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Outline

0 Computing algebraic points on elliptic curves
e Heegner points

a Darmon points (curves over Q)

@ Explicit computations

e Some generalizations: arbitrary base fields
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Computing algebraic points
@ E elliptic curve with rational coefficients
E:y?+ bixy + by = x® + box? + byx + bg, b €Z
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Computing algebraic points
@ E elliptic curve with rational coefficients
E:y?+ bixy + by = x® + box? + byx + bg, b €Z
@ K anumber field. E(K) = {solutions (x, y) € K?}
Question
Does there exist any algorithm for computing E(K)? J

@ Answer: Not known

Mordell-Weil Theorem
E(K) has a group structure and E(K) ~ E(K)r ® Z" J

@ E(K)or: there DO exist algorithms

@ Compute r linearly independent points of infinite order?
@ Compute the rank r?

» Related to the Birch and Swinnerton—Dyer Conjecture
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The Birch and Swinnerton—Dyer Conjecture (BSD)

Birch—Swinnerton-Dyer Conjecture (BSD)
r(E/K) = ords_1L(E/K, s)
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The Birch and Swinnerton—Dyer Conjecture (BSD)

Birch—Swinnerton-Dyer Conjecture (BSD)
r(E/K) = ords_1L(E/K, s)

Theorem (Gross—Zagier 1986, Kolyvagin 1989)

If K = Q or K = imaginary quadratic and ords_1L(E/K,s) < 1 then
BSD holds
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The Birch and Swinnerton—Dyer Conjecture (BSD)

Birch—Swinnerton-Dyer Conjecture (BSD)
r(E/K) = ords_1L(E/K, s)

Theorem (Gross—Zagier 1986, Kolyvagin 1989)

If K = Q or K = imaginary quadratic and ords_1L(E/K,s) < 1 then
BSD holds

Question

If K = imaginary quadratic and ords_1L(E/K,s) = 1, does there exist
an efficient algorithm for computing a point of infinite order?

@ Answer: yes, the Heegner points method
» Fundamental ingredient in the Gross—Zagier—Kolyvagin theorem
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@ Heegner points
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Heegner points
K = Q(v/—D) imaginary quadratic field
Method for computing points on E(K2°)
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@ Geometric construction
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Heegner points
K = Q(v/—D) imaginary quadratic field
Method for computing points on E(K2°)

@ Geometric construction

Modular uniformization (Wiles et. al): Xo(N) — E

Points on Xo(N) parametrize pairs elliptic curves

CM points on Xp(N) (correspond to curves with CM by K)
Theory of Complex Multiplication: CM points € X (N)(K®)
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@ Geometric construction
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@ Geometric construction
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Heegner Point
Jr = [ f(2)dz € C/A; ~ C/Ag ~ J; € E(K?®) J
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An extreme example (M. Watkins)

y2 +y = x® — 5115523309x — 140826120488927 (N = 66157667)

Xevi Guitart, Marc Masdeu, Haluk Sengun ( U Computation of Darmon points Paris March 2015 8/28



An extreme example (M. Watkins)

y2 +y= x3 — 5115523309x — 140826120488927 (N =66157667)
the numerator of the x-coordinate is:
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An extreme example (M. Watkins

y2 +y = x3 — 5115523309x — 140826120488927 (N = 66157667)

the numerator of the x-coordinate is:

12 MARK WATKINS

600 million terms of the L-series. This takes less than a day. We list the xz-coordinate
of the point on the original elliptic curve. It has numerator
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A natural question: what if K is real quadratic?
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A natural question: what if K is real quadratic?

Question
@ E/Q elliptic curve

@ K real quadratic such that ords_1L(E/K,s) =1
algorithm for computing points of infinite order in E(K2°)?

@ Idea: look for a construction analogous to that of Heegner points
@ Darmon Points (a.k.a. Stark—Heegner Points)

Xevi Guitart, Marc Masdeu, Haluk Sengun (U Computation of Darmon points Paris March 2015 9/28



Heegner points

K imaginary quadratic
Method for constructing points of infinite order in E(K3°) J

@ Geometric construction (proves algebraicity)

» Modular uniformization Xp(N) — E
» complex multiplication

@ Explicit formula (good for computations)
> J; = [ 2rif(z)dz € C/A = E(C)
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K imaginary quadratic
Method for constructing points of infinite order in E(K3°)
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Heegnerpeoints Darmon points
K wraginary-gquaadratie real quadratic

Method for constructing points of infinite order in E(K3°)

@ Geometric construction (proves algebraicity)

» Modular uniformization Xp(N) — E
» complex multiplication

@ Explicit formula (good for computations)
> J; = [ 2rif(z)dz € C/A = E(C)
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Heegrerpeoints Darmon points
K wraginary-gquaadratie real quadratic

Method for constructing points of infinite order in E(K3°)

@ Geometric construction (proves algebraicity)
» Modular uniformization Xp(N) — E

> complex-mutltiplieation real multiplication ~~ Doesn'’t exist!
@ Explicit formula (good for computations)
» J; = [ 2rif(z)dz € C/N = E(C)
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Heegrerpeoints Darmon points
K wraginary-gquaadratie real quadratic

Method for constructing points of infinite order in E(K3°)

o & . or eebraiei

» Modular uniformization Xp(N) — E

» complex-muttiplieation real multiplication ~~ Doesn’t exist!
@ Explicit formula (good for computations)

» J; = [ 2rif(z)dz € C/N = E(C)

» Ingredients

E -~ weeQl
vE OH —>JT=/ UJEE(C//\E
TeKNH~ A, €DivH A,
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Heegrerpeoints Darmon points
K wraginary-gquaadratie real quadratic

Method for constructing points of infinite order in E(K3°)

o C , , ebraic

» Modular uniformization Xo(N) — E

» complex-muttiplieation real multiplication ~~ Doesn’t exist!
@ Explicit formula (good for computations)

» J; = [ 2rif(z)dz € C/N = E(C)

» Ingredients
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Heegrerpeoints Darmon points
K wraginary-gquaadratie real quadratic

Method for constructing points of infinite order in E(K3°)

o C , , ebraic

» Modular uniformization Xo(N) — E

» complex-muttiplieation real multiplication ~~ Doesn’t exist!
@ Explicit formula (good for computations)

» J; = [ 2rif(z)dz € C/N = E(C)

» Ingredients

EWwEEQ;{
. 0 —>J7—:/ WEE(C//\E
TeKNH~ A, €DivH A,

» |dea: look for analogues of weg and A
> Infact: we € H(To(N), Q%) and A, € Hy(To(N), DivPH)

@ Obstruction: Kreal = KNH = (!
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Outline

e Darmon points (curves over Q)
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Darmon points
@ Idea: instad of H look at H,, (p-adic upper half plane)
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Darmon points
@ |dea: instad of H look at #H,, (p-adic upper half plane)

» Cp = @ (analogous to C)
» Hp = Cp\ Qp (analogous to C \ R = H*)
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Darmon points
@ |dea: instad of H look at #H,, (p-adic upper half plane)
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@ Local description of E:
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@ |dea: instad of H look at #H,, (p-adic upper half plane)

Cp = Qp (analogous to C)

Hp = Cp \ Qp (analogous to C\ R = H*)
pisinertin K = KNH, #0

Q3,, = rigid analytic differentials on #,
Coleman Integral (analogous to the line integral)

vV v v.VvY Y

T2
wEQHP, T1,T2 € Hp, ~ / weCp
|

v

Multiplicative Coleman integral: if w has integral residues

T2
][ w E (C;;
@ Local description of E:
» If p | N: Tate uniformization

E(Cp)~Cy/ < qe>

Xevi Guitart, Marc Masdeu, Haluk Sengun ( U Computation of Darmon points Paris March 2015

12/28



Darmon points, a la Greenberg

Xevi Guitart, Marc Masdeu, Haluk Sengun ( U Computation of Darmon points



Darmon points, a la Greenberg

@ E/Q of conductor N. If signL(E/K,s) = —1 then N = pDM
» M product of primes that split or ramify in K
» D product of an even number of primes which are inert in K
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Darmon points, a la Greenberg

@ E/Q of conductor N. If signL(E/K,s) = —1 then N = pDM
» M product of primes that split or ramify in K
» D product of an even number of primes which are inert in K

@ B/Q quaternion algebra of discriminant D (= M»(Q) if D = 1)
@ R(pM) c B Eichler order of level pM and I'o(pM) = Ro(pM);

o = (Ro(M)@Z[H) i T = To(M) #rypm Fo(M)

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

E « wge H1(F,Q}%p)
7€ KNHp~ A, € Hy (T, DivPH,)
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@ E/Q of conductor N. If signL(E/K,s) = —1 then N = pDM
» M product of primes that split or ramify in K
» D product of an even number of primes which are inert in K

@ B/Q quaternion algebra of discriminant D (= M»(Q) if D = 1)
@ R(pM) c B Eichler order of level pM and I'o(pM) = Ro(pM);

o = (Ro(M)@Z[H) i T = To(M) #rypm Fo(M)

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

E ~ wg € H1(F,Q}%p)}

— J; =][ weg € CX
TeKNHp~ A € H1(I',Divo7-lp) £ p/<q>

T

@ C;/(q) ~ C5/(qe) (Darmon, Greenberg—Dasgupta, Longo—Rotger-Vigni)
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Darmon points, a la Greenberg

@ E/Q of conductor N. If signL(E/K,s) = —1 then N = pDM
» M product of primes that split or ramify in K
» D product of an even number of primes which are inert in K

@ B/Q quaternion algebra of discriminant D (= M»(Q) if D = 1)
@ R(pM) c B Eichler order of level pM and I'o(pM) = Ro(pM);
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Darmon points, a la Greenberg

@ E/Q of conductor N. If signL(E/K,s) = —1 then N = pDM
» M product of primes that split or ramify in K
» D product of an even number of primes which are inert in K

@ B/Q quaternion algebra of discriminant D (= M»(Q) if D = 1)
@ R(pM) c B Eichler order of level pM and I'o(pM) = Ro(pM);

o = (Ro(M)@Z[H) i T = To(M) #rypm Fo(M)

Construction (Darmon D = 1 (2001), Greenberg D > 1 (2011))

E ~ wg € H1(F,Q}%p)}

—>JT=][ wg € C ~ E(C
TGKQHPWAT€H1(|_7DiVOHp) E »/(Q) (Cp)

T

@ C;/(q) ~ C5/(qe) (Darmon, Greenberg-Dasgupta, Longo—Rotger-Vigni)

Conjecture (rationality)
J. € E(K®) and Tr(J,) of infinite order if ords—¢ L(E/K,s) = 1

|
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Numerical evidence for the conjecture

@ Computations in the case of the split algebra B = M,(Q)

» Darmon—Green (2002)
» Darmon—Pollack (2006)
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Numerical evidence for the conjecture

@ Computations in the case of the split algebra B = M,(Q)
» Darmon—Green (2002)
» Darmon—Pollack (2006)

@ Next: explain an algorithm for B division

» the homology class attached to 7 € KN H,p,
» the cohomology class attached to E
» the integration pairing

present some numerical evidence for the conjecture in this case
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The homology class
@ 7€ HpNK ~ A, € Hy(T,DivOH,)
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The homology class

@ 1€ HpNK ~ A, € Hy (I, DivOH,)
@ B®Qp ~My(Qp) sol C Bacts on H,, via linear fractional transf.
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The homology class
@ 7€ HpNK ~ A, € Hy(T,DivOH,)
@ B® Qp~M(Qp) sol C Bacts on H,, via linear fractional transf.
@ |t turns out that Stabr(7) = (~,), forsome v, € I
@ Then: v, ® 7 € Hy(I', DivH)p).
@ 0 — Div'%p — DivHp — Z — 0

Ho(T, Z) — Hy(T, DivOH,) — Hy(T, DivHp) — Hy(T,2Z) ~ T4

@ lhara: I, is finite ~ 7€ ® 7 has a preimage in Hy(T', DivOH,)
@ Computing this explicitly boils down to compute I3,

» Computing generators

» Given ~ € [I', T] write it explicitly as a product of commutators
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The homology class

@ 7€ HpNK ~ A, € Hy(T,DivOH,)

@ B® Qp~M(Qp) sol C Bacts on H,, via linear fractional transf.
@ |t turns out that Stabr(7) = (~,), forsome v, € I

@ Then: v, ® 7 € Hy(I', DivH)p).

@ 0 — Div'%p — DivHp — Z — 0

Ho(T, Z) — Hy(T, DivOH,) — Hy(T, DivHp) — Hy(T,2Z) ~ T4

@ lhara: I, is finite ~ 7€ ® 7 has a preimage in Hy(T', DivOH,)

@ Computing this explicitly boils down to compute Iy

Computing generators

Given v € [, ] write it explicitly as a product of commutators

J. Voight’s algorithms: generators, word problem for I'o(pM), ['o(M)
Not difficult to use this to treat I' = ['o(M) *r,(pmy Fo(M)

vV vyVvVYyy
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The homology class

@ 7€ HpNK ~ A, € Hy(T,DivOH,)

@ B® Qp~M(Qp) sol C Bacts on H,, via linear fractional transf.
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The homology class

@ 7€ HpNK ~ A, € Hy(T,DivOH,)

@ B® Qp~M(Qp) sol C Bacts on H,, via linear fractional transf.
@ |t turns out that Stabr(7) = (~,), forsome v, € I

@ Then: v, ® 7 € Hy(I', DivH)p).

@ 0 — Div'%p — DivHp — Z — 0

Ho(T, Z) — Hy(T, DivOH,) — Hy(T, DivHp) — Hy(T,2Z) ~ T4

@ lhara: I, is finite ~ 7€ ® 7 has a preimage in Hy(T', DivOH,)
@ Computing this explicitly boils down to compute Iy
» Computing generators
» Given ~ € [I', T] write it explicitly as a product of commutators
» J. Voight’s algorithms: generators, word problem for 'o(pM), ['o(M)
» Not difficult to use this to treat I' = I'o(M) *r,(pmy Fo(M)
@ A, only well defined up to elements of Ha(I', Z)
» integration pairing only well defined up to < ge >C C;
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The homology class

@ 7€ HpNK ~ A, € Hy(T,DivOH,)

@ B® Qp~M(Qp) sol C Bacts on H,, via linear fractional transf.
@ |t turns out that Stabr(7) = (~,), forsome v, € I

@ Then: v, ® 7 € Hy(I', DivH)p).

@ 0 — Div'%p — DivHp — Z — 0

Ho(T, Z) — Hy(T, DivOH,) — Hy(T, DivHp) — Hy(T,2Z) ~ T4

@ lhara: I, is finite ~ 7€ ® 7 has a preimage in Hy(T', DivOH,)
@ Computing this explicitly boils down to compute I3,
» Computing generators
» Given ~ € [I', T] write it explicitly as a product of commutators
» J. Voight’s algorithms: generators, word problem for 'o(pM), ['o(M)
» Not difficult to use this to treat I' = I'o(M) *r,(pmy Fo(M)
@ A, only well defined up to elements of Hx(I',Z)
» integration pairing only well defined up to < ge >C C;
» Can also compute a generator of Hx(I", Z) ~ < qg >
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The cohomology class

® E~weeH'(NQ,)
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The cohomology class

@ E~wge H1(F,Q}{p)
@ Hecke operators act on this cohomology group:

Tp: H'(M,Q3,) — H'(T,9Q5,,)
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The cohomology class

@ E~wge H1(F,Q}{p)
@ Hecke operators act on this cohomology group:

Tp: H'(M,Q3,) — H'(T,9Q5,,)

Theorem (M. Greenberg)
The isotypical component H' (T, Q;{p)E is 1-dimensional.
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The cohomology class

@ E~wge H1(F,Q}{p)
@ Hecke operators act on this cohomology group:

Tp: H'(M,Q3,) — H'(T,9Q5,,)

Theorem (M. Greenberg)
The isotypical component H' (T, Q;{p)E is 1-dimensional.

@ wr the “single” cohomology class such that

Tiwe = awe, where @, = €+ 1 — #E(Fy)
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The cohomology class

@ E~wge H1(F,Q}{p)
@ Hecke operators act on this cohomology group:

Tp: H'(M,Q3,) — H'(T,9Q5,,)

Theorem (M. Greenberg)
The isotypical component H' (T, Q;{p)E is 1-dimensional.

@ wr the “single” cohomology class such that
Tywe = aqweg, wWhere g, =/¢+1— #E(F@)

@ How to compute effectively with rigid analytic differentials?
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider)

Q3,2 — {Measures on P'(Qp) with values in Z}
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider)

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = pug € H'(I', Meas(P'(Qp, Z)))
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider)

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = ug € H'(T, Meas(P'(Qp, Z)))
e H'(I',Meas(P'(Qp), Z))E—H'(T', Z)E
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider)

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = pug € H'(I', Meas(P'(Qp, Z)))
° H'(F,Meas(P'(Qp), 2))*—H'(T, Z)F == H'(To(pM), Z)*
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider)

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = pug € H'(I', Meas(P'(Qp, Z)))
® H'(T,Meas(P'(Qp), 2))"—H' (I, Z)F = H'(To(pM), Z)*
@ Greenberg’s theorem: the above map is an isomorphism.
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider) J

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = pug € H'(I', Meas(P'(Qp, Z)))

e H'(I',Meas(P'(Qp), Z))E—H(T,Z)E =% H'(I'o(pM), Z)F
@ Greenberg’s theorem: the above map is an isomorphism.
@ Let g € H'(I'o(pM), Z) corresponding to pg
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider) J

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = pug € H'(I', Meas(P'(Qp, Z)))

e H'(I',Meas(P'(Qp), Z))E—H(T,Z)E =% H'(I'o(pM), Z)F
@ Greenberg’s theorem: the above map is an isomorphism.
@ Let g € H'(I'o(pM), Z) corresponding to pg

@ ¢ is easy to compute:

» compute the Hecke action on [o(pM)a, = H' (To(pM), Z)
(again using Voight's algorithms)

» Diagonalize and take ¢ be the element in the isotypical
component of E.
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Rigid analytic differentials and measures
Concrete realization of p-adic differentials (Schneider) J

Q3,2 — {Measures on P'(Qp) with values in Z}

@ We can view wg = pug € H'(I', Meas(P'(Qp, Z)))

e H'(I',Meas(P'(Qp), Z))E—H(T,Z)E =% H'(I'o(pM), Z)F
@ Greenberg’s theorem: the above map is an isomorphism.
@ Let g € H'(I'o(pM), Z) corresponding to pg

@ ¢ is easy to compute:
» compute the Hecke action on [o(pM)a, = H' (To(pM), Z)
(again using Voight’s algorithms)
» Diagonalize and take ¢ be the element in the isotypical
component of E.
@ The isomorphism is explicit (it is essentially Shapiro’s Lemma). So
we can recover ug from .
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The integration pairing
@ Schneider: w € Q}, , ¢ u, € Meas(P'(Qp), Z)
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The integration pairing
@ Schneider: w € Q}, , ¢ u, € Meas(P'(Qp), Z)

Theorem (Teitelbaum)

T2 _
/ W= / log <t Tz) dv,(t)
. P! (Qp) t—my
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The integration pairing
@ Schneider: w € Q}, , ¢ u, € Meas(P'(Qp), Z)

Theorem (Teitelbaum)

[ (=)o

@ Given the cycle 3" v; ® (4 — 1) for computing the Darmon point
we need to evaluate the integrals

Z/P‘ T ( 1> nealh
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The integration pairing
@ Schneider: w € Q}, , ¢ u, € Meas(P'(Qp), Z)

Theorem (Teitelbaum)

/ w_/pu@p Iog( _T)dyw()

@ Given the cycle 3" v; ® (4 — 1) for computing the Darmon point
we need to evaluate the integrals

t— 7l
Z/ log %) dMEm'(t)
i JP(Qp) t—y

@ Computing the integrals by Riemann sums is too inefficient
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/ w_/ﬁm(@p Iog( _T)dyw()

@ Giventhecycle ) v ® (Té — 71’) for computing the Darmon point
we need to evaluate the integrals

t— 7l
Z/ log f) dug (1)
i /PN (Qp) t—m

@ Computing the integrals by Riemann sums is too inefficient
@ We use instead an overconvergent method
» Darmon—Pollack used overconvergent modular symbols for D = 1
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The integration pairing
@ Schneider: w € Q}, , ¢ u, € Meas(P'(Qp), Z)

Theorem (Teitelbaum)

/ w_/ﬁm(@p Iog( _T>dyw()

@ Giventhecycle ) v ® (Té — 71’) for computing the Darmon point
we need to evaluate the integrals

t— 7l
log 2 ) dug(t)
Z:/IMQP) (f—T1’> !

@ Computing the integrals by Riemann sums is too inefficient
@ We use instead an overconvergent method
» Darmon—Pollack used overconvergent modular symbols for D = 1
» Can be adapted to our setting using the overconvergent
cohomology machinery of Pollack—Pollack
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@ Explicit computations
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p=13, D =6, prec = 1360

E78 .
dx

=x3+x%>-19x + 685

P

yZ+xy

5
149
197
293
317
437
461
509
557

Xevi Guitart, Marc Masdeu, Haluk Sengun ( U

1.48.(—2,12\£+1)

1.48. (1558,—5040\/W— 779)
1.48- (30, 20797 - 12)

1.48.(40,—15\/2T_ )
1-48-(382 7420\/377191)
1.48. (98367 222090\/‘@ 4933)
1.48. (232 —165@—116)
148 (— 225, — % V509 + 15 )
1.48. (75622 882000 V557 — 317211)
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p=11,D =10, prec = 110

Eiio: y?+xy+y=x3+x2+10x —45.

di P

13 2.30- (1103 28510 13, — 53;83+1§ZSO 13)
173 2-30. (1552, 13y — apm 773)
257|230 (e el o5

_ 3505590193011437142853233857149
8049997913829845411423756107
277 2.30 646317716623881 _ 58871104165657 _ 20912769335239055243 277)
12553387541776°  25106775083552 44477606117965542976

7088486530742 10060321188543 591566427769149607 . /
293 2-30- (2971834657801 » 5943669315602 ~ 10246297476835603402 293)

298780258398 360867442327 19368919551426449
373 2-30- ( 62087183929 ° ~ 124174367858 ~ 30940899762281434 373)

=+ 235448460130564520991320372200 237)
8049997913829845411423756107
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p=19, D=6, prec = 190

Ei1a: y?+xy=x®—8x

dk P

29 172 (- 5v29 - 8,529 + &)

53 172 (-3, 4V58+ )

173 172 (- VTS + 25

269 172 (ST /269 - f2iadrsannnct,
e 10200, /260 + STzt

293 1.72. (21289143620808 4567039561444642548 293 — W)

4902225525409 * 10854002829131490673 4902225525409

317 172 (-%,-§ V317 + 8)

341 | 1.72. (Ypspeuaue S00oononznioll V34T — ST )

413 172 (%, 42413 - %)
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e Some generalizations: arbitrary base fields
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.
@ There are generalizations in several directions.
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.

@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.
@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
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@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
@ Archimedean constructions (Darmon, Gartner):
» Analogous with v an archimedean place of F.
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.

@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
@ Archimedean constructions (Darmon, Gartner):
» Analogous with v an archimedean place of F.
» Cohomology class we is the modular form attached to E
» Darmon point: [, wg € C/Ag ~ E(C)
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.
@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
@ Archimedean constructions (Darmon, Gartner):
» Analogous with v an archimedean place of F.
» Cohomology class we is the modular form attached to E
» Darmon point: [, wg € C/Ag ~ E(C)
@ These constructions (both archimedean and non-archimedean)
also extend to F arbitrary number fields (mixed signature).
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.

@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
@ Archimedean constructions (Darmon, Gartner):
» Analogous with v an archimedean place of F.
» Cohomology class we is the modular form attached to E
» Darmon point: [, wg € C/Ag ~ E(C)
@ These constructions (both archimedean and non-archimedean)
also extend to F arbitrary number fields (mixed signature).
@ In some cases explicit computations are feasible:
» p-adic constructions: same method we explained for curves over Q,
when the (co)homology groups involved are in degree 1
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.

@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
@ Archimedean constructions (Darmon, Gartner):
» Analogous with v an archimedean place of F.
» Cohomology class we is the modular form attached to E
» Darmon point: [, wg € C/Ag ~ E(C)
@ These constructions (both archimedean and non-archimedean)
also extend to F arbitrary number fields (mixed signature).
@ In some cases explicit computations are feasible:
» p-adic constructions: same method we explained for curves over Q,
when the (co)homology groups involved are in degree 1
» archimedean: need in addition that B ~ Mx(F)
(in order to have Fourier expansions for the modular forms)
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@ “Simplest” Darmon points: E/Q and K/Q real quadratic.

@ There are generalizations in several directions.
@ E/F with F totally real, K/F any quadratic extension (Greenberg)
» p prime of F which is inertin K
> we € H'(M, Q1 ), A € Hn(T, DivOH,)
» n = # archimedean places of F that splitin K
> Ja ®e € E(C,), conjecturally in E(H).
@ Archimedean constructions (Darmon, Gartner):
» Analogous with v an archimedean place of F.
» Cohomology class we is the modular form attached to E
» Darmon point: [, wg € C/Ag ~ E(C)
@ These constructions (both archimedean and non-archimedean)
also extend to F arbitrary number fields (mixed signature).
@ In some cases explicit computations are feasible:
» p-adic constructions: same method we explained for curves over Q,
when the (co)homology groups involved are in degree 1
» archimedean: need in addition that B ~ Mx(F)
(in order to have Fourier expansions for the modular forms)

@ Show an example of mixed signature archimedean Darmon point

Xevi Guitart, Marc Masdeu, Haluk Sengun ( U Computation of Darmon points Paris March 2015 24/28



Example: Archimedean Darmon point
@ F=Q(r), with r3 —r? 41
@ F has one real and one complex place
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Example: Archimedean Darmon point
@ F=Q(r), with r3 —r? 41
@ F has one real and one complex place

E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.
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Example: Archimedean Darmon point
@ F=Q(r), with r3 —r? 41
@ F has one real and one complex place

E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.

@ E has conductor 9 = (r? + 4), of norm 89.
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Example: Archimedean Darmon point
@ F=Q(r), with r3 —r? 41
@ F has one real and one complex place

E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.

@ E has conductor 9 = (r? + 4), of norm 89.
@ No(M) ={(25) € SLo(OF): M| ¢} C SLa(R) x SLp(C)
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Example: Archimedean Darmon point
@ F=Q(r),with r3 —r2 +1
@ F has one real and one complex place
E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.
@ E has conductor 9 = (r? + 4), of norm 89.
@ No(M) ={(25) € SLo(OF): M| ¢} C SLa(R) x SLp(C)
@ o(M) acts on H x Hs, where

H={zeC:Im(z) >0}, Hz3={(x,y) e CxR:y >0}
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Example: Archimedean Darmon point
@ F=Q(r), with r3 —r? 41
@ F has one real and one complex place

E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.

@ E has conductor 9 = (r? + 4), of norm 89.
@ No(M) ={(25) € SLo(OF): M| ¢} C SLa(R) x SLp(C)
@ (M) acts on H x Hs, where

H={zeC:Im(z) >0}, Hz3={(x,y) e CxR:y >0}

Generalized Modularity Conjecture
There is a harmonic differential form wg € H?(M'\H x Hg, C) with

Twe = a(E)we
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Example: Archimedean Darmon point

@ F=Q(r),with r3 —r2 +1
@ F has one real and one complex place

E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.

@ E has conductor 9 = (r? + 4), of norm 89.
@ No(M) ={(25) € SLo(OF): M| ¢} C SLa(R) x SLp(C)
@ (M) acts on H x Hg, where

H={zeC:Im(z) >0}, Hz3={(x,y) e CxR:y >0}

Generalized Modularity Conjecture
There is a harmonic differential form wg € H?(M'\H x Hg, C) with

Twe = a(E)we

@ Observe: H x Hz doesn’t have a complex structure!
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Example: Archimedean Darmon point

@ F=Q(r),with r3 —r2 +1
@ F has one real and one complex place

E:y?+(r—0xy+(r?=r)y =x3+(—r> —1)x? + r’x.

@ E has conductor 9 = (r? + 4), of norm 89.
@ No(M) ={(25) € SLo(OF): M| ¢} C SLa(R) x SLp(C)
@ (M) acts on H x Hg, where

H={zeC:Im(z) >0}, Hz3={(x,y) e CxR:y >0}

Generalized Modularity Conjecture
There is a harmonic differential form wg € H?(M'\H x Hg, C) with

Twe = a(E)we

@ Observe: H x Hz doesn’t have a complex structure!
@ In practice, one can compute wg!
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@ wre has a “Fourier-Bessel expansion”:

; - _ =¥ ndz
we(z, X, y) =Y N(io‘()a)%exp(—%i(a%z+%x+a%x>)l<<%y>- LA dz
5, Nr/a() b 0o bk AT YY"

op>
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@ wre has a “Fourier-Bessel expansion”:

a(a . Z
we(z,x,y) = @) 20 exp (—27r/ (O%Z + %

acOF
ap>0

—ax -
=5 A [oF4

+O‘5LX>)K<%}/)- ¥ p oz
2 ! & ndz

i i-
K(0) = (- gl (4D e Ka(ar), STt () ).

(Ko and Kj are the hyperbolic Bessel functions of the second kind)
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@ wre has a “Fourier-Bessel expansion”:

a b4 X X #Adz
we(z, X, y) =Y N (o‘() )%exp(72wi(a%z+%+a5i>)ﬂ<<i)- & A dz
acOr F/ol@) % 0 k 2 ! & ndz

ag>

i i-
K(0) = (- gl (4D e Ka(ar), STt () ).

(Ko and Kj are the hyperbolic Bessel functions of the second kind)
@ We can compute the &, by counting points on E(Of/p)
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E:y2+(r =1y + (2 = 1)y = X+ (=rF = )x® + r2x.

@ wr € H?(T,H x Ha)
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2

E:y2+(r_1)Xy+(l’2—r)y:X3_|_(_r —1)X2+r2X.

@ wr € H?(T,H x Ha)
@ K = F(w), where w satisfies w2 + (r + 1)w +2r2 — 3r + 3.
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2

E:y?+(r=1)xy + (2 =y =x>+ (=r = 1)x* + r’x.

® we € H3(I, 1 x Hy)

@ K = F(w), where w satisfies w2 + (r + 1)w +2r2 — 3r + 3.
@ Take 7 € H N K to be the image of w under the first embedding
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2 _1)x% + rPx.

E:y?+(r=1xy + (= )y =2+ (-r
® we € H3(I, 1 x Hy)
e K = F(w), where w satisfies w? + (r + 1)w + 2r® — 3r + 3.
@ Take 7 € H N K to be the image of w under the first embedding

i —4r—3 —r>4+2r+3
© Stab, (To(2) = (rr) with 3, = (o 7473 21313
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2 1)x% 4 rPx.

E:y?+(r=1xy + (= )y =2+ (-r
® we € H3(I, 1 x Hy)
e K = F(w), where w satisfies w? + (r + 1)w + 2r® — 3r + 3.
@ Take 7 € H N K to be the image of w under the first embedding

H — _ _ 2
@ Stab,(Mo(MN)) = (v,) with v, = ( e _2;_2 —;ziifig )
@ V7, ®TE H1(r0(m),Dlv’H)
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2 1)x% 4 rPx.

E:y2+(r—1)xy+(r2—r)y=x3+(-r
® we € H3(I, 1 x Hy)
e K = F(w), where w satisfies w? + (r + 1)w + 2r® — 3r + 3.
@ Take 7 € H N K to be the image of w under the first embedding
H —4r — _r2
© Stab, (To(2) = (rr) with 3, = (o 7475 21313
@ v, @7 € Hy(Mg(MN), DivH)
e Find a homologous cycle of the form 3~ v @ (72 — 7).

Xevi Guitart, Marc Masdeu, Haluk Sengun ( U Computation of Darmon points Paris March 2015 27/28



E:y?+(r=1xy + (P =)y =x*+ (=r* = )x* + rPx.

@ wr € H3(T, H x H)

@ K = F(w), where w satisfies w? 4 (r +1)w +2r> — 3r + 3.

@ Take 7 € H N K to be the image of w under the first embedding
© Stab.(o(M)) = (1) with 3, = (5 4775 21313 )

@ v ®7 € Hy(Mo(MN), DivK)

@ Find a homologous cycle of the form 3 ~; ® (72 — 7).

eTe)
° J = Z WE
v Jo
i 7T
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E:y2+(r—1)xy+(r?=nry=x3+(-r>—1)x®+ r’x.

@ wr € H3(T, H x H)

@ K = F(w), where w satisfies w? 4 (r +1)w +2r> — 3r + 3.

@ Take 7 € H N K to be the image of w under the first embedding
© Stab.(o(M)) = (1) with 3, = (5 4775 21313 )

@ v ®7 € Hy(Mo(MN), DivK)

@ Find a homologous cycle of the form 3 ~; ® (72 — 7).

0
@0 J = E / / wge ~ 0.141967077 — 0.055099463v —1
— Jr Jo
! I
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E:y2+(r—1)xy+(r?=nry=x3+(-r>—1)x®+ r’x.

@ wg € H3(T,H x Hy)

@ K = F(w), where w satisfies w? 4 (r +1)w +2r> — 3r + 3.

@ Take 7 € H N K to be the image of w under the first embedding
© Stab.(o(M)) = (1) with 3, = (5 4775 21313 )

@ v ®7 € Hy(Mo(MN), DivK)

@ Find a homologous cycle of the form 3 ~; ® (72 — 7).

0
@0 J = E / / wge ~ 0.141967077 — 0.055099463v —1
— Jr Jo
! I

@ The image of J; € C/Ag ~ E(C) coincides (up to 32 digits of
accuracy) with 10P, where

P = (r—1:wfr2+2r:1) € E(K)

is a point of infinite order!
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