) sinh(yo)). (6)

For yo large enough, the radii of the ellipses are much larger than 27. Therefore, the (k, yo)-
skewed ellipse is a slight perturbation of the translation of the actual ellipse Ssin(h(t)) (see
Figure 5). Note that the three intersections with the real line correspond to the images of
the three points on h(t) that are also on nx, pr—1 and u in this order.

Figure 5: A (k, yo)-skewed ellipse, that is the image of a segment h(t) =t 4 iyo. The same figure
holds for 7 < 1 if A(t) is high enough.

We now give some estimates about the size of a (k, yo)-skewed ellipse.



Proposition 3.2 Let e(t) be a (k,yo)-skewed ellipse. Let M(3) = i Vi il W if B <27
and M(3) =1 if 3 > 2n. Then,

(a) yo — Bsinh(yy) < Im(e(t)) < yo + Bsinh(yy).
(b) If cosh(yg) > maX{]V[(ﬁ),g}, then the circle of radius ﬁsn\l/hi(yo) and center ¢ =
Trp—1 + T+ a+ 1 yo is entirely contained inside the (k,yo)-skewed ellipse.

Proof : Recall the parametrization of the (k,yo)-skewed ellipse, e(t) as shown in equation
(6). Statement (a) is obvious from the fact that —1 < cos(t) < 1. To show statement (b) we
must prove:

2 i 12
le(t) — c|? > ﬂs%h(yo) for all zp_q <t < zp_q1 + 27.

We know

le(t) — ¢|* = (t + Bsin(t) cosh(yo) — zx—1 — m)* + 3% cos*(t) sinh?(yo)
= (t —ap_1 — m)* + 2B5sin(t) cosh(yo)(t — xp_1 — 7) + Bsin?(t) + 5% sinh?(yo).

Since —1 <t — 21 — 7 < T, we get

le(t) — ¢|* > —2m B sin(1)] cosh(yo) 4+ B2 sin?(1) 4+ 3% sinh?(yo)

>
> —2n 3 cosh(yo) + ﬂQ + ﬂQ sinhQ(yO),

where the last inequality is due to the fact that the expression
—27 3| sin(t)| cosh(yo) + 5% sin*(t)
has its minimum when |sin(¢)| = 1 (since by hypothesis we have cosh(yg) > 3/7). Hence,

le(t) = e|” - ms%h%yo) > —9rf cosh(yo) + 4 + WS%V(%)

Finally, it is easy to check that, if § > 2r, the right hand side of this inequality is greater
than zero for all yo. In the case when § < 27, the same holds for all yo such that cosh(yo) >

2m4r/4An2 =32
IR y(g). O

Proof of Proposition 3.1: We prove the proposition for the case of RZ and § > 1 since
all the other cases can be proved using the same arguments. Consider the segment of the
horizontal line Im(z) = yo that is contained in RZ. Note that the end points of this segment
are on the curves 1 and pp and thus they are mapped to points on the real line. As we
described above, the image of the entire segment consists of the top half of a (&, yo)-skewed
ellipse (see figure 6). As yg — oo, the images of these end points grow farther apart, tending
to —oo and 400 respectively. The half (&, yo)-skewed ellipse grows with them, covering the
whole upper half plane as yg — oc0. O



Figure 6: Image of a horizontal segment in R} by fags.

3.2 Existence of the tails

Definition The (plain) itinerary of a point z € C for f,s is the infinite sequence
S(z) = (80,51,82...)

where s5; = k if fiﬁ(z) € Dy. The signed itinerary of a point z € C for f,3 is the infinite
signed sequence

S(z) = (85", 87,852 ...)
where 53 = i+ 1ffj (z) € Dff and 57 = ~if fi4(2) € Dy

Note that every signed itinerary has a corresponding plain itinerary while every plain itinerary
corresponds to infinitely many signed ones.

Definition A sequence s = (sg,$1,...) is an allowable sequence for f,g if there exists a
real number y > 0 such that

o7 |s;| < ¢’(y) forall j €N

where g(y) = y+ fsinh(y) = Im(f.5(iy)). A signed sequence is allowable if its corresponding
plain sequence is allowable.

We will show later on that allowable sequences are those which correspond to actual orbits
of fo. The main theorem below, states that the points that share the same itinerary and
whose orbits tend to the essential singularities under iteration, form a continuous curve called
the tail of the given itinerary, parametrized by the absolute value of its imaginary part.

Theorem 3.3 For each allowable signed sequence s, there exists y, € R and a continuous
one to one curve Z = Zge : [yx, 0| — D 0, such that:
0

(a) Im(Z(y)) = coy, for y > ys.

(b) 5%(Z(y)) = s, for y > yx.

(¢) limp oo [Tm(f55(Z(y)))| = o0, for y > y.

(d) fap(Zse) = Zy(scy where o is the shift automorphism o(so, S1,82,...) = (81, 82,...).
(9) Zse C J(faﬁ)

10



We have divided the proof into three separate parts.

Lemma 3.4 A signed sequence s¢ is the signed itinerary for some point z € C under the
function fug if and only if it is allowable.

Proof : First we prove that all itineraries corresponding to actual orbits of f,z are allowable
sequences. In order to do so pick a point z = 2g + i yo with itinerary S(z) = (s, 81,82...).
We must produce y such that 27 |s;| < ¢g’(y) for all j € N, where g(y) = y + Bsinh(y). By

construction of the strips note that 27|s;| < [Re(f]5(z)| + 27. Therefore, it suffices to find y
such that

g (y) > [Re(f?5(2)| + 2. (7)

We prove this statement by induction. Let ¢ € Rt be the solution to S(sinh(¢) — 1) = @ and
let

y = max{|eo| + 27, |yo| + ¢} = max{|Re(z)| + 27, [Im(z)| + }.

Choosing y this way, inequality (7) is proven for j = 0. Assume it is proven for j and also
that

9(y) 2 Im(fL5(2))] + e
Then,
9" (y) = ¢'(y) + Bsinh(g?(y))
> [Re(f24(2)| + 27 + Bsinh(|Im(£24(2))] + ¢)
e(f14(2)] + 27 + B(cosh |Im( f24(2))| + Smh( )-1)
= |Re(/, (
(
(
(/2

> |Re fapz | + @+ 5] sin(Re( aﬁ( z)))| cosh(Im( f/ ( )+ 27
z)) + o+ Bsin(Re( iﬁ(z))) cosh(Im( f? ( )|+ 27
5 (2))|+2m,

> [Re(f,

(%)
> |Re(f24(2)
2(2)| + B(sinh(c) — 1) + B cosh(Im(f7 (= )+ 2m
15(2)
25(2)
|Re J+1

where we have used that sinh(y 4+ ¢) > cosh(y) + sinh(¢) — 1 for all ¥y > 0 and ¢ > 0. This
proves inequality (7) for j + 1. Also,

g y) =gy )+ Bsinh(g’(y)) |
> [Im(f7 5(2)] + ¢ + Bsinh(|Tm(fL5(2))] + ¢)

> [Lm(f! (M+ﬂmmd@wmmmm¢@wm+c
> [Im(f24(2)) + Beos(Re(f4(2))) sinh(Im( f2 5(2)))| + ¢
= [m(f5 ()| +e.

Therefore inequality (7) is proved for all j.

We proceed now to show that any allowable sequence is the actual itinerary of some point
z on the complex plane. This construction is fundamental for the proof of Theorem 3.3.

11



We start with a signed sequence s® for which there is a positive real number y such that
27 |sj| < ¢(y) for all j € N. We restrict ourselves to the case where 8 > 1 and all the signs
of the sequence are positive. Since we are near the essential singularities, all other cases are
equivalent. Indeed, if 8 were small, one should reproduce the argument below by starting
with ¢g*(y) for some k instead of y. We construct a sequence of “squares” in the following
way: for all j, let B; be the “square” of height 27 inside Dj; with its lateral sides on the

curves pj—1 and y; respectively and its lower side at height ¢7(y) (see Figure 7).

l

Figure 7: Construction of the B;’s and its images.

We claim that, for all j, the image of each B; under f,3 covers completely B;.;. To see
that, recall that the image of horizontal segments like the ones we are considering are skewed
ellipses (see Figure 7). In particular, the upper side of B; maps to a (4, ¢’(y) + 27)-skewed
ellipse, the lower side maps to a (j, ¢’(y))-skewed ellipse and the lateral sides map to the real
line. Therefore the image of the square B; is the region between the two skewed ellipses. By
statement (a) of proposition 3.2, the interior one has a maximum height of y + 3sinh(g’(y)).
Hence Bjy; is entirely outside of it.

It remains to be shown that Bj4 is entirely inside the (j, g’(y) + 27)-skewed ellipse. By
statement (b) of proposition 3.2, it contains the circle with center at the middle point of the
upper side of B;, which we denote by C, and radius Bsinh(g/(y) + 27)/v/2. We will prove
that By, is entirely contained in this circle. Without loss of generality we assume that B;44
is located right of Bj, that is s;41 > s;. It suffices to show that the upper right corner of
Bji1, which we denote by R, is inside the circle. Thus we must show:

BCl < 32 sinh2(92y’(y) + 27r). (8)

12



If we write down the coordinates for ® and C' we obtain:
[R=CP* = (5 +2msj0 = (=5 + 2785 + )’ + (¢ (y) + 27 = (g'(y) + 2m))?

= (7 —a+2n(sjp1 — 5;))° + 2 sinh (g’ (y))
< (m—a+2¢°(y) + Bsinh(g’(y)))* + 5% sinh?(¢(y))
< (108sinh(g’(y)))* + 5% sinh?(¢(y))
= 1014%sinh?(¢’(y))
< €762 sinh(g7 (y)) /2
< B sinh?(g’(y) + 27)/2,

where we have used that

2|1 — 5| < 2¢7(y) + Bsinh(g’(y))

and also that sinh(y + 27) > e?"sinh(y) for all y € R. Hence inequality (8) is proven.

Thus we have shown that for all j, the image of each B; under f,z covers completely B;,,.
Also, since we chose y larger than 27 we have that |f];(2)| > 1 on all the B;’s. Therefore,
the preimage of each Bj;, is a compact connected region inside B;. Hence, the sequence of
preimages of the B;’s, is a nested sequence of compact sets inside D 50 that converges to a
unique point z Wlth itinerary s° O

The argument above, produces a point Z = Z(y) with the prescribed itinerary for each y
bigger than some y.. We now prove that y — Z(y) is a continuous curve:

Lemma 3.5 For each allowable sequence s¢, there exists y, € R such that

Zse [y*,OO) - l)s50

0

1s continuous and one to one.

Proof : Since s° is allowable, there is some gy, for which Z, is defined. Then Z- is defined
for all y > y.. To prove its continuity at any point yg > 7. consider a ball of radius ¢ > 0
around Zg(yo), and denote it by B.(Zs(yo)). We must find § > 0 so that if |yg — y| < é then

Zse(y) € Bg(Zsé(yO))-

In the box construction above there exists n € N such that the preimage by fgﬁ of the
box B, inside D is contained in B./2(Zse(yo)). We also may assume there exists a ¢’ so

that the prelmage by fis of the box By + ¢’ inside D 500 is contained in B.(Zs<(yo)), where
B, + &' is the box B,, elongated by ¢’ both on the top and on the bottom.

By continuity of ¢g(y) = y + #sinh(y), there exists é > 0 so that if [yo — y| < ¢ then
B, (y) C Bn(yo) + 6'. Hence Zs(y) € Be(2s<(yo))-

The fact that Zs is 1-1 follows from the fact that if y1 < y2 then ¢"(y1) < ¢"(y2) for
large n. Hence the boxes containing f75(Zs<(y1)) and f15(Zs<(y2)) are disjoint. O

We now conclude the proof of Theorem 3.3.
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Proof of Theorem 3.3: By construction of these curves, the first three statements are clear.
In order to prove (d), fix § € [y«, o0). Note that the itinerary of fo5(Zs<(9))is (51", 55,...) =
o(s). Also by construction, Zs(7) is the only point in the box By(7) that has itinerary s and
such that f75(Zs<(§)) € Bn(§). Now construct the curve Z, (). Clearly, g(§) makes o(s°)
allowable. Hence Z,(,)(g(§)) is a point on the curve 7,y with itinerary o(s¢). Moreover,
by construction, it is the only point on Z,(sc) such that f75(Z,(s)(9(9))) € Bn(g(§)). But
now note that B, (§) = B,_1(g(§)) for all n and therefore fos(Zs<(§)) = Z,(s)(9(7))-

To show that the curves are contained in the Julia set we observe that these are points
whose imaginary part tends exponentially fast to infinity under iteration, and hence they
cannot belong to any component of the Fatou set. O

3.3 Landing of the tails

Up to this point we have proven that the Julia set contains a special type of curves, the tails,
whose points escape very fast in the imaginary direction under iteration. Note that if we
(semi)conjugate the function by e'* these curves map to the corresponding tails around the
circle that we described in the Introduction. In this case, these points escape to infinity or
zero under iteration.

For entire functions of finite type (and satisfying certain conditions) it has been shown
in [DK, DT] that tails with a bounded itinerary terminate in endpoints which also belong to
the Julia set, but whose orbit is bounded away from the essential singularities. Obviously,
an endpoint and its corresponding tail must share the same itinerary. The set of endpoints
is called the crown and contains many repelling periodic points. It is not clear if, in general,
all repelling periodic points must be the landing point of some tail.

Definition A sequence s is essentially periodic if there exist integers K and N such that
$i =8,y + K forall 2 > N.

It is easy to check that the essentially periodic sequences correspond to those tails which are
periodic after the projection by e'*.

In what follows we will show that tails whose itinerary is essentially periodic land at an
endpoint, assuming that the critical orbits stay bounded away from the tail. This proof is
completely general, that is, it does not depend on the map we consider. A similar result
for the case of rational maps can be found in [TY]. The precise statement is as follows (see
Figure 8).

Proposition 3.6 Let f be an entire map of C (or C*). Suppose h : (—oc0,0) — C is a
continuous one to one curve such that f(h(t)) = h(t + 1) and h(t) € J(f) for all t € R.
Assume there exists zg = h(tg) € C and U, a neighborhood of zy, such that h(t) € U for all
to <t <to+2 and such that the orbit of the singular values of f never enters U. Then, there
exists a unique fized point z5, € CU {00} such that h(t) — 25, ast — —oo.

Note that we must allow the case z,, = oo as it can be seen from the example f(z) =
z4i4e7%. Indeed, the vertical lines {(2k+1)7+iy,y € R} are invariant by f and f restricted
to those is y — y + 1 + €Y. Hence those are the fixed hairs coming from imaginary oo, but
their pullback converges clearly to imaginary —oo, which in this case acts as a repelling fixed
point.
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Figure 8: Sketch of an invariant curve in the hypothesis of Proposition 3.6.

Corollary 3.7 Let s¢ be an essentially periodic sequence and 7Z = Zg be its corresponding
tail obtained by Theorem 3.3. Assume that Z is bounded away from the critical orbits. Then
Z can be extended and converges to a unique point z, = z.(s%). Moreover, either z, = 0o or
e is a repelling periodic point by F,s.

Proof : Let s be an essentially periodic sequence and 7 = Zg : [y, 00) — C be its
corresponding tail obtained by Theorem 3.3. Without loss of generality we may assume that
7 is an invariant curve (i.e. s¢ is periodic of period one). (Otherwise, we project by €* and
consider an iterate of F,5.) We can reparametrize this curve by setting ¢t = 0 at Z(y.) and
t=1at fog(Z(ys)), and extending to t = co by the conjugacy f(Z(t)) = Z(t+1). Choosing
an appropriate branch of the inverse, we can proceed in the same fashion to define Z(t) for
t < 0. Since the tail is bounded away from the critical orbits, this pull-back never hits any
critical value of f,g, and hence it is well defined. It is clear then that we are under the
hypothesis of Proposition 3.6 and hence there exists a unique point z. such that Z(¢) — z
as t — —oo. Note that ¢*** must be a repelling fixed point unless z, = co. O

Proof of Proposition 3.6: See Figure 8. Let Iy = {h(t) € C |ty <t < ty+ 1}. Take
a sequence {t,} — —oo such that z, := h(f,) has an accumulation point in the compact
set CU oo and let z, be this point. Define the function k(n) to be the integer such that
¥ (z,) € Iy and let U, be the connected component of f~#") (1) containing z,,.

Let U’ be an open set inside U with the same properties, and define U] in the obvious
way. Then, f*(*) is an isomorphism from U, to U and such that f*")(U!) = U’. As a
consequence of Koebe’s theorem the distortion must be bounded, i.e. there exists ¢ > 0 such
that D(z,,cr,) C U,, where r, is the diameter of U] and D(z,,cr,) is the disc centered at
z, of radius er, .

To conclude the proof we must show that the diameter of U, tends to zero. Indeed, in
this case all points in U, tend to z., and since z, and f(z,) belong to U, for all n we have
that z., is a fixed point and the unique limit for A(?).

So assume this is not the case. Then, there exists ¢ > 0 such that the disc D(z,,¢) C U,
for all n > 1. Since z, — 25, we can find N > 0 such that for all n > N, |z, — 20| < /2
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and hence the disc D(zs,¢/2) C U,.

By Montel’s theorem, the family of iterates {fk(”)}nZN is a normal family on D(zs,€/2),
since (") (D(200,¢/2)) € U and hence it omits more than three points. Thus z,, does not
belong to the Julia set, which contradicts the fact that it is an accumulation point of points

of J(f). O

The tails and the crown together form what we call the hairs of the Julia set. This structure
turns out to be “typical” for Julia sets of entire functions. These Julia sets contain what is
called an infinite union of Cantor Bouquets, which are essentially Cantor sets of hairs like
the ones we have encountered here. For details see [DK].

4 Dynamics for /<1

Our goal in this section is to describe the dynamical plane of /5 for different types of param-
eter values. The main result in this Section is Theorem 4.2, which gives a characterization of
the Arnold tongues in terms of the hairs we constructed in the last section.

We start with those parameters (a, 8) € T,, where r is an irrational number. That is, the
rotation number p,z of Fyg|s is irrational.

It is well known by a theorem of Denjoy that any C?-diffeomorphism of the circle with
an irrational rotation number r is topologically conjugate to an irrational rigid rotation of
rotation number r, i.e., R,(#) = 6 + r mod (27). The conditions to impose on the map and
on the rotation number to increase the smoothness of the conjugacy have been studied by
Herman, Arnold, Russmann and Yoccoz among others. In particular, J. C. Yoccoz in [Y]
shows that, if » belongs to a certain set H € R\ Q, then the conjugacy is R-analytic. This
set contains all the Diophantine numbers and it is optimal in the following sense: one can
find an R-analytic circle map g with rotation number r ¢ H such that g is not analytically
conjugate to H.

The following proposition, deals with those maps of the Standard family with irrational
rotation number for which this conjugacy is analytic. Its first part can be found in [Ba].

We recall that a Herman ring is a connected component of the stable set isomorphic to

an annulus on which the map is analytically conjugate to an irrational rotation (see Section
2).

Proposition 4.1 Let F,g be such that r = p,g is irrational and F,g|s1 is analytically con-
Jugate to the rigid rotation of rotation number r. (In particular, this is true if r € H). Then,
there exists a Herman ring around S' of rotation number r. Moreover, the stable set N(f)
consists exclusively of this ring and its preimages.

Proof : Let h be the map which conjugates F,5|s1 to R,. Since h is R-analytic, it extends
holomorphically to a neighborhood of §'. Let A’ be this neighborhood and note that the
holomorphic map ho F,goh™" is equal to R, on S'. Since the two maps agree on S', they must
agree on the whole domain of definition, in particular on A’. Let A be the maximum domain
of extension of h. By Theorem 3.1 in [Ke|, any component of the stable set is either simply
connected or an annulus. Clearly, there exists a neighborhood of the essential singularity at
0 that is not in A, but S' C A. Hence A is an annulus, and the required Herman ring.
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To show the last statement, we recall the Sullivan classification of components of the
stable set. Since F,g is of finite type (only two critical points) all components are periodic
or preperiodic [Ke, Ko2]. The periodic ones can only be attracting (or superattracting),
parabolic, or rotation domains (Siegel discs or Herman rings). Attracting, superattracting
and parabolic domains must contain a critical orbit in its interior, while the boundary of
rotation domains must be contained in the w-limit of a critical orbit. Since F},5 has only two
singular values (with symmetric orbits) and no asymptotic values, it follows that only other
rotation domains can coexist with the Herman ring A. It is shown in [Ba] that there can
be at most one multiply connected component in the Fatou set, hence other Herman rings
cannot exist for F,,5. This leaves us only with the possibility of having one (or several) Siegel
discs. The idea to show that this is also impossible is as follows.

We will construct an entire transcendental map G': C — C such that G has a fixed Siegel
disc containing D, but G is conjugated to I, outside D. Note that, in particular, G has only
one critical point. Hence, suppose I, 3 had at least one cycle of Siegel discs Sy,...,.5,, apart
from the ring A. If the whole cycle is outside the unit disc, then G' has two distinct Siegel
cycles and only one critical point. It is shown in [EL2] that for an entire transcendental map,
the number of critical points is an upper bound for the number of irrational cycles, and hence
this case is impossible. Finally, if the Siegel cycle of F,5 had a component inside D, then
some iterate of the critical point of G would have to enter D and hence never exit again. This
is also impossible since this orbit must accumulate on the boundaries of the Siegel disks. The
remainder of this proof is the construction of such a map G.

Since the conjugacy h is R-analytic, it is in particular quasi-symmetric and hence it can
be extended to a quasiconformal map H of the unit disc D. Define a new map G : C — C as
follows. _

~ Fap on C\D
G = _
H-'oR,ocH on D.

This map is conjugate to F,z outside D and it has the desired properties, but it is not
holomorphic. We can make it holomorphic as follows. Let oy denote the standard complex
structure of C. We define a new almost complex structure ¢ on C as

H.(0p) on D
0= (G")(o) on Fa_ﬁ”(ﬁ) forall n > 1,
o on C\ | Fa_ﬁ”(ﬁ)
By construction, o has bounded distortion and is invariant under G. We may then apply the
Ahlfors—Bers theorem (see [A]) to obtain a quasiconformal homeomorphism ¢ : C — C such
that ¢ integrates the complex structure o, i.e., p.(0) = 0g. Finally, we define G = poGop™!,
which is an entire transcendental map of C with the desired properties. O

For all other cases of irrational rotation number we have the following conjecture.

Conjecture Suppose I',5|s1 has rotation number r € R\ Q, but I, 5|51 is not analytically
conjugated to the irrational rotation R,.. Then, J(F,z) = C.

We proceed now with the rational cases. Let P(z) = €'*. If s¢ is an allowable signed
sequence and Z its associated hair, we define the projected hair associated to s to be the
image of Zs under €'*, i.e., P(Zg).
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Given r € R, denote by [r] its integer part.

Theorem 4.2 Let p,q € Q\[0, 1) such that (p,q) = 1, and let T,,;, be the p/q-Arnold tongue.
Let s¢ := s°(p/q) denote the sequence such that s = [np/q]T for alln > 0. Then, a pair of
parameter values (o, 3) belongs to T/, if and only if P(Zs) lands on the unit circle.

Observe that, as a consequence, all images of P(Z) under F, g must also land on the
unit circle. It is easy to check that s(p/q) is essentially periodic of period ¢ and rotation
number p/q. Hence, P(Zs ) and its images form a periodic cycle of period ¢ which then must
land at a repelling (or parabolic) periodic orbit of period ¢ (by Corollary 3.7). Note that this
observation already proves the “only if” part since for § < 1 there can only be one such orbit
on the unit circle and only in the case when the parameters belong to the p/g¢-tongue.

It follows from the symmetry of the map, that the ¢ symmetric hairs coming from the
essential singularity at w = 0 also land on the repelling orbit. Numerical observations are
shown in Figures 2 and 3.

For illustration purposes, assume o = 0. Then, («, 3) belong to the fixed tongue Ty and,
indeed, there are two fixed points on the unit circle: an attracting one at w = —1 and a
repelling one at w = 1. Since p = 0, the associated sequence is s* = (0%,0%,...) and hence
corresponds to a fixed hair (here and on the covering space). The tail is simply the interval
(1,00), which is invariant and whose points tend exponentially fast to infinity. The symmetric
tail (0,1) also lands at w = 1 and its points tend exponentially fast to 0. All points on the
unit circle, except for w = 1, are contained in the immediate basin of attraction of w = —1.

The remainder of this section will be dedicated to the proof of Theorem 4.2.

We prove Theorem 4.2 on the covering space, that is, we will show that under the hy-
pothesis above, the hair Zse lands on the real line. Figure 9 shows part of the dynamical
plane in the covering space for p/q equal 1/2 and 3/4, to be compared with Figures 2 (left)
and 3 (left).

Figure 9: (to be compared with Figures 2, 3, 11 and 12). Left: z-plane for («,3) in the 1/2
tongue. @ = 3.1, = 0.8. Range: [—2m, 27| x [—27, 27]. Right: z-plane for («, ) in the 3/4 tongue.
a =4.57,8=0.8. Range: [—27, 27| x [-27, 27]. The escaping colors have been inverted to better see
the hairs.
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Let (a,) € T,, and denote by W the repelling periodic orbit on the unit circle. For
technical reasons, we will assume that —1 ¢ W for any 0 <7 < ¢ — 1. Although we believe
that, in fact, this case never occurs, if it did, a slight perturbation of the parameters inside
1,/q would make it disappear. Let a,b € P~Y(W) C R be such that a < —7 < b and there is
no other point of P=1(W) in the interval (a,b). For the remainder of the section, set f = f,s.
Finally, for any k € Z we define the map Tx(z) = z + 2km.

Our goal is to show that Z, lands at the point b and the strategy of the proof will be
as follows. We will construct an open, bounded set By isomorphic to a disc, completely
contained in RJ, which contains all points that share the same itinerary with Zg, up to ¢
iterates. The boundary of By will contain the point b, and no other point of the real line.
We will construct another open, bounded set By isomorphic to a disc, such that By C B,
and f4(By) = T,(By). Considering this map on the cylinder (that is, z ~ Tj(2) for every k)
we have that By is mapped outside itself under f?. Taking an appropriate branch of f~¢ we
may apply Schwartz lemma to conclude that any fixed point of f? in By must be a global
attractor under f~?. But the point b in the boundary of By is an attracting fixed point of
f~% and hence attracts some of the points of By. Therefore, By cannot contain any other
fixed point of f?. Finally, we will see that Z; must land at some fixed point of f? in the
closure of By. This endpoint cannot be inside By by the argument above and hence it can
only be the point b. We now proceed to make this construction.

Let ¢ and € be the two critical points of f whose real part equals —7. We define A to
be the lift of the immediate basin of attraction of the attracting cycle and denote by Ay the
connected component of A such that ¢ and € belong to Ag. It follows easily that (a,b) C Ag
(see Figure 10).

b @) ' f(b)
\\ —THQ /’

Ho

Figure 10: Sketch of the component Ay and the curves 4 and 4’ of Lemma 4.3.

Let a' (resp. b') be the only preimage by f of f(a) (resp. f(b)) that lies on the curve g
(resp. pi—1) of the upper half plane. Indeed, the curve i is mapped one to one to the semiline
[-7 4+ a,00) while 79 is mapped one to one to (—oo, —7 + @]. Since f(a) < -7+ a < f(b)
it follows that @’ and b’ must belong to 1y and p_q respectively. With this notation, we can
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state the following lemma.

Lemma 4.3 There exist simple curves v and y' completely contained in Ag, such that v joins
a' and b and v’ joins b’ and a,

Proof : We need to show that a,a’,b and b’ are accessible from the interior of Ay (and hence
belong to dAg). Since Ag contains two critical points, it is mapped onto its image with degree
three. Now recall that (a,b) C Ag, hence a and b are clearly accessible. Since (a,b) is mapped
one to one onto its image, we have that Ay must contain two other preimages of (f(a), f(b)).
Clearly, one of those can only be the arc on p_; Ung joining &' and ', being its conjugate the
remainder one. Hence o' and o’ (and also their conjugates) are endpoints of arcs contained
in Ag. It follows that they are accessible and we may take v to be any arc in Ag that joins
a’ and b, and 4" any arc in Ag that joins ' and . O

We remark that as a consequence of this lemma, if a tail belongs to Rz, for some k € Z,
its pullback can never cross to another strip different from RZ, for else it would have to
cross Ag or one of its translates. Hence the whole hair, including its landing point, must be
contained entirely in R; In other words, we can rule out the case of Corollary 3.7 where the
landing point is infinity.

For clarity’s sake we make the following construction in the case p/q = 1/2, for which
s = (0F,0t, 1%, 1,21 2% ). A sketch is shown in Figure 11, which we recommend to
have in mind while reading the remainder of the proof. It will be clear that all other cases

can be handled with the same argument. Figure 12 shows the case p/q = 3/4.

Hoa No N1 ( Hi

b’

JT AO_ (Ao) M

Figure 11: Sketch of the construction in the proof of Theorem 4.2, for the case p/q = 1/2.

Let y. be as in Theorem 3.3 for the sequence o(s¢) = (17,1%,2+,2%,...). Then, Z,2(,c) :
[ys, 00) — RT is parametrized by its imaginary part.

Set Ay = f(Ap) and hence f(Ay) = T1(Ap) (since p/q=1/2).

We define the boundary of the set B (in the upper half plane) to be made of the following

pieces: a horizontal straight line, L, in RE')' of imaginary part y., joining the curves 7y and
fo; a piece of g, to be called Ls, joining the right most point of L; with the point 77 (b');
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Ao

Figure 12: Sketch of the construction in the proof of Theorem 4.2, for the case p/q = 3/4.

the curve Ly = T1(') that joins 77(b') and T7(a) = f(b) and is contained in 77 (Ag); a curve
Ly in Ay joining b and f(b) = Ti(a); the curve Ls = v in Ay joining @' and b = f(a); and
finally the piece of 7, to be called Lg, that joins @’ with the left most point of L;. The curve
L := U?zl Lg is clearly homeomorphic to a circle and we let B be the bounded connected
component of the complement of . Since we have freedom in choosing Lz, L4 and Lj, we
choose them so that no critical point or critical value is contained in the closure of B. Hence
f is injective in the closure of B.

We define B’ to be the set of points in B U Ay UT3(Ap) that are mapped to 77(B) under
one iteration of f. Let a” be the only preimage of 77(a’) on the boundary of A;. We see
that 0B’ must be mapped to 71(90B) and hence is made of the following pieces: a curve L%
in Ay joining a” and Ty(a) = f(b), which maps to T1(Ls); a curve in T1(Ag), to be called L,
that joins 77(a) with 77(b") and is mapped to 11(L4) ; and four curves inside B to be called

5, L5, LY and Lg that are mapped respectively to T1(Ls),T1(L2),T1(L1) and Ti(Lg). We
observe that these last three pieces must be compactly contained in B, except for the point
T1(b"). By construction, all points in B’ have itineraries that start with (07, 1%,...).

Finally, we define B” to be the set of points in B U AgU A that are mapped to B’ under
one iteration of f. Let a” and b” be the only points in dAgN B and 0 A; respectively that are
mapped to a” and T7(b) in this order. Then, dB"” is made of the following pieces: a curve
LY in Ag joining @ and b that maps to LL; a curve L} in A; joining b and b” that maps to
L}; and four curves LY, LY, L] and L{ compactly contained in B that map to L}, L), L} and

L§. By construction, all points in B’ have itineraries that start with (07,0%,1%,...).

Let A be the complement of P~1(A) and set By = BN Aand By = B" 0 A. Note that
By C By and since A is simply connected, so are By and B;. Moreover, f?(By) = T1(B;) and
points in By are the only ones in RF N A that are mapped to 13 (B;) under f? with itinerary
starting with (07,0%,1%,...). Finally, 3By UR = {b} and it is easy to check that no other
point than b in @By can satisfy f%(z) = Ty(z). Hence By and By satisfy the requirements we
stated at the beginning of the proof. Thus, after identifying any point z with T%(z) for any
k, we can conclude that By does not contain any fixed point of f2.

It only remains to show that Zs;c must land at some point of the closure of By. Recall
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that Z,2(5) must intersect the line T1(L1) at a single point by the choice of y.. Moreover,
Z42(s¢)[Yx, 00) is contained in R\ Ti(By) and hence, the remainder of the tail is contained in
T1(By). By taking one preimage, we have that Z4(se) Intersects L’ in only one point, and the
remainder of this tail must be contained in B’. Taking one last preimage, we conclude that
Zs intersects LY at a single point, and the remainder of the tail must be contained in By.
Thus, we conclude that Zs lands at some point of the closure of By, which by the arguments
above, must be b. This concludes the proof of Theorem 4.2

5 Dynamics for 7 > 1

The dynamics of the standard family when 3 > 1 are considerably more complicated than in
the case § < 1. The maps on the circle are no longer diffeomorphisms since the two critical
points are now on S'. Consequently, their orbits are no longer symmetric and hence different
types of stable components may now coexist, each associated to a different critical orbit. The
rotation number of F,5|s is no longer the same for all points on S'. It is true though that
for each pair (a, ), the possible rotation numbers form a closed interval [I].

In this region of parameter space, the Arnold tongues are still well defined, as the set of
parameter values for which there exists a point in S! with the given rotation number. Hence,
the irrational curves now open up into tongues and tongues of several rotation numbers
overlap (see [Bo]). As in the case § < 1, a pair of parameters («, 3) belong to a rational
tongue 7}/, if and only if there exists a periodic orbit on S1 of period ¢ and rotation number
p/q. However, this orbit does no longer need to be attracting.

The dynamics on the complex plane must also be very different. Since the critical orbits
are completely contained on the unit circle, we may rule out the existence of some types
of stable components. Indeed, Herman rings or Siegel discs are no longer possible, since
the critical orbits could in no way accumulate in their boundaries. Hence only attracting,
superattracting or parabolic domains can exist and, as before, such cycles must be on the
unit circle.

With respect to symbolic dynamics on the covering space, we observe that in this case the
fundamental domains constructed in Section 3.1 are now vertical strips (see Figure 4, right).
Hence, the pull back of any tail is now bound to stay within one of these strips. Moreover we
observe that this pullback always exists. Indeed, since the critical orbits stay on the circle,
all hairs are bounded away from them. Hence all branches of fojﬁl are well defined on D];" and

D, forall k € Z.

Since many different itineraries may now coexist on the unit circle, and this number
increases with (3, it is natural to ask if many different hairs simultaneously land on the unit
circle and if the number of such hairs increases with 3 as well. Numerical observations (see
Figure 3 (right)) indicate that this is indeed the case. The answer to this question is the
main theorem in the current section.

Given an allowable sequence s let Zse : [y«(s¢),00) — D o be the tail given by Theorem
3.3, parametrized by its imaginary part. Since this tail is bounded away from the critical
orbit we may pull back Zse as follows (see Corollary 3.7 for the essentially periodic case). For
clarity, we drop the €’s assuming they are all +. Consider Z, () : [y«(o(s)),00] — Ds,. By
construction, y.(s) and y.(o(s)) are comparable and hence Im( fog(Zs(y«(s)))) >> yu(o(s)).
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We then take the branch of fojﬁl that takes values on Dy, and consider

25 (Za (o) [y(a(5)), Im( fas(Zs(y(5))])-

This is a curve that extends Z;, whose points share itinerary with those on 7, and tend to
infinity exponentially fast under iteration. Hence we consider this curve as the (first) pullback
of Zs. We could repeat this procedure to obtain the hair Z; : [—0c0,00] — Ds,. Note that
Im(Zs(t)) =t only for t > y.(s).

We say that a hair Zs landsif lim;_ _., Zs(t) exists, and the landing point will be denoted
by z. = z.(s%). By Corollary 3.7, all essentially periodic hairs always land. For g > 1 we will
see that many others do too.

Definition A sequence s = (sg, $1,52...) is a sequence of bounded jump if |s; 41 —s;| < M
for some integer M > 0 and for all 7 > 0.

We also say that signed sequences are of bounded jump when the corresponding plain se-
quences are of bounded jump. Note that sequences of bounded jump are those growing at
an approximately linear rate and therefore they are always allowable sequences.

Theorem 5.1 Given a hair Zs : (—00,00) — Dy where s = (sg,s{',...), the following
statements are equivalent:

(a) s is of bounded jump.

(b) for each a > 0, there exists By > 0 such that for all > Po the hair Zse lands on

the real line.

Hence the bounded jump condition of s¢ is necessary and sufficient in order for the cor-
responding hair (and all its images) to land at the real line, and remain there as we increase
the parameter 5.

Proof of Theorem 5.1: First, we show that the bounded jump condition is necessary. This
is clear since, by construction of the regions D;, we have

2m(s; — 1) < Re(f15(2)) < 2m(s; + 1) (9)
Re( iﬁ(z)) — 21 < 27s; < Re(fiﬁ(z)) + 27 (10)
Also, since sin(z) is bounded on R, we have
|f+(2) = f(z)| < a+ Bforall z € R (11)
and hence, combining estimates 9 and 10 with equation 11, we get

a+p
[sj41 = 8] < —5—+2
Therefore, in order for z.(s%) to be in R, its itinerary should be of bounded jump.

To prove the sufficiency of the condition we will use heavily the existence of certain
itineraries on the real line. Note that on the real line, signed itineraries do not make sense.
The equivalent to signed itineraries in this case is as follows.
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Definition The 7l itinerary of a point z € C for f,p is the infinite r/ sequence
ST[(Z) = ((50, (51, (52 .. )
where 6; = 1y, if f1, € Ry and 6; = Iy if f15 € Ly

Note that, because of proposition 3.1, every signed itinerary corresponds to a unique 7l
itinerary while each rl itinerary corresponds to two different signed itineraries. As with the
signed sequences we will say that an rl sequence is of bounded jump if its corresponding plain
sequence is of bounded jump. Also, we will use the notation é¢ in the obvious way.

Lemma 5.2 Given any rl sequence s,; of bounded jump, and o > 0, there exists 3, > 0
such that for all 3 > [y there is a point xg € R such that S./(zg) = s,;. Moreover, there is
Bo > B such that for all 8> By, x5 is unique.

Proof of lemma 5.2: Throughout this proof let I}, Iy, and Ig, denote the intervals of the
real line corresponding to the regions Dy, L and Ry respectively.

Let M be the bound such that
|sj41 — 85| < M for all n

given by the assumption that s,; is of bounded jump.

Define 5, = \/((M + 1)21 + a)2 + 1. This is the §-value for which critical points with
positive second derivative get mapped to themselves minus (M + 1)27. Indeed, the critical
points ¢; satisfy cos(¢;) = E—ll Since sin(¢;) = %1 Bt — 1, we get

Japo(ci) =ci+a+ Bisin(ci) = ¢+ a— /7 —1=c; —2m(M +1).

A similar calculation shows that the maxima of the function are mapped to themselves
plus 2o + 27(M + 1) (see Figure 13).

Consequently, for any 8 > (1, the image of each interval I} covers twice the intervals

Ik—M,- . ,Ik,fk+],. .. 7Ilc+M-

Looking at the rl subintervals, the image of each I, or I, covers once the subintervals

Iy i IR prs oo s A IR Iy s ARy s -+ s L gy LR

Therefore, the preimage of any closed interval inside or equal to one of the r{ subintervals,
is a closed interval in each of the r/ companions. Given that, standard arguments show that
there exists a point xg, € Is, such that S, (zg, ) = s,. Clearly, the same argument applies
for any 8 > 31, since the larger (3 is, the more intervals are covered by the image of Ij.

Now choose 3y > 31 as the first value of 3 for which [f! 5(z)] > 1 on the set {z € I5, |
fap(z) € Uz]'\i—]\/[lk‘l'i}' Then, if 8 > By, the point zg is unique. O
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Iigure 13: Graph of f,s, on the real line. The plot is for the values @« = 0 and M = 1.

Now we must prove the sufficiency of the bounded jump condition. We will show that
Zse(y*) € R for all § > fo. In order to do that, fix § > fy and consider the rl sequence s,
corresponding to s and the point 25 € R, given by the lemma, which has itinerary s,;.

Consider the connected compact set Kyin D 50 bounded by the real line and a horizontal
segment of the line Im(z) = y , where y is large enough so that the image of the segment
(half of a (sg,y)-skewed ellipse) crosses M strips to the left and M to the right (see Figure
14). On the sides the bounds are the same as those of the strip. The upper bound of the
strip cuts the tail associated to s¢ at a single point Z(y'), for some y' > y, (if that were not
the case we may increase y until it happens).

Figure 14: Sketch of the sets Kq and Ko;.

The image by f,3 of Ko, is the inside of half of a (s, y)-skewed ellipse. The subset of
this ellipse contained in D« is a compact connected set Ky C Dger, similar to Kj.
1 1
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The preimage of K, inside Ky, consists of a compact connected subset Ky of Ky (see
Figure 14), containing 23 and Z,<(y') in its bounds. All points in Ko have itineraries starting
with 6° and 671,

We can repeat this process and obtain a sequence of nested compact connected sets
{Ko12,....n} all of them containing 23 on the bottom and Zs(y’) on the top. The intersection
of all these sets

has to be a nonempty compact connected set, containing Z,(y') on the top and zz on the
bottom, which shows that zg has to be equal to z.(s%). This concludes the proof of Theorem
51. O
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