Endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q}

Francesc Fité ${ }^{1}$ Xevi Guitart ${ }^{2}$

${ }^{1}$ IAS, Princeton,
${ }^{2}$ Universitat de Barcelona
JTN Vilanova 2019

A conjecture of Coleman

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

- Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A / \mathbb{Q}

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

- Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A / \mathbb{Q}
- If $A_{\overline{\mathbb{Q}}}$ is simple \rightsquigarrow completely open

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

- Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A / \mathbb{Q}
- If $A_{\overline{\mathbb{Q}}}$ is simple \rightsquigarrow completely open
- We will focus in the cases where $A_{\overline{\mathbb{Q}}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text {split }}$

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{O}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

- Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A / \mathbb{Q}
- If $A_{\overline{\mathbb{Q}}}$ is simple \rightsquigarrow completely open
- We will focus in the cases where $A_{\mathbb{Q}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text {split }}$
- Known that $\mathcal{A}_{2,1}^{\text {split }}$ is finite
- If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ by Fité-Kedlaya-Rotger-Sutherland
- If $A_{\overline{\mathbb{Q}}} \sim E^{2}$ by Shafarevich

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{O}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

- Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A / \mathbb{Q}
- If $A_{\overline{\mathbb{Q}}}$ is simple \rightsquigarrow completely open
- We will focus in the cases where $A_{\overline{\mathbb{Q}}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text {split }}$
- Known that $\mathcal{A}_{2,1}^{\text {split }}$ is finite
- If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ by Fité-Kedlaya-Rotger-Sutherland
- If $A_{\overline{\mathbb{Q}}} \sim E^{2}$ by Shafarevich
- Aim: to determine $\mathcal{A}_{2,1}^{\text {split }}$ exactly

A conjecture of Coleman

- A abelian variety over a number field k
- $\operatorname{End}_{\overline{\mathbb{Q}}}^{0}(A)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms
- For $g, d \geq 1$ define

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}_{\mathbb{Q}}^{0}(A): A / k \text { of dimension } g \text { and }[k: \mathbb{Q}]=d\right\}
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

- Interested in $\mathcal{A}_{2,1}$: endomorfism algebras of abelian surfaces A / \mathbb{Q}
- If $A_{\overline{\mathbb{Q}}}$ is simple \rightsquigarrow completely open
- We will focus in the cases where $A_{\overline{\mathbb{Q}}}$ is not simple $\rightsquigarrow \mathcal{A}_{2,1}^{\text {split }}$
- Known that $\mathcal{A}_{2,1}^{\text {split }}$ is finite
- If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ by Fité-Kedlaya-Rotger-Sutherland
- If $A_{\overline{\mathbb{Q}}} \sim E^{2}$ by Shafarevich
- Aim: to determine $\mathcal{A}_{2,1}^{\text {split }}$ exactly

Theorem (Josep González, 2011)
$\mathcal{A}_{2,1}^{\text {split }}$ contains 28 algebras coming from modular A / \mathbb{Q} (+ gives explicit list)

Main Theorem

Theorem (Fité-G., 2018)
The set $\mathcal{A}_{2.1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

Main Theorem

Theorem (Fité-G., 2018)
The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;
(2) $\mathbb{Q} \times M_{1}, M_{1} \times M_{2}$, with M_{i} quadratic imaginary fields of $h\left(M_{i}\right)=1$;

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;
(2) $\mathbb{Q} \times M_{1}, M_{1} \times M_{2}$, with M_{i} quadratic imaginary fields of $h\left(M_{i}\right)=1$;
(3) $\mathrm{M}_{2}(M)$ with M quadratic imaginary field, $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}$ and M distinct from

$$
\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})
$$

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;
(2) $\mathbb{Q} \times M_{1}, M_{1} \times M_{2}$, with M_{i} quadratic imaginary fields of $h\left(M_{i}\right)=1$;
(3) $\mathrm{M}_{2}(M)$ with M quadratic imaginary field, $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}$ and M distinct from

$$
\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})
$$

In particular, the set $\mathcal{A}_{2,1}^{\text {split }}$ has cardinality 92 .

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;
(2) $\mathbb{Q} \times M_{1}, M_{1} \times M_{2}$, with M_{i} quadratic imaginary fields of $h\left(M_{i}\right)=1$;
(3) $\mathrm{M}_{2}(M)$ with M quadratic imaginary field, $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}$ and M distinct from

$$
\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})
$$

In particular, the set $\mathcal{A}_{2,1}^{\text {split }}$ has cardinality 92 .
(1) If $A_{\mathbb{Q}} \sim E_{1} \times E_{2}$ or $A_{\overline{\mathbb{Q}}} \sim E_{1}^{2}$ with E_{i} non-CM

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;
(2) $\mathbb{Q} \times M_{1}, M_{1} \times M_{2}$, with M_{i} quadratic imaginary fields of $h\left(M_{i}\right)=1$;
(3) $\mathrm{M}_{2}(M)$ with M quadratic imaginary field, $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}$ and M distinct from

$$
\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})
$$

In particular, the set $\mathcal{A}_{2,1}^{\text {split }}$ has cardinality 92 .
(0) If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ or $A_{\bar{Q}} \sim E_{1}^{2}$ with E_{i} non-CM
(2) If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ and E_{i} can have CM

- Here [FKRS] showed that each E_{i} can be defined over \mathbb{Q}

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text {split }}$ of $\overline{\mathbb{Q}}$-endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathrm{M}_{2}(\mathbb{Q})$;
(2) $\mathbb{Q} \times M_{1}, M_{1} \times M_{2}$, with M_{i} quadratic imaginary fields of $h\left(M_{i}\right)=1$;
(3) $\mathrm{M}_{2}(M)$ with M quadratic imaginary field, $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}$ and M distinct from

$$
\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})
$$

In particular, the set $\mathcal{A}_{2,1}^{\text {split }}$ has cardinality 92 .
(0) If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ or $A_{\bar{Q}} \sim E_{1}^{2}$ with E_{i} non-CM
(2) If $A_{\bar{Q}} \sim E_{1} \times E_{2}$ and E_{i} can have CM

- Here [FKRS] showed that each E_{i} can be defined over \mathbb{Q}
(3) Here $A_{\overline{\mathbb{Q}}} \sim E^{2}$ with E with CM by M : here is where the work is

Squares of CM elliptic curves

Central question

If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\mathbb{Q}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\mathbb{Q}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $c_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\mathbb{Q}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $c_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion

Squares of CM elliptic curves

Central question
If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\mathbb{Q}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $C_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion
- Every 2 torsion class is trivialized when restricted to $\operatorname{Gal}(K / N)$ with $\operatorname{Gal}(N / M)$ of exponent $2\left(\operatorname{sogal}(N / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}\right)$

Squares of CM elliptic curves

Central question

If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $C_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion
- Every 2 torsion class is trivialized when restricted to $\operatorname{Gal}(K / N)$ with $\operatorname{Gal}(N / M)$ of exponent $2\left(\operatorname{so} \operatorname{Gal}(N / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}\right)$
- Weil Descent Theorem: E can be defined over N up to isogeny

Squares of CM elliptic curves

Central question

If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $C_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion
- Every 2 torsion class is trivialized when restricted to $\operatorname{Gal}(K / N)$ with $\operatorname{Gal}(N / M)$ of exponent $2\left(\operatorname{sogal}(N / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}\right)$
- Weil Descent Theorem: E can be defined over N up to isogeny
- CM theory $H \subset N$ so $\operatorname{Gal}(H / M)$ is a quotient of $\operatorname{Gal}(N / M)$

Squares of CM elliptic curves

Central question

If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $C_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion
- Every 2 torsion class is trivialized when restricted to $\operatorname{Gal}(K / N)$ with $\mathrm{Gal}(N / M)$ of exponent $2\left(\operatorname{so} \mathrm{Gal}(N / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}\right)$
- Weil Descent Theorem: E can be defined over N up to isogeny
- CM theory $H \subset N$ so $\operatorname{Gal}(H / M)$ is a quotient of $\operatorname{Gal}(N / M)$
- Real question: of these possible M's, which ones do really occur?

Squares of CM elliptic curves

Central question

If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $C_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion
- Every 2 torsion class is trivialized when restricted to $\operatorname{Gal}(K / N)$ with $\mathrm{Gal}(N / M)$ of exponent $2\left(\operatorname{so} \mathrm{Gal}(N / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}\right)$
- Weil Descent Theorem: E can be defined over N up to isogeny
- CM theory $H \subset N$ so $\operatorname{Gal}(H / M)$ is a quotient of $\operatorname{Gal}(N / M)$
- Real question: of these possible M's, which ones do really occur?
- Give a construction of A's for some M's

Squares of CM elliptic curves

Central question

If A / \mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^{2}$ and E has $C M$ by M, what are the possible M 's?
Theorem (Fité-G., 2015)
Necessarily $\mathrm{Cl}(M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2} \times \mathrm{C}_{2}$

- Idea of the proof: adapt Ribet's theory of \mathbb{Q}-curves
- Let K / \mathbb{Q} be the minimal such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\operatorname{End}\left(A_{K}\right)$
- Known that $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{r}, \mathrm{D}_{r}$ with $r \in\{2,3,4,6\}$
- E is an M-curve: $\forall \sigma \in \operatorname{Gal}(K / M) \rightsquigarrow \mu_{\sigma}:{ }^{\sigma} E \rightarrow E$ compatible with M
- $C_{E}(\sigma, \tau)=\mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ \mu_{\sigma \tau}^{-1} \in M^{\times}$and $c_{E} \in H^{2}\left(\operatorname{Gal}(K / M), M^{\times}\right)$
- One shows that c_{E} is 2-torsion
- Every 2 torsion class is trivialized when restricted to $\operatorname{Gal}(K / N)$ with $\mathrm{Gal}(N / M)$ of exponent $2\left(\operatorname{so} \mathrm{Gal}(N / M) \simeq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2}\right)$
- Weil Descent Theorem: E can be defined over N up to isogeny
- CM theory $H \subset N$ so $\operatorname{Gal}(H / M)$ is a quotient of $\operatorname{Gal}(N / M)$
- Real question: of these possible M's, which ones do really occur?
- Give a construction of A's for some M's and rule out the other M's

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:
$-\operatorname{Disc}(M)=-195,-312,-555,-715,-760\left(\right.$ never get $\left.\mathrm{M}_{2}(\mathbb{Q})\right)$

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:
- $\operatorname{Disc}(M)=-195,-312,-555,-715,-760\left(\right.$ never get $\left.\mathrm{M}_{2}(\mathbb{Q})\right)$
- $\operatorname{Disc}(M)=-340$ (there is no Gross \mathbb{Q}-curve)

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\operatorname{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:
- $\operatorname{Disc}(M)=-195,-312,-555,-715,-760\left(\right.$ never get $\left.\mathrm{M}_{2}(\mathbb{Q})\right)$
- $\operatorname{Disc}(M)=-340$ (there is no Gross \mathbb{Q}-curve)
- We will see that for these discriminants such an A does not exist

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:
- $\operatorname{Disc}(M)=-195,-312,-555,-715,-760\left(\right.$ never get $\left.\mathrm{M}_{2}(\mathbb{Q})\right)$
- $\operatorname{Disc}(M)=-340$ (there is no Gross \mathbb{Q}-curve)
- We will see that for these discriminants such an A does not exist
- Suppose A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:
- $\operatorname{Disc}(M)=-195,-312,-555,-715,-760\left(\right.$ never get $\left.\mathrm{M}_{2}(\mathbb{Q})\right)$
- $\operatorname{Disc}(M)=-340$ (there is no Gross \mathbb{Q}-curve)
- We will see that for these discriminants such an A does not exist
- Suppose A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- If $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{2} \times \mathrm{C}_{2}$ then A should be a factor of $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$

Constructing abelian surfaces: restriction of scalars

- If $\mathrm{Cl}(M)=1$ take E / \mathbb{Q} with CM by M and $A=E \times E$.
- If $\mathrm{Cl}(M)=\mathrm{C}_{2}$: if E has CM by M then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=2$
- Take such an $E / \mathbb{Q}\left(j_{E}\right)$ and $A=\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has dimension 2
- If $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ then $\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=4$ and $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$ has $\operatorname{dim} 4$
- Nakamura's work on CM \mathbb{Q}-curves:
- If $\operatorname{Disc}(M) \neq-4 \times($ primes $\equiv 1(\bmod 4)): \exists$ Gross \mathbb{Q}-curve E / H
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(H / \mathbb{Q})$ (many things are known about them)
- Nakamura classified all Gross's \mathbb{Q}-curves up to isogeny
- Gave a method for computing End($\left.\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right)$ in terms of C_{E}
- If $\operatorname{End}\left(\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E\right) \simeq \mathrm{M}_{2}(\mathbb{Q})$ we are done: $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E \sim A^{2}$
- This gives an A / \mathbb{Q} for all M with $\mathrm{Cl}(M)=\mathrm{C}_{2} \times \mathrm{C}_{2}$ except for:
- $\operatorname{Disc}(M)=-195,-312,-555,-715,-760\left(\right.$ never get $\left.\mathrm{M}_{2}(\mathbb{Q})\right)$
- $\operatorname{Disc}(M)=-340$ (there is no Gross \mathbb{Q}-curve)
- We will see that for these discriminants such an A does not exist
- Suppose A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- If $\operatorname{Gal}(K / M) \simeq \mathrm{C}_{2} \times \mathrm{C}_{2}$ then A should be a factor of $\operatorname{Res}_{\mathbb{Q}\left(j_{E}\right) / \mathbb{Q}} E$
- Can assume $\operatorname{Gal}(K / M)$ has an element β of order $r=4$ or $r=6$.

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

- But we have $\mu_{\sigma}:{ }^{\sigma} E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi)={ }^{\sigma} \phi \circ \mu_{\sigma}^{-1}: E_{L}^{*} \rightarrow A_{L}$

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

- But we have $\mu_{\sigma}:{ }^{\sigma} E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi)={ }^{\sigma} \phi \circ \mu_{\sigma}^{-1}: E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma} \rho_{\tau}=c_{E^{*}}(\sigma, \tau) \rho_{\sigma \tau}$ projective representation ($c_{E^{*}}$-representation)

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

- But we have $\mu_{\sigma}:{ }^{\sigma} E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi)={ }^{\sigma} \phi \circ \mu_{\sigma}^{-1}: E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma} \rho_{\tau}=C_{E^{*}}(\sigma, \tau) \rho_{\sigma \tau}$ projective representation ($C_{E^{*}}$-representation)
- Surprise: $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right) \otimes \operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)^{*} \simeq \operatorname{End}\left(A_{K}\right)$ as $\operatorname{Gal}(K / M)$-rep's

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

- But we have $\mu_{\sigma}:{ }^{\sigma} E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi)={ }^{\sigma} \phi \circ \mu_{\sigma}^{-1}: E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma} \rho_{\tau}=C_{E^{*}}(\sigma, \tau) \rho_{\sigma \tau}$ projective representation ($C_{E^{*}}$-representation)
- Surprise: $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right) \otimes \operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)^{*} \simeq \operatorname{End}\left(A_{K}\right)$ as $\operatorname{Gal}(K / M)$-rep's
- Using this we show that $C_{E^{*}}(\bar{\beta}, \bar{\beta}) \in \pm 1$

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

- But we have $\mu_{\sigma}:{ }^{\sigma} E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi)={ }^{\sigma} \phi \circ \mu_{\sigma}^{-1}: E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma} \rho_{\tau}=C_{E^{*}}(\sigma, \tau) \rho_{\sigma \tau}$ projective representation ($C_{E^{*}}$-representation)
- Surprise: $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right) \otimes \operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)^{*} \simeq \operatorname{End}\left(A_{K}\right)$ as $\operatorname{Gal}(K / M)$-rep's
- Using this we show that $C_{E^{*}}(\bar{\beta}, \bar{\beta}) \in \pm 1$
- The cocycles of Gross's \mathbb{Q}-curves satisfy that $c_{E *}(\bar{\beta}, \bar{\beta})= \pm d$ with d a proper divisor of DiscM. Contradiction!

Ruling out abelian surfaces: projective representations

- A / \mathbb{Q} with $A_{K} \sim E^{2}$ and E has CM by M
- ${ }^{\sigma} E \sim E$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, but $H \subsetneq K \rightsquigarrow$ not a Gross \mathbb{Q}-curve
- Need to relate A to a Gross \mathbb{Q}-curve (let us suppose there is one)
- Let E^{*} / H be a Gross \mathbb{Q}-curve with $E_{L}^{*} \sim E_{L}$
- $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)$ is not a $\operatorname{Gal}(L / M)$ representation:

$$
\phi: E_{L}^{*} \rightarrow A_{L} \rightsquigarrow{ }^{\sigma} \phi:{ }^{\sigma} E_{L}^{*} \rightarrow A_{L}
$$

- But we have $\mu_{\sigma}:{ }^{\sigma} E_{L}^{*} \rightarrow E_{L}^{*}$ so we can define $\rho_{\sigma}(\phi)={ }^{\sigma} \phi \circ \mu_{\sigma}^{-1}: E_{L}^{*} \rightarrow A_{L}$
- $\rho_{\sigma} \rho_{\tau}=C_{E^{*}}(\sigma, \tau) \rho_{\sigma \tau}$ projective representation ($C_{E^{*}}$-representation)
- Surprise: $\operatorname{Hom}\left(E_{L}^{*}, A_{L}\right) \otimes \operatorname{Hom}\left(E_{L}^{*}, A_{L}\right)^{*} \simeq \operatorname{End}\left(A_{K}\right)$ as $\operatorname{Gal}(K / M)$-rep's
- Using this we show that $C_{E^{*}}(\bar{\beta}, \bar{\beta}) \in \pm 1$
- The cocycles of Gross's \mathbb{Q}-curves satisfy that $c_{E *}(\bar{\beta}, \bar{\beta})= \pm d$ with d a proper divisor of DiscM. Contradiction!
- Extra argument using c-representations rules out $\mathbb{Q}(\sqrt{-340})$ too

Endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q}

Francesc Fité ${ }^{1}$ Xevi Guitart ${ }^{2}$

${ }^{1}$ IAS, Princeton,
${ }^{2}$ Universitat de Barcelona
JTN Vilanova 2019

