Univalent Baker domains

Krzysztof Baranski* Niiria Fagella
Institute of Mathematics Dep. de Mat. Aplicada i Analisi
Warsaw University Universitat de Barcelona
ul. Banacha 2 Gran Via 585
02-097 Warsaw, Poland 08007 Barcelona, Spain
baranski@mimuw.edu.pl fagella@maia.ub.es

Abstract

We classify Baker domains U for entire maps with f|y univalent into three different
types, giving several criteria which characterize them. Some new examples of such do-
mains are presented, including a domain with disconnected boundary in C and a domain
which spirals towards infinity.

1 Introduction

Let f : C — C be an entire transcendental map. Then f induces a partition of the complex
plane into two completely invariant sets: the Fatou set and the Julia set. The first one,
F(f), is defined as the set of points z € C for which the sequence of iterates {f"},>¢ forms
a normal family in some neighbourhood of z. Its complement is the Julia set, J(f). Clearly,
the Fatou set is an open set of C while the Julia set is closed. It is a special property of
entire transcendental maps that both sets are unbounded. Refer, for example, to [Ber2, BR]
for the general description of the dynamics of these maps.

Since F'(f) is completely invariant, its connected components must map among them-
selves. We say that a connected component U of F(f) is periodic of period p > 1, if
fP(U) C U. Note that unlike the case of rational maps, it is possible to have fP(U) # U (see
e.g. [Ber2]).

If U is a periodic component of F(f) of period p > 1, there are only four possible cases:

(a) U is a component of the attracting basin of an attracting periodic point zp € U and
f™(z) — 2z forall z€ U,
n—oQ
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(b) U is a component of the parabolic basin of a parabolic point zg € U and f"P(z) —2 %
n—od
for all z € U,

(c) U is a Siegel disc, i.e. U is conformally equivalent to a disc and fP|y is analytically
conjugate to a rigid rotation,

(d) f™(z) — oo for all z € U. In this case, U is called a Baker domain.
n—oo

We refer to [Ber2] for a complete exposition about this classification. We observe that Baker
domains do not exist for entire transcendental maps, for which Sing(f~!) is bounded, where
Sing(f ') denotes the closure in C of the set of all critical and asymptotic values of f (see
[EL1]).

The first example of an entire function with a Baker domain was given by Fatou in [Fa],
who considered the function f(z) = 2z + 1 + e # and showed that the right half-plane is
contained in an invariant Baker domain. Since then, plenty of other examples have been
found, showing various properties that are possible for this type of Fatou components (see
[BD2, Berl, BW, EL2, H1, RS1, RS2]). It was proved in [Ba2] that all Baker domains for
entire transcendental maps are simply connected.

In this paper we deal with univalent Baker domains, i.e. Baker domains on which fP? is
univalent. Examples of such domains can be found among the references above (see also
Section 5).

Let f : C — C be an entire transcendental map and let U C C be a univalent Baker
domain. Replacing f by its iteration, we assume from now on that U is invariant, i.e.
f(U) C U. Tt is known (see [Ber2]) that U\ f(U) consists of at most one point. But the case
f(U)=U\{z0} is impossible, because U is simply connected and f|y is a homeomorphism.
Hence, in this case we have f(U) =U.

We will classify invariant univalent Baker domains and study the relation between the
dynamics of f and the geometry of U.

Definition 1.1. A point ( € C in the boundary of a simply connected domain U C C is
called accessible from U if there exists a curve v : [0,+00) — U which lands at (, i.e. y(t)
tends to ¢ as t — 4oco. If the boundary of U is locally connected, then all its points are
accessible.

Following [Go, Pe] we say that two such curves y; and 7, are in the same access to (,
if for every neighbourhood V C C of ¢ there exists a curve  : [0,1] — U NV, such that
a(0) € v1 and «(1) € 72. Equivalently, an access is a homotopy class within the family of
curves 7 : [0,1] — C, such that ((0,1)) C U and 5(1) = ¢. It is obvious that accesses define
an equivalence relation.

It is known (see [Bal]) that for every Baker domain U, the point at infinity is accessible
from U. In fact, for any point z € U, if we choose -, : [0,1] — U to be any curve connecting
z and f(z), then the standard estimates of the hyperbolic metric on U (see Lemma 2.2) show
that the invariant curve ', = J,,» f"(7.) lands at oo, so it defines an access to infinity. We
say that z tends to oo through this access. It is easy to show that this access does not depend
on the choice of the curve ,. In fact, it is also independent of the choice of the point z € U,
as stated in the following lemma.



Lemma A. The forward iterates of all points in U tend to infinity through the same access.

We will call this access the forward dynamical access to infinity. The proof of this lemma
is contained in Section 3.

Let R be a Riemann mapping from the open unit disc D C C onto U. In the case of Baker
domains, it is convenient to work with the conformal mapping ¥ from the upper half-plane
Ht = {w € C | Tm(w) > 0} onto U, setting ¥(w) = R(%2Z). Tet g = U 'o fo ¥ and
h =R !'ofoR. Then g (resp. h) must be a hyperbolic or parabolic automorphism of H*
(resp. D). Hence, we can assume that g is of one of the two following forms:

aw (a>1 hyperbolic type),
g(w):{ (@>1)  (hyp ype)

w+1 (parabolic type).

Then h(u) = %ﬂ% or h(u) = %%;1 respectively for u € D. See Figures 1 and 2.
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¥ _ (@hu+(al
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Figure 1: Invariant curves under a hyperbolic automorphism of Ht and D.

_ _ (1-2i)u1
g(w)=w+1 0 h(u)= R

Figure 2: Invariant curves under a parabolic automorphism of Ht and D.

The two cases give rise to dynamically different types of Baker domains. It is then natural
to look for some geometric criteria which characterize hyperbolic and parabolic types. In



Section 3 we show that the two types can be distinguished by the behaviour of the orbits of
points in U in relation with the distance to the boundary of U (Corollary 3.4). Moreover, we
prove the following.

Theorem B. Let f : C — C be an entire transcendental map and let U C C be an invariant
univalent Baker domain. Then there ezists a point ( € C, such that the backward iterates
under (f|y) " of all points in U tend to ¢ through the same access (which we call the backward
dynamical access). Moreover, ezactly one of the following occurs:

(a) ¢ # o0 is a fized point in the boundary of U, attracting or parabolic with multiplier 1
and U 1is of hyperbolic type.

(b) ¢ = oo, the backward dynamical access is different from the forward one and U is of
hyperbolic type.

(c) ¢ = o0, the backward dynamical access is equal to the forward one and U is of parabolic
type.

If case (a) occurs we say that U is of hyperbolic type I, while U is of hyperbolic type II
if (b) is satisfied. In Section 5 we give examples of univalent Baker domains of each of the
three types.

Theorem B has interesting corollaries which can be found in Section 4. It appears that
in the parabolic case, there exist points in U for which both forward and backward iterates
tend to infinity relatively slowly and the entire trajectory lies arbitrarily close to infinity
(Corollaries 4.2 and 4.6). Other consequences concerning the limit behaviour of the Riemann
map are stated in Corollaries 4.4 and 4.5. In Corollary 4.7 we show that if the boundary of
U is locally connected, then it contains at most one periodic point.

It is interesting to study the topology of the boundary of Baker domains. Non-univalent
Baker domains have highly complicated boundaries. Indeed, Baker and Weinreich in [BW]
showed that such domains can never have Jordan curves as their boundaries. A stronger result
from [BD2] implies that in the non-univalent case there always exist infinitely many accesses
to infinity. Although there are examples of univalent Baker domains whose boundaries are
Jordan curves (see Section 5), this is not always the case. In Subsection 5.2 we present an
example of a Baker domain whose boundary in C is disconnected. In fact, the following is a
corollary of Theorem B.

Corollary C. If U is a univalent Baker domain of hyperbolic type II, then the boundary of
U in C is disconnected.

We are not aware of any example of a univalent Baker domain with more than two
accesses to infinity (and therefore with more than two components of its boundary in C — see
Lemma 3.1). The problem of constructing such a domain is related to finding a holomorphic
self-map of C* with a Siegel disc or Herman ring around 0 having an access to infinity (see
Section 5).

A different set of natural questions concerns the geometry of Baker domains. All pre-
viously known examples of Baker domains either contain a half-plane or are contained in a



straight band. This suggests the question whether it is possible to find a Baker domain whose
“asymptotic direction” to infinity is not a straight line. In Section 6 we show the existence of
an entire map with a univalent Baker domain that spirals towards infinity. This construction
is done using an approximation theory method used by Eremenko and Lyubich in [EL2].

Acknowledgments. We thank Xavier Jarque and Bogustawa Karpinska for helpful conver-
sations. Krzysztof Baranski thanks the Centre de Recerca Matematica in Bellaterra for the
support and hospitality.

Notation. The terms “the closure” and “the boundary” of a set A C C refer to the closure and
boundary in C = CU{oc}, but the symbols A and &A denote the closure and boundary in C.
For a point z € C and sets A, B C C we use the notation diam A = sup{|z —w| | z,w € A},
dist(z, A) = inf{|z —w| | w € A}, dist(A, B) = inf{|z—w| | z € A,w € B}. If U is a univalent
Baker domain, z € U and n > 0, then we denote by f~"(z) the preimage of z under inverse
branches of f~! leading into U.

2 Preliminaries

Hyperbolic metric and distortion estimates

We will use the following Koebe distortion theorem (see e.g. [CG]).

Koebe’s Theorem. Let ¢: 1D — C be a univalent holomorphic map. Then:

’ ‘z| ’ |Z‘
SO s < 196 - 900 < WO,
Ol < Wl <Ol

In particular, this implies that ¢(D) contains the open disc centred at $(0) of radius |¢'(0)|/4.

Combining this with the Riemann mapping theorem, we get

Corollary 2.1. For a given o > 0 there exists c(p) > 0, , such that for every simply connected
domain U C C, every bounded set V. C U with dist(V,0U) > pdiamV, every univalent
holomorphic map ¢ : U — C and every z1,20 € V,

¢ (21|
¢/ (22)]

< ¢(0)-

Moreover, c¢(p) — 1 as p — +o0.

We will also use the following standard estimate of the hyperbolic metric (see e.g. [CG]).
Lemma 2.2. Let U C C be a simply connected domain, such that C\ U contains at least
two points and let py be the hyperbolic metric on U. Then

1 < pu(z) < 2
- - N — =
2dist(z,0U) — PULE) = dist(z, 0U)

for every z € U.



Boundary behaviour of the Riemann map

Let U C C be a simply connected domain such that its complement is infinite and let
R : D — U be a Riemann mapping. In this subsection we recall some basic facts concerning
the behaviour of R at the boundary of D. For details we refer the reader to [CL, M] and [P].
The following is the classical Fatou theorem.

Fatou’s Theorem. For almost every 6 € R/(2nx7Z) there exists the radial limit

lim R(re).

r—1

Moreover, if we fiz 0 such that this limit exists, then for almost every 0 the radial limit at ¢’
is different from the radial limit at 0.

The following Lindel6f-type theorem is very useful.

Theorem 2.3. Let vy : [0,400) — U be a curve which lands at a point { in the boundary
of U. Then the curve R~ o~ in D lands at some point v of OD. Moreover, R has the
non-tangential limit at v equal to (. In particular, curves which land at different points of
the boundary of U necessarily correspond to curves which land at different points of 9.

Finally, we recall the Carathéodory theorem.

Carathéodory’s Theorem. The Riemann mapping R can be extended continuously to a
map from D onto the closure of U if and only if the boundary of U is locally connected. This
extension is a homeomorphism if and only if the boundary of U is a Jordan curve.

3 Classification of univalent Baker domains: proof of Theo-
rem B

First we prove some useful lemmas which give necessary and sufficient conditions for two
curves to be in one access. The proof of Lemma 3.2 can be found also in [Go].

Lemma 3.1. Let T': (0,1) — U be a simple arc with both ends landing at the same point ¢
in the boundary of U (i.e. T' U{(} is a Jordan curve). Let v1 =T'((0,1/2]), 2 =T'([1/2,1)).
Then the following statements are equivalent:

(a) 1 and 7y, are in the same access to (,
(b) R~ (1) and R™'(72) land at the same point of OD,
(c) TU{C} does not dissect the boundary of U.

Proof.

(a) = (b)

For n > 0 let V,, be a sequence of neighbourhoods of ¢ in C, such that Npso Vo = {¢}- By
assumption, there exist curves ay, : [0,1] — U NV, such that a,(0) € 71, ay(1) € 2. By



Theorem 2.3, R !(7;) for k = 1,2 lands at some point v, = e?* € 9. Suppose v # vy. For
6 € [0,27) let Iy denote the radial segment {re’? | r € [0,1]}. Using the Fatou theorem, we
can find two points ¥ = e's k = 1,2, different from vy, v9, such that R has the radial limit
at ¥, equal to (; # ¢ and the points vy, vo are in different components of the set D\ L, where
L =15 Uls . Then R~ Y(ay,) for large n must intersect L at some point w, € . Taking a
subsequence, we can assume w, — U as n — oo for k =1 or 2, so R(w,) — ;. This is a
contradiction, since ay, C V;, implies R(wy,) — (.

(b) = (c)

Let v € D be the common landing point of R~ 1(y;) and let R () and S be the component
of D\ R7Y(T), such that S N 0D = {v}. Suppose the Jordan curve I' U {¢} dissects the
boundary of U. Then the boundary of R(S) contains points from the boundary of U different
from (. Hence, we can take a curve g : [0,4+00) — R(S) landing at a point ¢’ € U, (' # ¢
(e.g. we can take 3(0) close to the boundary of U and connect it by a straight line segment
to a suitable point of the boundary of U). By Theorem 2.3, the curve R~!() must land at
some point v’ € 95 N ID, v' # v. This leads to a contradiction.

(c) = (a)
Let S be the component of @\ (T U{¢}), which does not contain points from the boundary

of U. Then SUT C U, SUT U {¢} is homeomorphic to D and we can easily construct the
suitable curves « from the definition of the access. O

Lemma 3.2. Let y1,7y2 : [0,+00) = U be curves landing at a common point ¢ in the bound-
ary of U. Then 1,72 are in the same access to ¢ if and only if R™'(y1) and R™'(v2) land
at the same point of OD.

Proof. By the definition of an access, it is easy to check that if a curve v : [0, +00) — U lands
at ¢, then there exists an open set W C U, such that v C W and every curve 7 : [0, +00) - W
landing at ¢ is in the same access to ( as . Using this, we can assume that i,y are
homeomorphic to [0, 1). Note also that if ; and 75 intersect at a sequence of points converging
to ¢, then they are in the same access to ¢ and R~'(vy1), R™'(72) land at the same point of
OD. Therefore, we can assume additionally that v; and 72 are disjoint. Then connect 7y, (0)
to ¥2(0) by a simple arc in U disjoint from 71 U7, and use Lemma 3.1. O

Remark. Note that all the results listed in Subsection 2 together with the two above lemmas
apply also for the map ¥ from H' defined in Section 1 instead of the Riemann mapping R
from .

The proof of Lemma A follows now easily from Lemma 3.2.

Proof of Lemma A. Recall that Lemma 2.2 easily implies that each curve I', defined in Sec-
tion 1 lands at infinity. By Theorem 2.3, the curve R !(T',) lands at some point v of D). The
dynamics of h = R™! o f o R implies that v = 1. By Lemma 3.2, we conclude that all curves
I', must be in the same access to oco. This also shows that the forward dynamical access is
well defined. O



To prove Theorem B, we need some preliminary estimates reflecting the relation between
the distance of a point to the boundary of U and the distance between successive iterates.
Given z € U, let

_ dist(z,00)
&) =T =2

The following lemma is a slightly different version of Theorem 1 in [RS2], suited to the
univalent case.

Lemma 3.3. Let U be a univalent Baker domain and let w = U=Y(2) for z € U. If U is
of hyperbolic type (and hence f|y is conjugate by ¥ to g(z) = az, a > 1), then there ezists
n =mn(a) > 0 and for every z € U there ezxists p1 = p1(a, Arg(w)) > 0, such that

01 <d(z) <.

IfU is of parabolic type (and hence f|y is conjugate by ¥ to g(z) = z+1), then for every z € U
there exist oo = go(Im(w)) > 0 and g3 = g3(Im(w)) > 0, such that limpy(y)—s 400 02 = +00
and

02 < 6(z) < p3.

In particular, in both cases for every z € U there exist c1,co > 0, such that for every
n €z,

c1 <6(f"(2)) < ca.

Proof. Let z € U. Since H" contains the disc centred at w of radius Im(w), the Koebe
Theorem implies that dist(z,0U) > 1|¥'(w)Im(w) = §|¥'(w)||w|sin(Arg(w)). Connect w
to g(w) by a straight line segment S C H. Note that dist(S, 0H") = Im(w).

Suppose U is of hyperbolic type. Then diam S = (a — 1)|w|, so by Corollary 2.1, the
distortion of ¥ on S is bounded by a constant g; depending only on a and Arg(w). Hence,
If(2) — 2| < (a—1)01|P'(w)||w|. This gives the first inequality.

To obtain the second one, suppose that §(z) > M for a large M > 0. Then dist(z,0U) >
M| f(z) — z|, so by the Koebe theorem,

Im(w) = dist(w, 0H") > %

(T (2)]1f(2) — ]
and

(a = 1)w| = diam § < 2|(T7")'(2)]1f(2) — 2]

(if M is sufficiently large). This easily implies M < 8/(a — 1).

In the parabolic case, the proof is similar and we leave it to the reader. ]

Directly from this lemma we can deduce the following characterization of hyperbolic and
parabolic type.



Corollary 3.4. U is of hyperbolic type if and only if sup,cy; 6(2) < oo. O
We are now ready to prove Theorem B.

Proof of Theorem B. Let z € U, w = U 1(z) € H" and define T to be the g-invariant curve
= {tw |t € (0,400)}  if U is of hyperbolic type,
| {t+ilm(w) |t € R} if U is of parabolic type.

Let 5, (t) = I'(t) for ¢ € (0,1] (in the hyperbolic case) or ¢ € (—oo, 1] (in the parabolic case)
and 35(t) = ['(¢) for t € [1, +00). Finally, let ' = ol v, = Uo7, and vy, = Won,. Suppose
that ~y1(¢) does not tend to infinity as ¢ — 0 (resp. ¢t = —o0). Then there exists ( € C which
is an accumulation point of the curve «y; for ¢ — 0 (resp. ¢ - —o0). It is obvious that ( is
in the boundary of U. Take a sequence z, € «; such that z, — (. By Lemma 3.3, we have
|f(zn) — zn| — 0, so passing to the limit we get f(¢) = . Suppose 7; has another limit point
for t — 0 (resp. t - —o0), different from (. Then there is a continuum of such points and
repeating the above arguments, we would have a continuum of fixed points of f. This shows
that v; has a limit ¢ for ¢ — 0 (resp. t = —o0), in particular f~"(z) — ¢ as n — +00. By
the Snail Lemma (see e.g. [M]), ( is either repelling or parabolic with multiplier 1.

The same argument as in the proof of Lemma A shows that f"(z) — ¢ through the same
access for every z € U (the backward dynamical access). Recall that 7, is in the forward
dynamical access to oc.

Suppose U is of parabolic type. Then, by definition, both 7; and 75 land at cc. Hence,
Theorem 2.3 implies ( = oco. Moreover, by Lemma 3.1, y; and <y, are in the same access to
00, 8o the backward dynamical access is equal to the forward one. On the other hand, if U is
of hyperbolic type, then 7, lands at 0 and ;2 land at oo, so by Lemma 3.1, y; and 7y, cannot
be in the same access to co. Hence, in the hyperbolic case if ( = oo, then the forward and

. ; |
backward dynamical accesses are different.

4 Consequences

Theorem B has several consequences concerning both the boundary behaviour of the Riemann
map and the geometry of the boundary of the Baker domain.

The first consequence is as stated in the introduction:

Corollary C. If U is a univalent Baker domain of hyperbolic type II, then OU is discon-
nected.

Proof. This follows directly from Theorem B and Lemma 3.1. O

Consider now the speed of convergence to oo of forward or backward iterates of points
from U. By Lemma 3.3, it is related to the shape of the domain U. Moreover, by Bergweiler’s
result about the distance of points from the post-singular set P(f) = [J,,> f*(Sing(f~1))




to OU (Lemma 3 in [Berl]) and Lemma 3.3, for every compact set K C U there exists a
constant ¢ > 0 and nyg, such that for every z € K and every n > ny,

dist(f"(2), P(f)) < alf" ' (2) — f*(2)|-

The estimates of the hyperbolic metric from Lemma 2.2 imply (see e.g. [Ber2]) that for
any invariant Baker domain U (not necessarily univalent), we have

[ @)/C <1 (2)] < ClF™(2)]

for every z € U, where C' > 0 is a constant depending on z. This implies

log |f"(2)| = O(n).

In the univalent case, we can slightly improve these estimates. Note first that by Corollary 2.1,
the distortion of f™ on a compact set K C U is bounded by a constant depending only on
K. Therefore, the Koebe theorem implies that for every compact set K C U there exists a
constant ¢ > 0, such that for every z € K and every n € Z,

(7™ () /e < 1" (2) = F(2)] < (") (2)]-

Hence, if the forward or backward iterates tend to infinity, then the speed of convergence is
closely related to the speed of the growth of the derivative. In particular, by Theorem B,

Corollary 4.1. For every z € U, the series Y .- o |(f")'(2)| is diverging. Moreover, if U is
of parabolic type or hyperbolic type II, then the series ZO |(f™)(2)] is diverging for every

n=—00
z € U and if U is of hyperbolic type I, then the series 22:700 [(f™)(2)| is converging for

every z € U. ]

Using the Koebe theorem for the Riemann map R : D — U, it is easy to check that for
every compact set K C U there exist constants ci,... ,c4 > 0, such that for every z € K and
every n € 7,

1
<) (2)] < cra?n!
cra?nl (@l < if U is of hyperbolic type,

1/ (2)] < cpa?™
1
N M| < e TL4
card = I(F") ()] < e3 if U is of parabolic type.
1/"(2)] < ean®

(In the hyperbolic case the constant a is such that f|y is conjugate by ¥ to z — az.)

Theorem B gives another corollary concerning the speed of convergence to oo of forward
and backward iterates in the parabolic case.

Corollary 4.2. If U 1is of parabolic type, then for every € > 0 there exists z € U and ny,
such that [f*T1(2) — f™(2)| < €|f™(2)] for every n € Z with |n| > ny.

10



Proof. Fix a point zy € QU and take € > 0. By Lemma, 3.3, for z € U with sufficiently large
Im(w), we have §(f™(z)) > 2/¢ for every n € Z. This implies

@) — @] < S E) - =l

Moreover, by Theorem B, f™(z) — oo as n — foo. Hence, we have |f™(z) — 2| < 2|f™(2)|
for large |n|, which ends the proof. O

Note that the reciprocal of this corollary does not hold (see the example in Subsection 5.2).

Remark 4.3. We do not know any good lower estimates for the series from Corollary 4.1.
For instance, it would be interesting to check whether it is possible to have |(f™)'(z)| — 0 as
n — +oo (which is equivalent to |f"*1(z) — f*(z)| — 0). This can happen for non-univalent
Baker domains (e.g. for the map f(z) = z+ e~ studied in [BD2]), but in all known univalent
examples we have |f"*1(z) — f*(2)| > const. Geometrically, this is related to the problem of
finding a Baker domain forming a cusp at infinity (see Lemma 3.3).

Concerning the boundary behaviour of the Riemann map we have the following corollaries.

Corollary 4.4. If U is of hyperbolic type, then U has non-tangential limits at 0 (equal to
from Theorem B) and oo (equal to 00). O

Corollary 4.5. If U is of parabolic type, then V has a limit equal to oo along every curve
v :[0,4+00) = HT, such that lim;_, o y(t) = oo and Im(vy(t)) > yo for some constant yo > 0.

Proof. Let I' = ¥({Im(w) = yo}). By Theorem B, I' U {00} is a Jordan curve. Let S be the
component of C\ (I'U {oo}) containing ¥({Im(w) > yo}). Since ¥(-y(t)) must approach the
boundary of U as t — +o0, it is sufficient to show that S does not contain points from OU.
This follows from Lemma, 3.1. U

The following corollary states that in the parabolic case there exist trajectories lying
arbitrarily close to infinity.

Corollary 4.6. If U is of parabolic type, then for every M > 0 there exists z € U, such that
the entire orbit of z in U is outside the disc of radius M, i.e. |f™(z)| > M for every n € Z.

Proof. Fix M > 0. Let I';;, = U({Im(w) = n}) for n > 0. Then T', contains the entire
trajectory of the point ¥(n i) in U. We prove that if n is sufficiently large, then |z| > M for
every z € I',. Suppose this is not true. Then there exists a sequence z,, € I',,, such that
ng — +oo and |2z, | < M. But Im(¥~(2,,)) = ng, so by Corollary 4.5, z,, — oo, which is
a contradiction. O

The following is a curious observation.

Corollary 4.7. If U is of parabolic type and U has a limit at oo, then there are no periodic
points in OU. If U is of hyperbolic type and U has limits at 0 and oo, then either there are
no periodic points in OU (provided U is of type II) or there is exactly one periodic point in
OU (provided U is of type I), i.e. the fized point ¢ from Theorem B.

In particular, by the Carathéodory theorem, this holds when the boundary of U is locally
connected.

11



Proof. Let {y € C be a periodic point of period p in U. Take a sequence of points z, € U,
such that z, — (o as n — +o0. Passing to a subsequence, we can assume additionally that
fP"(zn) — Co. Let wy, = ¥ 1(2,) and @, = ¥ 1(fP*(2,)). Then |w,| — 1 and passing to a
subsequence, we can assume w, — v for some v in the boundary of H*. In the parabolic case,
we have W, = wy, + pn, so one of the sequences w,, W, tends to co. By assumption, ¥ has
a limit at oo, which must be equal to oo by the dynamics of f. Hence, one of the sequences
Zn, fP™(2,) tends to oo, which is a contradiction. In the hyperbolic case, w, = a’"w, and
similar argument implies that one of the sequences w,, W, tends either to oo or to 0. The
first possibility, as previously, leads to a contradiction. If the second one holds, note that by
assumption, ¥ has a limit at 0 which is equal to ( by Theorem B. Therefore, {y = (. U

Remark 4.8. It was proved in [PZ] that if U is the immediate basin of attraction of an
attracting or parabolic point for a rational map f, then periodic sources are dense in the
boundary of U. To our knowledge it is not known, whether this holds for entire maps. For
rotation domains of rational or entire maps, it is not known whether they must contain
periodic sources.

We remark that, by Corollary 4.7 and the density of periodic sources in the Julia set, it can
never occur that the Julia set coincides with the boundary of a univalent Baker domain. This
is possible for the immediate basin of an attracting fixed point, e.g. for the map f(z) = Ae?,
A€ (0,1/e).

5 Examples of three types of Baker domains

5.1 Hyperbolic type I

Let f(z) =2 —1log2+2z—e?. It was shown in [Berl] that f has an invariant univalent Baker
domain U containing the half-plane {Re(z) < —2} and the boundary of U is a Jordan curve.

One can observe these facts by considering the map F'(w) = %w262*“’, which is a pro-

jection of f by w = €7, i.e. F(w) = e/(®¥). A simple computation shows that F has only
two critical points (at z = 0 and z = 2) which are fixed, and an asymptotic value at z = 0.
Let V be the immediate basin of (super)attraction of z = 0 and let U be the preimage of
V under exp. By [Ber3], the Fatou set of F' lifts to the Fatou set of f, so U is a Fatou
component. Note that |F(w)| < |w| for |w| < e~2 and the circles {|w| = r} are lifted to the
lines {Re(z) = logr}. Hence, U is invariant, contains the half-plane {Re(z) < —2} and the
orbits of all points from U escape to infinity. It follows that U is an invariant Baker domain.
It is shown in [Berl] (using polynomial-like maps) that the boundary of V' is a Jordan curve
in C, so the boundary of U is a Jordan curve passing through infinity. By [BW], this implies
that f|y is univalent.

Proposition 5.1. The Baker domain U is of hyperbolic type I
Proof. Consider the map f as a map of the real line into itself. It is easy to check that f

has two fixed points: ¢ = log 2, which is superattracting and p ~ —1, which is repelling (see
Figure 3). The map is strictly increasing on the infinite segment S = (—o0,p) and f(z) < z
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for every z € S. Hence, for any z € S we have f"(x) T, and (f|s) ™(z) TP This
n—+00 n—+00

shows that S C U and p is a repelling fixed point in U. By Theorem B, U is of hyperbolic
type I and the iterates of all points from U behave in the same way as for points in S. [

Figure 3: Left: The dynamical plane of f(z) = 2 —log2 + 2z — e* with the Baker domain U of
hyperbolic type I. Right: The map f(x) on the real line.

5.2 Hyperbolic type 1I: the standard family

Let f(z) = z+ a + Bsin(z) for 0 < a < 27 and 0 < B < 1. Projecting f by w = €%, we
obtain the map

F(w) = ipes (W=1/w)

which is a holomorphic self-map of C* = C\ {0}. It is easy to check that F restricted to the
unit circle St is the well-known standard family of circle maps, studied initially by Arnold in
[A].

It has been shown that for appropriately chosen values of the parameters a and 3, the
map F has a Herman ring V symmetric with respect to S' (see e.g. [Ba3, F, H1]). This
means that V is conformally equivalent to an annulus and F|y is conformally conjugate to
an irrational rigid rotation.

Like in the previous example, it is easy to check that lifting V by e** we obtain a Fatou
component U of f, which is an invariant Baker domain, symmetric with respect to the
real axis. Since V is a rotation domain, the map F' is univalent in V. Using the fact
f(z+ 2knm) = f(z) + 2kw one can easily show that f|y must also be univalent.

On the real axis, the forward iterates under f tend to +oo and the backward ones to —oo.
Since AU is symmetric with respect to R, Lemma 3.1 implies that the backward dynamical
access must be different from the forward one. Therefore, U is a Baker domain of hyperbolic
type II and OU is disconnected.
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We remark that the boundary of U has at least two connected components but it is not
known whether these are the only two. As noted in [BD1], it is not known whether the
Herman ring V' contains 0 and oo in its boundary. If that were the case and these points
were accessible from V', then U would have infinitely many accesses to infinity and 0U would
have infinitely many components. Numerical estimates seem to indicate this does not hold
(see Figure 4).

S [

Figure 4: Left: The dynamical plane of F(w) = wei®eB/2(w=1/v) with o = 1.8 and # = 0.6. The
boundaries of the Herman ring V' have been obtained by plotting the orbit of the critical points. The
unit circle is indicated. Right: The dynamical plane of f(z) = z 4+ a + 8sin(z) with the Baker domain
U of hyperbolic type II.

However, there exists an example of a univalent Baker domain U, such that OU has exactly
two components. In Theorem 7 of [BD1] the authors modify a construction of M. Herman
[H2] and E. Ghys [Gh] to obtain an example of an analytic transcendental self-map f of
C*, such that f has a Herman ring V symmetric with respect to S' and 0V consists of two
quasicircles in C*. The lift by exp of such a Herman ring gives an invariant univalent Baker
domain U, such that OU has exactly two components.

5.3 Parabolic type: the semistandard map

Consider F(w) = e*we®, known as the semistandard map. Then 0 is the fixed point of F
and F'(0) = e“. Under the exponential map, F' lifts to the map f(z) = z+ a + €*. Note that
if we choose the value of « appropriately, so that the fixed point w = 0 is say, attracting, then
its immediate basin of attraction lifts to a domain containing a left half-plane {Re(z) < z¢}
for some zy, on which all iterates under f must tend to oo (like in Bergweiler’s example).
However, the Baker domain obtained in this way is non-univalent.

The works of Herman [H2] and Ghys [Gh] imply (as explained in [BW]), that for appro-
priate values of the parameter a the map F' has a Siegel disc V' around w = 0, bounded
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by a quasicircle. In the same way as in Subsection 5.2 one can show that lifting V' by the
exponential, we obtain a univalent Baker domain U containing a left half-plane, such that U
is bounded by a Jordan curve (the lift of 9V'). See Figure 5.

Observe that if z € U and Re(z) — —oo, then dist(z,0U)/|f(z) — z| — oo. Hence, by
Corollary 3.4, U is of parabolic type.

Figure 5: Left: The dynamical plane of F(w) = e®we® with e* = (v/5 — 1)/2. The orbit of the
critical point and some orbits in the Siegel disc V' are indicated. Right: The dynamical plane of
f(2) = z + a + e* with the Baker domain U of parabolic type.

6 Example of a univalent spiraling Baker domain

For any a > 0 we construct an entire transcendental map F' : C — C with an invariant Baker
domain U, such that F' is univalent on an open neighbourhood of U and

UD {rem |alogr+a1 <0 <alogr+ p1,7 >r},
UcC{re? | alogr+as <0< alogr+ fa,r >ry}

for some constants a1, a9, 81, B2,71,72, such that 0 < £; —a; < 2w, r; > 0, 1 = 1,2. First we
prove a general lemma about constructing invariant Baker domains using the approximation
theory, based on the method from [EL2].

L_emﬂa 6.1. LetAVlﬁ,V[&Wg be unbounded domains in C, such that Vi C_VQ_C W1,
WinNnWy = 0 and C\ (W1 UWy) is connected and locally connected at co. Let G : W1 UWy — C
be a continuous map, holomorphic on Wy U Ws, such that:

(a) G(V}) C Vi and dist(G(V}),0V1) > c1,
(b) G(an) C Wy and diSt(G(BVQ), 8W2) > co,
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(c) G(W3) is a bounded subset of Wy and dist(G (W), 0Ws) > c3,
(d) |G(z) — z| > c4 for every z € V;

for some constants c1,ca,c3,c4 > 0. Then for every sufficiently small € > 0 there ezists an
entire transcendental map F : C — C, such that |[F(z) — G(z)| < € for every z € W1 U W>
and F has an invariant Baker domain U, such that Vi CU C U C Vs.

Moreover, if in addition:
(e) Vo C Wy and dist(Va, OW1) > cs,

(f) Every points z1,z2 € Vo can be joined by a curve in Vo of length smaller than cg|z1 — 22|,

|G(z1) — G(2z2)| > c7|21 — 23] for every 21,22 € Vo such that |21 — 23] < 1,

)
)
8)
)

(
(h) |G(z1) — G(22)| > cs for every z1,z2 € Vo such that |z — z2| > 1
for some constants cs,cg,c7,cg > 0, then F is univalent on Vo, in particular on U.

Proof. To construct the map F' we use the following theorem from approximation theory (see
e.g. [Gal]).

Arakeljan’s Theorem. Let E C C be a closed set. The following properties are equivalent:

1. FEvery function ¢ continuous on E and analytic in the interior of E can be uniformly
approzimated by entire functions,

2. C \ E is connected and locally connected at co.

Set E = Wi UWs, ¢ = G and choose € > 0 smaller than ¢; for i = 1,... ,4. By the
Arakeljan theorem, there exists an entire map F' : C — C, such that |F(z) — G(z)| < ¢ for
every z € W1 U Ws. This together with the assumption (a) implies that F(Vi) C V4 and V;
is contained in some F'-invariant Fatou component U. By the assumption (d), there are no
F-fixed points in V3, so by the classification of Fatou components, F"(z) — oo as n — +00
for every z € U. On the other hand, by the assumption (c), we have F(W3) C W, and W is
contained in a basin of an attracting fixed point from Wy. This implies that U N W, = () and
also that F' is not a polynomial (because W5 is unbounded). Moreover, F(0V,) C W5 by the
assumption (b), so U C V5. Thus, U is an invariant Baker domain, such that Vi C U and
UcCV,.

Suppose now that the additional assumptions of the lemma are satisfied. We show that
for sufficiently small ¢, F' is univalent on V5. Suppose that F'(z;) = F(z2) for some 21, 25 € V5.
By the assumption (h), we can assume |21 — 22| < 1. Let 9(z) = F(z) —G(z) for z € Wi UWs.
By the assumption (e), 9 is defined on every disc centred at z € V5 of radius ¢5. Since |¢)| < ¢,
by the Cauchy formula for 1)’ we get

[ (2)| < €/cs for every z € V.
This together with the assumption (f) gives

(1) — P(22)] < (co/c5)elz1 — 22l
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so using the assumption (g) we get

crlz1 — 22| <|G(21) — G(22)] = [9(21) — ¥(22)] < (cs/c5)elz1 — 22

This implies z; = z9 provided ¢ < ¢5c7/cg. O

To construct our spiraling example, we define the suitable domains Vi, Vo, W1, Wy to-
gether with the map G, such that all the assumptions of Lemma 6.1 are satisfied.

Let H(w) = 4(w — 5) + 5 for w € C. Set #y = arctana, s = sin?fy and define

Py ={w |z >yl + 6}, P =H(P)={w|z>4"""|y +9},
Py={w|z> |y +4}, Py=H(P) ={w|z>—4"]y|* + 1},
S={w|z>-2""°y|* +3}, l={w|z=-2""°y|°+2},

where w = x 4+ iy € C. ThenECPlCECPgCECSC?CPQandZCPQ\E. See
Figure 6.

Lo

R

| <
Figure 6: The regions Py, 131, Ps, 152, S and the curve [.

Denote by Log the branch of the logarithm defined on C \ (—o0, 0] leading to the strip
{#z | |[Im(z2)| < w}. Note that Log(P1) D {z + iy | x > zo,—7/3 <y < 7/3} for some zy > 0.

Let Q(z) = cos fypei®z and let
® = expo(@ o Log.
Define

W1 = @(S), T
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An easy calculation shows that the image of a horizontal line {z+iyg | € R} under exp o@ is
a spiraling curve {re?’ | § = alogr +y}. Hence, Vi contains a suitable spiraling domain and
V5 is contained in another such domain. Moreover, the intersection of Q({z | |Im(z)| < 7})
with any vertical line is an open interval of length 27, so exp is univalent on Q({z | |[Im(z)| <
m}). Hence, @ is univalent on C \ (—o0,0]. Define

G(z) = B(H(27'(2)))

for = € Wy. Define also Wy to be the component of C \ I' disjoint from W7j. (See Figure 7).
Then T = 0W,, Wi N Wy = ) and Vs C Wy. Choose a geometric disc D such that D C W,
and define G on W, to be a homeomorphism onto D, conformal on W.

It is obvious that Vi, Vo, W1, W5 are simply connected unbounded domains in C, such that
VicVoCVoC Wi, WinWy =0 and @\ (W1 UW>) is connected and locally connected at
0o. See Figure 7.

Figure 7: The image of Figure 6 under the map ®.

By definition, G(V}) = 17_1 cW ariG(an) = 8V, C Wy. Moreover, G(Ws) = D, so it is
a bounded subset of Wy and dist(G(Ws), 0W5) > C; for some constant C; > 0. Hence, the
assumption (c) of Lemma 6.1 is satisfied.

A straightforward computation shows
lw]™*/Ca < @' (w)| < Calw|™* (1)
for some constant Cy > 0 and every w € C\ (—o0,0]. Moreover, we have
Lemma 6.2. There exists ¢ > 0 such that
dist(w, dP;) > c|lw|® for every w € P, i = 1,2,

dist(w, 1) > cjw|® for every w € 0P,
dist(w, 0P,) > c|lw|® for every w € 0S.
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Proof. Note that the sets dP;, dP;, 85,1 are disjoint curves described by equations of the form
z = Aly|® + B for some A, B € R Hence, clearly we can assume that |w| is sufficiently large.
Then the constants B are small compared to |y|®, so to prove the lemma, it is sufficient to
show that for given A; > Ag > 0, if wy = z1 +iy1, we = x2 +1y2 with z; = A1y}, z2 = Agy3,
then there exists ¢ > 0 such that |w; — wq| > clw;|® for sufficiently large yi,y2 > 0. Note
that by definition, s € (0, 1).

If |y1 — y2| > y7, then for large y,
lwi]* < (21 +91)° < (291)° < 2°[y1 — o < 2°[wy — wol.

If |y1 — yo| < yf, then

s—1y,. s

i —ysl <s(yi 'y Dy — el < st +ys Dy,
SO

|lwi —we| > |21 — z2| > A1y — A2(y] + S(yf_l + yg_l)yf)
= y§(A; — Ay — Aos(yit +y57h).

Since A1 — Ay > 0 and y‘ffl + ygfl tends to 0 as y1,y2 — +00, we get |w — wa| > ((41 —
A2)/2)y; > (A1 — A2)/4)|w:|* for large y1, yo. O

Using (1), Lemma 6.2 and the Koebe theorem, we easily check that the assumptions (a),
(b), (d), (e) and (f) of Lemma 6.1 are satisfied. Finally, we check the assumptions (g) and
(h). Let 21,22 € Vo and let w; = ®~1(21), wy = ®~!(22). Suppose |21 — 22| < 1. Then by the
assumptions (b), (f), Corollary 2.1 and the Koebe theorem for the map ® !, we have

dist (w1, (—00,0]) > Cs|w; — ws|

for some constant C'3 > 0. Since H is affine, this together with Corollary 2.1 and the Koebe
theorem for the map ® implies |G(z1) — G(z2)| > C4|z1 — 22| for a constant Cy > 0. Hence,
the assumption (g) is satisfied. Assume now |z; — 22| > 1 and suppose |G(z1) — G(z2)| < €
for a small £ > 0. Note that G(z),G(2z2) € Vo and by (1) and the Koebe theorem, we have

dist(Va, ®(C \ (—o0,0])) > Cs
for a constant Cs > 0. Hence, by Corollary 2.1 and the Koebe theorem for the map ®!,
diSt(H(’wl), (—OO, O]) > 06|H(’UJ1) - H(’Uj2)| = 4C’6|w1 — w2|

for some constant Cg > 0. Using this, Corollary 2.1 and the Koebe theorem for the map @,
we get |G(z1) — G(z2)| > C7]z1 — 22| > C7 for a constant C7 > 0. This is a contradiction for
g9 < C7. Therefore, the assumption (h) is satisfied. In this way we have shown that all the
assumptions of Lemma, 6.1 are fulfilled.
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Remark 6.3. It is easy to check that in our example, U is of hyperbolic type I. Indeed, let
Y C P, be a bounded domain containing the segment [5,13], such that H=1(Y) C Y. Then
®(Y) C Vo, so f is univalent on ®(Y) and

(Flay)) 1 (@(Y)) C &(Y)

(if € is small enough). Hence, ®(Y) contains a repelling F-fixed point ¢. Since ®([7,13]) C
®(Y) is a curve joining ®(7) with F(®(7)) in U, it follows that (F|gy)) " (®(7)) € U for
n > 0, so the backward iterates of ®(7) under (F|y)~" tend to (. By Theorem B, U is of
hyperbolic type I.
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