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Abstract. Let F/F0 be a quadratic extension of totally real number fields, and let E be an elliptic

curve over F which is isogenous to its Galois conjugate over F0. A quadratic extension M/F is said

to be almost totally complex (ATC) if all archimedean places of F but one extend to a complex place
of M . The main goal of this note is to provide a new construction of a supply of Darmon-like points

on E, which are conjecturally defined over certain ring class fields of M . These points are constructed
by means of an extension of Darmon’s ATR method to higher dimensional modular abelian varieties,

from which they inherit the following features: they are algebraic provided Darmon’s conjectures on

ATR points hold true, and they are explicitly computable, as we illustrate with a detailed example that
provides numerical evidence for the validity of our conjectures.
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1. Introduction

Let E be an elliptic curve defined over a number field F and, for any field extension K/F , let L(E/K, s)
denote the Hasse-Weil L-function of the base change of E to K, which is known to converge on the half-
plane {s ∈ C : Re(s) > 3

2}.
The Mordell–Weil theorem asserts that the abelian group E(K) of K-rational points on E is finitely

generated, that is to say,

E(K) ' T × Zr,

where T is a finite group and r = r(E/K) > 0 is a non-negative integer, which is called the Mordell–Weil
rank of E/K.

There are two conjectures which stand out as cornerstones in the arithmetic of elliptic curves:

Conjecture (MOD). The elliptic curve E/K is modular: there exists an automorphic representation
π of GL2(AK) such that L(E/K, s− 1

2 ) = L(π, s). In particular, L(E/K, s) can be analytically continued
to an entire function on the complex plane and it satisfies a functional equation relating the values at s
and 2− s.
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Conjecture (BSD). Assume that (MOD) holds for E/K and let ran(E/K) = ords=1 L(E/K, s)
denote the order of vanishing of L(E/K, s) at s = 1, which we call the analytic rank of E/K. Then

r(E/K) = ran(E/K).

Conjecture (MOD) is nowadays known to hold, under mild hypothesis, when F is totally real and K/F
is Galois with solvable Galois group, thanks to the work of Wiles, Skinner-Wiles, Langlands and others.
More precisely, when F is totally real, E is known to be modular by [Wi], [BCDT], [SW], unconditionally
if the base field is F = Q and under some technical conditions on the reduction type at the primes of F
above 3 when [F : Q] > 1. In this setting, the modularity of E amounts to the existence of a Hilbert
modular eigenform fE of parallel weight 2 over F such that L(E/F, s) is equal to the L-function L(fE , s)
associated to fE . If K/F is solvable, then (MOD) follows from the modularity of E over F by applying
Langlands’s cyclic base change. If F = Q and K is a totally real Galois number field, recent work of
Dieulefait [Di] proves (MOD) under simple local assumptions on K, and one can expect that similar
techniques may lead in the future to a similar result for arbitrary totally real fields F .

In light of these results, we assume throughout that F is totally real and E is modular. Let N denote
the conductor of E, an integral ideal of F , which for simplicity we assume to be square-free.

Thanks to the work of Kolyvagin, Gross-Zagier and Zhang, Conjecture (BSD) is then known to hold
when K is either F or a totally imaginary extension of F , ran(E/K) 6 1 and the Jacquet-Langlands (JL)
hypothesis holds:

(JL) Either [F : Q] is odd or N 6= (1).

In particular, when K is a totally imaginary extension of F and ran(E/K) = 1, the above results
imply that if (JL) is satisfied, there exists a non-torsion point in E(K). Precisely when (JL) holds,
such a point PK , a so-called Heegner point, can be manufactured by means of the theory of complex
multiplication on Shimura curves, and it is Gross-Zagier [GZ] and Zhang [Zh] who showed that the
hypothesis ran(E/K) = 1 implies that PK is not torsion. Finally, Koyvagin’s method [Ko] of Euler
systems is the device which permits to show that in fact there are no points in Q ⊗ E(K) which are
linearly independent of PK , thereby showing (BSD). This is made possible thanks to the existence, along
with the point PK , of a system

{Pc ∈ E(Hc), c > 1, (c,disc(K/F )) = 1}
of rational points on E over the ring class field Hc/K, the abelian extension of K associated by class
field theory to the Picard group Pic(Oc) of invertible ideals in the order Oc ⊂ K of conductor c of K.

That this supply of points should exist can be predicted using Conjecture (BSD), even if K is not
totally imaginary, as we now explain. Let K/F be any quadratic field extension. Write

(1) N = N+ ·N−

as the product of two ideals N+, N− of F where N+ (resp. N−) is the product of the prime divisors of
N which split or ramify (resp. remain inert) in K.

A character χ : Gal(Kab/K)→ C× is called a ring class character if it corresponds, via the identifica-
tion provided by class field theory, to a character of A×K whose restriction to A×F is trivial. They are pre-
cisely the characters factoring through Gal(H/K) for some ring class field H. Let χ : Gal(Kab/K)→ C×
be a ring class character of finite order and conductor relatively prime to N . Let r1(K/F ) and r2(K/F )
be the number of archimedean places of F which extend to a couple of real (resp. to a complex) place(s)
of K, so that [F : Q] = r1(K/F ) + r2(K/F ). Then the sign of the functional equation of the L-function
L(E/K,χ, s) of E/K twisted by χ is

(2) sign(E/K) = sign(E/K,χ) = (−1)r2(K/F )+]{℘|N−},

independently of the choice of χ.

For any ring class field H/K, let Ĝal(H/K) = Hom(Gal(H/K),C×) denote the group of characters of
Gal(H/K). The L-function of the base change of E to H factors as

L(E/H, s) =
∏

χ∈Ĝal(H/K)

L(E/K,χ, s).
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The Birch and Swinnerton-Dyer conjecture (BSD) in combination with (2) gives rise to the following
conjecture.

Conjecture 1.1. Assume sign(E/K) = −1 and let H be a ring class field extension of K, unramified at
the primes dividing N . Then

(3) rankE(H) = [H : K]

if and only if L′(E/K,χ, 1) 6= 0 for all χ ∈ Hom(Gal(H/K),C×).

No proven result is known about Conjecture 1.1 beyond the achievements of Gross-Zagier, Kolyvagin
and Zhang in the case r2(K/F ) = [F : Q] mentioned above. In spite of this, a plethora of conjectural
constructions of points have been proposed so far in various settings beyond the classical one. These
points are commonly called Stark–Heegner points, or Darmon points, as it was H. Darmon in [Da2] who
first introduced them.

Since then, several authors [Das1], [Gr], [LRV], [DL], [Ga1] have proposed variations of Darmon’s
theme, always giving rise to a recipe that allows to attach, to a given ring class field extension H/K
satisfying the hypothesis of Conjecture 1.1, a point

(4) PH ∈ E(Hv),

rational over the completion Hv of H at some finite or archimedean place v of H, which is conjectured
to satisfy the following properties:

(SH1) PH ∈ E(H),
(SH2) For any character χ : Gal(H/K)→ C×, the point

Pχ :=
∑

σ∈Gal(H/K)

χ(σ)−1σ(PH) ∈ E(H)⊗Z C

is non-zero if and only if L′(E/K,χ, 1) 6= 0, and
(SH3) there is a reciprocity law describing the action of Gal(H/K) on PH in terms of ideal theory.

The main result of this paper is a new, computable construction of a supply of Darmon-like points
in a setting that was not computationally accessible before. Before describing our contribution in more
detail, we take the chance to report on the state of the art of Darmon points. Namely, explain which
cases of Conjecture 1.1 are already covered by the union of those constructions, and which ones remain
intractable.

Keep the above notations and the assumptions of Conjecture 1.1, and assume that H is the narrow
ring class field associated with some order in K. Then:

a) If r1(K/F ) = 0, r2(K/F ) = [F : Q], then assumption sign(E/K) = −1 implies that (JL) holds,
and Conjecture 1.1 holds thanks to [GZ], [Ko] and [Zh].

b) If ]{℘ | N−} > 1, points PH ∈ E(H℘) have been constructed in [Da2], [Gr] and [LRV], for which
conditions (SH1), (SH2) and (SH3) above have been conjectured.

Some theoretical evidence has been provided for them when F = Q in [BD], [GSS] and [LV].
Numerical evidence has been given in [Da2] when F = Q and N− = 1.

c) If r1(K/F ) > 1, r2(K/F ) > 1 let us distinguish two possibilities:
c1) If r2(K/F ) = 1, K/F is called an almost totally real (ATR) quadratic extension and we let

v denote the unique archimedean place of F which extends to a complex place of K. Then
Hv = C for any place of H above it and points PH ∈ E(Hv) have been constructed in [Da1,
Ch. VIII], for which conditions (SH1), (SH2) and (SH3) above have been conjectured. These
conjectures have been tested numerically in [DL].

c2) J. Gartner has extended the idea of Darmon [Da1, Ch. VIII] to any K/F with 1 6 r2(K/F ) <
[F : Q]: in this more general setting, he constructs points PH ∈ E(Hv) and again conjectures
that (SH1), (SH2) and (SH3) hold true. His method does not appear to be amenable to
explicit calculations and as a consequence no numerical evidence has been provided for these
conjectures.
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Note that a), b), c) cover all cases contemplated in Conjecture 1.1. Indeed, the only case not covered
by b) arises when ]{℘ | N−} = 0, that is, all primes ℘ | N split or ramify in K. But then assumption
sign(E/K) = −1 implies that r2(K/F ) is odd, hence r2(K/F ) > 1. Then a) and c) cover respectively
the case in which r1(K/F ) = 0 and r1(K/F ) > 0.

The main contribution of this article is an explicitly computable, construction of a supply of points
PM ∈ E(C) in a setting which lies within c2), but which is completely different to the one proposed by
Gartner. It only works under the following restrictive hypothesis:

• F contains a field F0 with [F : F0] = 2,
• E/F is F -isogenous to its Galois conjugate over F0, and
• M is an almost totally complex (ATC) quadratic extension1 of F , that is to say, r2(M/F ) = [F :
Q]− 1.

While this setting is obviously much less general than the one considered in [Ga1], it enjoys the
following features:

• Numerical approximations to the points PM are computable, as we illustrate with a fully detailed
explicit example in §3.3. Indeed, our construction relies on the computation of certain ATR
cycles on Hilbert modular varieties. The algorithm of [GM2] can be used to effectively compute
such cycles on Hilbert modular varieties of non-trivial level, an in combination with the explicit
construction of ATC points that we give in §3.1 (see especially Theorem 3.10) this gives an
algorithm for computing ATC points.

• We prove that the points PM belong to E(M) and that they are non-torsion if and only if
L′(E/M, 1) 6= 0 provided (SH1), (SH2) and (SH3) hold true for ATR extensions of F0: see
Theorem 3.9 for the precise statement. This is worth remarking, as the conjectures for ATR
extensions can be tested numerically in practice: see §2.4 for a sketch of the algorithm, and [DL],
[GM1] for explicit numerical examples.

The main source of inspiration for the construction presented here is the previous work [DRZ] of two
of the authors with Henri Darmon, in which Heegner points on quotients of the modular curve X1(N)
were used to manufacture ATR points on elliptic curves.

Acknowledgements. We are thankful to Jordi Quer for computing for us the equation of the elliptic
curve used in §3.3.1. We are also thankful to Jan Nekovář and Jérôme Gärtner for pointing out some
inaccuracies in an earlier version of the article, and to the anonymous referee for many useful comments
and suggestions which improved the exposition. Guitart wants to thank the Max Planck Institute for
Mathematics for their hospitality and financial support during his stay at the Institute, where part of the
present work has been carried out. Guitart and Rotger received financial support from DGICYT Grant
MTM2009-13060-C02-01 and from 2009 SGR 1220.

2. Quadratic points on modular abelian varieties

The basis of the main construction of this note –which we explain in §3– lies in Darmon’s conjectural
theory of points on modular elliptic curves over almost totally real (ATR) quadratic extensions of a
totally real number field.

In a recent article, Darmon’s theory has been generalized by Gartner [Ga2] by considering quaternionic
modular forms with respect to not necessarily split quaternion algebras over the base field. Although
we do not exploit Gartner’s construction here, our points do lie in a theoretical setting which is also
covered by him and therefore the natural question arises of whether Gartner’s points are equal to ours
when both constructions are available. We address this issue in §3.2, where we point out that Conjecture
(BSD) implies that one is a non-zero multiple of the other; the difference between them is that ours are
numerically accessible, and this stands as the main motivation of this article.

This section is devoted to review the work of Darmon and Gartner, settling on the way the notations
that shall be in force for the rest of this note. As Gartner’s exposition [Ga1], [Ga2] is already an excellent

1Observe the notational change here, which we introduce for being consistent with the notation we will use in §3 below,

where two quadratic extensions of totally real fields will play a role in our construction : M will denote an ATC extension
of F and K and ATR extension of F0.
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account of the theory, we choose here to reword it in the classical language of Hilbert modular forms,
under the simplifying hypothesis that the narrow class number of the base field F0 is 1.

In doing so, we take the chance to contribute to the theory with a few novel aspects. To name one,
it will be convenient for our purposes to work with the natural, relatively straight-forward extension of
the theory to the setting of eigenforms with not necessarily trivial nebentypus and whose eigenvalues
generate a number field of arbitrarily large degree over Q. This will lead us to a construction of rational
points on higher-dimensional modular abelian varieties of GL2-type.

2.1. Quadratic extensions and L-functions. Let F0 ⊂ R be a totally real number field, together
with a fixed embedding into the field of real numbers. Write d = [F0 : Q] for its degree over Q and let
R0 ⊂ F0 denote its ring of integers. In order to keep our notations simple, we assume that the narrow
class number of F0 is 1.

Let N be a square-free integral ideal of F0, and let ψ be a Hecke character of conductor Nψ dividing
N . Let f0 ∈ S2(N,ψ) be a normalized Hilbert eigenform of parallel weight 2, level N and nebentypus
ψ. Let Ef0 denote the number field generated by the eigenvalues of the Hecke operators acting on f0,
which we regard as embedded in the algebraic closure Q̄ of Q in the field C of complex numbers; for each
σ ∈ Hom(Ef0 , Q̄), there exists a unique normalized eigenform σf0 whose family of eigenvalues is equal to
the family of eigenvalues of f0 conjugated by σ.

The following standard conjecture is a generalized form of the Eichler–Shimura philosophy.

Conjecture 2.1. There exists an abelian variety A = Af0/F0 of dimension g = [Ef0 : Q] and conductor
Ng such that Q⊗ EndF0

(A) ' Ef0 , and whose L-series factors as

(5) L(A, s) =
∏

σ∈Hom(Ef0 ,Q̄)

L(σf0, s).

Note that, if such an A exists, it is well-defined only up to isogenies.
Conjecture 2.1 is known to hold when (JL) is satisfied. When (JL) fails it is not even known whether

there exists a motive Mf0 over F whose L-function is (5) and one certainly does not expect the motive
h1(A) to arise in the cohomology of any (quaternionic) Hilbert variety (cf. [BR] for more details). See
[De] for the numerical verification of Conjecture 2.1 in several instances in which (JL) fails.

We shall assume for the remainder of this section that Conjecture 2.1 holds true.

Let K/F0 be a quadratic extension such that r2(K/F0) > 1. Label the set of embeddings of F0 into
the field R of real numbers as

{v1, v2, ..., vr, vr+1, ..., vd : F0 ↪→ R}, 1 6 r 6 d

in such a way that

• v1 is the embedding fixed at the outset that we use to identify F0 as a subfield of R,
• each of the places v2, ..., vr extends to a pair of real places of K, which by a slight abuse of

notation we denote vj and v′j for each j = 2, ..., r, and
• each of the places v1, vr+1, ..., vd extends to a complex place on K, that we still denote with the

same letter; we use v1 to regard K as a subfield of C.

Definition 2.2. If r = 1, the set {v2, ..., vr} is empty and K/F0 is a CM-field extension.
If r = 2 we call K/F0 an almost totally complex (ATC) extension. To explain the terminology, observe

that in this case K has [K : Q] − 2 complex (non-real) embeddings, which is the maximum number of
such embeddings a non totally complex field of even degree can have.

If r = d we have {v1, vr+1, ..., vd} = {v1} and we say that K/F0 is almost totally real (ATR).

Letting εK denote the quadratic Hecke character of F0 associated with the extension K/F0, the L-
function of the base change of A to K is

L(A/K, s) = L(A, s) · L(A, εK , s) =
∏

σ∈Hom(Ef0 ,Q̄)

L(σf0, s) · L(σf0, εK , s).
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It extends to an entire function on C and satisfies a functional equation relating the values at s with
2− s. Assume that the sign of the functional equation of L(f0/K, s) = L(f0, s) · L(f0, εK , s) is −1. This
is equivalent to saying that the set

(6) {vr+1, ..., vd} ∪ {℘ | N,℘ inert in K}
has even cardinality.

Let B be the (unique, up to isomorphism) quaternion algebra over F0 whose set of places of ramification
is equal to the set of places given in (6). In particular we have B ⊗F0,vj R ' M2(R) for j = 1, ..., r, and
the choice of such isomorphisms gives rise to an embedding

(7) (v1, ..., vr) : B× ↪→ GL2(R)× (r)... ×GL2(R) ⊂ (B ⊗Q R)×.

Let N+ be the product of primes in F0 that divide N and are split or ramified in K, and N− the
product of primes that divide N and remain inert in K. Choose an Eichler order O of level N+ in B
together with, for each prime ℘ | N+, isomorphisms i℘ : B ⊗ F0,℘ 'M2(F0,℘) such that

i℘(O) = {
(
a b
c d

)
, ℘ | c} ⊆ M2(R0,℘).

Definition 2.3. Let F+
0 denote the subgroup of F×0 of totally positive elements and B+ be the subgroup

of elements in B× whose reduced norm lies in F+
0 . Define the congruence subgroups

Γ0 = ΓN
−

0 (N+) = O× ∩B+ and

Γ1 = ΓN
−

1 (N+) = {γ ∈ Γ0 : i℘(γ) ≡
(

1 ?
0 1

)
(mod ℘) for all ℘ | N+} ⊂ Γ0.

Through (7), Γ1 acts on the cartesian product Hr = H1 × ...×Hr of r copies of Poincaré’s upper-half
plane and we let XC = Γ1\Hr denote its quotient, which has a natural structure of analytic manifold
with finitely many isolated singularities.

Definition 2.4. Let F gal
0 denote the Galois closure of F0 in C and let G = Gal(F gal

0 /Q). The reflex field

of B is the subfield F ?0 of F gal
0 fixed by the subgroup of those σ ∈ G such that σ ·{v1, ..., vr} = {v1, ..., vr}.

The cases one encounters most often in the literature arise when either r = 1, where F ?0 = F0, or when
r = d, in which case F ?0 = Q.

Let
X = XN−

1 (N+)/F ?0
denote Shimura’s canonical model over F ?0 of XC, as introduced e.g. in [Mi1, §12]. If Ram(B) 6= ∅,
XC is compact and X is projective over F ?0 , while if Ram(B) = ∅ then B = M2(F0) and XC may be
compactified by adding a finite number of cusps. In both cases, the resulting projective variety admits
a canonical desingularization. By an abuse of notation, we continue to denote X the smooth projective
model over F ?0 that arises.

2.2. Oda–Yoshida’s conjecture. Let Σ = {±1}r−1 and for each ε = (ε2, ..., εr) ∈ Σ, let γε ∈ O× be an
element such that vj(n(γε)) = det(vj(γε)) > 0 if j = 1 or εj = +1, and vj(n(γε)) < 0 if εj = −1. Such
elements exist thanks to our running assumption that the narrow class number of F0 is 1. For τj ∈ Hj ,
set

τ εj =

{
vj(γε)τj if j = 1 or εj = +1,

vj(γε)τ̄j if εj = −1.

Let S2(Γ1) denote the set of weight two quaternionic cusp forms for B with respect to the group Γ1 =

ΓN
−

1 (N+). By the Jacquet–Langlands correspondence there exists a quaternionic newform g0 ∈ S2(Γ1)
with the same system of Hecke eigenvalues as f0. In this way we can attach to f0 the holomorphic r-form
on Hr

ωf0 = (2πi)rg0(τ1, ..., τr)dτ1...dτr,

which is easily shown to be Γ1-invariant (and to extend to a smooth form on the cusps, if B = M2(F0)),
giving rise to a regular differential r-form ωf0 ∈ H0(XC,Ω

r).
Label the set Hom(Ef0 ,C) = {σ1, ..., σg} of embeddings of Ef0 into the field of complex numbers. The

set {σ1(ωf0), ..., σg(ωf0)} := {ωfσ10
, . . . , ωfσg0

} is then a basis of the f0-isotypical component of H0(X,Ωr).
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Definition 2.5. [Da1, (8.2)], [Ga1, §2] Let d0 be a totally positive generator of the different ideal of F0

and let β : Σ→ {±1} be a character. The differential r-form ωβf0 on X associated with f0 and β is

ωβf0 := |d0|−1/2(2πi)r
∑
ε∈Σ

β(ε)g0(τ ε1 , ..., τ
ε
r )dτ ε1 ...dτ

ε
r .

If r = 1, note that the only choice for β is the trivial one and in this case one recovers the usual
holomorphic 1-form ωf0 on the Shimura curve X/F0. On the other hand, when r > 1, the differential

form ωβf0 is not holomorphic anymore for any choice of β, including the trivial one. Following Yoshida

[Yo] we define the following lattice.

Definition 2.6. The lattice of periods of ωβf0 is

Λβf0 = {(
∫
Z̃

σ1(ωβf0), ...,

∫
Z̃

σg(ω
β
f0

)), Z̃ ∈ Hr(XC,Z)} ⊆ Cg.

Under the running assumption that Conjecture 2.1 holds true, we can also introduce another lattice
as follows. For each j = 1, ..., r, let Aj = A×F0,vj C denote the base change of A to the field of complex

numbers via the embedding F0

vj
↪→ R ⊂ C. Since we identify v1 with the identity embedding, A1 is

identified with A. Let H1(Aj ,Z)± be the Z-submodule of H1(Aj ,Z) on which complex conjugation acts
as +1 (resp. −1). Since Ef0 ' Q⊗EndF0

(A), there is a natural action of Ef0 on H1(Aj ,Q)± and in fact
the latter is a free module of rank 1 over the former.

Similarly, the space H0(A,Ω1) of global regular differential 1-forms on A is an F0-vector space of
dimension g equipped with a F0-linear action of Ef0 inherited from the isomorphism Ef0 ' Q⊗EndF0(A).

Recall that R0 stands for the ring of integers of F0. Make the following choices:

• A regular differential ωA ∈ H0(A,Ω1) which extends to a smooth differential on the Néron model
of A over R0 and generates H0(A,Ω1) as a Ef0-module.

• For each j = 1, ..., r, generators c+j , c−j of H1(Aj ,Q)+ and H1(Aj ,Q)− as Ef0-modules.

Given these choices, define

Ω+
j =

∫
c+j

vj(ωA) ∈ C, Ω−j =

∫
c−j

vj(ωA) ∈ C, for j = 1, ..., r and

Ωβ = Ω
β2(−1)
2 · ... · Ωβr(−1)

r .

Definition 2.7. Let Rf0 denote the ring of integers of Ef0 and define

Λβ0 := Ωβ · (ZΩ+
1 + ZΩ−1 ) ⊂ C, ΛβA := Λβ0 ⊗Z Rf0 ⊆ C⊗Z Ef0 ' Cg.

Let us now analyze how these lattices depend on the above choices. Note that ωA is well-defined only
up to multiplication by units u ∈ R×0 and non-zero endomorphisms t ∈ E×f0 . If we replace ωA by u · ωA,
we obtain

Λβ0 (u · ωA) = 〈
∫
c+1

v1(u · ωA) ·
r∏
j=2

∫
c
βj(−1)

j

vj(u · ωA),

∫
c−1

v1(u · ωA) ·
r∏
j=2

∫
c
βj(−1)

j

vj(u · ωA)〉 =

= NF0/Q(u)Λβ0 (ωA) = Λβ0 (ωA),

because NF0/Q(u) = ±1, and thus also ΛβA(u · ωA) = ΛβA(ωA).

If instead we replace ωA by t · ωA for some t ∈ E×f0 , then

ΛβA(tωA) = {Ωβ
∫
c+1

v1(t∗ωA)⊗ s,Ωβ
∫
c−1

v1(t∗ωA)⊗ s, s ∈ Rf0} =

= {Ωβ
∫
c+1

v1(ωA)⊗ st,Ωβ
∫
c−1

v1(ωA)⊗ st, s ∈ Rf0}
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and therefore Q ⊗Z ΛβA(tωA) = Q ⊗Z ΛβA(ωA). We reach to the same conclusion if we take different

choices of homotopically equivalent paths c+j or c−j . Hence the Q-submodule Q⊗Z ΛβA of Cg is determined
uniquely independently of the choices made.

Conjecture 2.8 (Oda [Od], Yoshida [Yo]). The lattices Λβf0 and ΛβA are commensurable, that is to say,

Q⊗Z Λβf0 = Q⊗Z ΛβA,

and therefore there exists an isogeny of abelian varieties

ηβ : Cg/Λβf0
∼−→ Cg/ΛβA ' A(C) = Cg/Λ1,

where the last isomorphism is given by multiplication by Ω−1
β .

Note that, consistently with Conjecture 2.1, the above Conjecture 2.8 only concerns the isogeny class
of the abelian variety A.

Remark 2.9. If r = 1 and (JL) holds, Conjecture 2.8 holds true: the abelian variety A may be constructed
explicitly as a constituent of the Jacobian of the Shimura curve X and it follows from the very construction

that the lattices Λβf0 and ΛβA are commensurable.

2.3. Darmon points. Let Zr−1(XC) denote the set of null-homologous cycles of real dimension r− 1 in
XC. For each character β as above, Conjecture 2.8 allows us to define the topological Abel-Jacobi map

(8)
AJβ : Zr−1(XC) −→ A(C)

T 7→ ηβ

(∫
T̃
ωβf0

)
,

where T̃ ∈ Cr(XC,Z) is any r-dimensional chain satisfying ∂T̃ = T . Observe that T̃ is determined up to

elements in Hr(XC,Z), so that the quantity
∫
T̃
ωβf0 ∈ C ⊗Z Ef0 is a well-defined element in Cg/Λβf0 and

AJβ is thus a well-defined map.

Remark 2.10. If r = 1 and (JL) holds, the map AJβ is nothing else but the classical algebraic Abel-
Jacobi map of curves XC −→ A(C), which factors through the jacobian of XC. This was one of Darmon’s
motivations for extending the rule to the general case, though the reader must be warned that when
r > 1 the maps AJβ are not algebraic.

Let now c ⊆ R0 be an integral ideal of F0 coprime to N and let Rc := R0 + cRK ⊆ RK be the order
of conductor c in the ring of integers of K. Let η be the homomorphism

η : O −→ R0/N
+R0

sending an element x ∈ O to the upper-left hand entry of its image in O⊗R0
R0,N+ ' M2(R0,N+), taken

modulo N+R0,N+ .

Definition 2.11. Fix a factorization of ideals N+RK = N+ ·N̄+. An embedding of R0-algebras ϕ : Rc ↪→
O is said to be optimal if ϕ(Rc) = ϕ(K) ∩ O. We say that ϕ is normalized (with respect to N+) if it
satisfies the following conditions:

(1) ϕ acts on u = (τ1, 1) ∈ C2 as ϕ(a)1 · u = v1(a) · u for all a ∈ Rc, where ϕ(a)1 denotes the image
of ϕ(a) in B ⊗F0,v1 R.

(2) The kernel of η aϕ is equal to N+.

We denote by E(Rc,O) the set of normalized optimal embeddings.

Recall that v1 extends to a complex place of K and that v2, . . . , vr extend to real places. Given
ϕ ∈ E(Rc,O), the action of K× on C by fractional linear transformations via the composition of ϕ and
the isomorphism (B ⊗F0,v1 R)× ' GL2(R) has a unique fixed point z1 ∈ H1. For j = 2, . . . , r it has two
fixed points τj , τ

′
j ∈ R = ∂Hj under the isomorphism (B ⊗F0,vj R)× ' GL2(R). Let γj be the geodesic

path joining τj and τ ′j in Hj .
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Definition 2.12. We denote by Tϕ the (r − 1)-real dimensional cycle in XC given by the image of the
region

Rϕ = {z1} × γ2 × · · · × γr ⊂ H1 × · · · × Hr
under the natural projection map Hr −→ XC.

Note that the stabilizer of Rϕ in Γ1 is the subgroup Γϕ = ϕ(K) ∩ Γ1 and therefore there is a natural
homeomorphism Tϕ ' Γϕ\Rϕ. As an application of the Matsushima–Shimura Theorem [MS], it is easy
to show (cf. [Ga2, Proposition 4.3.1]) that the class of Tϕ has finite order in Hr−1(XC,Z). In particular,
if e denotes the order of Tϕ then eTϕ is null-homologous. This allows the following definition.

Definition 2.13. The Darmon point attached to ϕ and β is

P βϕ :=
1

e
AJβ(eTϕ) ∈ A1(C).

Darmon points are conjectured to be rational over certain number fields, with the Galois action given
by an explicit reciprocity law. This is the content of Conjecture 2.14. Next we define the number fields
and the actions involved in the conjecture.

Define

Uc := R̂×0 (1 + cR̂K) ⊂ K̂× = (K ⊗Z Ẑ)×.

For every character β of Σ, let Hβ
c denote the abelian extension of K corresponding by class field theory

to the open compact subgroup Kβ
∞ × Uc, where

(9) Kβ
∞ :=

∏
j=1,r+1,...,d

C× ×
∏

j=2,...,r
βj(−1)=+1

R× ×
∏

j=2,...,r
βj(−1)=−1

R>0.

Recall that ψ denotes the Nebentypus of f0. For ϕ : Rc ↪→ O a normalized optimal embedding define

U+
ϕ = ker(Uc −→ (RK/N

+RK)× ' (R0/N
+R0)×

ψ→ C×),

U−ϕ = ker(Uc −→ (RK/N̄
+RK)× ' (R0/N

+R0)×
ψ→ C×).

Denote by Lβϕ/H
β
c (resp. L′

β
ϕ/H

β
c ) the abelian extension of the ring class field of conductor c associated

to Kβ
∞ × U+

ϕ (resp. Kβ
∞ × U−ϕ ). Let also Uϕ = U+

ϕ ∩ U−ϕ and let Hβ
ϕ/H

β
c be the extension associated to

Kβ
∞ × Uϕ ⊂ A×K .
Observe that we can extend ψ to a character on O× by composing with η. Then we define

Γ1 ⊆ Γψ := ΓN
−

ψ (N+) := {γ ∈ Γ0 : ψ(ηγ) = 1} ⊆ Γ0.

The group Γ0 acts on E(Rc,O) by conjugation, and we denote by E(Rc,O)/Γ0 the set of conjugacy
classes. Any element Wε ∈ Γ0\Γψ defines an involution on E(Rc,O)/Γ0 which interchanges the preimages
of the natural projection E(Rc,O)/Γψ → E(Rc,O)/Γ0. In addition to Wε, there is also an Atkin–Lehner
involution acting naturally on the set of embeddings, although it does not preserve the normalization.
To be more precise, let ωN be an element in B such that

• for every ℘ | N−, ωN generates the single two-sided ideal of O ⊗R0,℘ of norm ℘, and

• for every ℘ | N+, ι℘(ωN ) =

(
0 −1
π℘ 0

)
, where π℘ is any uniformizer in R0,℘.

Let us denote by Ē(Rc,O) the set of optimal embeddings normalized with respect to N̄+. Then the map
ϕ 7→WN (ϕ) := ωNϕω

−1
N is a bijection between E(Rc,O) and Ē(Rc,O). From now on denote by WN (P βϕ )

the point P βWN (ϕ).

Finally, there is also a natural action of K̂× on E(Rc,O), which works as follows. Pick a finite idèle

x ∈ K̂× and an embedding ϕ in E(Rc,O). Since the class number of O is h(O) = h(F ?0 ) = 1 by

[Vi, Cor. 5.7 bis], the fractional ideal Ix = ϕ(x)Ô ∩ B is principal, generated by some γx ∈ B× with
n(γx) ∈ F+

0 . Moreover, we can choose γx such that ax = ϕ(xN+x
N

+)−1 · γx lies in the kernel of ψη.

(Indeed, note that, locally at the primes ℘ | N+, we have ϕ(xN+x
N

+)−1Ix,℘ = O℘ and thus ax belongs to
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O×℘ . It hence makes sense to consider its image under ψη. We can assume γx is as claimed by replacing

it by a suitable unit in O×.) We define x ? ϕ := γ−1
x

aϕ aγx. Observe that U+
ϕ acts trivially on E(Rc,O).

For y ∈ K×∞ and a character β : Σ→ {±1}, set

β(y) =

r∏
j=2

β(sign(
∏
w|vj

yw)).

The following statement collects, in a precise form, the conjectures (SH1), (SH2), (SH3) that were
somewhat vaguely formulated in the introduction for Darmon points over abelian extensions of K.

Conjecture 2.14. (1) If ϕ ∈ E(Rc,O) then P βϕ ∈ A1(Lβϕ).

(2) For any character χ : Gal(Lβϕ/K)→ C×, the point

Pχ :=
∑

σ∈Gal(Lβϕ/K)

χ(σ)−1σ(P βϕ ) ∈ A1(Lβϕ)⊗Z C

is non-zero if and only if L′(f0/K, χ, 1) 6= 0.
(3) For any a = (a∞, af ) ∈ A×K we have that rec(a)P βϕ = β(a∞)Paf?ϕ. In addition, for any τ ∈

Gal(Hβ
ϕ/F0) whose restriction to K is not trivial, there exists an element σ ∈ Gal(Hβ

ϕ/K) such
that

τ(P βϕ ) = WN (σ(P βϕ )) (mod A1(Hβ
ϕ)tors).

Here rec : A×K −→ Gal(Kab/K) is Artin’s reciprocity map, normalized so that uniformizers correspond
to geometric Frobenius elements. Note that the three statements of Conjecture 2.14 are the translation
to the current context of (SH1), (SH2), (SH3) given in the introduction.

2.4. Darmon–Logan’s algorithm for the computation of ATR points. One naturally wonders
whether Darmon points, as introduced in Definition 2.13, can be computed effectively in explicit examples.
A positive answer would allow us to test Conjecture 2.14 numerically, leading to an explicit construction
of rational points on elliptic curves over number fields which were not accessible before.

However, the image of Tϕ under the Abel-Jacobi map AJβ of (8) can only be computed provided we

are able to write down an explicit candidate for a region T̃ϕ having Tϕ as boundary and we can integrate

it against the differential form ωβf0 . The latter only seems possible when there is available a natural,

explicit description of ωβf0 . And this is precisely the case when the following Gross-Zagier assumption
holds:

Assumption 2.15. r = d and all the primes dividing N are split or ramified in K/F0.

Indeed, when this is the case we have that K/F0 is an ATR extension, B ' M2(F0), N = N+, N− = 1
and X is a d-dimensional Hilbert modular variety over F ?0 = Q. In addition, and most importantly, the

form ωβf0 admits a natural Fourier expansion around the cusp at infinity, and there exist algorithms which

allow its computation up to a given precision: cf. e.g. [DV].
If Assumption 2.15 does not hold, we are at a loss to compute numerical approximations to the points

P βϕ . We impose Assumption 2.15 for the remainder of this section, that we devote to sketch Darmon–

Logan’s algorithm for computing an explicit chain T̃ϕ whose boundary is Tϕ. We adapt it to our slightly
more general setting in which [Ef0 : Q] > 1, so that we can also make use of it later. To simplify the
exposition, and since this is the case encountered in the numerical example described in §3.3, let us
assume also that [F0 : Q] = 2.

The key point in Darmon–Logan’s approach is the definition of certain 3-limit integrals of ωβf0 , allowed
by the following interpretation of the homology groups of X. Let Γ denote the quotient of Γψ by
the normal closure of the subgroup generated by the elliptic and parabolic elements. Let IΓ be the
augmentation ideal, which sits in the exact sequence

0 −→ IΓ −→ Z[Γ] −→ Z −→ 0.
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For a Γ-module M we denote by MΓ = M/IΓM its ring of Γ-coinvariants. Tensoring the above sequence
by IΓ and taking the group homology exact sequence we obtain

(10) 0 −→ H1(Γ, IΓ) −→ (IΓ ⊗Z IΓ)Γ
∂−→ (Z[Γ]⊗Z IΓ)Γ −→ (IΓ)Γ −→ 0,

where ∂ is the natural map induced by the inclusion IΓ ⊂ Z[Γ]. There are canonical isomorphisms
(IΓ)Γ ' H1(Γ,Z) and H1(Γ, IΓ) ' H2(Γ,Z). Therefore, in view of the natural isomorphisms H1(Γ,Z) '
H1(X,Z) and H2(Γ,Z) ' H2(X,Z) one can identify (10) with the exact sequence

(11) 0 −→ Z2(X,Z) −→ C2(X,Z)
∂−→ Z1(X,Z) −→ H1(X,Z) −→ 0,

where ∂ is the topological boundary map.

Recall that integrals of ωβf0 satisfy the following invariance property:∫ y

x

∫ t

z

ωβf0 =

∫ γy

γx

∫ γt

γz

ωβf0 , for all γ ∈ Γ and x, y, z, t ∈ H.

We remark that in this expression γ is acting on the outer limits (resp. inner limits) of the integral through
v1 (resp. v2). By choosing base points z1 ∈ H1 and z2 ∈ H2 one obtains then a group homomorphism

Iβz1,z2 : (IΓ ⊗Z IΓ)Γ −→ C
(γ1 − 1)⊗ (γ2 − 1) 7−→

∫ γ1z1
z1

∫ γ2z2
z2

ωβf0 ,

which can be identified with the map

C2(X,Z) −→ C
T 7−→

∫
T
ωβf0 .

Observe that the identification H1(Γ, IΓ) ' Z2(X,Z) yields then an explicit description of the lattice Λβf0 ;

indeed Λβf0 ' I
β
z1,z2(H1(Γ, IΓ)).

Suppose now that 1⊗ (γ2 − 1) ∈ Z[Γ]⊗ IΓ is such that e(1⊗ (γ2 − 1)) lies in the image of ∂ for some
integer e. That would correspond in (11) to a cycle T such that eT is null homologous. Following [DL]
one defines

(12)

∫ z1 ∫ γ2z2

z2

ωβf0 :=
1

e
Iβz1,z2(∂−1(e · (1⊗ (γ2 − 1)))) ∈ C/Λ̃βf0 ,

where Λ̃βf0 = 1
eΛβf0 This is indeed a well-defined quantity in C/Λ̃βf0 , because any two preimages of e(1 ⊗

(γ1 − 1)) by ∂ differ by an element of Z2(X,Z). It is sometimes convenient to use expressions such as∫ x ∫ z
y
ωβf0 , but we warn the reader that they only make sense if z = γy for some γ ∈ Γ and e·(1⊗γ) ∈ im(∂)

for some e. It follows from the definitions that the 3-limit integrals of (12) enjoy the following properties:∫ x ∫ z

y

ωβf0 =

∫ γx ∫ γz

γy

ωβf0 for all γ ∈ Γ,(13) ∫ x ∫ z

y

ωβf0 =

∫ x ∫ t

y

ωβf0 +

∫ x ∫ z

t

ωβf0 ,(14) ∫ y ∫ z

t

ωβf0 −
∫ x ∫ z

t

ωβf0 =

∫ y

x

∫ z

t

ωβf0 .(15)

Now let K/F0 be a quadratic ATR extension and let ϕ : Rc ↪→ O be a normalized optimal embedding
of conductor c. Denote by z1 the unique fixed point of K acting on H1 through v1. The stabilizer Γϕ of
z1 in Γ is an abelian group or rank 1 (cf. [DL, Proposition 1.4]). Let γϕ be one of its generators. Let
z2, z

′
2 ∈ ∂H2 denote the two fixed points of K acting through v2. Then we have that∫

T̃ϕ

ωβf0 =

∫ z1 ∫ z′2

z2

ωβf0 =

∫ z1 ∫ γϕz2

z2

ωβf0 .
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Using properties (13), (14) and (15) it is easy to check that the last integral does not depend on z2.
Therefore, we see that

(16)

∫
T̃ϕ

ωβf0 =

∫ z1 ∫ γϕx

x

ωβf0

for any x ∈ H2∪P1(F0). If N = 1 an algorithm for computing 3-limit integrals as the one in (16) is given
in [DL, §4], by means of the continued fractions trick. This has been generalized for arbitrary level N in
[GM2], replacing continued fractions by certain elementary matrix decompositions.

3. Almost totally complex points

This section is devoted to the main construction of the article. Recall that for a field extension F/F0,
an elliptic curve E/F is said to be an elliptic F0-curve if it is isogenous over F to all of its Gal(F/F0)-
conjugates. We give an explicitly computable construction of points on certain elliptic F0-curves. By
granting the conjectures of §2 over ATR extensions, these points are shown to be rational over ATC fields.

The construction of ATC points on F0-curves is given in 3.1. In 3.2 we compare our ATC points with
Gartner’s Darmon points, and conjecture a precise relation between them. Finally, in 3.3 we carry out
an explicit calculation of such an ATC point for a particular elliptic curve. At the same time of giving
the details of how explicit computations can be handled, we numerically verify that the obtained point
appears to satisfy the conjectures of §2, which provides evidence for their validity.

3.1. Construction of ATC points. Let F0 be a totally real number field of narrow class number 1 and
degree r. We denote by v1, . . . , vr the embeddings of F0 into R, and we regard F0 as a subfield of C via
v1. We will also regard all extensions of F0 as embedded in C via a fixed extension of v1 to F 0, which we
denote by v1 as well. Let F/F0 be a totally real quadratic extension and let E/F be an elliptic F0-curve
without complex multiplication and of conductor NE , which be assume to be square-free and relatively
prime to disc(F/F0). Because E is isogenous to its conjugate, NE is an integral ideal of F of the form
NE = N0 ·RF for some ideal N0 of F0.

We denote by A = ResF/F0
E the variety over F0 obtained by restriction of scalars. The algebra

Q ⊗ EndF0(A) of endomorphisms of A is then quadratic over Q. The most interesting case for the
arithmetic applications that we have in mind arises when Q ⊗ EndF0(A) is a quadratic imaginary field,
which we assume for the reminder of the article. In addition, we must assume that A is modular:

Assumption 3.1. There exists a normalized Hilbert modular form f0 over F0 of parallel weight 2 such
that (5) holds, that is to say:

L(A, s) =
∏

σ∈Hom(Ef0 ,Q̄)

L(σf0, s).

In other words, A = Af0 up to F0-isogenies. Observe also that, since E is an F0-curve, A is isogenous
over F to E2.

For any ideal m of F0, denote by am the Fourier coefficient of f0 corresponding to m.

Lemma 3.2. The level of f0 is N = N0 · disc(F/F0). The nebentypus ψ of f0 is the quadratic character
associated by class field theory to the extension F/F0.

Proof. From the Eichler–Shimura construction (cf. Conjecture 2.1) A has conductor N2. On the other
hand, since A is the restriction of scalars of E its conductor is given by the formula

NmF/F0
(NE) disc(F/F0)2 = N2

0 disc(F/F0)2,

from which the first assertion follows. Let us prove now the second statement. Denote by Fψ the field cut

by the kernel of ψ. Let G = Gal(Q/F0), H = Gal(Q/F ) and Hψ = Gal(Q/Fψ). It is enough to show that
H = Hψ (the fact that ψ is quadratic follows from this because [F : F0] = 2). Let ` be a prime number
that splits in Ef0 , say as ` = λλ′, and denote by V` = T`(A)⊗Z` Q` the `-adic Tate module of A. There
is an isomorphism of Q`[G]-modules V` = Vλ × Vλ′ , where Vλ = Eλ ⊗E⊗Q` V` and Vλ′ = Eλ′ ⊗E⊗Q` V`.
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Denote by ρλ and ρ′λ the representations of G afforded by Vλ and Vλ′ respectively, which are irreducible
because E is not CM. Since A is the variety attached to f0 by the Eichler–Shimura construction, and
relabeling λ and λ′ if necessary, we can suppose that:

(17) Tr(ρλ(Frobp)) = ap and Tr(ρλ′(Frobp)) = ap, for all primes p - N,

where the bar denotes complex conjugation. By [Sh, Theorem 2.5] the nebentypus ψ is characterized by
the fact that ap = apψ(p) for primes p - N . Therefore Vλ and Vλ′ are isomorphic as Q`[Hψ] represen-
tations, so that EndQ`[Hψ] V` ' M2(Q`). Moreover, Hψ is the largest subgroup of G for which this is

true. On the other hand, we have that EndF (A)⊗Q ' EndF (E2)⊗Q ' M2(Q). By the case of Tate’s
Conjecture proven by Faltings this implies that EndQ`[H] V` ' End0

F (A)⊗QQ` ' M2(Q`), from which we
deduce that necessarily H = Hψ. �

Observe that, by the conductor-discriminant formula, the conductor Nψ of ψ is equal to disc(F/F0).
For simplicity we assume from now on that disc(F/F0) is not divisible by any prime above 2, and thus
N = N0Nψ is squarefree.

Let M = F (
√
α) be a quadratic ATC extension of F with disc(M/F ) prime to NE . Recall that ATC

stands for almost totally complex, and it means in this case that M has exactly two real places. We
suppose that M is real under the place v1. We aim to give an explicitly computable construction of
points in E(M), by making use of the conjectural constructions of Section 2.

Write Gal(F/F0) = {1, τ} and let M ′ = F (
√
ατ ). Clearly M is not Galois over F0, and its Galois

closure M is the composition of M and M ′. It is easily seen that Gal(M/F0) ' D8, the dihedral group
of order 8. The field K = F0(

√
αατ ) is contained inM, and there exist quadratic extensions L/K, L/K ′

and K ′/F0 such that the diagram of subfields of M/F0 is given by:

(18) M

mmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ

yy
yy

yy
yy

CC
CC

CC
CC

M M ′ FK L L′

F

CCCCCCCC

zzzzzzzzz
K ′ K

CCCCCCCC

}}}}}}}}

F0

DDDDDDDD

{{{{{{{{

Our construction relies on the fact that K is ATR. Indeed, we have the following lemma.

Lemma 3.3. The field K is ATR and it is complex under v1. The fields L and L′ are totally imaginary.

Proof. The first assertion follows immediately from the definitions. The property about L comes from

the fact that it can be identified with K(
√
α +
√
ατ ) = K(

√
α+ ατ + 2

√
αατ ), and similarly for L′.

Since M is ATC, under a complex embedding of L the image of either
√
α or

√
ατ does not lie in R. �

Let χM , χM ′ : A×F → {±1} and χL, χL′ : A×K → {±1} denote the quadratic Hecke characters corre-

sponding to the fields M , M ′, L and L′. Similarly, let εF , εK : A×F0
→ {±1} be the ones corresponding

to F and K. Recall that εF = ψ by Lemma 3.2.

Lemma 3.4. (1) χLχL′ = ψ aNmK/F0
.

(2) The restriction of χL to A×F0
is equal to ψ.

(3) We have that IndF0

F χM ' IndF0

F χM ′ ' IndF0

K χL ' IndF0

F χL′ are isomorphic as representations
of Gal(M/F0).

Proof. Assertion (1) follows from the fact that χLχL′ is the quadratic character associated with the
extension FK/K, which is ψ aNmK/F0

. If we let σ denote the generator of Gal(K/F0), then we have

that χL(xσ) = χL′(x). Then from (1) we see that χL restricted to NmK/F0
A×K is equal to ψ. Then
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by class field theory the restriction of χL to A×F0
is either ψ or ψεK . But it cannot be ψεK : let u =

(−1, 1, · · · , 1) ∈ A×F0,∞ (where the first position corresponds to the place v1). Then ψεK(u) = −1, but

χL(u) = 1 because v1 extends to a complex embedding of K. Finally, (3) follows from the fact that the
group D8 has a unique 2-dimensional irreducible representation. �

Proposition 3.5. Let dL/K denote the discriminant of L/K. Then dL/K = c ·Nψ, where c is an ideal
of F0 and Nψ is an ideal of K such that NmK/F0

Nψ = Nψ.

Proof. By the conductor-discriminant formula dL/K equals the conductor of χL. Then the proposition is
a consequence of the fact that the central character of χL is ψ, which has conductor Nψ. Proposition 3.5
now follows from Lemma 3.6 below. �

Lemma 3.6. (1) If p ⊂ F0 is a prime such that p | Nψ, then either p splits or ramifies in K. In both
cases, exactly one of the primes above p exactly divides the conductor of χL.

(2) Let p ⊂ F0 be a prime such that p - Nψ and pe divides exactly the conductor of χL for some prime
p ⊂ K above p. Then either p is inert in K or splits as p · RK = pp′ and (p′)e divides exactly the
conductor of χL.

Proof. To prove (1), let p be a prime of F0 dividing Nψ. If p splits as pp′ in K then by Lemma 3.4 the
composition

R×0,p −→ R×K,p ×R
×
K,p′

χL,p·χL,p′−→ {±1}
equals ψp. Since by assumption p does not divide 2 and Nψ is squarefree, ψp is the unique character of
order 2 of R×0,p/(1 + p). Since R×K,p/(1 + p) ' R×K,p′/(1 + p′) ' R×0,p/(1 + p) we see that the character

R×0,p/(1 + p)×R×0,p/(1 + p)
χL,p·χL,p′−→ {±1}

(x, x) 7−→ χL,p(x) · χL,p′(x)

has order 2. This implies that exactly one of χL,p or χL,p′ is trivial. Suppose that χL′,p is trivial and
χL,p has order 2. Then p divides exactly the conductor of χL and p′ does not divide it.

Suppose now that p | Nψ is ramified in K so that pRK = p2. Then by Lemma 3.4 the composition

R×0,p−→R
×
K,p

χL,p−→ {±1}

equals ψp, which is a character of order 2 factorizing through R×0,p/(1 + p). This implies that χL,p
necessarily factorizes through R×K,p/(1 + p), because R×K,p/(1 + p) ' R×0,p/(1 + p). Therefore p divides
exactly the conductor dL/K of χL.

Suppose now that p | Nψ is inert in K, so that pRK = p. Again by Lemma 3.4 the character ψp equals

(19) R×0,p −→ R×K,p
χL,p−→ {±1},

the composition of the natural inclusion with χL,p. But the map in (19) is trivial. Indeed, in this case
F×p = R×0,p/(1+p) is strictly contained in F×p = R×K,p/(1+p). Then χL,p is the unique quadratic character

of F×p , and such character is always trivial on F×p . The fact that ψp is trivial contradicts the fact that
p | Nψ, so this case does not occur.

To prove (2) we use again that the localization at p of the composition

(20) A×F0
−→ A×K

χL−→ {±1}

coincides with ψp, and therefore it is trivial because in this case p - Nψ. But χL,p has order 2, so that in
particular it is not trivial. Suppose that χL,p has conductor pe for some e > 1. Observe that now, since
p can be divide 2, the exponent e may be greater than 1 (in fact, it is equal to 1 except if p divides 2, in
which case it may also be 2 or 3). In any case, the localization of (20) at p is trivial only in one of the
following situations:

i) The inclusion A×F0
−→ A×K localizes to a strict inclusion R×0,p/(1 + pe) ↪→ R×K,p/(1 + pe).
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ii) The map in (20) localizes to

R×0,p/(1 + pe) −→ R×0,p/(1 + pe)×R×0,p/(1 + pe)
χL,p·χL,p′−→ {±1}

x 7−→ (x, x) 7−→ χL,p(x) · χL,p′(x)

and χL,p = χL,p′ .

In the first case p is inert in K. In the second case p splits as p ·RK = pp′ and (p′)e divides exactly the
conductor of χL. �

We finally assume the following Gross-Zagier hypothesis on E with respect to the ATR field extension
K/F0:

Assumption 3.7. All prime ideals of F0 dividing N0 split or ramify in K.

In light of this assumption and the above results, we are in the setting of §2.4: K/F is an ATR
extension and assumption 2.15 is satisfied, as none of the primes dividing N = N0 disc(F/F0) remain
inert in K. Let c ⊂ R0 be an integral ideal and let Rc be the order of conductor c in RK . Let O be the
Eichler order of level N in M2(R0) consisting of matrices which are upper triangular modulo N , and let
ϕ : Rc ↪→ O be an optimal embedding. Observe that the points P βϕ constructed in Section 2 are explicitly
computable in this case, because Assumption 2.15 holds true. Moreover, granting Conjecture 2.14, they
belong to A(Hβ

ϕ). The key point is that, as we shall see in Proposition 3.8, for suitable choices of c and

β the field M is contained in Hβ
ϕ . Therefore, points in E(M) can be constructed by projecting P βϕ via

the isogeny A ∼F E2, and then taking trace over M .

Proposition 3.8. Let ϕ : Rc ↪→ O be a normalized optimal embedding, with c as in Proposition 3.5. The
field Lβϕ (as defined in §2.3) contains L if and only if βj(−1) = −1 for j = 2, . . . , r.

Proof. First of all observe that c is prime to N because disc(M/F ) is prime to NE . Thanks to As-
sumption 3.7, there exists an ideal N of K divisible by Nψ and such that NmK/F (N) = N . Recall
that

Uc = R̂×0 (1 + cR̂K) ⊂ K̂×

and that
U+
ϕ = {β ∈ Uc such that (β)N ∈ ker(ψ) ⊂ (R0/NR0)×},

where ψ is the nebentypus of f0 and also the character corresponding to the quadratic extension F/F0.
Here (β)N denotes the image of the local term of the idèle β in the quotient R×K,N/(1 + N · RK,N) '
(R0/NR0)×. The field Lβϕ is defined by

Gal(Lβϕ/K) ' A×K/K
×U+

c K
β
∞,

where Kβ
∞ is as in (9). Now let χL : A×K → {±1} be the quadratic character corresponding to L. Observe

that by class field theory L ⊂ Lβϕ if and only if U+
ϕK

β
∞ ⊂ kerχL.

Let χL =
∏
v χL,v be the decomposition of χL as a product of local characters. By the conductor–

discriminant formula the conductor of χL is equal to dL/K = c · Nψ. Then χL,f =
∏

p-∞ χp factorizes

through a character
χL,f : R×K,c·N/(1 + c ·NRK,c·N)→ {±1}.

First of all we check that χL(U+
ϕ ∩R×K,c·N) = 1. Let a = (ap)p be an element in U+

ϕ ∩R×K,c·N. We write

it as a = ac · aN, where ac =
∏

p|c ap and aN =
∏

p|N ap.

If p | c then χL,p(ap) = 1 by the very definition of U+
ϕ . Namely, if e = vp(c) then χL,p has conductor

pe so it can be regarded as a character

χL,p : R×K,p/(1 + peRK,p)→ {±1}.

But ap belongs to (1 + peRK,p) by the definition of U+
ϕ , so that χL,p(ap) = 1. Since this is valid for any

p | c we see that χL(ac) = 1.
Since N has norm N and N is squarefree we have that R×K,N/(1 +N ·RK,N) ' (R0/NR0)×. Therefore

the image of aN via the map A×K → R×K,N/(1 + N ·RK,N) can be regarded as the image of some b ∈ A×F0
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via the map A×F0
→ A×K → R×K,N/(1 + N · RK,N). By Lemma 3.4 we have that χL|AF0

= ψ. Therefore,

by the definition of U+
ϕ we see that χL(aN) = ψ(aN) = 1.

Since we have seen that U+
ϕ ⊆ kerχL, we have that L ⊆ Lβϕ if and only if χL(Kβ

∞) = 1. It is clear
that for the character β such that βj(−1) = −1 for j = 2, . . . , r this is true, because then any character
of A×K,∞ is trivial when restricted to Kβ

∞. Suppose now that β is such that βj(−1) = 1 for some j. Then

the j-th component of Kβ
∞ is equal to R×, and χL is not trivial restricted to this component because, by

Lemma 3.3, the field L is totally imaginary so the real place vj extends to a complex place of L. �

Now we let c be as in Proposition 3.8, and we take β : Σ → {±1} to be the character such that
βj(−1) = −1 for j = 2, . . . , r. Moreover we let ϕ : Rc ↪→ O be an optimal embedding normalized with
respect to N, with N an ideal of K divisible by Nψ and of norm N . From now on we grant Conjecture
2.14 so that P βϕ ∈ A(Lβϕ). Thanks to Proposition 3.8 we can set

PA,L = TrLβϕ/L(P βϕ ) ∈ A(L).

If we denote by CL = rec−1(Gal(Lβϕ/L)), then by the reciprocity law of Conjecture 2.14 PA,L can be
computed as

PA,L =
∑
a∈CL

(P βa?ϕ) ∈ A(L).

Observe that in Diagram (18) complex conjugation takes L to L′. Therefore the point

PA,M := PA,L + PA,L

lies in A(M). Finally, we define

PM = π(PA,M ) ∈ E(M),

where π : A→ E is the natural projection, an algebraic map defined over F .

Theorem 3.9. Assume Conjecture 2.14 holds true for the ATR extension K/F . Suppose also that the
sign of the functional equation of L(E/F, s) is +1 and that of L(E/M, s) is −1. Then PM is non-torsion
if and only if L′(E/M, 1) 6= 0.

Proof. If L′(E/M, 1) 6= 0 then L(E/M, s) vanishes with order 1 at s = 1. Since

(21) L(E/M, s) = L(E/F, s)L(E/F, χM , s)

it then follows that L(E/F, 1) 6= 0, as otherwise we would have ords=1 L(E/F, s) > 2, which in light of
(21) is in contradiction with the fact that ords=1 L(E/M, s) = 1. Then in turn we deduce from (21) that
the order of vanishing of L(E/F, χM , s) is 1 at s = 1.

By Lemma 3.4 we have IndF0

F χM ' IndF0

K χL, so that

L(E/F, χM , s) = L(f0/F ⊗ χM , s) = L(f0 ⊗ IndF0

F χM, s)

= L(f0 ⊗ IndF0

K χL, s) = L(f0/K, χL, s),
(22)

and therefore L(f0/K, χL, s) vanishes with order 1 at s = 1. If we denote by χ : Gal(Lβϕ/K) → C the

character χL viewed as a character of Gal(Lβϕ/K), then part (2) of Conjecture 2.14 implies that the point

Pχ =
∑

σ∈Gal(Lβϕ/K)

χ(σ)−1σ(P βϕ ) ∈ A(Lβϕ)

is non-torsion.
In order to apply the reciprocity law, let us view for a moment the fields K, L and Lβϕ as subfields of

C via a place of Q extending vj , for a fixed j ∈ {2, . . . , r}. Since K is real under vj and L is complex,
we see that complex conjugation induces an element in s ∈ Gal(Lβϕ/K) that restricts to a generator of
Gal(L/K). But s corresponds under the reciprocity map to the idèle

(23) ξj := (ξ∞, ξf ) = (1, . . ., 1,
j)

−1, 1, . . . , 1)× (1, 1, . . . ) ∈ K×∞ × K̂×,



ALMOST TOTALLY COMPLEX POINTS ON ELLIPTIC CURVES 17

so by part (3) of 2.14 we have that s(P βϕ ) = β(ξ∞)P βϕ = −P βϕ . Then we have that

Pχ =
∑

σ∈Gal(Lβϕ/L)

σ(P βϕ ) +
∑

σ∈Gal(Lβϕ/L)

χ(σs)σs(P βϕ )

=
∑

σ∈Gal(Lβϕ/L)

σ(P βϕ ) +
∑

σ∈Gal(Lβϕ/L)

χL(s)σ(−P βϕ )

= 2 · TrLβϕ/L(P βϕ ) = 2 · PA,L,

which implies that PA,L is non-torsion. Moreover, as s(P βϕ ) = −P βϕ we have that PA,L ∈ A(L)χL . Then

PA,M = PA,L + PA,L belongs to A(M) and is non-torsion as well. Since the projection π : A → E is
defined over F and A(M) ' E2(M), we see that PM = π(PA(M)) belongs to E(M) and it is of infinite
order. �

Let WN denote the Atkin-Lehner involution on S2(Γψ(N)) corresponding to the ideal N . By abuse of
notation we also denote by WN the involution that it induces on A. Then the splitting of the variety A
over F is accomplished by the action of WN . More precisely we have that

A ∼F (1 +WN )A× (1−WN )A.

Let λN be the pseudoeigenvalue of f0 corresponding to N ; that is, the complex number satisfying that
WN (f0) = λN · f0. Observe that the modular form

αβf0 :=
1

1 + λN
(f0 +WN (f0))

is normalized. In view of Conjecture 2.8 the lattice of E can be computed as

(24) ΛE = (Ω−2 · · ·Ω−r )−1 · 〈
∫
Z

αβf0〉,

where Z ∈ H2(Xψ(C),Z) runs over the cycles such that
∫
Z

(ωβf0 −WN (ωβf0)) = 0. From this we obtain
the following explicit analytic formula for the points PM .

Theorem 3.10. Let

(25) JM = (Ω−2 · · ·Ω−r )−1 ·

(∑
a∈CL

∫
T̃a?ϕ

αβf0

)
.

Then the point PM can be computed as

(26) PM = η
(
JM + JM

)
,

where η is the Weierstrass parametrization η : C/ΛE → E(C) and the bar denotes complex conjugation.

Proof. The Atkin–Lehner involution WN is defined over F and FL = M, so η(JM) belongs to E(M).
We recall that we are viewingM as a subfield of C by means of v1. Under this embeddingM is complex
and M is real and therefore

PM = TrM/M (η(JM)) = η(JM) + η(JM).

Since E is defined over F and F ⊆ R we have that Weierstrass map commutes with complex conjugation,
and (26) follows. �

Remark 3.11. Observe that WN (PL) = TrL′βϕ/L′(WN (P βϕ )) belongs to A(L′). Since complex conjugation

does not fix K, by part (3) of Conjecture 2.14 we see that

PA,L = WN (σ(PA,L)) + Pt

for some σ ∈ Gal(L/K) and some Pt ∈ A(L′)tors. If σ turns out to be trivial and Pt belongs to A(F0)tors,
then the point PA,L + WN (PA,L) is already defined over M . In this case η(JM) lies in E(M) and PM
coincides, up to torsion, with 2 · η(JM). As we will see, this is the situation encountered in the example
of §3.3.
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Remark 3.12. Observe that the integral appearing in the formula of Theorem 3.10 is completely explicit.
Indeed, in the case where f0 has trivial nebentypus, an algorithm for determining the chains T̃ϕ is worked
out in [DL], based on the approach taken in [Das2]. As we showed in §2.4, Darmon–Logan’s method

adapts to provide an explicit description of T̃ϕ also in the current setting, in which f0 has quadratic
nebentypus.

3.2. Comparison with Gartner’s ATC points. Let us keep the notations of the previous section 3.1;
in particular E/F is an elliptic curve defined over the totally real field F and M/F is an ATC quadratic
extension. The curve E is modular: its isogeny class corresponds by the Eichler-Shimura construction to
the Hilbert modular form f that one obtains from f0 by base-change to F , in such a way that

L(E, s) = L(f, s)

as in (5).
We place ourselves under the hypothesis of Theorem 3.9, so that we assume NE is square-free, the

sign of the functional equation of L(E/F, s) is +1 and that of L(E/M, s) is −1.
As discussed in §1, our point PM in E(M) is expected to coexist with another point PGar

M ([Ga2, §5.4]),
provided Conjecture 2.14 for the abelian extensions of M holds true. This point can be manufactured by
applying the machinery of §2.1, 2.2, 2.3, setting M/F to play the role of the extension K/F0 of loc. cit.

Let us sketch the details: let B be the quaternion algebra over F which ramifies precisely at all the
archimedean places of F except the two places extending v1, and at the prime ideals ℘ | NE that remain
inert in M . That this is a set of even cardinality is guaranteed by the sign of the functional equation of
L(E/M, s). Let O be an Eichler order in B of square-free level, divisible exactly by those primes ℘ | NE
which split or ramify in M .

Let RM denote the ring of integers of M and fix a normalized optimal embedding ϕM ∈ E(RM ,O).
In the notations of §2.1 and 2.2 we have r = 2 and Σ = {±1}. Take β to be the trivial character and,
granting Conjecture 2.14, let Pϕ ∈ E(Lβϕ) denote the Darmon point associated with this choice. Set

(27) PGar
M = TrLβϕ/M (P βϕ ) ∈ E(M).

It is expected that the Néron-Tate height of PGar
M should be related to L′(E/M, 1) while the Néron-

Tate height of PM constructed in this paper should be connected to L′(E/F, χM , 1). Hence from the
basic quality

L′(E/M, 1) = L(E/F, 1)L′(E/F, χM , 1),

we propose the following conjecture about the relation between PM and PGar
M . Let

ΩE/F =

∏
τ :F↪→R cEτ√

disc(F )

where cEτ is either the real period or twice the real period of Eτ = E×τ R, depending on whether Eτ (R)
is connected or not.

Conjecture 3.13. The point PGar
M is of infinite order if and only if PM is of infinite order and L(E/F, 1) 6=

0. Moreover,
PGar
M = 2s` · PM ,

where s is an integer which depends on M and ` ∈ Q× satisfies `2 = L(E/F,1)
ΩE/F

.

Remark 3.14. At the moment, the only instance in which the rationality of Stark–Heegner points is
proven unconditionally is the one considered by Bertolini and Darmon in [BD], in which they prove
a p-adic analogue of Conjecture 3.13 over genus fields. In that setting the Stark–Heegner points are
constructed by means of p-adic periods, while in the present article the points are constructed using
complex periods. This is a key difference, and the circle of ideas used by Bertolini and Darmon does not
seem to adapt well to the complex setting.

To explain better the difference between both settings, let us place ourselves in a very particular case
of Conjecture 3.13: set F0 = Q and let f0 ∈ S2(N, ε) be a classical eigenform of prime level N ≡ 1 (mod
4), quadratic nebentypus character ε and whose Fourier coefficients generate an imaginary quadratic
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field. Set F = Q(
√
N) and let E/F the Q-curve associated to f0 by the Eichler-Shimura construction.

Let finally f denote the Doi–Naganuma lift of f0 to F : it is a Hilbert modular form of level 1 over F .
Note that in this particular scenario our constructions and conjectures are exactly the ones considered in
[DRZ].

The basic relation between f0 and its base change f is

(28) L(f, s) = L(f0, s) · L(f̄0, s),

where f̄0 denotes the eigenform obtained from f0 by complex conjugating its Fourier coefficents. Then (28)
and its counterpart for twists by Dirichlet characters can be used to prove that the elliptic curves C/Λf
and C/Λf0 are isogenous (see [Od, §17] for the details).

Under suitable sign hypotheses, Conjecture 3.13 predicts that a certain ATR point P ?
M in C/Λf is a

simple multiple of a Heegner point PM ∈ E(M) ⊂ E(C) ' C/Λf0 . This conjecture is motivated by the
equality

(29) L′(f, χM , 1) = L′(f0 ⊗ χL, 1).

However, in the complex setting the derivative L′(f0 ⊗ χL, 1) is only expected to capture the height
of PM , but fails short to recover the point PM itself. A similar remark holds for the ATR point P ?

M .
In the p-adic setting of [BD], the p-adic avatar of both sides of (29) are played by the special values

(and not the derivative) of suitable p-adic L-functions at a point outside the region of interpolation.
These special values are proved to retrieve the (formal logarithm of the) Heegner and Stark–Heegner
points themselves, and not just their height. This is the fundamental fact that allows Bertolini and
Darmon proving their main result in [BD], and also the reason why a similar proof does not immediately
generalize to the scenario considered in this note.

3.3. A numerical example. In this section we give the details for the computation of an ATC point
on a particular elliptic curve. We used Sage [S+09] for all the numerical calculations. We begin by
describing the elliptic curve and the corresponding Hilbert modular form f0, which we will take to be the
base change of a modular form f over Q.

3.3.1. The curve and the modular form. Let f be the (unique up to Galois conjugation) classical newform
over Q of level 40 and nebentypus ε(·) =

(
10
·
)
. It corresponds to the third form of level 40 in the table

4.1 of the appendix to [Qu]. We see from this table that the modular abelian variety Af has dimension 4.

Moreover, it breaks (up to isogeny) into the fourth power of an elliptic curve E/F , where F = Q(
√

2,
√

5).
Jordi Quer computed an equation for E using the algorithms of [GL]; a global minimal model of E is
given by:

(30) y2 + b1xy + b3y = x3 + b2x
2 + b4x+ b6,

where

b1 = 1− 9/2
√

2 + 3
√

5− 1/2
√

10,

b2 = −15/2 + 13/2
√

2− 9/2
√

5 + 5/2
√

10,

b3 = −11/2− 27/2
√

2 + 17/2
√

5 + 3/2
√

10,

b4 = 41/2 + 8
√

2− 15/2
√

5− 8
√

10,

b6 = 525/2 + 8
√

2− 13/2
√

5− 84
√

10.

Let F0 = Q(
√

2) and let v1 (resp. v2) be the embedding taking
√

2 to the positive (resp. negative)

square root of 2. Since E is a Q-curve, it is also an F0-curve. If we set α =
√

10 +
√

5 +
√

2 then
M = F (

√
α) is an ATC extension of F . Since the conductor of E/F is equal to 1 the sign of the

functional equation of L(E/F, s) is +1, and the sign of L(E/M, s) is −1. The point Pnt ∈ E(M) whose
x coordinate is given by

x =
−3259 + 2126

√
α− 8957

√
α

2
+ 5297

√
α

3 − 4989
√
α

4
+ 1954

√
α

5 − 743
√
α

6
+ 39

√
α

7

72
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is a generator or the Mordell–Weil group of E(M). Conjecture 3.9 predicts that the point PM coincides,
up to torsion, with a multiple of Pnt. We computed an approximation to JM ∈ C/ΛE with an accuracy of
30 decimal digits using formula (25). Let Jnt ∈ C/ΛE be a preimage of Pnt by Weierstrass’s uniformization
map. Then the following relation

(31) 7 · JM − 14 · Jnt ∈ ΛE ,

holds up to the computed numerical precision of 30 digits. The torsion group E(M)tors is isomorphic to
Z/14Z. Observe that this gives numerical evidence for the fact that η(JM ) is already a non-torsion point
in E(M) in this case. We find a similar relation for PM = η(JM + JM):

7 · (JM + JM)− 28 · Jnt ∈ ΛE .

In the rest of the section we provide the details about the computation of JM, beginning with those
related to compute the Hilbert modular form attached to E over F0.

Let f0 be the base change of f to F0. Denote by N the level of f , and let A = ResF/F0
E, which is a

GL2-variety over F0. By Milne’s formula [Mi2, Proposition 1] it has conductor cond(A/F0) = (25). By
the Shimura–Taniyama conjecture for GL2-type varieties A is isogenous to Af0 , which has conductor N2.

Then we see that N = (5) and that f0 belongs to S2(Γψ(N)), where ψ is the restriction of ε to Gal(Q/F0).
By identifying ε with a character A×Q → {±1} by means of class field theory, ψ can be identified with the

idèle character ε aNmF0/Q : A×F0
→ {±1}.

The Fourier coefficients of f =
∑
n>1 cnq

n can be explicitly computed in Sage. Let us see how to

compute the coefficients of f0 in terms of the cn’s. The field Ef = Q({cn}) turns out to be Q(
√

2,
√
−3).

Let Gal(Ef/Q) = {1, σ, τ, στ}, where σ denotes the automorphism that fixes Q(
√
−3) and τ the one that

fixes Q(
√

2). The inner twists of f are given by

χσ = εQ(
√

5), χτ = εQ(
√

10), χστ = χσχτ = εQ(
√

2),

where εQ(
√
a) denotes the Dirichlet character corresponding to Q(

√
a)/Q. Recall that inner twists are

defined by the relations fρ = χρ⊗ f , for ρ ∈ Gal(Ef/Q). This is also equivalent to say that cρp = χρ(p)cp
for all primes p not dividing the level of f (see [Ri] for more details).

Lemma 3.15. L(f0, s) = L(f, s)L(fστ , s).

Proof. Indeed f0 is the base change of f to F0 = Q(
√

2). Then,

L(f, s) = L(f, s)L(f ⊗ εQ(
√

2), s) = L(f, s)L(f ⊗ χστ , s) = L(f, s)L(fστ , s).

�

The L-series of f0 is of the form

(32) L(f0, s) =
∏
p-N

(1− ap Nm(p)−s + ψ(p) Nm(p)1−2s)−1
∏
p|N

(1− ap Nm(p)−s)−1,

for some coefficients ap, indexed by the primes in F0.

Lemma 3.16. Let p be a prime in F0, and let p = p ∩ Z. Then

ap =


cp if εQ(

√
2)(p) = 1 and p 6= 5,

c2p − 2 ε(p) p if εQ(
√

2)(p) = −1 and p 6= 5,

c2p if p = 5,

cp + cστp if p = 2.

Proof. For a rational prime p let Lp(f0, s) =
∏

p|p Lp(f, s) denote the product of local factors for the

primes p | p. For p 6= 2, 5 Lemma 3.15 gives that

(33) Lp(f0, s) = (1− cpp−s + ε(p)p1−2s)−1(1− cστp p−s + ε(p)p1−2s)−1.
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If εQ(
√

2)(p) = 1 then p splits in F0 so there are two primes p1, p2 dividing p, each one having norm p.

On the other hand, cστp = cp (because χστ = εQ(
√

2)(p)), and ψ(pi) = ε(Nm(pi)) = ε(p). Comparing (33)

and (32) we see that api = cp.
If εQ(

√
2)(p) = −1 then there is only one prime p dividing p, and ψ(p) = ε(Nm(p)) = 1. On the other

hand cστp = −cp, so

Lp(f0, s) = (1− cpp−s + ε(p)p1−2s)−1(1 + cpp
−s + ε(p)p1−2s)−1

= 1 + 2ε(p)p1−2s − c2pp−2s + p2−4s

= 1 + (2 ε(p) p− c2p)Nm(p)
−s

+ Nm(p)
1−2s

,

and we see that ap = c2p − 2 ε(p) p.
If p = 5, then χστ (p) = −1 so cστp = −cp. Since 5 divides the level of f we have that

Lp(f0, s) = (1− cpp−s)−1(1 + cpp
−s)−1 = (1− c2pNm(p)

−s
)−1,

so that ap = c2p.

Finally, if p = 2 then (p) = p2 in F0. But p does not divide the level of f0 and ψ(p) = −1 (because p
is inert in F ), so Lp(f0, s) = Lp(f0, s) is of the form

(34) Lp(f0, s) = (1− app−s − p1−2s)−1.

On the other hand, p divides the level of f , so that

(35) Lp(f0, s) = (1− cpp−s)(1− cστp p−s) = (1− (cp + cστp )p−s + cpc
στ
p p−2s).

It turns out that cpc
στ
p = −p, so (34) and (35) match and we see that ap = cp + cστp . �

3.3.2. Computation of the ATC point. Let e =
√

2 − 1 be a fundamental unit of F0. Observe that
e1 = v1(e) > 0 and e2 = v2(e) < 0. Let β : {±1} → {±1} be the nontrivial character. The differential

ωβf0 is then the one corresponding to

ωβf0 =
−4π2

√
8

(f0(z1, z1)dz1dz2 − f0(e1z1, e2z2)d(e1z1)d(e2z2)) .

As for WN (ωβf0), it is easy to compute because WN (f0) = λNf0, where the pseudoeigenvalue λN is equal

to a(N)/N = −1+2
√
−6

5 . Therefore

WN (ωβf0) =
(4− 8

√
−6)π2

5
√

8

(
f0(z1, z1)dz1dz2 − f0(e1z1, e2z2)d(e1z1)d(e2z2)

)
.

and we have completely determined αβf0 = 1
1+λN

(
ωβf0 +WN (ωβf0

)
.

Recall that M is not Galois over F0, and that the diagram of subfields of its Galois closureM is the one
given in (18). The ATR field K is easily computed to be K = F0(ω), where ω2 +(

√
2+1)ω+3

√
2+4 = 0.

Here we remark that K is complex under the embeddings extending v1, and it is real under the embeddings
extending v2. The discriminant of L/K is an ideal N which in this case satisfies NmK/F0

(N) = N .
Therefore the ideal c of Proposition 3.8 is equal to 1 for this example. Let ϕ : RK ↪→ O be the optimal
embedding of the maximal order RK into the Eichler order of conductor N of M2(F0) given by

ϕ(ω) =

(
−
√

2 + 2 −2
5 −3

)
.

By Proposition 3.8 we see that L is contained in Lβϕ. But Lβϕ is a quadratic extension of the narrow

Hilbert class field of K. Since K turns out to have narrow class number 1, we see that Lβϕ is a quadratic

extension of K, hence equals L. This means that Hβ
ϕ = M, so that according to Conjecture 2.14 the

point P βϕ is defined over M.

The fixed point of K× under ϕ (with respect to v1) is

z1 ' 0.358578643762691 + 0.520981147679366 · i



22 XAVIER GUITART, VICTOR ROTGER AND YU ZHAO

The unit

eK = (−10
√

2 + 14)w + 7
√

2− 11

satisfies that NmK/F0
(eK) = 1 and generates the group of such units, so that

γϕ = ϕ(eK) =

(
−27
√

2 + 37 20
√

2− 28

−50
√

2 + 70 37
√

2− 53

)
and

γϕ · ∞ =
−27
√

2 + 37

−50
√

2 + 70
=

4
√

2 + 11

10
.

To compute JM we need to evaluate the 3-limits integral

(36) JM =

∫ z1 ∫ γϕ·∞

∞
αβf0 =

∫ z1 ∫ 4
√

2+11
10

∞
αβf0 .

The next step is to use properties (13), (14), and (15) to transform (36) into a sum of usual 4-limit
integrals, because they can be numerically computed by integrating (a truncation of) the Fourier series

of αβf0 . Observe that αβf0 is invariant under WN = W(5), so we have the following additional invariance
property:

(37)

∫ x ∫ z

y

αβf0 =

∫ −1
5x
∫ −1

5z

−1
5y

αβf0 .

We will also use the following matrices, both belonging to Γψ(N):

G =

(
4
√

2 + 11 −3
√

2 + 5

10 −6
√

2 + 9

)
, H =

(
−15
√

2 + 21 −
√

2− 1

−35
√

2 + 50 1

)
.

Since γϕ · ∞ = G · ∞ and G · 0 = −3
√

2+5
−6
√

2+9
=
√

2/3 + 1, we have that∫ z1 ∫ γϕ·∞

∞
αβf0 =

∫ z1 ∫ G·∞

∞
αβf0 =

∫ z1 ∫ G·0

∞
αβf0 +

∫ z1 ∫ G·∞

G·0
αβf0

=

∫ z1 ∫ √2/3+1

∞
αβf0 +

∫ G−1·z1 ∫ ∞
0

αβf0 .

(38)

Now, since H · ∞ = −15
√

2+21
−35
√

2+50
= −3

√
2

10 and H · 0 = −
√

2− 1 we have that

∫ z1 ∫ √2/3+1

∞
αβf0 =

∫ z1−1 ∫ √2/3

∞
αβf0 =

∫ −1
5(z1−1)

∫ −3
√

2
10

0

αβf0

=

∫ −1
5(z1−1)

∫ H·∞

0

αβf0 =

∫ −1
5(z1−1)

∫ H·0

0

αβf0 +

∫ −1
5(z1−1)

∫ H·∞

H·0
αβf0

=

∫ −1
5(z1−1)

∫ −√2−1

0

αβf0 +

∫ H−1· −1
5(z1−1)

∫ ∞
0

αβf0

=

∫ −1
5(z1−1)

∫ ∞
0

αβf0 +

∫ −1
5(z1−1)

∫ −√2−1

∞
αβf0 +

∫ H−1· −1
5(z1−1)

∫ ∞
0

αβf0

=

∫ −1
5(z1−1)

∫ ∞
0

αβf0 +

∫ −1
5(z1−1)

+
√

2+1 ∫ 0

∞
αβf0 +

∫ H−1· −1
5(z1−1)

∫ ∞
0

αβf0

=

∫ −1
5(z1−1)

−1
5(z1−1)

+
√

2+1

∫ ∞
0

αβf0 +

∫ H−1· −1
5(z1−1)

∫ ∞
0

αβf0

(39)
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Now, putting together (38) and (39) we have that∫ z1 ∫ γϕ·∞

∞
αβf0 =

∫ G−1·z1 ∫ ∞
0

αβf0 +

∫ −1
5(z1−1)

−1
5(z1−1)

+
√

2+1

∫ ∞
0

αβf0 +

∫ H−1· −1
5(z1−1)

∫ ∞
0

αβf0

=

∫ −1

5G−1·z1
∫ 0

∞
αβf0 +

∫ −1
5(z1−1)

−1
5(z1−1)

+
√

2+1

∫ ∞
0

αβf0 +

∫ H−1· −1
5(z1−1)

∫ ∞
0

αβf0

=

∫ −1
5(z1−1)

−1
5(z1−1)

+
√

2+1

∫ ∞
0

αβf0 +

∫ H−1· −1
5(z1−1)

−1

5G−1·z1

∫ ∞
0

αβf0

(40)

Now both of these integrals can be easily computed, because for x, y ∈ H one has that∫ y

x

∫ ∞
0

=

∫ y

x

∫ i/
√

5

0

+

∫ y

x

∫ ∞
i/
√

5

=

∫ −1
5y

−1
5x

∫ i/
√

5

∞
+

∫ y

x

∫ ∞
i/
√

5

,

which are integrals with all of their limits lying in H and they can be computed by integrating term by
term the Fourier expansion.

Let Λ1 and Λ2 be the period lattices of E with respect to v1 and v2, and denote by Ω+
1 ,Ω

+
2 the real

periods and Ω−1 , Ω−2 the imaginary periods. Using the above limits we integrated the truncation of the

Fourier expansion of αβf0 up to ideals of norm 160000 obtaining

JM =
(
Ω−2
)−1

∫ z1 ∫ γϕ∞

∞
αβf0 ' 6.1210069519472105302223690235

+ i · 5.4381903029486320686211994460.

Recall that Jnt stands for the logarithm of Pnt in C/ΛE . The actual value is

Jnt ' 3.3835055058970249460140888086 + i · 2.7190951514743160343105997232.

We have that

7 · JM − 14 · Jnt + Ω+
1 ' 3.742356 · 10−27 − i · 3.23117 · 10−27,

which is the numerical evidence for the fact that relation (31) holds and that, up to torsion, η(JM) equals
2Pnt.
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