Computation and some new instances of Darmon points

Xevi Guitart¹ Marc Masdeu² Haluk Sengun³

¹Universitat de Barcelona

²University of Warwick

³University of Sheffield

Number Theory Seminar, Institut de Mathématiques de Jussieu

Outline

Computing algebraic points on elliptic curves

Deegner points

- 3 Darmon points (curves over \mathbb{Q})
- Explicit computations
- 5 Some generalizations: arbitrary base fields

Outline

- 2 Heegner points
- 3 Darmon points (curves over \mathbb{Q})
- Explicit computations
- 5 Some generalizations: arbitrary base fields

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

Question

Does there exist any algorithm for computing E(K)?

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

Question

Does there exist any algorithm for computing E(K)?

Answer: Not known

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

Question

Does there exist any algorithm for computing E(K)?

Answer: Not known

Mordell-Weil Theorem

E(K) has a group structure and $E(K) \simeq E(K)_{tor} \oplus \mathbb{Z}^r$

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

Question

Does there exist any algorithm for computing E(K)?

Answer: Not known

Mordell-Weil Theorem

E(K) has a group structure and $E(K) \simeq E(K)_{tor} \oplus \mathbb{Z}^r$

• $E(K)_{tor}$: there DO exist algorithms

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

Question

Does there exist any algorithm for computing E(K)?

Answer: Not known

Mordell-Weil Theorem

E(K) has a group structure and $E(K) \simeq E(K)_{tor} \oplus \mathbb{Z}^r$

• $E(K)_{tor}$: there DO exist algorithms

• Compute *r* linearly independent points of infinite order?

• E elliptic curve with rational coefficients

$$E: y^2 + b_1 xy + b_3 y = x^3 + b_2 x^2 + b_4 x + b_6, \quad b_i \in \mathbb{Z}$$

• *K* a number field. $E(K) = \{$ solutions $(x, y) \in K^2 \}$

Question

Does there exist any algorithm for computing E(K)?

Answer: Not known

Mordell-Weil Theorem

E(K) has a group structure and $E(K) \simeq E(K)_{tor} \oplus \mathbb{Z}^r$

- $E(K)_{tor}$: there DO exist algorithms
- Compute *r* linearly independent points of infinite order?
- Compute the rank r?
 - Related to the Birch and Swinnerton–Dyer Conjecture

Birch–Swinnerton-Dyer Conjecture (BSD)

 $r(E/K) = \operatorname{ord}_{s=1} L(E/K, s)$

Birch–Swinnerton-Dyer Conjecture (BSD)

 $r(E/K) = \operatorname{ord}_{s=1} L(E/K, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1989)

If $K = \mathbb{Q}$ or K = imaginary quadratic and $\operatorname{ord}_{s=1} L(E/K, s) \leq 1$ then BSD holds

Birch–Swinnerton-Dyer Conjecture (BSD)

 $r(E/K) = \operatorname{ord}_{s=1} L(E/K, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1989)

If $K = \mathbb{Q}$ or K = imaginary quadratic and $\operatorname{ord}_{s=1} L(E/K, s) \leq 1$ then BSD holds

Question

If K = imaginary quadratic and $\operatorname{ord}_{s=1}L(E/K, s) = 1$, does there exist an efficient algorithm for computing a point of infinite order?

Birch–Swinnerton-Dyer Conjecture (BSD)

 $r(E/K) = \operatorname{ord}_{s=1} L(E/K, s)$

Theorem (Gross–Zagier 1986, Kolyvagin 1989)

If $K = \mathbb{Q}$ or K = imaginary quadratic and $\operatorname{ord}_{s=1} L(E/K, s) \leq 1$ then BSD holds

Question

If K = imaginary quadratic and $\operatorname{ord}_{s=1}L(E/K, s) = 1$, does there exist an efficient algorithm for computing a point of infinite order?

- Answer: yes, the Heegner points method
 - Fundamental ingredient in the Gross–Zagier–Kolyvagin theorem

Outline

Computing algebraic points on elliptic curves

2 Heegner points

- 3 Darmon points (curves over \mathbb{Q})
- Explicit computations
- 5 Some generalizations: arbitrary base fields

$\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

 $\mathcal{K} = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

 $K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
 - Points on X₀(N) parametrize pairs elliptic curves

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
 - Points on X₀(N) parametrize pairs elliptic curves
 - CM points on $X_0(N)$ (correspond to curves with CM by K)

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

- Geometric construction
 - Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
 - Points on X₀(N) parametrize pairs elliptic curves
 - CM points on $X_0(N)$ (correspond to curves with CM by K)
 - ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

• Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Their image in E give rise to Heegner points

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Their image in E give rise to Heegner points
- Explicit formula

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})
- Their image in E give rise to Heegner points

Explicit formula

• $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})
- Their image in E give rise to Heegner points

Explicit formula

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ► Theory of Complex Multiplication: CM points ∈ X₀(N)(K^{ab})
- Their image in E give rise to Heegner points

Explicit formula

- $X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$
- CM Points: $\tau \in \mathcal{H} \cap K$
- $f(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \rightsquigarrow f(z) dz$ differential on $\Gamma_0(N) \setminus \mathcal{H}$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Their image in E give rise to Heegner points

Explicit formula

•
$$X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$$

- CM Points: $\tau \in \mathcal{H} \cap K$
- $f(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \rightsquigarrow f(z) dz$ differential on $\Gamma_0(N) \setminus \mathcal{H}$

Heegner Point

$$J_{ au} = \int_{ au}^{i\infty} f(z) dz \in \mathbb{C} / \Lambda_f$$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Their image in E give rise to Heegner points

Explicit formula

•
$$X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$$

- CM Points: $\tau \in \mathcal{H} \cap K$
- $f(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \rightsquigarrow f(z) dz$ differential on $\Gamma_0(N) \setminus \mathcal{H}$

Heegner Point

$$J_{ au} = \int_{ au}^{i\infty} f(z) dz \in \mathbb{C} / \Lambda_f \sim \mathbb{C} / \Lambda_E$$

$K = \mathbb{Q}(\sqrt{-D})$ imaginary quadratic field

Method for computing points on $E(K^{ab})$

Geometric construction

- Modular uniformization (Wiles et. al): $X_0(N) \longrightarrow E$
- Points on X₀(N) parametrize pairs elliptic curves
- CM points on $X_0(N)$ (correspond to curves with CM by K)
- ▶ Theory of Complex Multiplication: CM points $\in X_0(N)(K^{ab})$
- Their image in E give rise to Heegner points

Explicit formula

•
$$X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C}/\Lambda_E$$

- CM Points: $\tau \in \mathcal{H} \cap K$
- $f(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \rightsquigarrow f(z) dz$ differential on $\Gamma_0(N) \setminus \mathcal{H}$

Heegner Point

$$J_{ au} = \int_{ au}^{i\infty} f(z) dz \in \mathbb{C} / \Lambda_f \sim \mathbb{C} / \Lambda_E \rightsquigarrow J_{ au} \in E(K^{\mathrm{ab}})$$

An extreme example (M. Watkins)

 $y^2 + y = x^3 - 5115523309x - 140826120488927$ (*N* = 66157667)

An extreme example (M. Watkins)

 $y^2 + y = x^3 - 5115523309x - 140826120488927$ (*N* = 66157667) the numerator of the *x*-coordinate is:

An extreme example (M. Watkins)

 $y^2 + y = x^3 - 5115523309x - 140826120488927$ (*N* = 66157667) the numerator of the *x*-coordinate is:

 $\mathbf{12}$

MARK WATKINS

600 million terms of the L-series. This takes less than a day. We list the x-coordinate of the point on the original elliptic curve. It has numerator

07852381696883227650072039964481597215995993299744934117106289850389364006552497835877740257534533113775202882210048356163645919345794812074571029660897173224 311212061277324813403910882777964885444157381565530147684062461546660051396904280851450982725007914162147746734845018267225005270911649442622537169595848931680 75409677471 [2860490572746224094031]8704320452610723920107960346829752289510659856743701508334879787536416279769396881980413954888575128268715223707826035870523 07622411087809371872157210456836892493613838792026761820382217165481998924123604782787923229739171920575447007099501678380795077013113325989801385729993920818 66664888540622702346704213752456372574449563979215782406566937885352945871994541770838871930542220307771671498466518108722622109421676741544945695403509866953 01282508824324075/579584122851208360459166315484891952299449340025896509298935939357721723543933108743241997387447018395925320167637640328407957069845439501

Xevi Guitart, Marc Masdeu, Haluk Sengun (L

Computation of Darmon points

A natural question: what if K is real quadratic?

A natural question: what if K is real quadratic?

Question

- *E*/Q elliptic curve
- *K* real quadratic such that $\operatorname{ord}_{s=1} L(E/K, s) = 1$
 - algorithm for computing points of infinite order in $E(K^{ab})$?

A natural question: what if K is real quadratic?

Question

- *E*/Q elliptic curve
- *K* real quadratic such that $\operatorname{ord}_{s=1} L(E/K, s) = 1$
 - algorithm for computing points of infinite order in $E(K^{ab})$?
- Idea: look for a construction analogous to that of Heegner points

A natural question: what if K is real quadratic?

Question

- *E*/Q elliptic curve
- *K* real quadratic such that $\operatorname{ord}_{s=1}L(E/K, s) = 1$
 - algorithm for computing points of infinite order in $E(K^{ab})$?
- Idea: look for a construction analogous to that of Heegner points
- Darmon Points

A natural question: what if K is real quadratic?

Question

- *E*/Q elliptic curve
- *K* real quadratic such that $\operatorname{ord}_{s=1}L(E/K, s) = 1$
 - algorithm for computing points of infinite order in $E(K^{ab})$?
- Idea: look for a construction analogous to that of Heegner points
- Darmon Points (a.k.a. Stark-Heegner Points)

Heegner points

K imaginary quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic real quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic real quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic real quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic real quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic real quadratic

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

K imaginary quadratic real quadratic

Method for constructing points of infinite order in $E(K^{ab})$

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

Ingredients

$$\left. \begin{array}{c} E \rightsquigarrow \omega_{\mathcal{E}} \in \Omega^{1}_{\mathcal{H}} \\ \tau \in \mathcal{K} \cap \mathcal{H} \rightsquigarrow \Delta_{\tau} \in \mathrm{Div}^{0} \mathcal{H} \end{array} \right\} \longrightarrow J_{\tau} = \int_{\Delta_{\tau}} \omega_{\mathcal{E}} \in \mathbb{C} / \Lambda_{\mathcal{E}}$$

K imaginary quadratic real quadratic

Method for constructing points of infinite order in $E(K^{ab})$

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

Ingredients

$$\left. \begin{array}{c} E \rightsquigarrow \omega_E \in \Omega^1_{\mathcal{H}} \\ \tau \in \mathcal{K} \cap \mathcal{H} \rightsquigarrow \Delta_{\tau} \in \mathrm{Div}^0 \mathcal{H} \end{array} \right\} \longrightarrow J_{\tau} = \int_{\Delta_{\tau}} \omega_E \in \mathbb{C}/\Lambda_E$$

• Idea: look for analogues of ω_E and Δ_{τ}

K imaginary quadratic real quadratic

Method for constructing points of infinite order in $E(K^{ab})$

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

Ingredients

$$\left. \begin{array}{c} E \rightsquigarrow \omega_E \in \Omega^1_{\mathcal{H}} \\ \tau \in \mathcal{K} \cap \mathcal{H} \rightsquigarrow \Delta_{\tau} \in \operatorname{Div}^0 \mathcal{H} \end{array} \right\} \longrightarrow J_{\tau} = \int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E$$

- Idea: look for analogues of ω_E and Δ_{τ}
- In fact: $\omega_E \in H^0(\Gamma_0(N), \Omega^1_{\mathcal{H}})$ and $\Delta_{\tau} \in H_0(\Gamma_0(N), \operatorname{Div}^0 \mathcal{H})$

K imaginary quadratic real quadratic

Method for constructing points of infinite order in $E(K^{ab})$

- Geometric construction (proves algebraicity)
 - Modular uniformization $X_0(N) \longrightarrow E$
 - complex multiplication real multiplication ~> Doesn't exist!
- Explicit formula (good for computations)

•
$$J_{\tau} = \int_{\tau}^{\infty} 2\pi i f(z) dz \in \mathbb{C}/\Lambda = E(\mathbb{C})$$

Ingredients

$$\left. \begin{array}{c} E \rightsquigarrow \omega_{E} \in \Omega^{1}_{\mathcal{H}} \\ \tau \in \mathcal{K} \cap \mathcal{H} \rightsquigarrow \Delta_{\tau} \in \mathrm{Div}^{0} \mathcal{H} \end{array} \right\} \longrightarrow J_{\tau} = \int_{\Delta_{\tau}} \omega_{E} \in \mathbb{C} / \Lambda_{E}$$

- Idea: look for analogues of ω_E and Δ_{τ}
- ▶ In fact: $\omega_E \in H^0(\Gamma_0(N), \Omega^1_{\mathcal{H}})$ and $\Delta_{\tau} \in H_0(\Gamma_0(N), \text{Div}^0\mathcal{H})$
- Obstruction: $K \text{ real} \Rightarrow K \cap \mathcal{H} = \emptyset!$

Outline

- 2 Heegner points
- 3 Darmon points (curves over \mathbb{Q})
- Explicit computations
- 5 Some generalizations: arbitrary base fields

• Idea: instad of \mathcal{H} look at \mathcal{H}_p (*p*-adic upper half plane)

•
$$\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$$
 (analogous to \mathbb{C})

• $\mathcal{H}_{\rho} = \mathbb{C}_{\rho} \setminus \mathbb{Q}_{\rho}$ (analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H}^{\pm}$)

• Idea: instad of \mathcal{H} look at \mathcal{H}_p (*p*-adic upper half plane)

•
$$\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$$
 (analogous to \mathbb{C})

• $\mathcal{H}_{\rho} = \mathbb{C}_{\rho} \setminus \mathbb{Q}_{\rho}$ (analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H}^{\pm}$)

• *p* is inert in
$$K \Rightarrow K \cap \mathcal{H}_p \neq \emptyset$$

•
$$\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$$
 (analogous to \mathbb{C})

- $\mathcal{H}_{\rho} = \mathbb{C}_{\rho} \setminus \mathbb{Q}_{\rho}$ (analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H}^{\pm}$)
- *p* is inert in $K \Rightarrow K \cap \mathcal{H}_p \neq \emptyset$
- $\Omega^1_{\mathcal{H}_p}$ = rigid analytic differentials on \mathcal{H}_p

•
$$\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$$
 (analogous to \mathbb{C})

- $\mathcal{H}_{\rho} = \mathbb{C}_{\rho} \setminus \mathbb{Q}_{\rho}$ (analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H}^{\pm}$)
- p is inert in $K \Rightarrow K \cap \mathcal{H}_p \neq \emptyset$
- $\Omega^1_{\mathcal{H}_p} = \text{rigid analytic differentials on } \mathcal{H}_p$
- Coleman Integral (analogous to the line integral)

$$\omega \in \Omega_{\mathcal{H}_{p}}, \ \tau_{1}, \tau_{2} \in \mathcal{H}_{p}, \ \rightsquigarrow \ \int_{\tau_{1}}^{\tau_{2}} \omega \in \mathbb{C}_{p}$$

•
$$\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$$
 (analogous to \mathbb{C})

- $\mathcal{H}_{\rho} = \mathbb{C}_{\rho} \setminus \mathbb{Q}_{\rho}$ (analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H}^{\pm}$)
- p is inert in $K \Rightarrow K \cap \mathcal{H}_p \neq \emptyset$
- $\Omega^1_{\mathcal{H}_p} = \text{rigid analytic differentials on } \mathcal{H}_p$
- Coleman Integral (analogous to the line integral)

$$\omega \in \Omega_{\mathcal{H}_{p}}, \ \tau_{1}, \tau_{2} \in \mathcal{H}_{p}, \ \rightsquigarrow \ \int_{\tau_{1}}^{\tau_{2}} \omega \in \mathbb{C}_{p}$$

- Local description of *E*:
 - If p | N: Tate uniformization

$$E(\mathbb{C}_p) \simeq \mathbb{C}_p^{\times} / < q_E >$$

• Idea: instad of \mathcal{H} look at \mathcal{H}_p (*p*-adic upper half plane)

•
$$\mathbb{C}_{p} = \overline{\mathbb{Q}_{p}}$$
 (analogous to \mathbb{C})

- $\mathcal{H}_{\rho} = \mathbb{C}_{\rho} \setminus \mathbb{Q}_{\rho}$ (analogous to $\mathbb{C} \setminus \mathbb{R} = \mathcal{H}^{\pm}$)
- p is inert in $K \Rightarrow K \cap \mathcal{H}_p \neq \emptyset$
- $\Omega^1_{\mathcal{H}_p} = \text{rigid analytic differentials on } \mathcal{H}_p$
- Coleman Integral (analogous to the line integral)

$$\omega \in \Omega_{\mathcal{H}_{p}}, \ \tau_{1}, \tau_{2} \in \mathcal{H}_{p}, \ \rightsquigarrow \ \int_{\tau_{1}}^{\tau_{2}} \omega \in \mathbb{C}_{p}$$

• Multiplicative Coleman integral: if ω has integral residues

$$\oint_{\tau_1}^{\tau_2} \omega \in \mathbb{C}_p^{\times}$$

- Local description of *E*:
 - If p | N: Tate uniformization

$$E(\mathbb{C}_p) \simeq \mathbb{C}_p^{ imes} / < q_E >$$

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then $N = \rho DM$
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - *M* product of primes that split or ramify in *K*
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

•
$$\Gamma = \left(R_0(M) \otimes \mathbb{Z}[\frac{1}{\rho}] \right)_1^{\times}; \quad \Gamma \simeq \Gamma_0(M) \star_{\Gamma_0(\rho M)} \Gamma_0(M)$$

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

•
$$\Gamma = \left(R_0(M) \otimes \mathbb{Z}[\frac{1}{\rho}]\right)_1^{\times}; \quad \Gamma \simeq \Gamma_0(M) \star_{\Gamma_0(\rho M)} \Gamma_0(M)$$

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

$$E \rightsquigarrow \omega_{E} \in H^{1}(\Gamma, \Omega^{1}_{\mathcal{H}_{p}})$$

 $\tau \in \mathcal{K} \cap \mathcal{H}_{p} \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p})$

1

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

•
$$\Gamma = \left(R_0(M) \otimes \mathbb{Z}[\frac{1}{\rho}]\right)_1^{\times}; \quad \Gamma \simeq \Gamma_0(M) \star_{\Gamma_0(\rho M)} \Gamma_0(M)$$

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

$$\begin{array}{c} E \rightsquigarrow \omega_{E} \in H^{1}(\Gamma, \Omega^{1}_{\mathcal{H}_{\rho}}) \\ r \in \mathcal{K} \cap \mathcal{H}_{\rho} \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\rho}) \end{array} \right\} \ \ \rightarrow J_{\tau} = \oint_{\Delta_{\tau}} \omega_{E} \in \mathbb{C}_{\rho}^{\times} / \langle q \rangle$$

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

•
$$\Gamma = \left(R_0(M) \otimes \mathbb{Z}[\frac{1}{\rho}]\right)_1^{\times}; \quad \Gamma \simeq \Gamma_0(M) \star_{\Gamma_0(\rho M)} \Gamma_0(M)$$

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

$$\begin{array}{c} E \rightsquigarrow \omega_{\mathcal{E}} \in \mathcal{H}^{1}(\Gamma, \Omega^{1}_{\mathcal{H}_{p}}) \\ f \in \mathcal{K} \cap \mathcal{H}_{p} \rightsquigarrow \Delta_{\tau} \in \mathcal{H}_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p}) \end{array} \right\} \ \rightarrow J_{\tau} = \oint_{\Delta_{\tau}} \omega_{\mathcal{E}} \in \mathbb{C}_{p}^{\times} / \langle q \rangle$$

• $\mathbb{C}_{\rho}^{\times}/\langle q \rangle \sim \mathbb{C}_{\rho}^{\times}/\langle q_E \rangle$ (Darmon, Greenberg–Dasgupta, Longo–Rotger–Vigni)

 τ

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

•
$$\Gamma = \left(R_0(M) \otimes \mathbb{Z}[\frac{1}{\rho}]\right)_1^{\times}; \quad \Gamma \simeq \Gamma_0(M) \star_{\Gamma_0(\rho M)} \Gamma_0(M)$$

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

$$\begin{array}{c} E \rightsquigarrow \omega_{\mathcal{E}} \in \mathcal{H}^{1}(\Gamma, \Omega^{1}_{\mathcal{H}_{p}}) \\ \tau \in \mathcal{K} \cap \mathcal{H}_{p} \rightsquigarrow \Delta_{\tau} \in \mathcal{H}_{1}(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}) \end{array} \right\} \ \rightarrow J_{\tau} = \oint_{\Delta_{\tau}} \omega_{\mathcal{E}} \in \mathbb{C}_{p}^{\times} / \langle \boldsymbol{q} \rangle \sim \mathcal{E}(\mathbb{C}_{p})$$

• $\mathbb{C}_{\rho}^{\times}/\langle q \rangle \sim \mathbb{C}_{\rho}^{\times}/\langle q_E \rangle$ (Darmon, Greenberg–Dasgupta, Longo–Rotger–Vigni)

- E/\mathbb{Q} of conductor *N*. If signL(E/K, s) = -1 then N = pDM
 - M product of primes that split or ramify in K
 - D product of an even number of primes which are inert in K
- B/\mathbb{Q} quaternion algebra of discriminant $D (= M_2(\mathbb{Q})$ if D = 1)
- $R(pM) \subset B$ Eichler order of level pM and $\Gamma_0(pM) = R_0(pM)_1^{\times}$

•
$$\Gamma = \left(R_0(M) \otimes \mathbb{Z}[\frac{1}{\rho}]\right)_1^{\times}; \quad \Gamma \simeq \Gamma_0(M) \star_{\Gamma_0(\rho M)} \Gamma_0(M)$$

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

$$\begin{array}{c} E \rightsquigarrow \omega_{\mathcal{E}} \in \mathcal{H}^{1}(\Gamma, \Omega^{1}_{\mathcal{H}_{\rho}}) \\ F \in \mathcal{K} \cap \mathcal{H}_{\rho} \rightsquigarrow \Delta_{\tau} \in \mathcal{H}_{1}(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\rho}) \end{array} \right\} \ \rightarrow J_{\tau} = \oint_{\Delta_{\tau}} \omega_{\mathcal{E}} \in \mathbb{C}_{\rho}^{\times} / \langle \boldsymbol{q} \rangle \sim \mathcal{E}(\mathbb{C}_{\rho})$$

• $\mathbb{C}_{\rho}^{\times}/\langle q \rangle \sim \mathbb{C}_{\rho}^{\times}/\langle q_E \rangle$ (Darmon, Greenberg–Dasgupta, Longo–Rotger–Vigni)

Conjecture (rationality)

 $J_ au \in E(\mathcal{K}^{\mathrm{ab}})$ and $\mathrm{Tr}(J_ au)$ of infinite order if $\mathrm{ord}_{s=1}\ L(E/\mathcal{K},s)=1$

- Computations in the case of the split algebra $B = M_2(\mathbb{Q})$
 - Darmon–Green (2002)
 - Darmon–Pollack (2006)

- Computations in the case of the split algebra $B = M_2(\mathbb{Q})$
 - Darmon–Green (2002)
 - Darmon–Pollack (2006)
- Next: explain an algorithm for B division

Computations in the case of the split algebra B = M₂(Q)

- Darmon–Green (2002)
- Darmon–Pollack (2006)
- Next: explain an algorithm for B division
 - the homology class attached to $\tau \in K \cap \mathcal{H}_p$
 - the cohomology class attached to E
 - the integration pairing

Computations in the case of the split algebra B = M₂(Q)

- Darmon–Green (2002)
- Darmon–Pollack (2006)
- Next: explain an algorithm for *B* division
 - the homology class attached to $\tau \in K \cap \mathcal{H}_p$
 - the cohomology class attached to E
 - the integration pairing

present some numerical evidence for the conjecture in this case

The homology class

• $\tau \in \mathcal{H}_p \cap K \rightsquigarrow \Delta_\tau \in H_1(\Gamma, \mathrm{Div}^0 \mathcal{H}_p)$
• $\tau \in \mathcal{H}_p \cap K \rightsquigarrow \Delta_{\tau} \in H_1(\Gamma, \mathrm{Div}^0 \mathcal{H}_p)$

• $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.

- $\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \mathrm{Div}^{0}\mathcal{H}_{p})$
- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

- $\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \mathrm{Div}^{0}\mathcal{H}_{p})$
- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$
- Then: $\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \text{Div}\mathcal{H}_p)$.

•
$$\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p})$$

• $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.

• It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \text{Div}\mathcal{H}_p)$$
.

• 0
$$\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$$

•
$$\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p})$$

• $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.

• It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \text{Div}\mathcal{H}_p)$$
.

• 0
$$\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$$

•
$$\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \text{Div}\mathcal{H}_p)$$
.

•
$$0 \longrightarrow \operatorname{Div}^0 \mathcal{H}_{\rho} \longrightarrow \operatorname{Div} \mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$$

 $H_2(\Gamma,\mathbb{Z}) \longrightarrow H_1(\Gamma,\mathrm{Div}^0\mathcal{H}_p) \longrightarrow H_1(\Gamma,\mathrm{Div}\mathcal{H}_p) \longrightarrow H_1(\Gamma,\mathbb{Z}) \simeq \Gamma_{ab}$

Ihara: Γ_{ab} is finite

•
$$\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \operatorname{Div}\mathcal{H}_p).$$

• $0 \longrightarrow \operatorname{Div}^0\mathcal{H}_p \longrightarrow \operatorname{Div}\mathcal{H}_p \longrightarrow \mathbb{Z} \longrightarrow 0$

 $H_{2}(\Gamma,\mathbb{Z}) \longrightarrow H_{1}(\Gamma,\mathrm{Div}^{0}\mathcal{H}_{p}) \longrightarrow H_{1}(\Gamma,\mathrm{Div}\mathcal{H}_{p}) \longrightarrow H_{1}(\Gamma,\mathbb{Z}) \simeq \Gamma_{ab}$

• Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_1(\Gamma, \text{Div}^0 \mathcal{H}_p)$

•
$$\tau \in \mathcal{H}_{\rho} \cap K \rightsquigarrow \Delta_{\tau} \in H_1(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\rho})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \text{Div}\mathcal{H}_p)$$
.

• 0 $\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$

- Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_1(\Gamma, \text{Div}^0 \mathcal{H}_p)$
- Computing this explicitly boils down to compute Γ_{ab}
 - Computing generators
 - Given $\gamma \in [\Gamma, \Gamma]$ write it explicitly as a product of commutators

•
$$\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \mathrm{Div}^{0}\mathcal{H}_{p})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \operatorname{Div} \mathcal{H}_p)$$
.

• 0 $\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$

- Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_{1}(\Gamma, \text{Div}^{0}\mathcal{H}_{p})$
- Computing this explicitly boils down to compute Γ_{ab}
 - Computing generators
 - Given $\gamma \in [\Gamma, \Gamma]$ write it explicitly as a product of commutators
 - ► J. Voight's algorithms: generators, word problem for $\Gamma_0(pM)$, $\Gamma_0(M)$

•
$$\tau \in \mathcal{H}_{\rho} \cap K \rightsquigarrow \Delta_{\tau} \in H_1(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\rho})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \operatorname{Div} \mathcal{H}_p)$$
.

• 0 $\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$

- Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_{1}(\Gamma, \text{Div}^{0}\mathcal{H}_{p})$
- Computing this explicitly boils down to compute Γ_{ab}
 - Computing generators
 - Given $\gamma \in [\Gamma, \Gamma]$ write it explicitly as a product of commutators
 - ► J. Voight's algorithms: generators, word problem for $\Gamma_0(pM)$, $\Gamma_0(M)$
 - Not difficult to use this to treat $\Gamma = \Gamma_0(M) \star_{\Gamma_0(pM)} \Gamma_0(M)$

•
$$\tau \in \mathcal{H}_{p} \cap K \rightsquigarrow \Delta_{\tau} \in H_{1}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{p})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \operatorname{Div} \mathcal{H}_{\rho})$$
.

• 0 $\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$

- Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_{1}(\Gamma, \text{Div}^{0}\mathcal{H}_{p})$
- Computing this explicitly boils down to compute Γ_{ab}
 - Computing generators
 - Given $\gamma \in [\Gamma, \Gamma]$ write it explicitly as a product of commutators
 - ► J. Voight's algorithms: generators, word problem for $\Gamma_0(pM)$, $\Gamma_0(M)$
 - Not difficult to use this to treat $\Gamma = \Gamma_0(M) \star_{\Gamma_0(pM)} \Gamma_0(M)$
- Δ_τ only well defined up to elements of H₂(Γ, Z)

•
$$\tau \in \mathcal{H}_{\rho} \cap K \rightsquigarrow \Delta_{\tau} \in H_1(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\rho})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \operatorname{Div} \mathcal{H}_p)$$
.

• 0
$$\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$$

- Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_{1}(\Gamma, \text{Div}^{0}\mathcal{H}_{p})$
- Computing this explicitly boils down to compute Γ_{ab}
 - Computing generators
 - Given $\gamma \in [\Gamma, \Gamma]$ write it explicitly as a product of commutators
 - ▶ J. Voight's algorithms: generators, word problem for $\Gamma_0(pM)$, $\Gamma_0(M)$
 - Not difficult to use this to treat $\Gamma = \Gamma_0(M) \star_{\Gamma_0(pM)} \Gamma_0(M)$
- Δ_τ only well defined up to elements of H₂(Γ, Z)
 - ► integration pairing only well defined up to < q_E >⊂ C[×]_p

•
$$\tau \in \mathcal{H}_{\rho} \cap K \rightsquigarrow \Delta_{\tau} \in H_1(\Gamma, \mathrm{Div}^0 \mathcal{H}_{\rho})$$

- $B \otimes \mathbb{Q}_{\rho} \simeq M_2(\mathbb{Q}_{\rho})$ so $\Gamma \subset B$ acts on \mathcal{H}_{ρ} via linear fractional transf.
- It turns out that $\operatorname{Stab}_{\Gamma}(\tau) = \langle \gamma_{\tau} \rangle$, for some $\gamma_{\tau} \in \Gamma$

• Then:
$$\gamma_{\tau} \otimes \tau \in H_1(\Gamma, \operatorname{Div} \mathcal{H}_p)$$
.

• 0
$$\longrightarrow \operatorname{Div}^{0}\mathcal{H}_{\rho} \longrightarrow \operatorname{Div}\mathcal{H}_{\rho} \longrightarrow \mathbb{Z} \longrightarrow 0$$

- Ihara: Γ_{ab} is finite $\rightsquigarrow \gamma_{\tau}^{e} \otimes \tau$ has a preimage in $H_{1}(\Gamma, \text{Div}^{0}\mathcal{H}_{p})$
- Computing this explicitly boils down to compute Γ_{ab}
 - Computing generators
 - Given $\gamma \in [\Gamma, \Gamma]$ write it explicitly as a product of commutators
 - ► J. Voight's algorithms: generators, word problem for $\Gamma_0(pM)$, $\Gamma_0(M)$
 - Not difficult to use this to treat $\Gamma = \Gamma_0(M) \star_{\Gamma_0(pM)} \Gamma_0(M)$
- Δ_τ only well defined up to elements of H₂(Γ, ℤ)
 - ► integration pairing only well defined up to < q_E >⊂ C[×]_p
 - Can also compute a generator of H₂(Γ, ℤ) → < q_E >

• $E \rightsquigarrow \omega_E \in H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$

•
$$E \rightsquigarrow \omega_E \in H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

• Hecke operators act on this cohomology group:

$$T_{\ell} \colon H^1(\Gamma, \Omega^1_{\mathcal{H}_p}) \longrightarrow H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

•
$$E \rightsquigarrow \omega_E \in H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

Hecke operators act on this cohomology group:

$$T_{\ell} \colon H^1(\Gamma, \Omega^1_{\mathcal{H}_p}) \longrightarrow H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

Theorem (M. Greenberg)

The isotypical component $H^1(\Gamma, \Omega^1_{\mathcal{H}_p})^E$ is 1-dimensional.

•
$$E \rightsquigarrow \omega_E \in H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

Hecke operators act on this cohomology group:

$$T_{\ell} \colon H^1(\Gamma, \Omega^1_{\mathcal{H}_p}) \longrightarrow H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

Theorem (M. Greenberg)

The isotypical component $H^1(\Gamma, \Omega^1_{\mathcal{H}_p})^E$ is 1-dimensional.

• ω_E the "single" cohomology class such that

$$T_{\ell}\omega_E = a_{\ell}\omega_E$$
, where $a_{\ell} = \ell + 1 - \#E(\mathbb{F}_{\ell})$

•
$$E \rightsquigarrow \omega_E \in H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

Hecke operators act on this cohomology group:

$$T_{\ell} \colon H^1(\Gamma, \Omega^1_{\mathcal{H}_p}) \longrightarrow H^1(\Gamma, \Omega^1_{\mathcal{H}_p})$$

Theorem (M. Greenberg)

The isotypical component $H^1(\Gamma, \Omega^1_{\mathcal{H}_p})^E$ is 1-dimensional.

ω_E the "single" cohomology class such that

$$T_{\ell}\omega_E = a_{\ell}\omega_E$$
, where $a_{\ell} = \ell + 1 - \#E(\mathbb{F}_{\ell})$

• How to compute effectively with rigid analytic differentials?

Concrete realization of *p*-adic differentials (Schneider)

 $\Omega^1_{\mathcal{H}_p,\mathbb{Z}} \xrightarrow{\simeq} \{ \text{Measures on } \mathbb{P}^1(\mathbb{Q}_p) \text{ with values in } \mathbb{Z} \}$

Concrete realization of *p*-adic differentials (Schneider)

 $\Omega^1_{\mathcal{H}_p,\mathbb{Z}} \xrightarrow{\simeq} \{ \text{Measures on } \mathbb{P}^1(\mathbb{Q}_p) \text{ with values in } \mathbb{Z} \}$

• We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$

Concrete realization of *p*-adic differentials (Schneider)

- We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$
- $H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p), \mathbb{Z}))^E \longrightarrow H^1(\Gamma, \mathbb{Z})^E$

Concrete realization of *p*-adic differentials (Schneider)

 $\Omega^1_{\mathcal{H}_p,\mathbb{Z}} \xrightarrow{\simeq} \{ \text{Measures on } \mathbb{P}^1(\mathbb{Q}_p) \text{ with values in } \mathbb{Z} \}$

- We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$
- $H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p), \mathbb{Z}))^E \longrightarrow H^1(\Gamma, \mathbb{Z})^E \xrightarrow{\text{res}} H^1(\Gamma_0(pM), \mathbb{Z})^E$

Concrete realization of *p*-adic differentials (Schneider)

- We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$
- $H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p), \mathbb{Z}))^E \longrightarrow H^1(\Gamma, \mathbb{Z})^E \xrightarrow{\text{res}} H^1(\Gamma_0(pM), \mathbb{Z})^E$
- Greenberg's theorem: the above map is an isomorphism.

Concrete realization of *p*-adic differentials (Schneider)

- We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$
- $H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p), \mathbb{Z}))^E \longrightarrow H^1(\Gamma, \mathbb{Z})^E \xrightarrow{\text{res}} H^1(\Gamma_0(pM), \mathbb{Z})^E$
- Greenberg's theorem: the above map is an isomorphism.
- Let $\varphi_E \in H^1(\Gamma_0(pM), \mathbb{Z})$ corresponding to μ_E

Concrete realization of *p*-adic differentials (Schneider)

- We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$
- $H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p), \mathbb{Z}))^E \longrightarrow H^1(\Gamma, \mathbb{Z})^E \xrightarrow{\text{res}} H^1(\Gamma_0(pM), \mathbb{Z})^E$
- Greenberg's theorem: the above map is an isomorphism.
- Let $\varphi_E \in H^1(\Gamma_0(pM), \mathbb{Z})$ corresponding to μ_E
- φ_E is easy to compute:
 - compute the Hecke action on Γ₀(*pM*)_{ab} = H¹(Γ₀(*pM*), Z) (again using Voight's algorithms)
 - ► Diagonalize and take φ_E be the element in the isotypical component of *E*.

Concrete realization of *p*-adic differentials (Schneider)

- We can view $\omega_E = \mu_E \in H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p, \mathbb{Z})))$
- $H^1(\Gamma, \text{Meas}(\mathbb{P}^1(\mathbb{Q}_p), \mathbb{Z}))^E \longrightarrow H^1(\Gamma, \mathbb{Z})^E \xrightarrow{\text{res}} H^1(\Gamma_0(pM), \mathbb{Z})^E$
- Greenberg's theorem: the above map is an isomorphism.
- Let $\varphi_E \in H^1(\Gamma_0(pM), \mathbb{Z})$ corresponding to μ_E
- φ_E is easy to compute:
 - compute the Hecke action on Γ₀(*pM*)_{ab} = H¹(Γ₀(*pM*), Z) (again using Voight's algorithms)
 - ► Diagonalize and take φ_E be the element in the isotypical component of *E*.
- The isomorphism is explicit (it is essentially Shapiro's Lemma). So we can recover μ_E from φ_E .

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_{p},\mathbb{Z}} \leftrightarrow \nu_{\omega} \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_p),\mathbb{Z})$$

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_{p},\mathbb{Z}} \leftrightarrow \nu_{\omega} \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_p),\mathbb{Z})$$

Theorem (Teitelbaum)

$$\int_{\tau_1}^{\tau_2} \omega = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \log\left(\frac{t-\tau_2}{t-\tau_1}\right) d\nu_{\omega}(t)$$

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_p,\mathbb{Z}} \leftrightarrow \nu_\omega \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_p),\mathbb{Z})$$

Theorem (Teitelbaum)

$$\int_{ au_1}^{ au_2} \omega = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \log\left(rac{t- au_2}{t- au_1}
ight) d
u_\omega(t) \, .$$

 Given the cycle ∑ γ_i ⊗ (τⁱ₂ − τⁱ₁) for computing the Darmon point we need to evaluate the integrals

$$\sum_{i} \int_{\mathbb{P}^{1}(\mathbb{Q}_{p})} \log \left(\frac{t - \tau_{2}^{i}}{t - \tau_{1}^{i}} \right) d\mu_{E,\gamma_{i}}(t)$$

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_{\mathcal{P}},\mathbb{Z}} \leftrightarrow \nu_\omega \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_{\mathcal{P}}),\mathbb{Z})$$

Theorem (Teitelbaum)

$$\int_{ au_1}^{ au_2} \omega = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \log\left(rac{t- au_2}{t- au_1}
ight) d
u_\omega(t) \, .$$

 Given the cycle ∑ γ_i ⊗ (τⁱ₂ − τⁱ₁) for computing the Darmon point we need to evaluate the integrals

$$\sum_{i} \int_{\mathbb{P}^{1}(\mathbb{Q}_{p})} \log\left(\frac{t-\tau_{2}^{i}}{t-\tau_{1}^{i}}\right) d\mu_{E,\gamma_{i}}(t)$$

Computing the integrals by Riemann sums is too inefficient

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_{\mathcal{P}},\mathbb{Z}} \leftrightarrow \nu_\omega \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_{\mathcal{P}}),\mathbb{Z})$$

Theorem (Teitelbaum)

$$\int_{ au_1}^{ au_2} \omega = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \log\left(rac{t- au_2}{t- au_1}
ight) d
u_\omega(t) \, .$$

 Given the cycle ∑ γ_i ⊗ (τⁱ₂ − τⁱ₁) for computing the Darmon point we need to evaluate the integrals

$$\sum_{i} \int_{\mathbb{P}^{1}(\mathbb{Q}_{p})} \log \left(\frac{t - \tau_{2}^{i}}{t - \tau_{1}^{i}} \right) d\mu_{E,\gamma_{i}}(t)$$

Computing the integrals by Riemann sums is too inefficientWe use instead an overconvergent method

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_{\mathcal{P}},\mathbb{Z}} \leftrightarrow \nu_\omega \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_{\mathcal{P}}),\mathbb{Z})$$

Theorem (Teitelbaum)

$$\int_{ au_1}^{ au_2} \omega = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \log\left(rac{t- au_2}{t- au_1}
ight) d
u_\omega(t) \, .$$

 Given the cycle ∑ γ_i ⊗ (τⁱ₂ − τⁱ₁) for computing the Darmon point we need to evaluate the integrals

$$\sum_{i} \int_{\mathbb{P}^{1}(\mathbb{Q}_{p})} \log\left(\frac{t-\tau_{2}^{i}}{t-\tau_{1}^{i}}\right) d\mu_{E,\gamma_{i}}(t)$$

- Computing the integrals by Riemann sums is too inefficient
- We use instead an overconvergent method
 - Darmon–Pollack used overconvergent modular symbols for D = 1

• Schneider:
$$\omega \in \Omega^1_{\mathcal{H}_{\mathcal{P}},\mathbb{Z}} \leftrightarrow \nu_\omega \in \mathsf{Meas}(\mathbb{P}^1(\mathbb{Q}_{\mathcal{P}}),\mathbb{Z})$$

Theorem (Teitelbaum)

$$\int_{ au_1}^{ au_2} \omega = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \log\left(rac{t- au_2}{t- au_1}
ight) d
u_\omega(t) \, .$$

 Given the cycle ∑ γ_i ⊗ (τⁱ₂ − τⁱ₁) for computing the Darmon point we need to evaluate the integrals

$$\sum_{i} \int_{\mathbb{P}^{1}(\mathbb{Q}_{p})} \log \left(\frac{t - \tau_{2}^{i}}{t - \tau_{1}^{i}} \right) d\mu_{E,\gamma_{i}}(t)$$

Computing the integrals by Riemann sums is too inefficient

- We use instead an overconvergent method
 - Darmon–Pollack used overconvergent modular symbols for D = 1
 - Can be adapted to our setting using the overconvergent cohomology machinery of Pollack–Pollack

Xevi Guitart, Marc Masdeu, Haluk Sengun (L

Outline

- 2 Heegner points
- 3 Darmon points (curves over \mathbb{Q})
- Explicit computations
- 5 Some generalizations: arbitrary base fields

 $p = 13, D = 6, \text{prec} = 13^{60}$

$y^2 + xy = x^3 + x^2 - 19x + 685$
P
$1 \cdot 48 \cdot (-2, 12\sqrt{5} + 1)$
$1 \cdot 48 \cdot (1558, -5040\sqrt{149} - 779)$
$1 \cdot 48 \cdot \left(\frac{310}{49}, \frac{720}{343}\sqrt{197} - \frac{155}{49}\right)^{-2}$
$1 \cdot 48 \cdot (40, -15\sqrt{293} - 20)$
$1 \cdot 48 \cdot (382, -420\sqrt{317} - 191)$
$1 \cdot 48 \cdot \left(\frac{986}{23}, \frac{7200}{529}\sqrt{437} - \frac{493}{23}\right)$
$1 \cdot 48 \cdot (232, -165\sqrt{461} - 116)$
$1 \cdot 48 \cdot \left(-\frac{2}{289}, -\frac{5700}{4913}\sqrt{509} + \frac{1}{289} \right)$
$1 \cdot 48 \cdot \left(\frac{75622}{121}, \frac{882000}{1331}\sqrt{557} - \frac{37811}{121}\right)$

 $p = 11, D = 10, \text{ prec} = 11^{60}$

$p = 19, D = 6, \text{prec} = 19^{60}$

Outline

- 2 Heegner points
- 3 Darmon points (curves over \mathbb{Q})
- Explicit computations
- 5 Some generalizations: arbitrary base fields

• "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of *F* that split in *K*
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_{\mathfrak{p}})$, conjecturally in E(H).

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - ► Analogous with *v* an archimedean place of *F*.

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - ► Analogous with *v* an archimedean place of *F*.
 - Cohomology class ω_E is the modular form attached to E

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - ► Analogous with *v* an archimedean place of *F*.
 - Cohomology class ω_E is the modular form attached to E
 - Darmon point: $\int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E \sim E(\mathbb{C})$

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - ► $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - ► Analogous with *v* an archimedean place of *F*.
 - Cohomology class ω_E is the modular form attached to E
 - Darmon point: $\int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E \sim E(\mathbb{C})$
- These constructions (both archimedean and non-archimedean) also extend to *F* arbitrary number fields (mixed signature).

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- *E*/*F* with *F* totally real, *K*/*F* any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - ► $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - ► Analogous with *v* an archimedean place of *F*.
 - Cohomology class ω_E is the modular form attached to E
 - Darmon point: $\int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E \sim E(\mathbb{C})$
- These constructions (both archimedean and non-archimedean) also extend to *F* arbitrary number fields (mixed signature).
- In some cases explicit computations are feasible:
 - ▶ p-adic constructions: same method we explained for curves over Q, when the (co)homology groups involved are in degree 1

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- *E*/*F* with *F* totally real, *K*/*F* any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - $\omega_{E} \in H^{n}(\Gamma, \Omega^{1}_{\mathcal{H}_{\mathfrak{p}}}), \Delta_{\tau} \in H_{n}(\Gamma, \operatorname{Div}^{0}\mathcal{H}_{\mathfrak{p}})$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - ► Analogous with *v* an archimedean place of *F*.
 - Cohomology class ω_E is the modular form attached to E
 - Darmon point: $\int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E \sim E(\mathbb{C})$
- These constructions (both archimedean and non-archimedean) also extend to *F* arbitrary number fields (mixed signature).
- In some cases explicit computations are feasible:
 - *p*-adic constructions: same method we explained for curves over Q, when the (co)homology groups involved are in degree 1
 - ► archimedean: need in addition that B ≃ M₂(F) (in order to have Fourier expansions for the modular forms)

- "Simplest" Darmon points: E/\mathbb{Q} and K/\mathbb{Q} real quadratic.
- There are generalizations in several directions.
- E/F with F totally real, K/F any quadratic extension (Greenberg)
 - p prime of F which is inert in K
 - $\blacktriangleright \ \omega_{\mathcal{E}} \in H^n(\Gamma, \Omega^1_{\mathcal{H}_p}), \, \Delta_{\tau} \in H_n(\Gamma, \operatorname{Div}^0 \mathcal{H}_p)$
 - n = # archimedean places of F that split in K
 - $\int_{\Delta_{\tau}} \Phi_E \in E(\mathbb{C}_p)$, conjecturally in E(H).
- Archimedean constructions (Darmon, Gartner):
 - Analogous with v an archimedean place of F.
 - Cohomology class \u03c6_E is the modular form attached to E
 - Darmon point: $\int_{\Delta_{\tau}} \omega_E \in \mathbb{C} / \Lambda_E \sim E(\mathbb{C})$
- These constructions (both archimedean and non-archimedean) also extend to *F* arbitrary number fields (mixed signature).
- In some cases explicit computations are feasible:
 - *p*-adic constructions: same method we explained for curves over Q, when the (co)homology groups involved are in degree 1
 - archimedean: need in addition that $B \simeq M_2(F)$ (in order to have Fourier expansions for the modular forms)
- Show an example of mixed signature archimedean Darmon point

- F = Q(r), with $r^3 r^2 + 1$
- F has one real and one complex place

•
$$F = Q(r)$$
, with $r^3 - r^2 + 1$

• F has one real and one complex place

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$F = Q(r)$$
, with $r^3 - r^2 + 1$

• F has one real and one complex place

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

• *E* has conductor $\mathfrak{N} = (r^2 + 4)$, of norm 89.

- F = Q(r), with $r^3 r^2 + 1$
- F has one real and one complex place

$$E: y^2 + (r-1)xy + (r^2 - r)y = x^3 + (-r^2 - 1)x^2 + r^2x.$$

- *E* has conductor $\mathfrak{N} = (r^2 + 4)$, of norm 89.
- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C})$

•
$$F = Q(r)$$
, with $r^3 - r^2 + 1$

• F has one real and one complex place

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

• *E* has conductor $\mathfrak{N} = (r^2 + 4)$, of norm 89.

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}) \}$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathbb{H}_3$, where

$$\mathcal{H} = \{z \in \mathbb{C} \colon \mathsf{Im}(z) > 0\}, \ \mathbb{H}_3 = \{(x, y) \in \mathbb{C} \times \mathbb{R} \colon y > 0\}$$

•
$$F = Q(r)$$
, with $r^3 - r^2 + 1$

• F has one real and one complex place

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

- *E* has conductor $\mathfrak{N} = (r^2 + 4)$, of norm 89.
- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}) \}$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathbb{H}_3$, where

$$\mathcal{H} = \{z \in \mathbb{C} \colon \mathsf{Im}(z) > 0\}, \ \mathbb{H}_3 = \{(x, y) \in \mathbb{C} \times \mathbb{R} \colon y > 0\}$$

Generalized Modularity Conjecture

There is a harmonic differential form $\omega_E \in H^2(\Gamma \setminus \mathcal{H} \times \mathbb{H}_3, \mathbb{C})$ with

$$T_{\mathfrak{l}}\omega_{E}=a_{\mathfrak{l}}(E)\omega_{E}$$

Xevi Guitart, Marc Masdeu, Haluk Sengun (U

•
$$F = Q(r)$$
, with $r^3 - r^2 + 1$

• F has one real and one complex place

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

- *E* has conductor $\mathfrak{N} = (r^2 + 4)$, of norm 89.
- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}) \}$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathbb{H}_3$, where

$$\mathcal{H} = \{z \in \mathbb{C} \colon \mathsf{Im}(z) > 0\}, \ \mathbb{H}_3 = \{(x, y) \in \mathbb{C} \times \mathbb{R} \colon y > 0\}$$

Generalized Modularity Conjecture

There is a harmonic differential form $\omega_E \in H^2(\Gamma \setminus \mathcal{H} \times \mathbb{H}_3, \mathbb{C})$ with

$$T_{\mathfrak{l}}\omega_{E}=a_{\mathfrak{l}}(E)\omega_{E}$$

• Observe: $\mathcal{H} \times \mathbb{H}_3$ doesn't have a complex structure!

•
$$F = Q(r)$$
, with $r^3 - r^2 + 1$

• F has one real and one complex place

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

- *E* has conductor $\mathfrak{N} = (r^2 + 4)$, of norm 89.
- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathcal{O}_F) \colon \mathfrak{N} \mid c \} \subset \mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{C}) \}$
- $\Gamma_0(\mathfrak{N})$ acts on $\mathcal{H} \times \mathbb{H}_3$, where

$$\mathcal{H} = \{z \in \mathbb{C} \colon \mathsf{Im}(z) > 0\}, \ \mathbb{H}_3 = \{(x, y) \in \mathbb{C} \times \mathbb{R} \colon y > 0\}$$

Generalized Modularity Conjecture

There is a harmonic differential form $\omega_E \in H^2(\Gamma \setminus \mathcal{H} \times \mathbb{H}_3, \mathbb{C})$ with

$$T_{\mathfrak{l}}\omega_E = a_{\mathfrak{l}}(E)\omega_E$$

• Observe: $\mathcal{H} \times \mathbb{H}_3$ doesn't have a complex structure!

In practice, one can compute ω_E!

Xevi Guitart, Marc Masdeu, Haluk Sengun (L

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \begin{pmatrix} \frac{-\omega_{x}}{y} \wedge d\bar{z} \\ \frac{dy}{y} \wedge d\bar{z} \\ \frac{d\bar{z}}{y} \wedge d\bar{z} \end{pmatrix}$$

1 1

`

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \left(\frac{\frac{-dx}{y} \wedge d\bar{z}}{\frac{dx}{y} \wedge d\bar{z}}\right)$$
$$\mathbb{K}(t) = \left(-\frac{i}{2}t|t|K_{1}(4\pi|t|), |t|^{2}K_{0}(4\pi|t|), \frac{i}{2}\bar{t}|t|K_{1}(4\pi|t|)\right),$$

(K_0 and K_1 are the hyperbolic Bessel functions of the second kind)

• ω_E has a "Fourier-Bessel expansion":

$$\omega_{E}(z, x, y) = \sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0} > 0}} \frac{a_{(\alpha)}}{N_{F/\mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp\left(-2\pi i \left(\frac{\alpha_{0}\bar{z}}{\delta_{0}} + \frac{\alpha_{1}x}{\delta_{1}} + \frac{\alpha_{2}\bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1}y}{\delta_{1}}\right) \cdot \left(\frac{\frac{-dx}{y} \wedge d\bar{z}}{\frac{d\bar{x}}{y} \wedge d\bar{z}}\right)$$
$$\mathbb{K}(t) = \left(-\frac{i}{2}t|t|K_{1}(4\pi|t|), |t|^{2}K_{0}(4\pi|t|), \frac{i}{2}\bar{t}|t|K_{1}(4\pi|t|)\right),$$

(K₀ and K₁ are the hyperbolic Bessel functions of the second kind)
We can compute the a_(α) by counting points on E(O_F/p)

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

• $\omega_E \in H^2(\Gamma, \mathcal{H} \times \mathbb{H}_3)$

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

- $\omega_E \in H^2(\Gamma, \mathcal{H} \times \mathbb{H}_3)$
- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

- $\omega_E \in H^2(\Gamma, \mathcal{H} \times \mathbb{H}_3)$
- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$\omega_{E} \in H^{2}(\Gamma, \mathcal{H} \times \mathbb{H}_{3})$$

- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding

• Stab_{$$\tau$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_{\tau} \rangle$ with $\gamma_{\tau} = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$\omega_{E} \in H^{2}(\Gamma, \mathcal{H} \times \mathbb{H}_{3})$$

- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding

• Stab_{$$\tau$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_{\tau} \rangle$ with $\gamma_{\tau} = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$

• $\gamma_{\tau} \otimes \tau \in H_1(\Gamma_0(\mathfrak{N}), \operatorname{Div}\mathcal{H})$

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$\omega_{E} \in H^{2}(\Gamma, \mathcal{H} \times \mathbb{H}_{3})$$

- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding

• Stab_{$$\tau$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$

- $\gamma_{\tau} \otimes \tau \in H_1(\Gamma_0(\mathfrak{N}), \operatorname{Div}\mathcal{H})$
- Find a homologous cycle of the form $\sum \gamma_i \otimes (\tau_i^2 \tau_i^1)$.

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$\omega_E \in H^2(\Gamma, \mathcal{H} imes \mathbb{H}_3)$$

- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding

• Stab_{$$\tau$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
• $\gamma_\tau \otimes \tau \in H_1(\Gamma_0(\mathfrak{N}), \operatorname{Div}\mathcal{H})$

• Find a homologous cycle of the form $\sum \gamma_i \otimes (\tau_i^2 - \tau_i^1)$.

•
$$J_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E}$$

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$\omega_E \in H^2(\Gamma, \mathcal{H} imes \mathbb{H}_3)$$

- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding

• Stab_{$$\tau$$}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$
• $\gamma_\tau \otimes \tau \in H_1(\Gamma_0(\mathfrak{N}), \operatorname{Div}\mathcal{H})$

• Find a homologous cycle of the form $\sum \gamma_i \otimes (\tau_i^2 - \tau_i^1)$.

•
$$J_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E} \simeq 0.141967077 - 0.055099463\sqrt{-1}$$

$$E: y^{2} + (r-1)xy + (r^{2} - r)y = x^{3} + (-r^{2} - 1)x^{2} + r^{2}x.$$

•
$$\omega_{E} \in H^{2}(\Gamma, \mathcal{H} \times \mathbb{H}_{3})$$

- K = F(w), where *w* satisfies $w^2 + (r+1)w + 2r^2 3r + 3$.
- Take $\tau \in \mathcal{H} \cap K$ to be the image of *w* under the first embedding
- Stab_{τ}($\Gamma_0(\mathfrak{N})$) = $\langle \gamma_\tau \rangle$ with $\gamma_\tau = \begin{pmatrix} -4r-3 & -r^2+2r+3\\ -2r^2-4r-3 & -r^2+4r+2 \end{pmatrix}$ • $\gamma_\tau \otimes \tau \in H_1(\Gamma_0(\mathfrak{N}), \operatorname{Div}\mathcal{H})$
- Find a homologous cycle of the form $\sum \gamma_i \otimes (\tau_i^2 \tau_i^1)$.
- $J_{\tau} = \sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} \cdot O} \omega_{E} \simeq 0.141967077 0.055099463\sqrt{-1}$
- The image of J_τ ∈ C/Λ_E ≃ E(C) coincides (up to 32 digits of accuracy) with 10P, where

$$P = \left(r-1: w-r^2+2r:1\right) \in E(K)$$

is a point of infinite order!

Computation and some new instances of Darmon points

Xevi Guitart¹ Marc Masdeu² Haluk Sengun³

¹Universitat de Barcelona

²University of Warwick

³University of Sheffield

Number Theory Seminar, Institut de Mathématiques de Jussieu