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Abstract. We determine the set of geometric endomorphism algebras of geo-
metrically split abelian surfaces defined over Q. In particular we find that this

set has cardinality 92. The essential part of the classification consists in deter-

mining the set of quadratic imaginary fields M with class group C2 × C2 for
which there exists an abelian surface A defined over Q which is geometrically

isogenous to the square of an elliptic curve with CM by M . We first study
the interplay between the field of definition of the geometric endomorphisms

of A and the field M . This reduces the problem to the situation in which

E is a Q-curve in the sense of Gross. We can then conclude our analysis by
employing Nakamura’s method to compute the endomorphism algebra of the

restriction of scalars of a Gross Q-curve.
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1. Introduction

Let A be an abelian variety of dimension g ≥ 1 defined over a number field k of
degree d. Let us denote by AQ its base change to Q. We refer to End(AQ), the Q-

algebra spanned by the endomorphisms ofA defined over Q, as the Q-endomorphism
algebra of A. For a fixed choice of g and d, it is conjectured that the set of possi-
bilities for End(AQ) is finite. A slightly stronger form of this conjecture, applying
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to endomorphism rings of abelian varieties over number fields, has been attributed
to Coleman in [BFGR06].

Hereafter, let A denote an abelian surface defined over Q. In the case that A is
geometrically simple (that is, AQ is simple), the previous conjecture stands widely
open. If A is principally polarized and has CM it has been shown by Murabayashi
and Umegaki [MU01] that End(AQ) is one of 19 possible quartic CM fields. How-
ever, narrowing down to a finite set the possible quadratic real fields and quater-
nion division algebras over Q which occur as End(AQ) for some A has escaped

all attempts of proof. See also [OS18] for recent more general results which prove
Coleman’s conjecture for CM abelian varieties.

In the present paper, we focus on the case that A is geometrically split, that
is, the case in which AQ is isogenous to a product of elliptic curves, which we will

assume from now on. Let A be the set of possibilities for End(AQ), where A is a
geometrically split abelian surface over Q.

Let us briefly recall how scattered results in the literature ensure the finiteness
of A (we will detail the arguments in Section 4). Indeed, if AQ is isogenous to the

product of two non-isogenous elliptic curves, then the finiteness (and in fact the
precise description) of the set of possibilities for End(AQ) follows from [FKRS12,

Proposition 4.5]. If, on the contrary, AQ is isogenous to the square of an elliptic

curve, then the finiteness of the set of possibilities for End(AQ) was established by

Shafarevich in [Sha96] (see also [Gon11] for the determination of the precise subset
corresponding to modular abelian surfaces). In the present work, we aim at an
effective version of Shafarevich’s result. Our starting point is [FG18, Theorem 1.4],
which we recall in our particular setting.

Theorem 1.1 ([FG18]). If A is an abelian surface defined over Q such that AQ is

isogenous to the square of an elliptic curve E/Q with complex multiplication (CM)
by a quadratic imaginary field M , then the class group of M is 1, C2, or C2 × C2.

It should be noted that several other works can be used to see that, in the
situation of the theorem, the exponent of the class group of M divides 2 (see
[Sch07] or [Kan11], for example).

While it is an easy observation that an abelian surface A as in the theorem can
be found for each quadratic imaginary field M with class group 1 or C2 (see [FG18,
Remark 2.20] and also Section 4), the question whether such an A exists for each of
the fields M with class group C2×C2 is far from trivial. The aforementioned results
are thus not sufficient for the determination of the set A. The main contribution
of this article is the following theorem.

Theorem 1.2. Let M be a quadratic imaginary field with class group C2 × C2.
There exists an abelian surface defined over Q such that AQ is isogenous to the

square of an elliptic curve E/Q with CM by M if and only if the discriminant of
M belongs to the set

{−84,−120,−132,−168,−228,−280,−372,−408,−435,−483,(1.1)

−520,−532,−595,−627,−708,−795,−1012,−1435}.

The only imaginary quadratic fields with class group C2×C2 whose discriminant
does not belong to (1.1) are

(1.2) Q(
√
−195), Q(

√
−312), Q(

√
−340), Q(

√
−555), Q(

√
−715), Q(

√
−760).
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With Theorem 1.2 at hand, the determination of the set A follows as a mere
corollary (see §4 for the proof).

Corollary 1.3. The set A of Q-endomorphism algebras of geometrically split abelian
surfaces over Q is made of:

i) Q×Q, Q×M , M1×M2, where M , M1 and M2 are quadratic imaginary fields
of class number 1;

ii) M2(Q), M2(M), where M is a quadratic imaginary field with class group 1,
C2, or C2 × C2 and distinct from those listed in (1.2).

In particular, the set A has cardinality 92.

The paper is organized in the following manner. In Section 2 we attach a c-
representation %V of degree 2 to an abelian surface A defined over Q such that
AQ is isogenous to the square of an elliptic curve E/Q with CM by M . It is well
known that E is a Q-curve and that one can associate a 2-cocycle cE to E. A
c-representation is essentially a representation up to scalar and it is thus a no-
tion closely related to that of projective representation. In the case of the c-
representation %V attached to A, the scalar that measures the failure of %V to
be a proper representation is precisely the 2-cocycle cE . Choosing the language
of c-representations instead of that of projective representations has an unex-
pected payoff: the tensor product of a c-representation % and its contragradient
c-representation %∗ is again a proper representation. We show that %V ⊗ %∗V coin-
cides with the representation of GQ on the 4 dimensional M -vector space End(AQ).

This representation has been studied in detail in [FS14] and the tensor decomposi-
tion of End(AQ) is exploited in Theorems 2.20 and 2.27 to obtain obstructions on
the existence of A. These obstructions extend to the general case those obtained
in [FG18, §3.1,§3.2] under very restrictive hypotheses. The c-representation point
of view also allows us to understand in a unified manner what we called group the-
oretic and cohomological obstructions in [FG18]. It should be noted that one can
define analogues of %V in other more general situations. For example, a parallel
construction in the context of geometrically isotypic abelian varieties potentially of
GL2-type has been exploited in [FG19] to determine a tensor factorization of their
Tate modules. This can be used to deduce the validity of the Sato-Tate conjecture
for them in certain cases.

In Section 3, we describe a method of Nakamura to compute the endomorphism
algebra of the restriction of scalars of certain Gross Q-curves (see Definition 2.9
below for the precise definition of these curves). Then we apply this method to all
Gross Q-curves with CM by a field M of class group C2 × C2. This computation
plays a key role in the proof of Theorem 1.2, both in proving the existence of the
abelian surfaces for the fields M different from those listed in (1.2), and in proving
the non-existence for the fields of (1.2).

In Section 4 we culminate the proofs of Theorem 1.2 and Corollary 1.3 by as-
sembling together the obstructions and existence results from Sections 2 and 3. We
essentially show that we can use the results of Section 2 to reduce to the case of
Gross Q-curves, and then we deal with this case using the results of Section 3

Notations and terminology. For k a number field, we will work in the category
of abelian varieties up to isogeny over k. Note that isogenies become invertible in
this category. Given an abelian variety A defined over k, the set of endomorphisms
End(A) of A defined over k is endowed with a Q-algebra structure. More generally,
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if B is an abelian variety defined over k, we will denote by Hom(A,B) the Q-
vector space of homomorphisms from A to B that are defined over k. We note that
for us End(A) and Hom(A,B) denote what some other authors call End0(A) and
Hom0(A,B). We will write A ∼ B to mean that A and B are isogenous over k. If
L/k is a field extension, then AL will denote the base change of A from k to L. In
particular, we will write AL ∼ BL if A and B become isogenous over L, and we
will write Hom(AL, BL) to refer to what some authors write as HomL(A,B).

Acknowledgements. Fité is thankful to the organizers of the workshop “Arith-
metic Aspects of Explicit Moduli Problems” held at BIRS (Banff) in May 2017,
where he explained Theorem 1.1 and raised the question on the existence of an
abelian surface over Q with End(AQ) ' M2(M) for an M with class group C2×C2.
We thank Andrew Sutherland and John Voight for providing a positive answer to
this question by pointing out the existence of an abelian surface (actually the Ja-
cobian of a genus 2 curve) with the desired property for the field M = Q(

√
−132).

We also thank Noam Elkies for providing three additional genus 2 curves over Q,
these covering the fields M = Q(

√
−408), Q(

√
−435), and Q(

√
−708). These four

examples motivated the present paper.
Fité was funded by the Excellence Program Maŕıa de Maeztu MDM-2014-0445.

Fité was partially supported by MTM2015-63829-P. Guitart was funded by projects
MTM2015-66716-P and MTM2015-63829-P. This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 682152).

2. c-representations and k-curves

The goal of this section is to obtain obstructions to the existence of abelian
surfaces defined over Q such that End(AQ) ' M2(M), where M is a quadratic
imaginary field. To this purpose, we analyze the interplay between the k-curves
and c-representations that arise from them.

2.1. c-representations: general definitions. Let V be a vector space of finite
dimension over a field k and let G be a finite group. We say that a map

%V : G→ GL(V )

is a c-representation (of the group G) if %V (1) = 1 and there exists a map

cV : G×G→ k×

such that for every σ, τ ∈ G one has

(2.1) %V (σ)%V (τ) = %V (στ)cV (σ, τ) .

Remark 2.1. The following properties follow easily from the definition:

i) Note that we have

%V (σ−1) = %V (σ)−1cV (σ−1, σ) and %V (σ−1) = %V (σ)−1cV (σ, σ−1) .

In particular, cV (σ, σ−1) = cV (σ−1, σ).
ii) Note that if cV (·, ·) = 1, the notion of c-representation corresponds to the usual

notion of representation.
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Let V and W be c-representations of the group G. Let T = Hom(V,W ) denote
the space of k-linear maps from V to W . A homomorphism of c-representations
from V to W is a k-linear map f ∈ T such that

f(v) = %W (σ)(f(%V (σ)−1v))

for every v ∈ V and σ ∈ G.
Consider now the map

%T : G→ GL(Hom(V,W )) ,

defined by

(%T (σ)f)(v) = %W (σ)(f(%V (σ)−1v)) .

Proposition 2.2. The map %T together with the map cT : G×G→ k× defined by
cT = c−1

V · cW equip T with the structure of a c-representation.

Before proving the proposition we show a particular case. In the case that W
is k equipped with the trivial action of G, let us write V ∗ = T and %∗ = %T . In
this case, %∗(σ) is the inverse transpose of %V (σ). The assertion of the proposition
is then immediate from (2.1).

The following two lemmas, whose proof is straightforward, imply the proposition.

Lemma 2.3. The maps

%⊗ : G→ GL(V ⊗W ) ,

defined by %⊗(σ)(v ⊗ w) = %V (σ)(v)⊗ %W (σ)(w) and c⊗ = cV · cW endow V ⊗W
with a structure of c-representation.

Lemma 2.4. The map

φ : W ⊗ V ∗ → T

defined by φ(w ⊗ f)(v) = f(v)w is an isomorphism of c-representations.

Corollary 2.5. When V = W , the c-representation T is in fact a representation.

2.2. k-curves: general definitions. We briefly recall some definitions and re-
sults regarding Q-curves and, more generally, k-curves with complex multiplication.
More details can be found in [FG18, §2.1] and the references therein (especially
[Que00], [Rib92], and [Nak04]).

Let E/Q be an elliptic curve and let k be a number field, whose absolute Galois
group we denote by Gk.

Definition 2.6. We say that E is a k-curve if for every σ ∈ Gk there exists an
isogeny µσ : σE → E.

Definition 2.7. We say that E is a Ribet k-curve if E is a k-curve and the isogenies
µσ can be taken to be compatible with the endomorphisms of E, in the sense that
the following diagram

σE

σϕ

��

µσ // E

ϕ

��
σE

µσ // E

(2.2)

commutes for all σ ∈ Gk and all ϕ ∈ End(E).
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Remark 2.8. i) Observe that if E does not have CM, then E is a k-curve if and
only if it is a Ribet k-curve. If E has CM (say by a quadratic imaginary
field M), it is well known that E is isogenous to all of its Galois conjugates
and hence it is always a k-curve; it is a Ribet k-curve if and only if M ⊆ k (cf.
[Sil94, Theorem 2.2]).

ii) We warn the reader that in the present paper we are using a slightly different
terminology from that of [FG18]: as in [FG18] the only relevant notion was
that of a Ribet k-curve, we called Ribet k-curves simply k-curves.

Let K be a number field containing k. We say that an elliptic curve E/K is a
k-curve defined over K (resp. a Ribet k-curve defined over K) if EQ is a k-curve

(resp. a Ribet k-curve). We will say that E is completely defined over K if, in
addition, all the isogenies µσ : σE → E can be taken to be defined over K.

Definition 2.9. Let H denote the Hilbert class field of M and let E/H be an elliptic
curve with CM by M . We say that E is a Gross Q-curve if E is completely defined
over H.

The next proposition characterizes the existence of Gross Q-curves and Ribet
M -curves with CM by M defined over the Hilbert class field H.

Proposition 2.10. Let M be a quadratic imaginary field and let D denote its
discriminant. Then:

i) There exists a Ribet M -curve E∗ with CM by M and completely defined over H.
ii) There exists a Gross Q-curve E∗ with CM by M (and completely defined over

H) if and only if D is not of the form

(2.3) D = −4p1 . . . pt−1 ,

where t ≥ 2 and p1, . . . , pt−1 are primes congruent to 1 modulo 4.

The first part of the previous proposition is a weaker form of [Shi71, Proposition
5, p. 521] (see also [Nak01, Remark 1]). For the second part, we refer to [Gro80, §11]
and [Nak04, Proposition 5]. Discriminants of the form (2.3) are called exceptional.

Suppose from now on that E is a k-curve defined over K with CM by an imag-
inary quadratic field M . Fix a system of isogenies {µσ : σE → E}σ∈Gk . By
enlarging K if necessary, we can always assume that K/k is Galois and that E is
completely defined over K. We will equip End(E) with the following action. For
σ ∈ Gal(K/k) and ϕ ∈ End(E) define

σ ? ϕ = µσ ◦ σϕ ◦ µ−1
σ .

Note that if E is a Ribet k-curve, then this action is trivial. If we regard M as
a Gal(K/k)-module by means of the natural Galois action (which is actually the
trivial action when k contains M) and End(E) endowed with the action defined
above, then the identification of End(E) with M becomes a Gal(K/k)-equivariant
isomorphism. The map

cKE : Gal(K/k)×Gal(K/k) −→ M×

(σ, τ) 7−→ µστ ◦ σµ−1
τ ◦ µ−1

σ

satisfies the condition

(2.4) (% ? cKE (σ, τ)) · cKE (%σ, τ)−1 · cKE (%, στ) · cKE (%, σ)−1 = 1,
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for %, σ, τ ∈ Gal(K/k), and is then a 2-cocycle1. Denote by γKE the cohomology
class in H2(Gal(K/k),M×) corresponding to cKE . The class γKE only depends on
the K-isogeny class of E.

The next result is a consequence of Weil’s descent criterion, extended to varieties
up to isogeny by Ribet ([Rib92, §8]).

Theorem 2.11 (Ribet–Weil). Suppose that E is a Ribet k-curve completely defined
over K (and hence M ⊆ k). Let L be a number field with k ⊆ L ⊆ K, and consider
the restriction map

res : H2(Gal(K/k),M×) −→ H2(Gal(K/L),M×).

If res(γKE ) = 1, there exists an elliptic curve C/L such that E ∼ CK .

2.3. M-curves from squares of CM elliptic curves. Let M be a quadratic
imaginary field. Let A be an abelian surface defined over Q such that AQ is isoge-

nous to E2, where E is an elliptic curve defined over Q with CM by M . Let K/Q
denote the minimal extension over which

End(AQ) ' End(AK) .

By the theory of complex multiplication, K contains the Hilbert class field H of M .
Note also that K/Q is Galois and the possibilities for Gal(K/Q) can be read from
[FKRS12, Table 8]. For our purposes, it is enough to recall that

(2.5) Gal(K/M) '


Cr for r ∈ {1, 2, 3, 4, 6},
Dr for r ∈ {2, 3, 4, 6},
A4, S4 .

Here, Cr denotes the cyclic group of r elements, Dr denotes the dihedral group of
2r elements, and A4 (resp. S4) stands for the alternating (resp. symmetric) group
on 4 letters.

We can (and do) assume that E is in fact defined over K, and then we have that
AK ∼ E2. For σ ∈ Gal(K/Q) we have that (σE)2 ∼ σAK = AK ∼ E2. Therefore,
Poincaré’s decomposition theorem implies that E is a Q-curve completely defined
over K.

For the purposes of this article, we need to consider the following (slightly more
general) situation: Let N/M be a Galois subextension of K/M , and let E∗ be
a Ribet M -curve which is completely defined over N and such that EQ ∼ E∗Q.

Observe that there always exist N and E∗ satisfying these conditions, for example
by taking N = K and E∗ = E; but in §2.4 and §2.5 below we will exploit certain
situations where N ( K and E∗ 6= E.

Then we can consider two cohomology classes: the class γKE attached to E, and
the class γNE∗ attached to E∗. We recall the following key result about γKE , which
is a particular case of [FG18, Corollary 2.4].

Theorem 2.12. The cohomology class γKE is 2-torsion.

Denote by U the set of roots of unity of M and put P = M×/U . The same
argument of [FG18, Proof of Theorem 2.14] proves the following decomposition of

1Actually, this is the inverse of the cocycle considered in [FG18], but this does not affect any
of the results that we will use.
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the 2-torsion of H2(Gal(K/M),M×):

H2(Gal(K/M),M×)[2] ' H2(Gal(K/M), U)[2]×Hom(Gal(K/M), P/P 2) .(2.6)

If M 6= Q(i),Q(
√
−3) this particularizes to

H2(Gal(K/M),M×)[2] ' H2(Gal(K/M), {±1})×Hom(Gal(K/M), P/P 2).

(2.7)

For γ ∈ H2(Gal(K/M),M×)[2] we will denote by (γ±, γ̄) its components under the
isomorphism (2.7); we will refer to γ± as the sign component and to γ̄ as the degree
component.

In order to study the relation between γKE and γNE∗ , define L/K to be the smallest
extension such that E∗L and EL are isogenous. Since all the endomorphisms of E are
defined over K, this is also the smallest extension L/K such that Hom(E∗L, EL) =
Hom(E∗Q, EQ). The extension L/Q is Galois. Indeed, for σ ∈ GQ put L′ = σL

and let βσ : σE∗ → E∗ and µσ : σE → E be isogenies defined over N and over
K respectively; then, if φ : E∗L → EL is an isogeny defined over L we find that
µσ ◦ σφ ◦ β−1

σ is an isogeny defined over L′ between E∗L′ and EL′ , so that L ⊆ L′

and therefore L = L′.
One can also characterize L/K as the minimal extension such that

Hom(E∗Q, AQ) ' Hom(E∗L, AL) .

Denote by

infKN : H2(Gal(N/M),M×) −→ H2(Gal(K/M),M×)

the inflation map in Galois cohomology.

Lemma 2.13. Suppose that M 6= Q(i),Q(
√
−3). Then

infKN (γNE∗) = w · γKE ,

for some w ∈ H2(Gal(K/M), {±1}).

Proof. Since EL ∼ (E∗)L we have that

infLN (γNE∗) = infLK(γKE ).(2.8)

Now consider the following piece of the inflation–restriction exact sequence

H1(Gal(L/K),M×)
t−→ H2(Gal(K/M),M×)

infLK−−−→ H2(Gal(L/M),M×).(2.9)

Equality (2.8) implies that infKN (γNE∗) and γKE have the same image under the in-

flation map infLK , and therefore

infKN (γNE∗) = t(v) · γKE
for some v ∈ H1(Gal(L/K),M×). If M 6= Q(i),Q(

√
−3) we have that

H1(Gal(L/K),M×) ' Hom(Gal(L/K), {±1})

and therefore t(v) belongs to H2(Gal(K/M), {±1}). �

Observe that from Theorem 2.12 one cannot deduce that the class γNE∗ is 2-
torsion, since AN is not isogenous to (E∗)2 in general. By Lemma 2.13, what we do
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deduce is that infKN (γNE∗)
2 = 1. Therefore, once again by the inflation–restriction

exact sequence

H1(Gal(K/N),M×)
t−→ H2(Gal(N/M),M×)

infKN−−−→ H2(Gal(K/M),M×)(2.10)

we have that

(γNE∗)
2 = t(µ) for some µ ∈ H1(Gal(K/N),M×).(2.11)

The following technical lemma will be used in §2.5 below.

Lemma 2.14. Suppose that N/M is abelian and that M 6= Q(i),Q(
√
−3). Let

cNE∗ be a cocycle representing the class γNE∗ . Then cNE∗(σ, τ) = ±cNE∗(τ, σ) for all
σ, τ ∈ Gal(N/M).

Proof. Since M 6= Q(i),Q(
√
−3) we have that

H1(Gal(K/N),M×) = Hom(Gal(K/N), {±1}).(2.12)

By (2.11) and (2.12) we can suppose that there exists a map d : Gal(N/M) →
M× such that

cNE∗(σ, τ)2 = d(σ)d(τ)d(στ)−1 · t(µ)(σ, τ),

where t(µ)(σ, τ) ∈ {±1}. Therefore

cNE∗(σ, τ)2 = ±d(σ)d(τ)d(στ)−1 = ±d(σ)d(τ)d(τσ)−1 = ±cNE∗(τ, σ)2.

We see that
cNE∗ (σ,τ)

cN
E∗ (τ,σ)

is a root of unity in M , hence ±1. �

2.4. c-representations from squares of CM elliptic curves. Keep the nota-
tions from Section 2.3. We will denote by V the M -module Hom(E∗L, AL). Fix a
system of isogenies {µσ : σE∗ → E∗}σ∈Gal(L/M). We do not have a natural action
of Gal(L/M) on V , but the next lemma says that we can use the chosen system of
isogenies to define a c-action on V .

Lemma 2.15. The map

%V : Gal(L/M)→ GL(V )

defined by
%V (f) = σf ◦ µ−1

σ for σ ∈ Gal(L/M), f ∈ V
and the 2-cocycle cLE∗ endow the module V with a structure of a c-representation.

Proof. This is tautological:

%V (σ)%V (τ)(f) = στf ◦ σµ−1
τ ◦ µ−1

σ = στf ◦ µ−1
στ · cLE∗(σ, τ) = %V (στ)(f)cLE∗(σ, τ) .

�

Let now R denote the M -module End(AK). It is equipped with the natural Ga-
lois conjugation action of Gal(L/M), which factors through Gal(K/M) and which
we sometimes will write as %R(σ)(ψ) = σψ. Let T denote Hom(V, V ), equipped with
the c-representation structure given by Lemma 2.15 and Proposition 2.2. Note that
by Corollary 2.5, we know that T is actually a M [Gal(L/M)]-module.

Lemma 2.16. The map

Φ : R→ T ' V ⊗ V ∗ Φ(ψ)(f) = ψ ◦ f, for f ∈ V, ψ ∈ End(AK)

is an isomorphism of c-representations (and thus of M [Gal(L/M)]-modules).
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Proof. The fact that Φ is a morphism of c-representations is straightforward:

%T (σ)(Φ(σ
−1

ψ))(f) = %V (σ)(Φ(σ
−1

ψ)(%V (σ)−1(f))) ,

= %V (σ)(σ
−1

ψ ◦ %V (σ−1)(f)cLE∗(σ
−1, σ)−1) ,

= ψ ◦ f ◦ σµ−1
σ−1µ

−1
σ cLE∗(σ

−1, σ)−1 ,

= Φ(ψ)(f) ,

where we have used Remark 2.1 in the second and last equalities. The lemma
follows by noting that Φ is clearly injective and that both R and T have dimension 4
over M . �

We now describe the M [Gal(K/M)]-module structure of R. It follows from (2.5)
that the order r of an element σ ∈ Gal(K/M) is 1, 2, 3, 4, or 6.

Lemma 2.17. Tr %R(σ) = 2 + ζr + ζr, where ζr is a primitive r-th root of unity.

Remark 2.18. Note that this lemma is proven in [FS14, Proposition 3.4] under the
strong running hypothesis of that paper: in our setting that hypothesis would say
that there exists E∗ defined over M such that AQ ∼ E∗2Q (i.e., that N can be taken

to be M , in the notation of the previous section).

Proof. We claim that Tr(%R) ∈M is in fact rational. Let us postpone the proof of
this claim until the end of the proof of the lemma. Assuming it, we have that

(2.13) TrM/Q(Tr(%R(σ))) = 2 Tr(%R)(σ) .

But if %RQ is the representation afforded by R regarded as an 8 dimensional module
over Q, we have

(2.14) TrM/Q(Tr(%R(σ))) = Tr(%RQ)(σ) = 2(2 + ζr + ζr),

where the last equality is [FKRS12, Proposition 4.9]. The comparison of (2.13) and
(2.14) concludes the proof of the lemma.

We turn now to prove the rationality of Tr %R. We first recall the aforementioned
proof (that of [FS14, Proposition 3.4]) which uses the fact that we can choose E∗

to be defined over M . In this case, we have that V is an M [Gal(L/M)]-module,

that Tr(%V ∗) is a sum of roots of unity so that Tr(%V ∗) = Tr(%V ), and hence that
Tr(%R) = Tr(%V ) · Tr %V belongs to Q.

For the general case, assume that Tr %R does not belong to Q. Since it is a sum
of roots of unity of orders diving either 4 or 6, then M would be Q(i) or Q(

√
−3),

but then we could take a model of E∗ defined over M , and by the above paragraph,
the trace Tr %R would be rational, which is a contradiction. �

2.5. Obstructions. Keep the notations from Section 2.4 and Section 2.3. Let S
denote the normal subgroup of Gal(K/M) generated by the square elements. In
this section, we make the following hypotheses.

Hypothesis 2.19. i) There exists a Ribet M -curve E∗ with CM by M completely
defined over N , where N/M is the subextension of K/M fixed by S.

ii) M 6= Q(i), Q(
√
−3).

Let σ ∈ Gal(K/M) be an element of order r ∈ {4, 6}. Let

(2.15) ·̄ : Gal(K/M)→ Gal(N/M) ' Gal(K/M)/S



ENDOMORPHISM ALGEBRAS OF Q-SPLIT ABELIAN SURFACES OVER Q 11

denote the natural projection map. Note that Gal(N/M) is a group of exponent
dividing 2.

Theorem 2.20. Under Hypothesis 2.19, we have:

i) If r = 4, then 2cNE∗(σ̄, σ̄) belongs to ±(M×)2.
ii) If r = 6, then 3cNE∗(σ̄, σ̄) belongs to ±(M×)2.

Proof. First of all, note that E∗ is completely defined over N . Thus we can, and
do, assume that cLE∗ is the inflation of cNE∗ . Let s ∈ Gal(L/M) be a lift of σ. By
part ii) of Hypothesis 2.19, we have that [L : K] ≤ 2. Therefore, the order of s
divides 2r. We then have

(2.16) %V (s)2r = %V (s2)rcNE∗(σ̄, σ̄)r = %V (s2r)cNE∗(σ̄, σ̄)r = cNE∗(σ̄, σ̄)r ,

where we have used that cNE∗(σ̄
2e, σ̄2e′) = 1 for any pair of integers e, e′. Let α and β

be the eigenvalues of %V (s). By (2.16), we have that α2r = cNE∗(σ̄, σ̄)r, from which
we deduce that ωrα

2 = cNE∗(σ̄, σ̄) ∈ M×, where ωr is a (not necessarily primitive)
r-th root of unity.

Since the eigenvalues of %V ∗(s) are 1/α and 1/β, by Lemmas 2.17 and 2.16 we
have that

(2.17) 2 + ζr + ζr = (α+ β)

(
1

α
+

1

β

)
; equivalently, α2 + β2 = (ζr + ζr)αβ .

This means that α/β satisfies the r-th cyclotomic polynomial and thus, by reorder-
ing α and β if necessary, we have that α = βζr.

Combining this with (2.17), we get

(2 + ζr + ζr)c
N
E∗(σ̄, σ̄) = (2 + ζr + ζr)ωrα

2 = (2 + ζr + ζr)αβωrζr = (α+ β)2ωrζr .

Since the left-hand side is in M×, the fact that α+β ∈M× tells us that ωrζr ∈M×.
If ωrζr is not rational, then M = Q(ζr), which contradicts part ii) of Hypothe-
sis 2.19. If ωrζr ∈ Q, since it is a root of unity, it must be ±1 and thus we get

±(2 + ζr + ζr)c
N
E∗(σ̄, σ̄) = (α+ β)2 .

Therefore, (2 + ζr + ζr)c
N
E∗(σ̄, σ̄) belongs to ±(M×)2. �

Remark 2.21. Note that it follows from the above proof that if r = 4, then any lift
s ∈ Gal(L/M) of σ has order 2r = 8. Indeed, if the order of s was r, then arguing
as in (2.16), we would obtain %V (s)r = cNE∗(σ̄, σ̄)r/2, from which we would infer
ωr/2α

2 = cNE∗(σ̄, σ̄), for some (not necessarily primitive) r/2-th root of unity. We
could then run the same argument as above, but since ωr/2ζr is never rational, we
would deduce now that M = Q(i). Note that if r = 6 it can certainly happen that
ωr/2ζr ∈ Q.

Until the end of this section, we make the following additional assumption on M .

Hypothesis 2.22. i) Gal(K/M) ' D4 or D6.
ii) M 6= Q(i), Q(

√
−3).

Hypothesis i) implies that N/M is a biquadratic extension. By part i) of Propo-
sition 2.10, there exists a Ribet M -curve E∗ with CM by M completely defined
over the Hilbert class field H of M . Using [FG18, Theorem 2.14], it is immediate
to see that H ⊆ N , so that Hypothesis 2.22 implies Hypothesis 2.19.

The next two propositions describe the structure of the group Gal(L/M).
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Proposition 2.23. If Gal(K/M) ' D4, then Gal(L/M) is isomorphic to either the
dihedral group D8; the generalized dihedral group QD8 of order 16; or the generalized
quaternion group Q16

2.

Proof. If Gal(K/M) ' D4, then by Remark 2.21 we have that any element of
Gal(L/M) projecting onto an element of Gal(K/M) of order 4 must have order 8.
The groups of order 16 with a quotient isomorphic to D4 satisfying the previous
property are those in the statement of the proposition. �

Proposition 2.24. If Gal(K/M) ' D6, there exists a Ribet M -curve E∗ com-
pletely defined over N with CM by M such that E ∼ E∗K and hence L = K and
Gal(L/M) ' D6.

Proof. Recall the cohomology class γKE ∈ H2(Gal(K/M),M×)[2] attached to E
and consider the restriction map

res : H2(Gal(K/M),M×)→ H2(Gal(K/N),M×) .

We will first see that γ = resγKE is trivial. Recall the decomposition (2.7) of the
2-torsion cohomology classes into degree and sign components

H2(Gal(K/N),M×)[2] ' H2(Gal(K/N), {±1})×Hom(Gal(K/N), P/P 2),

and the notation γ± (resp. γ̄) for the sign component (resp. degree component) of
γ. Since Gal(K/N) ' C3 is the subgroup of Gal(K/M) generated by the squares,
we have that γ̄ is trivial. Since

H2(Gal(K/N), {±1}) ' H2(C3, {±1}) = 0 ,

we see that γ± is also trivial. By Theorem 2.11, there exists an elliptic curve E∗

defined over N such that E∗K ∼ E. To see that E∗ is completely defined over N , on
the one hand, note that sinceM 6= Q(i),Q(

√
−3), then E∗ and any Galois conjugate

σE∗ of it are isogenous over a quadratic extension of N . On the other hand, since
E∗K ∼ E and E is completely defined over K, we have that the smallest field of
definition of Hom(E∗Q,

σE∗Q) is contained in K. Since K/N is a cubic extension, we

deduce that E∗ and σE∗ are in fact isogenous over N . �

Corollary 2.25. If Gal(K/M) ' Dr for r = 4 or 6, there exists a Ribet M -curve
E∗ with CM by M completely defined over N for which Gal(L/M) contains

i) an element s of order 8 if r = 4 and of order 6 if r = 6;
ii) an element t such that tst−1 = ta for 1 ≤ a ≤ 2r such that a ≡ −1 (mod r).

Proof. This is obvious when Gal(L/M) is dihedral. For the other options allowed
by Proposition 2.23, recall that

QD8 ' 〈s, t | s8, t2, tsts5〉 , Q16 ' 〈s, t | s8, t2s4, tst−1s〉 .

�

Remark 2.26. It is clear from the proof of Proposition 2.24 that, in the case that
N = H and H is not exceptional, we can choose E∗ in the above corollary to be a
Gross Q-curve.

2The gap identification numbers of QD8 and Q16 are 〈16, 8〉 and 〈16, 9〉, respectively.
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Until the end of this section, we will assume that E∗ is as in the previous corollary.
Let s and t be also as in the corollary, and let σ and τ be the images of s and t
under the projection map

Gal(L/M)→ Gal(K/M) .

Recall also the projection map ·̄ : Gal(K/M)→ Gal(N/M) and note that σ̄ and τ̄
are non-trivial elements of Gal(N/M).

Theorem 2.27. Under Hypothesis 2.22, we have cNE∗(τ̄ , τ̄) = ±1.

Proof. By Lemma 2.14, we have that cNE∗(g, g
′) = ±cNE∗(g′, g) for every g, g′ ∈

Gal(N/M). Moreover, the 2-cocycle condition (2.4) asserts that

cNE∗(τ̄ , τ̄) = cNE∗(τ̄ , τ̄)cNE∗(σ̄, 1) = cNE∗(σ̄τ̄ , τ̄)cNE∗(σ̄, τ̄) .

Then, we have

(2.18)

%V (t)%V (s)%V (t)−1 = %V (t)%V (s)%V (t−1)cNE∗(τ̄ , τ̄) =

= %V (ts)%V (t−1)cNE∗(τ̄ , σ̄)cNE∗(τ̄ , τ̄) =

= %V (tst−1)cNE∗(τ̄ σ̄, τ̄)cNE∗(τ̄ , σ̄)cNE∗(τ̄ , τ̄) =

= ±%V (sa)cNE∗(τ̄ , τ̄)2 .

It is easy to observe that

(2.19) %V (s)a = %V (sa)cNE∗(σ̄, σ̄)(a−1)/2 .

Letting α and β be the eigenvalues of %V (s), taking traces of (2.18), and applying
(2.19), we obtain

(α+ β) = ± (αa + βa) cNE∗(σ̄, σ̄)−(a−1)/2cNE∗(τ̄ , τ̄)2

But as in the proof of Theorem 2.20, we have β = ζrα and cNE∗(σ̄, σ̄) = ωrα
2, where

ζr and ωr are r-th roots of unity and ζr is primitive. This, together with the fact
that a ≡ −1 (mod r), permits to write the above equation as

± 1 + ζr

ω
−(a−1)/2
r (1 + ζr)

= cNE∗(τ̄ , τ̄)2 ∈ (M×)2.

One easily verifies that (1 + ζr)/(1 + ζr) is an r-th root of unity. Therefore, the
left-hand side of the above equation is a root of unity in M×, and hence it must be
±1. �

3. Restriction of scalars of Gross Q-curves

For the convenience of the reader, in this section we review some results of
Nakamura [Nak04] on Gross Q-curves, to which we refer for more details and proofs.

Let M be an imaginary quadratic field. Throughout this section, we make the
following hypothesis.

Hypothesis 3.1. i) M is non-exceptional.
ii) M has class group isomorphic to C2 × C2.

Remark 3.2. If M has class group isomorphic to C2×C2, then the discriminant D
of M belongs to the set

{−84,−120,−132,−168,−195,−228,−280,−312,−340,−372,−408,−435,−483,

−520,−532,−555,−595,−627,−708,−715,−760,−795,−1012,−1435}.



ENDOMORPHISM ALGEBRAS OF Q-SPLIT ABELIAN SURFACES OVER Q 14

This list can be easily obtained from [Wat04], for example. Among them, only
−340 is exceptional.

Then, by Proposition 2.10, there exists a Gross Q-curve E with CM by M ,
which is thus completely defined over the Hilbert class field H of M . The aim of the
present section is to describe Nakamura’s method for computing the endomorphism
algebra of the restriction of scalars of a Gross Q-curve, which we will then apply
to all Gross Q-curves attached to M satisfying Hypothesis 3.1. Our account of
Nakamura’s method will be only in the particular case where M has class group
C2 × C2, which is the case of interest to us.

As seen in Section 2.2, one can associate to E a cohomology class γE := γHE in
the group H2(Gal(H/Q),M×). The set of cohomology classes arising from Gross
Q-curves over H has cardinality 8 (cf. [Nak04, Proposition 4]), and we regard the
set of Gross Q-curves over H as partitioned into 8 equivalence classes according to
their cohomology class.

Let ResH/M (E) denote Weil’s restriction of scalars of E. This variety is a priori
defined over M , but it can be defined over Q, in the sense that ResH/M (E) '
(BE)M for some variety BE/Q. It turns out that the endomorphism algebra
DE = End(BE) only depends on the cohomology class γE [Nak04, Proposition
6]. Nakamura devised a method for computing DE in terms of the Hecke character
attached to E, which he applied to compute all the endomorphism algebras arising
in this way from Gross Q-curves in the cases where D = −84 and D = −195.
We extend his computation to the remaining 21 non-exceptional discriminants of
Remark 3.2.

3.1. Hecke characters of Gross Q-curves. The first step is to compute a set
of Hecke characters whose associated elliptic curves represent all the equivalence
classes of Gross Q-curves.

Local characters. We begin by defining certain local characters that will be used
to describe the Hecke characters. Let IM be the group of ideles of M . If p is a
prime of M , we denote by Up = O×M,p the group of local units. Also, for a rational

prime p put Up =
∏

p|p Up.

Suppose that p is odd and inert in M . Then define ηp as the unique character

ηp : Up → {±1} such that ηp(−1) = (−1)
p−1
2 .

Suppose now that 2 is ramified in M and write D = 4m. If m is odd, then

U2/U
2
2 ' (Z/2Z)

3 ' 〈
√
m, 3− 2

√
m, 5〉.

Define η−4 : U2 → {±1} to be the character with kernel 〈3− 2
√
m, 5〉. If m is even

then

U2/U
2
2 ' (Z/2Z)

3 ' 〈1 +
√
m,−1, 5〉.

Define η8 to be the character with kernel 〈1 +
√
m,−1〉 and η−8 the character with

kernel 〈1 +
√
m,−5〉.

Hecke characters. Let UM =
∏

p Up be the maximal compact subgroup of IM . Let S

be a finite set of primes of M and put US =
∏

p∈S Up. Suppose that η : US → {±1}
is a continuous homomorphism such that η(−1) = −1. Next, we explain how to
construct from η a Hecke character φ : IM → C× (not uniquely determined) that
gives rise, in certain cases, to a Gross Q-curve.
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First of all, extend η to a character that we denote by the same name η : UM →
{±1} by composing with the projection UM → US . Now this character η can be
extended to a character η̃ : UMM

×M×∞ −→ C× by imposing that

η̃(M×) = 1, η̃(z) = z−1 for z ∈M×∞.(3.1)

Let φ : IM → C× be a Hecke character that extends η̃ (there are [H : M ] = 4 such
extensions, cf. [Shi71, p. 523]). For future reference, it will be useful to have the
following formula for φ evaluated at certain principal ideals.

Lemma 3.3. Suppose that (α) is a principal ideal of M such that vp(α) = 0 for
all p ∈ S, and denote by αS ∈ US the natural image of α in US. Then

φ((α)) = η(αS)α∞,(3.2)

where α∞ denotes the image of α in M∞ = C.

Proof. If we write (α) =
∏

q∈T qvq(α), where T denotes the support of (α), then

φ((α)) =
∏
q∈T

φq(αq),

where φq denotes the restriction of φ to Mq and αq the image of α in Mq. Observe
that by hypothesis S ∩ T = ∅, and that if q 6∈ S ∪ T , then φq(αq) = 1, since αq

belongs to Uq and φ|Uq
= η̃|Uq

= 1. Therefore, we can write

φ((α)) =
∏
q∈T

φq(αq)
∏
q 6∈T

φq(αq)
∏
q∈S

φ−1
q (αq) =

(∏
q

φq(αq)

)
η(αS),

where we have used that η has order 2. Then, by (3.1) we have that

φ((α)) =

(
φ∞(α∞)

∏
q

φq(αq)

)
φ∞(α∞)−1η(αS) = φ(α)α∞η(αS) = α∞η(αS).

�

Define now a Hecke character of H by means of ψ = φ ◦NH/M , where

NH/M : IH → IM
denotes the norm on ideles. By a result of Shimura [Shi71, Proposition 9], the
Hecke character ψ is attached to a Gross Q-curve if and only if φ̄ = φ, where the
bar denotes the action of complex conjugation.

For example, if D has some prime factor q ≡ 3 (mod 4), put η0 = ηq. If all the
odd primes dividing D are congruent to 1 modulo 4, then D = 8m for some odd
m and we define η0 to be η−8. If we denote by φ0 : IM → C× a Hecke character
attached to η0 by the above construction, then the Hecke character ψ0 = φ0 ◦NH/M

is the Hecke character attached to a Gross Q-curve over H.
Let W be the set of characters θ : UM → {±1} such that θ(−1) = 1 and θ̄ = θ.

Denote also by W0 the set of θ ∈ W such that θ = κ ◦ NM/Q for some Dirichlet
character κ. By [Nak04, Proposition 3], the group W/W0 is generated by two
characters that can be described explicitly in terms of the characters ηp, η−4, η−8,
and η8. More precisely:

(1) If D = −pqr with p, q, and r primes congruent to 3 modulo 4, then W/W0 =
〈ηpηq, ηpηr〉.
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(2) If D = −pqr with p and q primes congruent to 1 modulo 4, and r ≡ 3
(mod 4), then W/W0 = 〈ηp, ηq〉.

(3) If D = −4pq with p and q congruent to 3 modulo 4, then W/W0 =
〈η−4, ηpηq〉.

(4) If D = −8pq with p and q congruent to 3 modulo 4 then W/W0 =
〈η−8ηp, η−8ηq〉.

(5) If D = −8pq with p ≡ 1 (mod 4) and q ≡ 3 (mod 4) then W/W0 = 〈η8, ηp〉.
(6) If D = −8pq with p and q congruent to 1 modulo 4, then W/W0 = 〈ηp, ηq〉.

Denote by ω̃1, ω̃2 the generators of W/W0, and define ωi = ω̃i ◦NH/M .
Now let k/H be a quadratic extension such that k/Q is Galois and k/M is

non-abelian. Such quadratic extensions exist by [Nak04, Theorem 1]. Denote by
χ : IH → {±1} the Hecke character attached to k/H.

By [Nak04, Theorem 2], the eight equivalence classes of Q-curves over H are
represented by the Hecke characters ψ0 · ω with ω ∈ 〈ω1, ω2, χ〉. Observe that, in
particular, this set of Hecke characters does not depend on the choice of k (any k
which is Galois over Q and non-abelian over M will produce the same set of Hecke
characters).

3.2. Method for computing the endomorphism algebra. Let p1 and p2 be
prime ideals of M that generate the class group and that are coprime to the con-
ductors of ψ0, ω1, ω2, and χ. Let Li be the decomposition field of pi in H, and Fi
the maximal totally real subfield of Li.

Suppose that E is a Gross Q-curve over H with Hecke character of the form
ψ = ψ0ω

a
1ω

b
2 for some a, b ∈ {0, 1}. We can write ψ = φ◦NH/M , where φ = φ0ω̃

a
1 ω̃

b
2.

Then φ(pi) + φ(p̄i) generates a quadratic number field Q(
√
ni), and the endomor-

phism algebra DE = End(BE) is isomorphic to the biquadratic field Q(
√
n1,
√
n2)

(cf. [Nak04, Proposition 7, Theorem 3]).

Remark 3.4. Observe that φ(pi) + φ(p̄i) can be computed if one knows the two
quantities φ(p2

i ) and φ(pip̄i). Since p2
i and pip̄i are principal, one can compute

φ(p2
i ) and φ(pip̄i) by means of (3.2).

Suppose now that the Hecke character of E is of the form ψ = ψ0χω
a
1ω

b
2. Then

DE is a quaternion algebra over Q, say DE '
(
t1,t2
Q

)
. The ti can be computed

as follows (see [Nak04, Proposition 7]). First of all, let n1 and n2 be the rational
numbers defined as in the previous paragraph for the character ψ/χ = ψ0ω

a
1ω

b
2.

(1) Suppose that Gal(k/Li) ' C2 × C2 . Then:
(a) If k/Fi is abelian then ti = ni.
(b) If k/Fi is non-abelian, then ti = D/ni.

(2) Suppose that Gal(k/Li) ' C4. Then:
(a) If k/Fi is abelian, then ti = −ni.
(b) If k/Fi is non-abelian, then ti = −D/ni.

3.3. Computations and tables. For each of the 23 non-exceptional imaginary
quadratic fields of class group C2 × C2, we have computed the 8 endomorphism
algebras arising from restriction of scalars of Gross Q-curves. The results are dis-
played in Table 1. The notation is as follows: for the biquadratic fields, the notation
(a, b) indicates the field Q(

√
a,
√
b); for the quaternion algebras, we write the dis-

criminant of the algebra.



ENDOMORPHISM ALGEBRAS OF Q-SPLIT ABELIAN SURFACES OVER Q 17

For a Gross Q-curve E, recall that we denote by BE the abelian variety over Q
such that ResH/M E ∼ (BE)M . Since BE is isogenous to its quadratic twist over M ,
this implies that

ResH/QE ∼ (BE)2.

We observe in Table 1 that for all discriminants except −195, −312, −555, −715,
and −760, at least one of the quaternion algebras is the split algebra M2(Q) of
discriminant 1. This implies that for the corresponding Gross Q-curve E the vari-
ety BE decomposes as

BE ∼ A2,

with A/Q an abelian surface. Therefore, ResH/QE decomposes as the fourth power
of an abelian surface.

On the other hand, for the discriminants −195, −312, −555, −715, and −760 we
see that BE is always simple: its endomorphism algebra is either a biquadratic field
or a quaternion division algebra over Q. Therefore, ResH/QE ∼W 2 for some simple
variety W of dimension 4. We record these findings in the following statement.

Theorem 3.5. Let M be an imaginary quadratic field of discriminant D and
Hilbert class field H. Suppose that D is non-exceptional and that Gal(H/M) '
C2×C2. If D 6= −195,−312,−555,−715,−760, there exists a Gross Q-curve E/H
such that

ResH/QE ∼ A4, for some simple abelian surface A/Q.

If D = −195,−312,−555,−715,−760, then for every Gross Q-curve E/H we have
that

ResH/QE ∼W 2, for some simple abelian variety W/Q of dimension 4.

Remark 3.6. As mentioned above, the cases of D = −84 and D = −195 were
already computed by Nakamura ([Nak04, §6] ). We note what appears to be a typo

in Nakamura’s table in page 647: the last biquadratic field should be Q(
√
−14,

√
42),

instead of Q(
√
−14,

√
−42).

We have used the software Sage [S+14] and Magma [BCP97] to perform the
computations of Table 1. The interested reader can find the code we used in
https://github.com/xguitart/restriction_of_scalars_of_Q_curves.

https://github.com/xguitart/restriction_of_scalars_of_Q_curves


ENDOMORPHISM ALGEBRAS OF Q-SPLIT ABELIAN SURFACES OVER Q 18

D Biquadratic fields Quaternion Algebras

−84 (−14,−2), (−6, 2), (−6,−42), (−14, 42) 2, 1, 2, 1

−120 (−5, 10), (5,−10), (−5,−10), (5, 10) 1, 6, 3, 1

−132 (22,−2), (−6,−2), (6,−66), (−22,−66) 1, 2, 1, 2

−168 (−14,−2), (3,−21), (14, 21), (−3, 2) 2, 1, 1, 1

−195 (13,−5), (−13,−5), (−13, 5), (13, 5) 13, 39, 26, 39

−228 (−38,−2), (6,−2), (−6,−114), (38,−114) 2, 1, 2, 1

−280 (−10,−5), (−10, 5), (10,−5), (10, 5) 2, 1, 14, 14

−312 (13,−26), (−13, 26), (−13,−26), (13, 26) 13, 39, 26, 39

−372 (−62, 31), (−6,−3), (−6, 31), (−62,−3) 2, 1, 2, 1

−408 (−17, 34), (−17,−34), (17,−34), (17, 34) 2, 1, 1, 1

−435 (−29,−5), (−29, 5), (29,−5), (29, 5) 2, 1, 1, 1

−483 (−23, 7), (23,−69), (−21,−7), (21, 69) 2, 1, 1, 1

−520 (−13,−5), (13,−5), (−13, 5), (13, 5) 1, 1, 1, 2

−532 (−38,−19), (−14, 7), (−14,−19), (−38, 7) 1, 2, 1, 2

−555 (37,−5), (−37,−5), (−37, 5), (37, 5) 37, 111, 74, 111

−595 (−17, 85), (17,−85), (−17,−85), (17, 85) 7, 1, 1, 14

−627 (19,−11), (−19,−57), (−33, 11), (33, 57) 1, 2, 1, 1

−708 (118,−59), (−6, 3), (6,−59), (−118, 3) 1, 2, 1, 2

−715 (−13,−65), (13,−65), (−13, 65), (13, 65) 5, 10, 55, 55

−760 (−10, 5), (10,−5), (−10,−5), (10, 5) 5, 95, 10, 95

−795 (−53,−5), (53,−5), (−53, 5), (53, 5) 6, 1, 1, 3

−1012 (−46, 23), (−22,−11), (−22, 23), (−46,−11) 2, 1, 2, 1

−1435 (−41, 205), (−41,−205), (41,−205), (41, 205) 2, 1, 1, 1

Table 1. Endomorphism algebras of the restriction of scalars of
Gross Q-curves. For the biquadratic fields, the notation (a, b) in-

dicates the field Q(
√
a,
√
b); for the quaternion algebras, we write

the discriminant of the algebra
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4. Proof of the main theorems

We begin with a Lemma that will be used in the proof of Theorem 1.2.

Lemma 4.1. Let E be a Gross Q-curve with CM by a field M of discriminant D,
and suppose that Gal(H/M) is isomorphic to C2 × C2. Denote by γHE the class
in H2(Gal(H/M),M×) attached to E, and by cE a cocycle representing γHE . If
σ ∈ Gal(H/M) is non-trivial, then ±d · cE(σ, σ) ∈ (M×)2 for some divisor d of D
such that d is not a square in M×.

Proof. Let OM denote the ring of integers of M . Denote by p1, p2, p3 the primes
dividing D. Observe that piOM = p2

i , with pi a non-principal prime ideal of OM .
It is clear that we can always find pi, pj such that ±pipj is not a square in M×, and
therefore pipj is not principal. Thus pi, pj generate the class group. Therefore, we
can assume that any non-trivial element of Gal(H/K) is of the form σq for some
unramified prime q which is equivalent to either pi, pj or pi · pj . Here σq stands for
the Frobenius automorphism of H/K at q.

Now we argue (and use the same notation) as in [Nak04, Proof of Theorem 3].
Namely, denote by u(q) the q-multiplication isogenies

u(q) : σqE −→ E,

and denote by c the 2-cocycle associated to E using the system of isogenies u(q)
(together with the identity isogeny for 1 ∈ Gal(H/M)). Note that cE is any co-
cycle representing γHE , and it may be different from c. But in any case they are
cohomologous, which in particular implies that

c(σq, σq) = b2q · cE(σq, σq) for some bq ∈M×.(4.1)

From display (6) and the display after that of loc. cit., since the order n of σq is 2
in our case, we see that

c(σq, σq)OM = q2.

The proof is finished by observing that q2 = αOM , where α ∈ M× is, up to an
element of (M×)2, equal to ±pi, ±pj , or ±pi · pj . �

Proof of Theorem 1.2. For all the quadratic imaginary fields not listed in (1.2), we
have constructed in the first part of Theorem 3.5 abelian surfaces defined over Q
satisfying the hypothesis of the theorem. To rule out the remaining 6 fields, we
proceed in the following way.

Let M be one of the fields in the list (1.2) and suppose that an abelian surface A
satisfying the hypothesis of the theorem exists for M . Resume the notations from
Section 2.4. As Gal(H/M) ' C2 ×C2 and H ⊆ K (by [FG18, Theorem 2.14]), the
only possibilities for Gal(K/M) are C2 × C2, D4, and D6.

Suppose that Gal(K/M) is C2 × C2. Then K = H and thus E is a Gross
Q-curve. By Proposition 2.10, we have that M is not exceptional and thus we
cannot have M = Q(

√
−340). For the other possibilities for M , we have seen in

the second part of Theorem 3.5 that ResH/QE does not have any simple factor of
dimension 2, but this is a contradiction with the fact that A should be a factor
of ResH/QE (indeed, the universal property of Weil’s restriction of scalars implies

that Hom(A,ResH/QE) = Hom(AH , E) 'M2, and thus Hom(A,ResH/QE) 6= 0).
Suppose that Gal(K/M) is D4 or D6. Resume the notations of Section 2.5.

Let E∗ be a Ribet M -curve completely defined over H with CM by M which we
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chose as in Corollary 2.25 (and which exists because of Proposition 2.10). Note that
Hypothesis 2.22 is satisfied. Then, by Theorem 2.27, there is a non-trivial element
τ ∈ Gal(N/M) = Gal(H/N) such that

cHE∗(τ , τ) = ±1.(4.2)

If M is non-exceptional, as noted in Remark 2.26, we can suppose that E∗ is in
fact a Gross Q-curve. Then (4.2) is a contradiction with Lemma 4.1.

It remains to show that (4.2) also brings a contradiction if M = Q(
√
−340) is the

exceptional field. Put T = H〈τ̄〉, the fixed field by τ̄ . Observe that M ( T ( H.
If cHE∗(τ̄ , τ̄) = 1 then by Theorem 2.11 the curve E∗ is isogenous to a curve defined
over T , and this is a contradiction with the fact that M(jE∗) = H.

Suppose now that cHE∗(τ̄ , τ̄) = −1. We will see that we can apply the above
argument to an appropriate quadratic twist of E∗.

Claim 4.2. There exists a quadratic extension S/H such that S/M is Galois with
Gal(S/M) ' D4 and such that τ̄ lifts to an element of order 4 of Gal(S/M).

We now show how this claim allows us to produce the appropriate twisted curve
(and we will prove the claim later on). Define C to be the S/H quadratic twist
of E∗. By [FG18, Lemma 3.13], the curve C is an M -curve completely defined
over H and the cohomology classes of E∗ and C are related by

γHC = γHE∗ · γS ,

where γS ∈ H2(Gal(H/M), {±1}) is the cohomology class attached to the exact
sequence

1 −→ Gal(S/H) ' {±1} −→ Gal(S/M) ' D4 −→ Gal(H/M) −→ 1.(4.3)

If we identify Gal(S/M) ' 〈s, t|s4, t2, stst〉, then Gal(S/H) can be identified with
the subgroup generated by s2 and we can assume that τ̄ lifts to s. Let cS be
a cocycle representing γS . The usual construction that associates a cohomology
class to (4.3) gives that cS(τ̄ , τ̄) = s · s. Since s2 is the non-trivial element of
Gal(S/H), it corresponds to −1 under the isomorphism Gal(S/H) ' {±1}, so that
cS(τ̄ , τ̄) = −1.

We conclude that cHC (τ̄ , τ̄) = cHE∗(τ̄ , τ̄)cS(τ̄ , τ̄) = 1, and as before this implies
that C can be defined over T , which is a contradiction.

Proof of Claim 4.2. The Hilbert class field of M is H = Q(i,
√

5,
√

17). If we

write H = M(
√
a,
√
b) and suppose that τ̄(

√
b) =

√
b, it is well known (see, e.g.

[Led01, §0.4]) that the obstruction to the existence of S is given by the quaternion

algebra
(
a,ab
M

)
being nonsplit. There are 3 possibilities for T , namely T = M(

√
5),

T = M(
√

17), or T = M(
√

5 · 17), each one giving a different obstruction. The
resulting quaternion algebras giving the obstruction are(

17 · 5, 5
M

)
,

(
17 · 5, 17

M

)
,

(
17, 5

M

)
.

Since they are all the split, the field S does exist in all three cases.

Remark 4.3. As a byproduct of the above proof, we see that there do not exist
abelian surfaces over Q such that End(AQ) ' M2(M) with M a quadratic imaginary

field with class group C2×C2 and Gal(K/M) ' D4 or D6. As shown by the table of
[Car01, p. 112], there do exist abelian surfaces over Q such that End(AQ) ' M2(M)
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with M a quadratic imaginary field with class group C2 and Gal(K/M) ' D4 (resp.
D6). If M is not exceptional, Theorem 2.20 and Lemma 4.1 imply that 2 (resp.
3) divide the discriminant of M is a necessary condition for the existence of such
an A. The examples of the table of [Car01, p. 112] show that this is actually a
necessary and sufficient condition.

Proof of Corollary 1.3. Suppose that A is an abelian surface defined over Q such
that AQ ∼ E ×E′, where E and E′ are elliptic curves defined over Q. If E and E′

are not isogenous, then End(AQ) is

Q×Q , M ×Q or M1 ×M2 ,

where M , M1 6' M2 are quadratic imaginary fields, depending on whether none
of E and E′ has CM, only one of E and E′ has CM, or both of E and E′ have
CM. In any case, note that by [FKRS12, Proposition 4.5], both E and E′ can be
defined over Q, whereby the class number of M , M1, and M2 must be 1. Recalling
that there are 9 quadratic imaginary fields of class number 1, this accounts for 46
distinct Q-endomorphism algebras.

If E and E′ are isogenous, we have that End(AQ) is M2(M) or M2(Q), where M
is a quadratic imaginary field, depending on whether E has CM or not. Assume
that we are in the former case. By Theorem 1.1, we have that M has class group
1, C2, or C2 × C2. As explained in [FG18, Remark 2.20], for all fields M with
class group 1 (resp. C2), abelian surfaces A over Q with End(AQ) ' M2(M) can be
easily found. Indeed, let E be an elliptic curve with CM by the maximal order of M
and defined over Q (resp. Q(jE)). Then consider the square (resp. the restriction
of scalars from Q(jE) down to Q) of E. If M has class group C2 × C2, invoke
Theorem 1.2 to obtain 18 possibilities for M . Taking into account that there are 18
quadratic imaginary fields of class group C2 (see [Wat04] for example), we obtain 46
possibilities for the endomorphism algebra of a geometrically split abelian surface
over Q with Q-isogenous factors.

An open problem. We wish to conclude the article with an open question.

Question 4.4. Which is the subset of A made of the Q-endomorphism algebras
End(Jac(C)Q) of geometrically split Jacobians of genus 2 curves C defined over Q?

Again the most intriguing case is to determine how many of the 45 possibili-
ties for M2(M), with M a quadratic imaginary field, allowed by Theorem 1.2 for
geometrically split abelian surfaces defined over Q still occur among geometrically
split Jacobians of genus 2 curves C defined over Q. Looking at the more restrictive
setting that requires Jac(C) to be isomorphic to the square of an elliptic curve
with CM by the maximal order of M , Gélin, Howe, and Ritzenthaler [GHR19] have
shown that there are 13 possibilities for such an M (all with class number ≤ 2).
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