Endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q}

Francesc Fité¹ Xevi Guitart²

¹IAS, Princeton,

²Universitat de Barcelona

JTN Vilanova 2019

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define

 $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{O}}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define

 $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $A_{g,d}$ is finite.

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $\mathcal{A}_{g,d}$ is finite.

• Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A/\mathbb{Q}

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{\underline{0}}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $\mathcal{A}_{g,d}$ is finite.

Interested in A_{2,1}: endomorfism algebras of abelian surfaces A/Q
 If A_□ is simple → completely open

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{\underline{0}}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $\mathcal{A}_{g,d}$ is finite.

- Interested in A_{2,1}: endomorfism algebras of abelian surfaces A/Q
 If A_□ is simple → completely open
- We will focus in the cases where $A_{\overline{0}}$ is not simple $\rightsquigarrow A_{2,1}^{\text{split}}$

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $\mathcal{A}_{g,d}$ is finite.

- Interested in A_{2,1}: endomorfism algebras of abelian surfaces A/Q
 If A_□ is simple → completely open
- We will focus in the cases where $A_{\overline{0}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text{split}}$
- Known that $\mathcal{A}_{2,1}^{\text{split}}$ is finite
 - ▶ If $A_{\overline{\mathbb{O}}} \sim E_1^{-,\cdot} \times E_2$ by Fité–Kedlaya–Rotger–Sutherland
 - If $A_{\overline{O}} \sim E^2$ by Shafarevich

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $\mathcal{A}_{g,d}$ is finite.

- Interested in A_{2,1}: endomorfism algebras of abelian surfaces A/Q
 If A_□ is simple → completely open
- We will focus in the cases where $A_{\overline{\Omega}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text{split}}$
- Known that $\mathcal{A}_{2,1}^{\text{split}}$ is finite
 - ▶ If $A_{\overline{O}} \sim E_1^{\gamma} \times E_2$ by Fité–Kedlaya–Rotger–Sutherland
 - If $A_{\overline{\mathbb{Q}}} \sim E^2$ by Shafarevich
- Aim: to determine $\mathcal{A}_{2,1}^{\text{split}}$ exactly

- A abelian variety over a number field k
 - $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$ -endomorphisms
- For $g, d \ge 1$ define $\mathcal{A}_{g,d} = \{ \operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A) \colon A/k \text{ of dimension } g \text{ and } [k : \mathbb{Q}] = d \}$

Conjecture (Coleman)

The set $\mathcal{A}_{g,d}$ is finite.

- Interested in A_{2,1}: endomorfism algebras of abelian surfaces A/Q
 If A_□ is simple → completely open
 - Find $A_{\overline{\mathbb{Q}}}$ is simple \sim completely open We will feelue in the space where $A_{\overline{\mathbb{Q}}}$ is not sig
- We will focus in the cases where $A_{\overline{\mathbb{Q}}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text{split}}$
- Known that $\mathcal{A}_{2,1}^{\text{split}}$ is finite
 - ► If $A_{\overline{0}} \sim E_1 \times E_2$ by Fité–Kedlaya–Rotger–Sutherland
 - If $A_{\overline{\mathbb{O}}} \sim E^2$ by Shafarevich
- Aim: to determine $\mathcal{A}_{2,1}^{\text{split}}$ exactly

Theorem (Josep González, 2011)

 $\mathcal{A}_{2,1}^{\text{split}}$ contains 28 algebras coming from modular A/\mathbb{Q} (+ gives explicit list)

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

$\textcircled{0} \ \mathbb{Q} \times \mathbb{Q}, \, M_2(\mathbb{Q});$

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

 $\ \, \mathbb{Q}\times\mathbb{Q},\,M_2(\mathbb{Q});$

2 $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imaginary fields of $h(M_i) = 1$;

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- $\textcircled{0} \ \mathbb{Q} \times \mathbb{Q}, \, M_2(\mathbb{Q});$
- 2 $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imaginary fields of $h(M_i) = 1$;
- 3 $M_2(M)$ with *M* quadratic imaginary field, $Cl(M) \simeq C_1, C_2, C_2 \times C_2$ and *M* distinct from

 $\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})$

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- $\textcircled{0} \mathbb{Q} \times \mathbb{Q}, M_2(\mathbb{Q});$
- 2 $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imaginary fields of $h(M_i) = 1$;
- **③** $M_2(M)$ with *M* quadratic imaginary field, $Cl(M) \simeq C_1, C_2, C_2 \times C_2$ and *M* distinct from

 $\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})$

In particular, the set $\mathcal{A}_{2,1}^{\text{split}}$ has cardinality 92.

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- $\textcircled{0} \mathbb{Q} \times \mathbb{Q}, M_2(\mathbb{Q});$
- 2 $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imaginary fields of $h(M_i) = 1$;
- 3 $M_2(M)$ with *M* quadratic imaginary field, $Cl(M) \simeq C_1, C_2, C_2 \times C_2$ and *M* distinct from

 $\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})$

In particular, the set $\mathcal{A}_{2,1}^{\text{split}}$ has cardinality 92.

• If
$$A_{\overline{\mathbb{Q}}} \sim E_1 \times E_2$$
 or $A_{\overline{\mathbb{Q}}} \sim E_1^2$ with E_i non-CM

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- $\textcircled{0} \mathbb{Q} \times \mathbb{Q}, M_2(\mathbb{Q});$
- 2 $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imaginary fields of $h(M_i) = 1$;
- 3 $M_2(M)$ with *M* quadratic imaginary field, $Cl(M) \simeq C_1, C_2, C_2 \times C_2$ and *M* distinct from

 $\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})$

In particular, the set $\mathcal{A}_{2,1}^{\text{split}}$ has cardinality 92.

• If
$$A_{\overline{\mathbb{O}}} \sim E_1 \times E_2$$
 or $A_{\overline{\mathbb{O}}} \sim E_1^2$ with E_i non-CM

2 If
$$A_{\overline{O}} \sim E_1 \times E_2$$
 and E_i can have CM

Here [FKRS] showed that each E_i can be defined over Q

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- $\textcircled{0} \mathbb{Q} \times \mathbb{Q}, M_2(\mathbb{Q});$
- 2 $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imaginary fields of $h(M_i) = 1$;
- **③** $M_2(M)$ with *M* quadratic imaginary field, $Cl(M) \simeq C_1, C_2, C_2 \times C_2$ and *M* distinct from

$$\label{eq:product} \begin{split} \mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760}) \\ \text{In particular, the set } \mathcal{A}_{2.1}^{\text{split}} \text{ has cardinality 92.} \end{split}$$

• If
$$A_{\overline{\mathbb{O}}} \sim E_1 \times E_2$$
 or $A_{\overline{\mathbb{O}}} \sim E_1^2$ with E_i non-CM

2 If $A_{\overline{O}} \sim E_1 \times E_2$ and E_i can have CM

Here [FKRS] showed that each E_i can be defined over Q

Solution Here $A_{\overline{O}} \sim E^2$ with *E* with CM by *M*: here is where the work is

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015) Necessarily $Cl(M) \simeq C_1, C_2, \text{ or } C_2 \times C_2$

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015)

Necessarily $Cl(M) \simeq C_1, C_2, \text{ or } C_2 \times C_2$

Idea of the proof: adapt Ribet's theory of Q-curves

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015)

Necessarily $Cl(M) \simeq C_1, C_2, \text{ or } C_2 \times C_2$

Idea of the proof: adapt Ribet's theory of Q-curves
 Let K/Q be the minimal such that End(A_□) = End(A_K)

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_{K})$
 - Known that $\operatorname{Gal}(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_K)$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_K)$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_{K})$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and *E* has CM by *M*, what are the possible *M*'s?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_{K})$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion
 - ► Every 2 torsion class is trivialized when restricted to Gal(K/N) with Gal(N/M) of exponent 2 (so $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$)

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_{K})$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion
 - ► Every 2 torsion class is trivialized when restricted to Gal(K/N) with Gal(N/M) of exponent 2 (so $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$)
 - ▶ Weil Descent Theorem: *E* can be defined over *N* up to isogeny

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_{K})$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion
 - ► Every 2 torsion class is trivialized when restricted to Gal(K/N) with Gal(N/M) of exponent 2 (so $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$)
 - Weil Descent Theorem: E can be defined over N up to isogeny
 - CM theory $H \subset N$ so Gal(H/M) is a quotient of Gal(N/M)

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_K)$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion
 - ► Every 2 torsion class is trivialized when restricted to Gal(K/N) with Gal(N/M) of exponent 2 (so $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$)
 - ▶ Weil Descent Theorem: *E* can be defined over *N* up to isogeny
 - CM theory $H \subset N$ so Gal(H/M) is a quotient of Gal(N/M)
- Real question: of these possible *M*'s, which ones do really occur?

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_K)$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion
 - ► Every 2 torsion class is trivialized when restricted to Gal(K/N) with Gal(N/M) of exponent 2 (so $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$)
 - ▶ Weil Descent Theorem: *E* can be defined over *N* up to isogeny
 - CM theory $H \subset N$ so Gal(H/M) is a quotient of Gal(N/M)
- Real question: of these possible *M*'s, which ones do really occur?
 - Give a construction of A's for some M's

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité–G., 2015)

- Idea of the proof: adapt Ribet's theory of Q-curves
 - Let K/\mathbb{Q} be the minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_{K})$
 - Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$
 - ► *E* is an *M*-curve: $\forall \sigma \in \text{Gal}(K/M) \rightsquigarrow \mu_{\sigma} : {}^{\sigma}E \rightarrow E$ compatible with *M*
 - $c_E(\sigma, \tau) = \mu_\sigma \circ {}^{\sigma}\mu_\tau \circ \mu_{\sigma\tau}^{-1} \in M^{\times} \text{ and } c_E \in H^2(\text{Gal}(K/M), M^{\times})$
 - One shows that c_E is 2-torsion
 - ► Every 2 torsion class is trivialized when restricted to Gal(K/N) with Gal(N/M) of exponent 2 (so $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$)
 - ▶ Weil Descent Theorem: *E* can be defined over *N* up to isogeny
 - CM theory $H \subset N$ so Gal(H/M) is a quotient of Gal(N/M)
- Real question: of these possible *M*'s, which ones do really occur?
 - ► Give a construction of A's for some M's and rule out the other M's

Constructing abelian surfaces: restriction of scalars
If Cl(*M*) = 1 take *E*/Q with CM by *M* and *A* = *E* × *E*.

Constructing abelian surfaces: restriction of scalars

- If $\operatorname{Cl}(M) = 1$ take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$

Constructing abelian surfaces: restriction of scalars

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $Disc(M) \neq -4 \times (primes \equiv 1 \pmod{4})$: \exists Gross \mathbb{Q} -curve E/H

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\text{Disc}(M) \neq -4 \times (\text{primes} \equiv 1 \pmod{4})$: $\exists \text{ Gross } \mathbb{Q}\text{-curve } E/H$
 - ${}^{\sigma}E \sim E$ for all $\sigma \in Gal(H/\mathbb{Q})$ (many things are known about them)

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $Disc(M) \neq -4 \times (primes \equiv 1 \pmod{4})$: \exists Gross \mathbb{Q} -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: \exists Gross \mathbb{Q} -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - ► Gave a method for computing End(Res_{Q(j_E)/Q}E) in terms of c_E

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(j∈)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq \operatorname{M}_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \text{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(j∈)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(j∈)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:
 - ▶ Disc(M) = -195, -312, -555, -715, -760 (never get M₂(Q))

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(j∈)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:
 - ▶ Disc(M) = -195, -312, -555, -715, -760 (never get M₂(Q))
 - Disc(M) = -340 (there is no Gross Q-curve)

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $Disc(M) \neq -4 \times (primes \equiv 1 \pmod{4})$: \exists Gross \mathbb{Q} -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(j∈)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:
 - ▶ Disc(M) = -195, -312, -555, -715, -760 (never get M₂(Q))
 - Disc(M) = -340 (there is no Gross Q-curve)

• We will see that for these discriminants such an A does not exist

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(j∈)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:
 - ▶ Disc(M) = -195, -312, -555, -715, -760 (never get M₂(Q))
 - Disc(M) = -340 (there is no Gross Q-curve)
- We will see that for these discriminants such an A does not exist
 - Suppose A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \text{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - Gave a method for computing End(Res_{Q(jE)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:
 - ▶ Disc(M) = -195, -312, -555, -715, -760 (never get M₂(Q))
 - Disc(M) = -340 (there is no Gross Q-curve)
- We will see that for these discriminants such an A does not exist
 - Suppose A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - If $Gal(K/M) \simeq C_2 \times C_2$ then A should be a factor of $Res_{\mathbb{Q}(j_E)/\mathbb{Q}}E$

- If Cl(M) = 1 take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $\operatorname{Cl}(M) = \operatorname{C}_2$: if *E* has CM by *M* then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$
 - ▶ Take such an $E/\mathbb{Q}(j_E)$ and $A = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dimension 2
- If $\operatorname{Cl}(M) = \operatorname{C}_2 \times \operatorname{C}_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
- Nakamura's work on CM Q-curves:
 - ▶ If $\operatorname{Disc}(M) \neq -4 \times (\operatorname{primes} \equiv 1 \pmod{4})$: $\exists \operatorname{Gross} \mathbb{Q}$ -curve E/H
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$ (many things are known about them)
 - Nakamura classified all Gross's Q-curves up to isogeny
 - ► Gave a method for computing End(Res_{Q(jE)/Q}E) in terms of c_E
 - If $\operatorname{End}(\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E) \simeq M_2(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E \sim A^2$
- This gives an A/\mathbb{Q} for all M with $Cl(M) = C_2 \times C_2$ except for:
 - ▶ Disc(M) = -195, -312, -555, -715, -760 (never get M₂(Q))
 - Disc(M) = -340 (there is no Gross Q-curve)

• We will see that for these discriminants such an A does not exist

- Suppose A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
- If $\operatorname{Gal}(K/M) \simeq \operatorname{C}_2 \times \operatorname{C}_2$ then A should be a factor of $\operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}}E$
- Can assume Gal(K/M) has an element β of order r = 4 or r = 6.

• A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M

• A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M

• ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ▶ Need to relate *A* to a Gross Q-curve (let us suppose there is one)

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ▶ Need to relate *A* to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ▶ Need to relate *A* to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom (E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ▶ Need to relate *A* to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom(E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

▶ But we have μ_{σ} : ${}^{\sigma}E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi) = {}^{\sigma}\phi \circ \mu_{\sigma}^{-1}$: $E_{L}^{*} \rightarrow A_{L}$

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - Need to relate A to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom(E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

- ▶ But we have μ_{σ} : ${}^{\sigma}E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi) = {}^{\sigma}\phi \circ \mu_{\sigma}^{-1}$: $E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma}\rho_{\tau} = c_{E^*}(\sigma,\tau)\rho_{\sigma\tau}$ projective representation (c_{E^*} -representation)

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - Need to relate A to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom(E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

- ▶ But we have μ_{σ} : ${}^{\sigma}E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi) = {}^{\sigma}\phi \circ \mu_{\sigma}^{-1}$: $E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma}\rho_{\tau} = c_{E^*}(\sigma,\tau)\rho_{\sigma\tau}$ projective representation (c_{E^*} -representation)

• Surprise: $\operatorname{Hom}(E_L^*, A_L) \otimes \operatorname{Hom}(E_L^*, A_L)^* \simeq \operatorname{End}(A_K)$ as $\operatorname{Gal}(K/M)$ -rep's

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ▶ Need to relate *A* to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom(E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

- ▶ But we have μ_{σ} : ${}^{\sigma}E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi) = {}^{\sigma}\phi \circ \mu_{\sigma}^{-1}$: $E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma}\rho_{\tau} = c_{E^*}(\sigma,\tau)\rho_{\sigma\tau}$ projective representation (c_{E^*} -representation)
- Surprise: $\operatorname{Hom}(E_L^*, A_L) \otimes \operatorname{Hom}(E_L^*, A_L)^* \simeq \operatorname{End}(A_K)$ as $\operatorname{Gal}(K/M)$ -rep's
- Using this we show that $c_{E^*}(areta,areta)\in\pm1$

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ► Need to relate A to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom(E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

- ▶ But we have μ_{σ} : ${}^{\sigma}E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi) = {}^{\sigma}\phi \circ \mu_{\sigma}^{-1}$: $E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma}\rho_{\tau} = c_{E^*}(\sigma,\tau)\rho_{\sigma\tau}$ projective representation (c_{E^*} -representation)
- Surprise: $\operatorname{Hom}(E_L^*, A_L) \otimes \operatorname{Hom}(E_L^*, A_L)^* \simeq \operatorname{End}(A_K)$ as $\operatorname{Gal}(K/M)$ -rep's
- Using this we show that $c_{E^*}(\bar{\beta},\bar{\beta}) \in \pm 1$

- A/\mathbb{Q} with $A_K \sim E^2$ and E has CM by M
 - ${}^{\sigma}E \sim E$ for all $\sigma \in \text{Gal}(K/\mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q} -curve
 - ► Need to relate A to a Gross Q-curve (let us suppose there is one)
- Let E^*/H be a Gross \mathbb{Q} -curve with $E_L^* \sim E_L$
 - Hom(E_L^*, A_L) is not a Gal(L/M) representation:

$$\phi \colon E_L^* \to A_L \rightsquigarrow {}^{\sigma}\phi \colon {}^{\sigma}E_L^* \to A_L$$

- ▶ But we have μ_{σ} : ${}^{\sigma}E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi) = {}^{\sigma}\phi \circ \mu_{\sigma}^{-1}$: $E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma}\rho_{\tau} = c_{E^*}(\sigma,\tau)\rho_{\sigma\tau}$ projective representation (c_{E^*} -representation)
- Surprise: $\operatorname{Hom}(E_L^*, A_L) \otimes \operatorname{Hom}(E_L^*, A_L)^* \simeq \operatorname{End}(A_K)$ as $\operatorname{Gal}(K/M)$ -rep's
- Using this we show that $c_{E^*}(\bar{eta},\bar{eta})\in\pm 1$
- Extra argument using *c*-representations rules out $\mathbb{Q}(\sqrt{-340})$ too

Endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q}

Francesc Fité¹ Xevi Guitart²

¹IAS, Princeton,

²Universitat de Barcelona

JTN Vilanova 2019