A quaternionic construction of p-adic singular moduli

Xevi Guitart (UB) Marc Masdeu (UAB) Xavier Xarles (UAB)

RSME-SEMA-SCM-PTM Mathematical Meeting

Outline

(1) The classical theory: singular moduli
(2) A recent theory: p-adic singular moduli
(3) Our proposal: a quaternionic version of the p-adic theory

Outline

(9) The classical theory: singular moduli
(2) A recent theory: p-adic singular moduli

3 Our proposal: a quaternionic version of the p-adic theory

Explicit class field theory

- For a number field K, class field theory describes $\operatorname{Gal}\left(K^{\text {ab }} / K\right)$.
- Explicit CFT: can we write down a collection of generators of $K^{\text {ab }}$? - This is known in some cases: $K=\mathbb{Q}$, imaginary quadratic.

Theorem (Kronecker-Webber)
 - Every abelian extension of \mathbb{Q} is contained in a cyclotomic field.
 - So $\mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\left\{e^{2 \pi i m}\right\}_{m \in \mathbb{D}}\right)$.

- If K is imaginary quadratic the role played by $e^{2 \pi i z}$ is played by $j(z)$

Explicit class field theory

- For a number field K, class field theory describes $\operatorname{Gal}\left(K^{a b} / K\right)$.
- Explicit CFT: can we write down a collection of generators of K^{ab} ?
- This is known in some cases: $K=\mathbb{Q}$, imaginary quadratic.

Theorem (Kronecker-Webber)

- Every abelian extension of \mathbb{Q} is contained in a cyclotomic field.
- So $\mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\left\{e^{2 \pi i m}\right\}_{m \in \mathbb{Q}}\right)$.
- If K is imaginary quadratic the role played by $e^{2 \pi i z}$ is played by $j(z)$

Explicit class field theory

- For a number field K, class field theory describes $\operatorname{Gal}\left(K^{\text {ab }} / K\right)$.
- Explicit CFT: can we write down a collection of generators of K^{ab} ?
- This is known in some cases: $K=\mathbb{Q}$, imaginary quadratic.

Theorem (Kronecker-Webber)

- Every abelian extension of \mathbb{Q} is contained in a cyclotomic field.
- So $\mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\left\{e^{2 \pi i m}\right\}_{m \in \mathbb{Q}}\right)$.
- If K is imaginary quadratic the role played by $e^{2 \pi i z}$ is played by $j(z)$

Explicit class field theory

- For a number field K, class field theory describes $\operatorname{Gal}\left(K^{\text {ab }} / K\right)$.
- Explicit CFT: can we write down a collection of generators of $K^{\text {ab }}$?
- This is known in some cases: $K=\mathbb{Q}$, imaginary quadratic.

Theorem (Kronecker-Webber)

- Every abelian extension of \mathbb{Q} is contained in a cyclotomic field.
- So $\mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\left\{e^{2 \pi i m}\right\}_{m \in \mathbb{Q}}\right)$.
- If K is imaginary quadratic the role played by $e^{2 \pi i z}$ is played by $j(z)$

The j-function and explicit CFT of IQF
 - It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.

- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SI}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli
 - If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.

- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\mathrm{ab}}$.
- To get K^{ab} need to adjoint coordinates of torsion points of E_{T}.

Question (Hilbert 12th problem)

Is there something similar for more general K ?

- If K is a CM fie'd \rightsquigarrow generalization using abelian varieties
- If K is not $C M$, no analog of $j(z)$ so far
- For K real quadratic, a conjectural theory due to Darmon-Vonk.

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} $j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)$

- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\text {ab }}$.
- To get $K^{\text {ab }}$ need to adioint coordinates of torsion points of E_{T}.
\square
Is there something similar for more general K ?
- If K is a CM field \rightsquigarrow generalization using abelian varieties
- If K is not $C M$, no analog of $j(z)$ so far
- For K real quadratic, a conjectural theory due to Darmon-Vonk.

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

\square

- To get $K^{\text {ab }}$ need to adjoirt coordinates of torsion points of E_{τ}.
\square
Is there something similar for more general K ?
- If K is a CM field \rightsquigarrow generalization using abelian varieties
- If K is not $C M$, no analog of $j(z)$ so far
- For K real quadratic, a conjectural theory due to Darmon-Vonk.

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.

Is there something similar for more general K ?

- If K is a CM field \rightsquigarrow generalization using abelian varieties
- If K is not CM, no analog of $j(z)$ so far
- For K real quadratic, a conjectural theory due to Darmon-Vonk.

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.

$$
\text { Is there something similar for more general } K ?
$$

\square

- If K is not CM, no analog of $j(z)$ so far

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.
- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\mathrm{ab}}$.

Is there something similar for more general K ?

- If K is a CM fie'd \rightsquigarrow generalization using abelian varieties
- If K is not CM, no analog of $j(z)$ so far

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.
- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\mathrm{ab}}$.
- To get K^{ab} need to adjoint coordinates of torsion points of E_{τ}.

Is there something similar for more general K ?

- If K is a CM field \rightsquigarrow generalization using abelian varieties
- If K is not CM, no analog of $j(z)$ so far

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.
- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\mathrm{ab}}$.
- To get K^{ab} need to adjoint coordinates of torsion points of E_{τ}.

Question (Hilbert 12th problem)

Is there something similar for more general K ?
> - If K is a CM field \rightsquigarrow generalization using abelian varieties
> - If K is not CM, no analog of $j(z)$ so far
> - For K real quadratic, a conjectural theory due to Darmon-Vonk.

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.
- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\text {ab }}$.
- To get $K^{\text {ab }}$ need to adjoint coordinates of torsion points of E_{τ}.

Question (Hilbert 12th problem)

Is there something similar for more general K ?

- If K is a CM field \rightsquigarrow generalization using abelian varieties
\square

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\operatorname{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.
- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\mathrm{ab}}$.
- To get K^{ab} need to adjoint coordinates of torsion points of E_{τ}.

Question (Hilbert 12th problem)

Is there something similar for more general K ?

- If K is a CM field \rightsquigarrow generalization using abelian varieties
- If K is not CM, no analog of $j(z)$ so far

The j-function and explicit CFT of IQF

- It is a function $j: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} \longrightarrow \mathbb{C}$.
- $\tau \in \mathcal{H} \rightsquigarrow E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ elliptic curve and $j(\tau):=j\left(E_{\tau}\right)$.
- It is a modular function: it invariant under the action of $\operatorname{SL}_{2}(\mathbb{Z})$ on \mathcal{H} :

$$
j \in H^{0}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathcal{M}(\mathcal{H})\right)
$$

Theory of complex multiplication: singular moduli

- If $K=$ imaginary quadratic and $\tau \in K \backslash \mathbb{Q} \rightsquigarrow j(\tau)$ is algebraic.
- $K(j(\tau))$ is the ring class field of $\operatorname{End}\left(E_{\tau}\right) \subset K$.
- $K\left(\{j(\tau)\}_{\tau \in K \backslash \mathbb{Q}}\right) \subset K^{\text {ab }}$.
- To get $K^{\text {ab }}$ need to adjoint coordinates of torsion points of E_{τ}.

Question (Hilbert 12th problem)

Is there something similar for more general K ?

- If K is a CM field \rightsquigarrow generalization using abelian varieties
- If K is not CM, no analog of $j(z)$ so far
- For K real quadratic, a conjectural theory due to Darmon-Vonk.

Outline

(1) The classical theory: singular moduli

(2) A recent theory: p-adic singular moduli
(3) Our proposal: a quaternionic version of the p-adic theory

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- Problem: $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)=\mathbb{C}_{p}^{\times} \rightsquigarrow$ no interesting functions

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
r replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on
$=\left\{\right.$ non-zero rigid meromorphic functions on $\left.\mathcal{H}_{p}\right\}$
-The analog of j now would be a function on $H^{0}\left(\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$.
- Problem: $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)=\mathbb{C}_{p}^{\times} \rightsquigarrow$ no interesting functions

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on
\square

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on

$$
\mathcal{M}^{\times}=\left\{\text {non-zero rigid meromorphic functions on } \mathcal{H}_{p}\right\} .
$$

- Problem: $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)=\mathbb{C}_{p}^{\times} \rightsquigarrow$ no interesting functions

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on

$$
\mathcal{M}^{\times}=\left\{\text {non-zero rigid meromorphic functions on } \mathcal{H}_{p}\right\} .
$$

- The analog of j now would be a function on $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$.
- Problem: $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)=\mathbb{C}_{p}^{\times} \rightsquigarrow$ no interesting functions

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on

$$
\mathcal{M}^{\times}=\left\{\text {non-zero rigid meromorphic functions on } \mathcal{H}_{p}\right\} .
$$

- The analog of j now would be a function on $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$.
- Problem: $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)=\mathbb{C}_{p}^{\times} \rightsquigarrow$ no interesting functions

Darmon-Vonk's p-adic singular moduli

- K a real quadratic field and $\tau \in K \backslash \mathbb{Q}$ (call τ an RM point)
- Problem: $\tau \notin \mathcal{H}$ so $j(\tau)$ doesn't make sense
- replace $\mathcal{H}=(\mathbb{C} \backslash \mathbb{R})^{+}$by $\mathcal{H}_{p}=\mathbb{C}_{p} \backslash \mathbb{Q}_{p}$ the p-adic upper half plane
- If p does not split in K, then $\tau \in \mathcal{H}_{p}$.
- Consider the action of $\Gamma:=\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ on \mathcal{H}_{p} and on

$$
\mathcal{M}^{\times}=\left\{\text {non-zero rigid meromorphic functions on } \mathcal{H}_{p}\right\} .
$$

- The analog of j now would be a function on $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$.
- Problem: $H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)=\mathbb{C}_{p}^{\times} \rightsquigarrow$ no interesting functions
- Solution: consider $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$instead.

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)

Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{\rho}\right]\right) \longrightarrow \mathcal{M}^{\times}(+$cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
\square

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)

Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)

Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)

Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- $\operatorname{Stab}_{\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)}(\tau)=\left\langle \pm \gamma_{\tau}\right\rangle \rightsquigarrow J\left(\gamma_{\tau}\right) \in \mathcal{M}^{\times}$
- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)

Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- $\operatorname{Stab}_{\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{\rho}\right]\right)}(\tau)=\left\langle \pm \gamma_{\tau}\right\rangle \rightsquigarrow J\left(\gamma_{\tau}\right) \in \mathcal{M}^{\times}$
- $J[\tau]:=\mathcal{J}\left(\gamma_{\tau}\right)(\tau) \in \mathbb{C}_{p}$
- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)

Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- $\operatorname{Stab}_{\mathrm{LL}_{2}\left(\mathbb{[}\left[{ }_{\rho}^{1}\right)\right.}(\tau)=\left\langle \pm \gamma_{\tau}\right\rangle \rightsquigarrow \boldsymbol{J}\left(\gamma_{\tau}\right) \in \mathcal{M}^{\times}$
- $J[\tau]:=J\left(\gamma_{\tau}\right)(\tau) \in \mathbb{C}_{p}$

Conjecture (Darmon-Vonk)

- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)
Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- $\operatorname{Stab}_{\mathrm{SL}_{2}\left(Z \chi_{[}^{1}{ }^{1}\right)}(\tau)=\left\langle \pm \gamma_{\tau}\right\rangle \rightsquigarrow J\left(\gamma_{\tau}\right) \in \mathcal{M}^{\times}$
- $J[\tau]:=J\left(\gamma_{\tau}\right)(\tau) \in \mathbb{C}_{p}$

Conjecture (Darmon-Vonk)

- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Can we compute RMC?

- Darmon-Vonk: given any RM point $\theta \rightsquigarrow$ explicit RMC J_{θ}

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)
Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- $\operatorname{Stab}_{\mathrm{SL}_{2}\left(Z\left[\left[_{\rho}^{1}\right)\right.\right.}(\tau)=\left\langle \pm \gamma_{\tau}\right\rangle \rightsquigarrow \boldsymbol{J}\left(\gamma_{\tau}\right) \in \mathcal{M}^{\times}$
- $J[\tau]:=J\left(\gamma_{\tau}\right)(\tau) \in \mathbb{C}_{p}$

Conjecture (Darmon-Vonk)

- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Can we compute RMC?

- Darmon-Vonk: given any RM point $\theta \rightsquigarrow$ explicit RMC J_{θ}

Rigid meromorphic cocycles

Definition (Rigid meromorphic cocycles)
Classes in $H^{1}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times}\right)$whose restriction to Γ_{∞} is constant.

- They are maps $J: \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \longrightarrow \mathcal{M}^{\times}$(+ cocycle condition)
- Can be evaluated at RM points $\tau \in K \backslash \mathbb{Q}$:
- $\operatorname{Stab}_{\mathrm{SL}_{2}\left(Z\left[\left[_{\rho}^{1}\right)\right.\right.}(\tau)=\left\langle \pm \gamma_{\tau}\right\rangle \rightsquigarrow \boldsymbol{J}\left(\gamma_{\tau}\right) \in \mathcal{M}^{\times}$
- $J[\tau]:=J\left(\gamma_{\tau}\right)(\tau) \in \mathbb{C}_{p}$

Conjecture (Darmon-Vonk)

- If τ is RM and J a rigid meromorphic cocycle, $J[\tau]$ is algebraic.
- Field can be made more precise (compositum of ring class fields)

Can we compute RMC?

- Darmon-Vonk: given any RM point $\theta \rightsquigarrow$ explicit RMC J_{θ}
- So for an RM point τ we expect $J_{\theta}[\tau] \in K^{a b}$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

- $H^{1}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right) \rightarrow H^{2}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \simeq H^{1}\left(\Gamma_{0}(p), \mathbb{C}_{p}\right)$
- If $X_{0}(p)$ has genus $0, J_{\theta}$ lifts to $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times}\right)$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times}$
- Problem: $\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SI}_{2}\left(\mathbb{T}\left[\frac{1}{p}\right]\right)$, define a function $J_{0}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

- $H^{1}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right) \rightarrow H^{2}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \simeq H^{1}\left(\Gamma_{0}(p), \mathbb{C}_{p}\right)$
- If $X_{0}(p)$ has genus $0, J_{\theta}$ lifts to $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times}\right)$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta}(z-w)$

- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \leadsto\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=C \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times}$
- Problem: $\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

- $H^{1}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right) \rightarrow H^{2}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \simeq H^{1}\left(\Gamma_{0}(p), \mathbb{C}_{p}\right)$
- If $X_{0}(p)$ has genus $0, J_{\theta}$ lifts to $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times}\right)$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{\rho}\right]\right) \theta}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right\rceil\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

- $H^{1}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right) \rightarrow H^{2}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \simeq H^{1}\left(\Gamma_{0}(p), \mathbb{C}_{p}\right)$
- If $X_{0}(p)$ has genus $0, J_{\theta}$ lifts to $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times}\right)$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right) \theta\right.}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{n}\right\rceil\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right) \theta\right.}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times}$
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a
discrete subset of $\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right) \theta\right.}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
\square

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right) \theta\right.}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right) \theta\right.}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

- $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ is an honest function in \mathcal{M}^{\times}

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

- $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ is an honest function in \mathcal{M}^{\times}
- $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

- $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ is an honest function in \mathcal{M}^{\times}
- $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- $H^{1}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right) \rightarrow H^{2}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \simeq H^{1}\left(\Gamma_{0}(p), \mathbb{C}_{p}\right)$

Explicit examples of RMC

- Preface: how to obtain an $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-invariant function:
- Pick any RM $\theta \in \mathcal{H}_{p}$ and define $J_{\theta}(z):=\prod_{w \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta}(z-w)$
- It has zeros on the $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$-orbit of θ
- For $\gamma \in \mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightsquigarrow\left(\gamma J_{\theta}\right)(z)=\prod_{w}\left(\gamma^{-1} z-w\right)$ has the same zeros
- $J_{\theta}=c \cdot \gamma J_{\theta}$ for some $c \in \mathbb{C}_{p}^{\times} \rightsquigarrow J_{\theta} \in H^{0}\left(\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- Problem: $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$ is dense in $\mathcal{H}_{p} \rightsquigarrow J_{\theta}$ does not converge
- For $\gamma \in \operatorname{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, define a function $J_{\theta}(\gamma)$ whose divisor is a discrete subset of $\mathrm{SL}_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \theta$:

$$
\text { for } w \in \Gamma \theta \rightsquigarrow \delta_{\gamma}(w):= \begin{cases} \pm 1 & \text { if } C(x, \gamma x) \cap C\left(w, w^{\prime}\right) \neq \emptyset \\ 0 & \text { else. }\end{cases}
$$

- $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ is an honest function in \mathcal{M}^{\times}
- $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right)$
- $H^{1}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbb{C}_{p}^{\times}\right) \rightarrow H^{2}\left(\Gamma, \mathbb{C}_{p}^{\times}\right) \simeq H^{1}\left(\Gamma_{0}(p), \mathbb{C}_{p}\right)$
- If $X_{0}(p)$ has genus $0, J_{\theta}$ lifts to $J_{\theta} \in H^{1}\left(\Gamma, \mathcal{M}^{\times}\right)$

Rigid meromorphic cocycles: explicit examples

- Darmmon-Vonk give a method for the effective computation of J_{θ}, and many numerical evidence that $J_{\theta}[\tau]$ is algebraic for $\operatorname{RM} \theta, \tau$
 exponential time (in the p-adic precision)
- Overconvergent method: iteration of a U_{p}-operator.

Our aim
\square
To aive a s milar construction that allows for more general extensions K / \mathbb{Q} and more general p-arithmetic groups.

Rigid meromorphic cocycles: explicit examples

- Darmmon-Vonk give a method for the effective computation of J_{θ}, and many numerical evidence that $J_{\theta}[\tau]$ is algebraic for $\operatorname{RM} \theta, \tau$
- Computing $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ via the definition takes exponential time (in the p-adic precision)
- Overconvergent method: iteration of a U_{p}-operator.

Rigid meromorphic cocycles: explicit examples

- Darmmon-Vonk give a method for the effective computation of J_{θ}, and many numerical evidence that $J_{\theta}[\tau]$ is algebraic for $\operatorname{RM} \theta, \tau$
- Computing $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ via the definition takes exponential time (in the p-adic precision)
- Overconvergent method: iteration of a U_{p}-operator.

Our aim
\square
To aive a s milar construction that allows for more general extensions and more general p-arithmetic groups.

Rigid meromorphic cocycles: explicit examples

- Darmmon-Vonk give a method for the effective computation of J_{θ}, and many numerical evidence that $J_{\theta}[\tau]$ is algebraic for $\operatorname{RM} \theta, \tau$
- Computing $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ via the definition takes exponential time (in the p-adic precision)
- Overconvergent method: iteration of a U_{p}-operator.
- $J_{\frac{1+\sqrt{5}}{2}}[2 \sqrt{6}]=(3+8 \sqrt{2}+12 \sqrt{-1}+2 \sqrt{-2}) / 17\left(\bmod 7^{100}\right)$ in \mathbb{C}_{7}

Rigid meromorphic cocycles: explicit examples

- Darmmon-Vonk give a method for the effective computation of J_{θ}, and many numerical evidence that $J_{\theta}[\tau]$ is algebraic for $\mathrm{RM} \theta, \tau$
- Computing $J_{\theta}(\gamma)=\prod_{w \in \Gamma \cdot \theta}(z-w)^{\delta_{\gamma}(w)}$ via the definition takes exponential time (in the p-adic precision)
- Overconvergent method: iteration of a U_{p}-operator.
- $J_{\frac{1+\sqrt{5}}{2}}[2 \sqrt{6}]=(3+8 \sqrt{2}+12 \sqrt{-1}+2 \sqrt{-2}) / 17\left(\bmod 7^{100}\right)$ in \mathbb{C}_{7}

Our aim

To give a similar construction that allows for more general extensions K / \mathbb{Q} and more general p-arithmetic groups.

Outline

(1) The classical theory: singular moduli

(2) A recent theory: p-adic singular moduli

(3) Our proposal: a quaternionic version of the p-adic theory

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra:
$B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\operatorname{SL}_{2}(\mathbb{Z})$).
- Fix a prime p of F where B splits $\iota_{p}: B \hookrightarrow M_{2}\left(\mathbb{Q}_{p}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and ι_{p}
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v splits in K, and all other infinite places ramify (ATC extension)

Structure of the construction

- For an ATC point $\theta \in K_{1} \backslash F \sim J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"
- Some differences with the construction of Darmon-Vonk:

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.

- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and ι_{p}
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v splits in K, and all other infinite places ramify (ATC extension)
- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{A}[\tau] \in \mathbb{C}_{n}$ should be "algebraic'
- Some differences with the construction of Darmon-Vonk:

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra:
$B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime p of F where B splits $\iota_{p}: B \hookrightarrow M_{2}\left(\mathbb{Q}_{p}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and ι_{p}
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v splits in K, and all other infinite places ramify (ATC extension)
- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic'
- Some differences with the construction of Darmon-Vonk:

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)
\square

[^0]
Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and $\iota_{\mathfrak{p}}$
splits in K, and all other infinite places ramify (ATC extension)
- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"
- Some differences with the construction of Darmon-Vonk:

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and ι_{p}
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)
- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- Some differences with the construction of Darmon-Vonk:

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and $\iota_{\mathfrak{p}}$
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)

Structure of the construction

- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"

[^1]
Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra:
$B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and $\iota_{\mathfrak{p}}$
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)

Structure of the construction

- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"
- Some differences with the construction of Darmon-Vonk:
- Additive: obtained quantities should be logs of algebraic numbers

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra:
$B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and $\iota_{\mathfrak{p}}$
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)

Structure of the construction

- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"
- Some differences with the construction of Darmon-Vonk:
- Cocycles obtained by iterating $U_{\mathfrak{p}}$ (only use arithmetic groups)
- Additive: obtained quantities should be logs of algebraic numbers

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and $\iota_{\mathfrak{p}}$
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)

Structure of the construction

- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"
- Some differences with the construction of Darmon-Vonk:
- Cocycles obtained by iterating U_{p} (only use arithmetic groups)
- \mathcal{M}^{\times}is replaced by $\Lambda=\{$ functions on the unit ball $\}$

Quaternionic p-adic singular moduli: the setting

- F a totally real number field of narrow class number 1.
- B / F an almost totally definite quaternion algebra: $B \otimes_{v_{\infty}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$ for a single infinite place v_{∞} of F.
- $R \subset B$ a maximal order and $\Gamma_{0}=R_{1}^{\times}$(plays the role of $\mathrm{SL}_{2}(\mathbb{Z})$).
- Fix a prime \mathfrak{p} of F where B splits $\iota_{\mathfrak{p}}: B \hookrightarrow \mathrm{M}_{2}\left(\mathbb{Q}_{\mathfrak{p}}\right)$.
- B acts on \mathcal{H} and on \mathcal{H}_{p} via the splittings at v_{∞} and $\iota_{\mathfrak{p}}$
- Let K / F be a quadratic extension admitting $K \hookrightarrow B$ such that v_{∞} splits in K, and all other infinite places ramify (ATC extension)

Structure of the construction

- For an ATC point $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta}$ a cocycle
- For an ATC point $\tau \in K_{2} \backslash F \rightsquigarrow J_{\theta}[\tau] \in \mathbb{C}_{p}$ should be "algebraic"
- Some differences with the construction of Darmon-Vonk:
- Cocycles obtained by iterating U_{p} (only use arithmetic groups)
- \mathcal{M}^{\times}is replaced by $\Lambda=\{$ functions on the unit ball\}
- Additive: obtained quantities should be logs of algebraic numbers

Quaternionic p-adic singular moduli: construction

- Let $\mathfrak{p}=(\varpi)$ and $\Lambda=\overline{\mathbb{Z}}_{\mathfrak{p}}[[\varpi z]]$
- Integration pairing

$$
H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right) \times H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{p} .
$$

Main construction

- $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(p), \Lambda\right)$
- $\tau \in K_{2} \backslash F \rightsquigarrow C_{\tau} \in H_{1}\left(\Gamma_{0}(p), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$

Conjecture
 $J_{0}[\tau]$ is the Ionarithm of an algebraic number lying in a compositum of

 ring class fields of K_{1} and K_{2}.
Quaternionic p-adic singular moduli: construction

- Let $\mathfrak{p}=(\varpi)$ and $\Lambda=\overline{\mathbb{Z}}_{\mathfrak{p}}[[\varpi z]]$
- Integration pairing

$$
\begin{array}{ccc}
\Lambda \times \operatorname{Div}^{0} \mathcal{H}_{p} & \longrightarrow & \mathbb{C}_{p} \\
(f, Q-P) & \longmapsto & \int_{P}^{Q} f(x) d x
\end{array}
$$

$$
H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right) \times H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{p}
$$

$J_{\theta}[\tau]$ is the logarithm of an algebraic number lying in a compositum of ring class fields of K_{1} and K_{2}.

Quaternionic p-adic singular moduli: construction

- Let $\mathfrak{p}=(\varpi)$ and $\Lambda=\overline{\mathbb{Z}}_{\mathfrak{p}}[[\varpi z]]$
- Integration pairing

$$
\begin{array}{rlc}
\Lambda \times \operatorname{Div}^{0} \mathcal{H}_{p} & \longrightarrow & \mathbb{C}_{p} \\
(f, Q-P) & \longmapsto & \int_{P}^{Q} f(x) d x,
\end{array}
$$

- $\langle\cdot, \cdot\rangle: H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right) \times H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{p}$.

Quaternionic p-adic singular moduli: construction

- Let $\mathfrak{p}=(\varpi)$ and $\Lambda=\overline{\mathbb{Z}}_{\mathfrak{p}}[[\varpi z]]$
- Integration pairing

$$
\begin{array}{ccc}
\Lambda \times \operatorname{Div}^{0} \mathcal{H}_{p} & \longrightarrow & \mathbb{C}_{p} \\
(f, Q-P) & \longmapsto & \int_{P}^{Q} f(x) d x,
\end{array}
$$

- $\langle\cdot, \cdot\rangle: H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right) \times H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{p}$.

Main construction

- $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- $\tau \in K_{2} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Define $J_{\theta}[\tau]$

Conjecture
$J_{\theta}[\tau]$ is the logarithm of an algebraic number lying in a compositum of ring class fields of K_{1} and K_{2}.

Quaternionic p-adic singular moduli: construction

- Let $\mathfrak{p}=(\varpi)$ and $\Lambda=\overline{\mathbb{Z}}_{\mathfrak{p}}[[\varpi z]]$
- Integration pairing

$$
\begin{array}{ccc}
\Lambda \times \operatorname{Div}^{0} \mathcal{H}_{p} & \longrightarrow & \mathbb{C}_{p} \\
(f, Q-P) & \longmapsto & \int_{P}^{Q} f(x) d x,
\end{array}
$$

- $\langle\cdot, \cdot\rangle: H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right) \times H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{p}$.

Main construction

- $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- $\tau \in K_{2} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Define $J_{\theta}[\tau]:=\left\langle J_{\theta}, c_{\tau}\right\rangle \in \mathbb{C}_{p}$
\square

Quaternionic p-adic singular moduli: construction

- Let $\mathfrak{p}=(\varpi)$ and $\Lambda=\overline{\mathbb{Z}}_{\mathfrak{p}}[[\varpi z]]$
- Integration pairing

$$
\begin{array}{ccc}
\Lambda \times \operatorname{Div}^{0} \mathcal{H}_{P} & \longrightarrow & \mathbb{C}_{p} \\
(f, Q-P) & \longmapsto & \int_{P}^{Q} f(x) d x,
\end{array}
$$

- $\langle\cdot, \cdot\rangle: H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right) \times H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right) \longrightarrow \mathbb{C}_{p}$.

Main construction

- $\theta \in K_{1} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- $\tau \in K_{2} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Define $J_{\theta}[\tau]:=\left\langle J_{\theta}, c_{\tau}\right\rangle \in \mathbb{C}_{p}$

Conjecture

$J_{\theta}[\tau]$ is the logarithm of an algebraic number lying in a compositum of ring class fields of K_{1} and K_{2}.

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{C}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{c}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(p), \Lambda\right)$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{c}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{c}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- First step: construct a class $\phi \in H^{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, Div $\left.^{0} \mathcal{H}_{p}\right)$ following DV

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{c}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- First step: construct a class $\phi \in H^{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, Div $\left.{ }^{0} \mathcal{H}_{p}\right)$ following DV
- $w \in \Gamma_{0} \theta \rightsquigarrow w_{\infty}, w_{\infty}^{\prime} \in \mathbb{R}$ and $w_{p} \in \mathcal{H}_{p}$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially c_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- First step: construct a class $\phi \in H^{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, Div $\left.{ }^{0} \mathcal{H}_{p}\right)$ following DV
- $w \in \Gamma_{0} \theta \rightsquigarrow w_{\infty}, w_{\infty}^{\prime} \in \mathbb{R}$ and $w_{p} \in \mathcal{H}_{p}$
- $\phi_{\theta}(\gamma):=\sum_{w \in \Gamma_{0} \theta} \delta_{\gamma}\left(w_{\infty}\right) w_{p} \in \operatorname{Div}^{0}\left(\mathcal{H}_{p}\right)$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially c_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- First step: construct a class $\phi \in H^{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, Div $\left.{ }^{0} \mathcal{H}_{p}\right)$ following DV
- $w \in \Gamma_{0} \theta \rightsquigarrow w_{\infty}, w_{\infty}^{\prime} \in \mathbb{R}$ and $w_{p} \in \mathcal{H}_{p}$
- $\phi_{\theta}(\gamma):=\sum_{w \in \Gamma_{0} \theta} \delta_{\gamma}\left(w_{\infty}\right) w_{p} \in \operatorname{Div}^{0}\left(\mathcal{H}_{p}\right)$
- Restriction and applying W_{p} we get $\phi_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{c}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- First step: construct a class $\phi \in H^{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, Div $\left.^{0} \mathcal{H}_{p}\right)$ following DV
- $w \in \Gamma_{0} \theta \rightsquigarrow w_{\infty}, w_{\infty}^{\prime} \in \mathbb{R}$ and $w_{p} \in \mathcal{H}_{p}$
- $\phi_{\theta}(\gamma):=\sum_{w \in \Gamma_{0} \theta} \delta_{\gamma}\left(w_{\infty}\right) w_{p} \in \operatorname{Div}^{0}\left(\mathcal{H}_{p}\right)$
- Restriction and applying W_{p} we get $\phi_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- To obtain coefficients in Λ apply $P-Q \mapsto \operatorname{dlog}\left(\frac{z-P}{z-Q}\right) \in \Lambda$

Quaternionic p-adic singular moduli: construction

- Homology class: $\tau \in K_{1} \backslash F \rightsquigarrow c_{\tau} \in H_{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, $\left.\operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- Essentially \boldsymbol{c}_{τ} comes from $\gamma_{\tau} \otimes \tau$
- Cohomology class: $\theta \in K_{2} \backslash F \rightsquigarrow J_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \Lambda\right)$
- First step: construct a class $\phi \in H^{1}\left(\Gamma_{0}(\mathfrak{p})\right.$, Div $\left.^{0} \mathcal{H}_{p}\right)$ following DV
- $w \in \Gamma_{0} \theta \rightsquigarrow w_{\infty}, w_{\infty}^{\prime} \in \mathbb{R}$ and $w_{p} \in \mathcal{H}_{p}$
- $\phi_{\theta}(\gamma):=\sum_{w \in \Gamma_{0} \theta} \delta_{\gamma}\left(w_{\infty}\right) w_{p} \in \operatorname{Div}^{0}\left(\mathcal{H}_{p}\right)$
- Restriction and applying W_{p} we get $\phi_{\theta} \in H^{1}\left(\Gamma_{0}(\mathfrak{p}), \operatorname{Div}^{0} \mathcal{H}_{p}\right)$
- To obtain coefficients in Λ apply $P-Q \mapsto \operatorname{dlog}\left(\frac{z-P}{z-Q}\right) \in \Lambda$
- $J_{\theta}=\phi_{\theta}+U_{\mathfrak{p}} \phi_{\theta}+U_{\mathfrak{p}}^{2} \phi_{\theta}+U_{\mathfrak{p}}^{3} \phi_{\theta}+U_{\mathfrak{p}}^{4} \phi_{\theta}+\cdots$

Quaternionic singular moduli: examples

- We have computed $J_{\theta}[\tau]$ in many particular cases to high precision and in many cases we have been able to recognize these quantities as close to logarithms of algebraic numbers in the expected ring class fields.
- $K_{1}=F(\theta), \theta=\sqrt{1-2 \omega}$ and $K_{2}=F(\tau), \tau=\sqrt{9-14 \omega}$
- $J_{\theta}[\tau]=2650833861085011569846208847449970229624664608755690791954838+O\left(11^{59}\right)$
- Satisfies: $25420 x^{4}-227820 x^{3}+2200011 x^{2}-27566220 x+372174220$ which generates an unramified extension of $K_{1} \cdot K_{2}$.

Darmon-Gehrmann-Lipnowski '23
Rigid meromorphic cocycles in a very general setting (orthogonal groups) + conjecture of rationality + numerical evidence

Quaternionic singular moduli: examples

- We have computed $J_{\theta}[\tau]$ in many particular cases to high precision and in many cases we have been able to recognize these quantities as close to logarithms of algebraic numbers in the expected ring class fields.

Example: $F=\mathbb{Q}(\omega), \omega=\frac{1+\sqrt{5}}{2}, p=11, B=(-w,-2)_{F}, D_{B}=(2)$

- $K_{1}=F(\theta), \theta=\sqrt{1-2 \omega}$ and $K_{2}=F(\tau), \tau=\sqrt{9-14 \omega}$
- $J_{\theta}[\tau]=2650833861085011569846208847449970229624664608755690791954838+O\left(11^{59}\right)$
- Satisfies: $25420 x^{4}-227820 x^{3}+2200011 x^{2}-27566220 x+372174220$ which generates an unramified extension of $K_{1} \cdot K_{2}$.

Rigid meromorphic cocycles in a very general setting (orthogonal groups) + conjecture of rationality + numerical evidence

Quaternionic singular moduli: examples

- We have computed $J_{\theta}[\tau]$ in many particular cases to high precision and in many cases we have been able to recognize these quantities as close to logarithms of algebraic numbers in the expected ring class fields.

Example: $F=\mathbb{Q}(\omega), \omega=\frac{1+\sqrt{5}}{2}, p=11, B=(-w,-2)_{F}, D_{B}=(2)$

- $K_{1}=F(\theta), \theta=\sqrt{1-2 \omega}$ and $K_{2}=F(\tau), \tau=\sqrt{9-14 \omega}$
- $J_{\theta}[\tau]=265083386108501156984620884744997022962466400875690791954838+O\left(11^{59}\right)$
- Satisfies: $25420 x^{4}-227820 x^{3}+2200011 x^{2}-27566220 x+372174220$ which generates an unramified extension of $K_{1} \cdot K_{2}$.

Darmon-Gehrmann-Lipnowski '23

Rigid meromorphic cocycles in a very general setting (orthogonal groups) + conjecture of rationality + numerical evidence

A quaternionic construction of p-adic singular moduli

Xevi Guitart (UB) Marc Masdeu (UAB) Xavier Xarles (UAB)

RSME-SEMA-SCM-PTM Mathematical Meeting

Quaternionic singular moduli: examples

Table: Tables for $D=6, p=5$, plus-minus classes.

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.

```
\(J_{\theta, 3}^{\text {even }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)\)
- Compute using \(B_{6}\) and \(n=5\) : \(J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593 \ldots+188812945396004677 \ldots \frac{1+\sqrt{53}}{2}+O\left(5^{197}\right)\)
```

- M number field generated by a root of $x^{8}-4 x^{7}+84 x^{6}-238 x^{5}+1869 x^{4}-3346 x^{3}+7260 x^{2}-5626 x+3497$

QuestionAre the quantities Jeven the local manifestation of a global object?

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.
- Compute using B_{10} and $p=3$:

$$
J_{\theta, 3}^{\text {even }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)
$$

$J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593$.

- M number field generated by a root of

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.
- Compute using B_{10} and $p=3$:

$$
J_{\theta, 3}^{\text {jeven }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)
$$

- Compute using B_{6} and $p=5$:

$$
J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593 \ldots+188812945396004677 \ldots \frac{1+\sqrt{53}}{2}+O\left(5^{197}\right)
$$

- M number field generated by a root of $-4 x^{7}+84 x^{6}-238 x^{5}+1869 x^{4}-3346 x^{3}+7260 x^{2}-5626 x+3497$

QuestionAre the quantities $J_{\theta, p}^{\text {even }}$ the local manifestation of a global object?

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.
- Compute using B_{10} and $p=3$:

$$
J_{\theta, 3}^{\text {even }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)
$$

- Compute using B_{6} and $p=5$:

$$
J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593 \ldots+188812945396004677 \ldots \frac{1+\sqrt{53}}{2}+O\left(5^{197}\right)
$$

- M number field generated by a root of $x^{8}-4 x^{7}+84 x^{6}-238 x^{5}+1869 x^{4}-3346 x^{3}+7260 x^{2}-5626 x+3497$

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.
- Compute using B_{10} and $p=3$:

$$
J_{\theta, 3}^{\text {even }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)
$$

- Compute using B_{6} and $p=5$:

$$
J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593 \ldots+188812945396004677 \ldots \frac{1+\sqrt{53}}{2}+O\left(5^{197}\right)
$$

- M number field generated by a root of $x^{8}-4 x^{7}+84 x^{6}-238 x^{5}+1869 x^{4}-3346 x^{3}+7260 x^{2}-5626 x+3497$
- $\iota_{3}: M \hookrightarrow \mathbb{C}_{3}$ and $\iota_{5}: M \hookrightarrow \mathbb{C}_{5}$

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.
- Compute using B_{10} and $p=3$:

$$
J_{\theta, 3}^{\text {even }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)
$$

- Compute using B_{6} and $p=5$:

$$
J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593 \ldots+188812945396004677 \ldots \frac{1+\sqrt{53}}{2}+O\left(5^{197}\right)
$$

- M number field generated by a root of $x^{8}-4 x^{7}+84 x^{6}-238 x^{5}+1869 x^{4}-3346 x^{3}+7260 x^{2}-5626 x+3497$
- $\iota_{3}: M \hookrightarrow \mathbb{C}_{3}$ and $\iota_{5}: M \hookrightarrow \mathbb{C}_{5}$
- There exists $\alpha \in M$ and units u_{1}, u_{2} in $\mathbb{Q}(\sqrt{23}, \sqrt{53})$ such that

$$
\iota_{3}\left(\alpha u_{1}\right)=J_{\theta, 3}^{\text {even }}(\tau), \text { and } \iota_{5}\left(\alpha u_{2}\right)=J_{\theta, 5}^{\text {even }}(\tau)
$$

Moving p and B

- $K_{1}=\mathbb{Q}(\sqrt{53})$ and $K_{2}=\mathbb{Q}(\sqrt{23})$ can be embedded in B_{6} and B_{10}.
- Compute using B_{10} and $p=3$:

$$
J_{\theta, 3}^{\text {even }}(\tau)=671432593119615754 \ldots+854036156664899807 \ldots \frac{1+\sqrt{53}}{2}+O\left(3^{195}\right)
$$

- Compute using B_{6} and $p=5$:

$$
J_{\theta, 5}^{\text {even }}(\tau)=223515896705660593 \ldots+188812945396004677 \ldots \frac{1+\sqrt{53}}{2}+O\left(5^{197}\right)
$$

- M number field generated by a root of $x^{8}-4 x^{7}+84 x^{6}-238 x^{5}+1869 x^{4}-3346 x^{3}+7260 x^{2}-5626 x+3497$
- $\iota_{3}: M \hookrightarrow \mathbb{C}_{3}$ and $\iota_{5}: M \hookrightarrow \mathbb{C}_{5}$
- There exists $\alpha \in M$ and units u_{1}, u_{2} in $\mathbb{Q}(\sqrt{23}, \sqrt{53})$ such that

$$
\iota_{3}\left(\alpha u_{1}\right)=J_{\theta, 3}^{\text {even }}(\tau), \text { and } \iota_{5}\left(\alpha u_{2}\right)=J_{\theta, 5}^{\text {even }}(\tau)
$$

Question

Are the quantities $J_{\theta, p}^{\text {even }}$ the local manifestation of a global object?

A quaternionic construction of p-adic singular moduli

Xevi Guitart (UB) Marc Masdeu (UAB) Xavier Xarles (UAB)

RSME-SEMA-SCM-PTM Mathematical Meeting

[^0]: - Some differences with the construction of Darmon-Vonk:

[^1]: - Some differences with the construction of Darmon-Vonk:

