Modular forms over fields of mixed signature and algebraic points in elliptic curves

Xevi Guitart ${ }^{1}$ Marc Masdeu ${ }^{2}$ Haluk Sengun ${ }^{3}$
${ }^{1}$ Universitat de Barcelona
${ }^{2}$ University of Warwick
${ }^{3}$ University of Sheffield

London, September 2016

Outline

(9) Heegner points

2 Darmon points (archimedean)
(3) A construction over fields of mixed signature
(4) Numerical evidence for the conjecture

Outline

(9) Heegner points

2. Darmon points (archimedean)

(3) A construction over fields of mixed signature

4 Numerical evidence for the conjecture

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field
- Heegner points on E are a canonical collection of algebraic points defined over abelian extensions of K

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field
- Heegner points on E are a canonical collection of algebraic points defined over abelian extensions of K
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field
- Heegner points on E are a canonical collection of algebraic points defined over abelian extensions of K
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).
- Can be computed explicitly \rightsquigarrow efficient algorithms

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field
- Heegner points on E are a canonical collection of algebraic points defined over abelian extensions of K
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).
- Can be computed explicitly \rightsquigarrow efficient algorithms
- Key fact for the construction of Heegner points: E is modular

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field
- Heegner points on E are a canonical collection of algebraic points defined over abelian extensions of K
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).
- Can be computed explicitly \rightsquigarrow efficient algorithms
- Key fact for the construction of Heegner points: E is modular
- (Geometric) There is a morphism $X_{0}(N) \rightarrow E$ over \mathbb{Q}.

Heegner points

- E an elliptic curve over \mathbb{Q} and K an imaginary quadratic field
- Heegner points on E are a canonical collection of algebraic points defined over abelian extensions of K
- They are a key tool in the study of Mordell-Weil groups of E (e.g., partial results on Birch-Swinnerton-Dyer Conjecture).
- Can be computed explicitly \rightsquigarrow efficient algorithms
- Key fact for the construction of Heegner points: E is modular
- (Geometric) There is a morphism $X_{0}(N) \rightarrow E$ over \mathbb{Q}.
- (Automorphic) There is a modular form $f_{E}(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}$ such that $a_{p}=p+1-\# E(\mathbb{Z} / p \mathbb{Z})$ for all p.

Heegner points

- Geometric construction

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\text {ab }}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\text {ab }}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{f_{E}}$

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{f_{E}} \stackrel{\text { Manin }}{\sim} E(\mathbb{C})$

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{f_{E}} \stackrel{\text { Manin }}{\sim} E(\mathbb{C})$
- Heegner points can be constructed in more general settings:
- E / F with F totally real.
- K / F a quadratic CM extension.

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\mathrm{ab}}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{f_{E}} \stackrel{\text { Manin }}{\sim} E(\mathbb{C})$
- Heegner points can be constructed in more general settings:
- E / F with F totally real.
- K / F a quadratic CM extension.
- What if F is totally real, but K / F is not CM?

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\text {ab }}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{f_{E}} \stackrel{\text { Manin }}{\sim} E(\mathbb{C})$
- Heegner points can be constructed in more general settings:
- E / F with F totally real.
- K / F a quadratic CM extension.
- What if F is totally real, but K / F is not CM?
- There are some conjectural constructions, proposed by H. Darmon.

Heegner points

- Geometric construction
- Points on $X_{0}(N)$ parametrize pairs elliptic curves
- CM points on $X_{0}(N)$ (correspond to curves with CM by K)
- Theory of Complex Multiplication: CM points $\in X_{0}(N)\left(K^{\text {ab }}\right)$
- Heegner points are the image under $X_{0}(N) \longrightarrow E$
- Explicit (analytic) formula
- $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*} \longrightarrow E(\mathbb{C}) \simeq \mathbb{C} / \Lambda_{E}$
- CM Points: $\tau \in \mathcal{H} \cap K$
- Let $P_{\tau}=2 \pi i \int_{\tau}^{i \infty} f_{E}(z) d z \in \mathbb{C} / \Lambda_{f_{E}} \stackrel{\text { Manin }}{\sim} E(\mathbb{C})$
- Heegner points can be constructed in more general settings:
- E / F with F totally real.
- K / F a quadratic CM extension.
- What if F is totally real, but K / F is not CM ?
- There are some conjectural constructions, proposed by H. Darmon.
- Idea: to find an analog of the analytic formula

Outline

(9) Heegner points
(2) Darmon points (archimedean)
(3) A construction over fields of mixed signature
4. Numerical evidence for the conjecture

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H} \times \mathcal{H}$

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ an algebraic surface (Hilbert modular surface)

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ an algebraic surface (Hilbert modular surface)
- Hilbert mod form: differencial $f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}$ on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ an algebraic surface (Hilbert modular surface)
- Hilbert mod form: differencial $f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}$ on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$
- In this case there is no algebraic map

$$
\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H} \longrightarrow E
$$

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ an algebraic surface (Hilbert modular surface)
- Hilbert mod form: differencial $f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}$ on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$
- In this case there is no algebraic map

$$
\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H} \longrightarrow E
$$

- Darmon points are constructed as suitable integrals of

$$
\omega_{E}=f_{E}\left(z_{0}, z_{1}\right) d z_{0} d z_{1}-f_{E}\left(\epsilon_{0} z_{0}, \epsilon_{1} \bar{z}_{1}\right) d z_{0} d \bar{z}_{1}
$$

Elliptic curves over totally real fields

- E an elliptic curve over F of conductor \mathfrak{N}.
- F a real quadratic field $\left(h_{F}^{+}=1\right)$, so that $v_{0}, v_{1}: F \hookrightarrow \mathbb{R}$
- Modularity: There is a Hilbert modular form f_{E} associated to E.
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$ acts on $\mathcal{H} \times \mathcal{H}$
- $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$ an algebraic surface (Hilbert modular surface)
- Hilbert mod form: differencial $f\left(z_{0}, z_{1}\right) d z_{0} d z_{1}$ on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}$
- In this case there is no algebraic map

$$
\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H} \longrightarrow E
$$

- Darmon points are constructed as suitable integrals of

$$
\omega_{E}=f_{E}\left(z_{0}, z_{1}\right) d z_{0} d z_{1}-f_{E}\left(\epsilon_{0} z_{0}, \epsilon_{1} \bar{z}_{1}\right) d z_{0} d \bar{z}_{1}
$$

- K / F a quadratic ATR extension: $K \otimes_{v_{0}} \mathbb{R}=\mathbb{C}, K \otimes v_{1} \mathbb{R}=\mathbb{R} \oplus \mathbb{R}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

$$
\left\{\tau_{0}\right\} \times \rho
$$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

$$
\left\{\tau_{0}\right\} \times \rho
$$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

$$
\left\{\tau_{0}\right\} \times \rho
$$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

$$
\left\{\tau_{0}\right\} \times \rho
$$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\Psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$
- $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$
- $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{f_{E}}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$
- $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{f_{E}}$

$$
\Lambda_{f_{E}}=\left\{\iint_{Z} \omega_{E}: Z \in H_{2}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)\right\}
$$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$
- $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{f_{E}}$

$$
\Lambda_{f_{E}}=\left\{\iint_{Z} \omega_{E}: Z \in H_{2}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)\right\}
$$

- Oda Conjecture: $\mathbb{C} / \Lambda_{f_{E}}$ isogenous to $E_{0}=E \otimes_{v_{0}} \mathbb{C}$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\Psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$
- $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{f_{E}}$

$$
\Lambda_{f_{E}}=\left\{\iint_{Z} \omega_{E}: Z \in H_{2}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)\right\}
$$

- Oda Conjecture: $\mathbb{C} / \Lambda_{f_{E}}$ isogenous to $E_{0}=E \otimes_{v_{0}} \mathbb{C} \rightsquigarrow P_{\Psi} \in E_{0}(\mathbb{C})$

Darmon's ATR points

- $\Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$ (Assume: all primes dividing \mathfrak{N} split in K)
- $\Psi\left(K^{\times}\right)$has a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{R}=\partial \mathcal{H}$

- $\Gamma_{\psi}=\psi\left(\mathcal{O}_{K, 1}^{\times}\right)$is of rank 1 and preserves $\left\{\tau_{0}\right\} \times \rho$
- $\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1} \rightsquigarrow$ cycle $C_{\psi} \in H_{1}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)$
- There is a 2-dim chain Δ_{ψ} with $\partial \Delta_{\psi}=n \cdot C_{\psi}$ for some $n \in \mathbb{Z}$
- $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{f_{E}}$

$$
\Lambda_{f_{E}}=\left\{\iint_{Z} \omega_{E}: Z \in H_{2}\left(\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}, \mathbb{Z}\right)\right\}
$$

- Oda Conjecture: $\mathbb{C} / \Lambda_{f_{E}}$ isogenous to $E_{0}=E \otimes_{v_{0}} \mathbb{C} \rightsquigarrow P_{\Psi} \in E_{0}(\mathbb{C})$

Conjecture (Darmon)

$P_{\psi} \in E(H)$, where H is the Hilbert class field of K.

Conjecture (Darmon) $P_{\psi} \in E(H)$, where H is the Hilbert class field of K.

Conjecture (Darmon)

$P_{\psi} \in E(H)$, where H is the Hilbert class field of K.

- There is some numerical evidence (Darmon-Logan)

Conjecture (Darmon)

$P_{\psi} \in E(H)$, where H is the Hilbert class field of K.

- There is some numerical evidence (Darmon-Logan)
- This can be generalized to arbitrary totally real F (Gartner)

Conjecture (Darmon)

$P_{\psi} \in E(H)$, where H is the Hilbert class field of K.

- There is some numerical evidence (Darmon-Logan)
- This can be generalized to arbitrary totally real F (Gartner)
- Our aim: propose a similar construction if F is not totally real

Outline

(9) Heegner points
(2) Darmon points (archimedean)
(3) A construction over fields of mixed signature

4. Numerical evidence for the conjecture

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane $\mathcal{H}=\mathbb{R} \times \mathbb{R}_{>0}$

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane $\mathcal{H}=\mathbb{R} \times \mathbb{R}_{>0}$
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane $\mathcal{H}=\mathbb{R} \times \mathbb{R}_{>0}$
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$
- Consider $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane $\mathcal{H}=\mathbb{R} \times \mathbb{R}_{>0}$
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$
- Consider $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_{E} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ associated to E (the eigenvalues of the Hecke operators match the a_{p} 's of E).

Modular forms and modularity

- F / \mathbb{Q} cubic field of signature $(1,1): v_{0}: F \hookrightarrow \mathbb{R}, v_{1}, \bar{v}_{1}: F \hookrightarrow \mathbb{C}$.
- Let E be an elliptic curve over F, of conductor \mathfrak{N}
- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{F}\right): \mathfrak{N} \mid c\right\} \subset \operatorname{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{C})$.
- $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane $\mathcal{H}=\mathbb{R} \times \mathbb{R}_{>0}$
- $\mathrm{SL}_{2}(\mathbb{C})$ acts on the upper half space $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}_{>0}$
- Consider $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$. It is not an algebraic variety (has real dimension 5), but it is a real differential manifold anyway.

Generalized Modularity Conjecture

There is a harmonic differential 2-form ω_{E} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ associated to E (the eigenvalues of the Hecke operators match the a_{p} 's of E).

- As before, ω_{E} is determined by its Fourier-Bessel expansion.
- ω_{E} has a "Fourier-Bessel expansion":
$\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{F} \\ \alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{l}\frac{-d x}{y} \wedge d \bar{z} \\ \frac{d y}{y} \wedge d \bar{z} \\ \frac{d \bar{x}}{y} \wedge d \bar{z}\end{array}\right)$
- ω_{E} has a "Fourier-Bessel expansion":

$$
\begin{gathered}
\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{F} \\
\alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{c}
-\frac{-\alpha x}{x} \wedge d \bar{z} \\
\frac{d y}{d} \wedge d \bar{z} \\
\frac{\alpha_{\alpha}}{y} \wedge d \bar{z}
\end{array}\right) \\
\mathbb{K}(t)=\left(-\frac{i}{2} t|t| K_{1}(4 \pi|t|),|t|^{2} K_{0}(4 \pi|t|), \frac{i}{2} \bar{t}|t| K_{1}(4 \pi|t|)\right),
\end{gathered}
$$

(K_{0} and K_{1} are the hyperbolic Bessel functions of the second kind)

- ω_{E} has a "Fourier-Bessel expansion":

$$
\begin{gathered}
\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{F} \\
\alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{c}
-\frac{-\alpha x}{x} \wedge d \bar{z} \\
\frac{d y}{y} \wedge d \bar{z} \\
\frac{\alpha_{\alpha}}{y} \wedge d \bar{z}
\end{array}\right) \\
\mathbb{K}(t)=\left(-\frac{i}{2} t|t| K_{1}(4 \pi|t|),|t|^{2} K_{0}(4 \pi|t|), \frac{i}{2} \bar{t}|t| K_{1}(4 \pi|t|)\right),
\end{gathered}
$$

(K_{0} and K_{1} are the hyperbolic Bessel functions of the second kind)

- ω_{E} is completely determined by its Fourier coefficients $a_{(\alpha)}$
- ω_{E} has a "Fourier-Bessel expansion":

$$
\begin{gathered}
\omega_{E}(z, x, y)=\sum_{\substack{\alpha \in \mathcal{O}_{\mathcal{F}} \\
\alpha_{0}>0}} \frac{a_{(\alpha)}}{N_{F / \mathbb{Q}}(\alpha)} \frac{\alpha_{0}}{\delta_{0}} \exp \left(-2 \pi i\left(\frac{\alpha_{0} \bar{z}}{\delta_{0}}+\frac{\alpha_{1} x}{\delta_{1}}+\frac{\alpha_{2} \bar{x}}{\delta_{2}}\right)\right) \mathbb{K}\left(\frac{\alpha_{1} y}{\delta_{1}}\right) \cdot\left(\begin{array}{c}
\frac{-d x}{\frac{d x}{d y}} \wedge d \bar{z} \\
\frac{d y}{y} \wedge d \bar{z} \\
\frac{d \bar{x}}{y} \wedge d \bar{z}
\end{array}\right) \\
\mathbb{K}(t)=\left(-\frac{i}{2} t|t| K_{1}(4 \pi|t|),|t|^{2} K_{0}(4 \pi|t|), \frac{i}{2} \bar{t}|t| K_{1}(4 \pi|t|)\right),
\end{gathered}
$$

(K_{0} and K_{1} are the hyperbolic Bessel functions of the second kind)

- ω_{E} is completely determined by its Fourier coefficients $a_{(\alpha)}$
- We can compute the $a_{(\alpha)}$ by counting points on $E\left(\mathcal{O}_{F} / \mathfrak{p}\right)$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{ψ} with $\partial \Delta_{\Psi}=n \cdot C_{\psi}$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{ψ} with $\partial \Delta_{\Psi}=n \cdot C_{\psi}$
- Define: $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{\omega_{E}}$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{ψ} with $\partial \Delta_{\Psi}=n \cdot C_{\Psi}$
- Define: $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{\omega_{E}}{ }^{\text {conj }} E_{0}(\mathbb{C})$

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{ψ} with $\partial \Delta_{\Psi}=n \cdot C_{\psi}$
- Define: $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{\omega_{E}}{ }^{\text {conj }} E_{0}(\mathbb{C})$

Conjecture

$P_{\psi} \in E_{0}(H)$, with H the Hilbert class field of K.

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{ψ} with $\partial \Delta_{\Psi}=n \cdot C_{\psi}$
- Define: $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{\omega_{E}}{ }^{\text {conj }} E_{0}(\mathbb{C})$

Conjecture

$P_{\psi} \in E_{0}(H)$, with H the Hilbert class field of K.

- C_{Ψ} is not algebraic, but also this time $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ is neither!

Construction of the points

- K totally imaginary quadratic extension of $F, \Psi: \mathcal{O}_{K} \hookrightarrow M_{0}(\mathfrak{N})$
- $\Psi\left(K^{\times}\right)$a fixed point $\tau_{0} \in \mathcal{H}$, two fixed points $\tau_{1}, \tau_{1}^{\prime} \in \mathbb{C}=\partial \mathcal{H}_{3}$

$$
\Gamma_{\psi} \backslash\left\{\tau_{0}\right\} \times \rho \simeq \mathbb{Z} \backslash \mathbb{R}=S^{1}
$$

- This gives a 1-cycle C_{ψ} on $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$
- As before, there is a 2-dimensional chain Δ_{ψ} with $\partial \Delta_{\Psi}=n \cdot C_{\psi}$
- Define: $P_{\psi}=\iint_{\Delta_{\psi}} \omega_{E} \in \mathbb{C} / \Lambda_{\omega_{E}}{ }^{\text {conj }} E_{0}(\mathbb{C})$

Conjecture

$P_{\psi} \in E_{0}(H)$, with H the Hilbert class field of K.

- C_{ψ} is not algebraic, but also this time $\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H} \times \mathcal{H}_{3}$ is neither!
- We found some numerical evidence for the conjecture.

Outline

(1) Heegner points
(2) Darmon points (archimedean)
(3) A construction over fields of mixed signature
(4) Numerical evidence for the conjecture

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3=0$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3=0$
- Take the embedding with $\Psi(w)=\left(\begin{array}{cc}-2 r^{2}+3 r & r-3 \\ r^{2}+4 & 2 r^{2}-4 r-1\end{array}\right)$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3=0$
- Take the embedding with $\Psi(w)=\left(\begin{array}{cc}-2 r^{2}+3 r & r-3 \\ r^{2}+4 & 2 r^{2}-4 r-1\end{array}\right)$
- Take $u \in \mathcal{O}_{K}^{\times}$with $\operatorname{Nm}_{K / F}(u)=1$ and let

$$
\gamma_{\Psi}=\Psi(u)=\left(\begin{array}{rr}
-4 r-3 & -r^{2}+2 r+3 \\
-2 r^{2}-4 r-3 & -r^{2}+4 r+2
\end{array}\right)
$$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3=0$
- Take the embedding with $\Psi(w)=\left(\begin{array}{cc}-2 r^{2}+3 r & r-3 \\ r^{2}+4 & 2 r^{2}-4 r-1\end{array}\right)$
- Take $u \in \mathcal{O}_{K}^{\times}$with $\operatorname{Nm}_{K / F}(u)=1$ and let
$\gamma_{\Psi}=\Psi(u)=\left(\begin{array}{rr}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$
- Finding Δ_{ψ} with $\partial \Delta_{\psi}=C_{\psi}$ can be reduced to decompose γ_{Ψ} into elementary matrices (effective congruence subgroup problem).

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3=0$
- Take the embedding with $\Psi(w)=\left(\begin{array}{cc}-2 r^{2}+3 r & r-3 \\ r^{2}+4 & 2 r^{2}-4 r-1\end{array}\right)$
- Take $u \in \mathcal{O}_{K}^{\times}$with $\operatorname{Nm}_{K / F}(u)=1$ and let
$\gamma_{\Psi}=\Psi(u)=\left(\begin{array}{rr}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$
- Finding Δ_{ψ} with $\partial \Delta_{\Psi}=C_{\psi}$ can be reduced to decompose γ_{Ψ} into elementary matrices (effective congruence subgroup problem).
- $P_{\psi}=\sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} O} \omega_{E} \simeq 0.141967077-0.055099463 \sqrt{-1}$

A concrete calculation

- $F=\mathbb{Q}(r)$ with $r^{3}-r^{2}+1=0$

$$
E: y^{2}+(r-1) x y+\left(r^{2}-r\right) y=x^{3}+\left(-r^{2}-1\right) x^{2}+r^{2} x
$$

- $K=F(w)$, where w satisfies $w^{2}+(r+1) w+2 r^{2}-3 r+3=0$
- Take the embedding with $\Psi(w)=\left(\begin{array}{cc}-2 r^{2}+3 r & r-3 \\ r^{2}+4 & 2 r^{2}-4 r-1\end{array}\right)$
- Take $u \in \mathcal{O}_{K}^{\times}$with $\operatorname{Nm}_{K / F}(u)=1$ and let
$\gamma_{\psi}=\psi(u)=\left(\begin{array}{rr}-4 r-3 & -r^{2}+2 r+3 \\ -2 r^{2}-4 r-3 & -r^{2}+4 r+2\end{array}\right)$
- Finding Δ_{Ψ} with $\partial \Delta_{\Psi}=C_{\psi}$ can be reduced to decompose γ_{Ψ} into elementary matrices (effective congruence subgroup problem).
- $P_{\psi}=\sum_{i} \int_{\tau_{i}^{1}}^{\tau_{i}^{2}} \int_{O}^{\gamma_{i} O} \omega_{E} \simeq 0.141967077-0.055099463 \sqrt{-1}$
- The image of $P_{\psi} \in \mathbb{C} / \Lambda_{E} \simeq E(\mathbb{C})$ coincides (up to 32 digits of accuracy) with 10P, where

$$
P=\left(r-1: w-r^{2}+2 r: 1\right) \in E(K)
$$

Modular forms over fields of mixed signature and algebraic points in elliptic curves

Xevi Guitart ${ }^{1}$ Marc Masdeu ${ }^{2}$ Haluk Sengun ${ }^{3}$
${ }^{1}$ Universitat de Barcelona
${ }^{2}$ University of Warwick
${ }^{3}$ University of Sheffield

London, September 2016

